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Deep Generative Modelling: A Comparative
Review of VAEs, GANs, Normalizing Flows,
Energy-Based and Autoregressive Models

Sam Bond-Taylor™, Adam Leach

, Yang Long
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Abstract—Deep generative models are a class of techniques that train deep neural networks to model the distribution of training
samples. Research has fragmented into various interconnected approaches, each of which make trade-offs including run-time,
diversity, and architectural restrictions. In particular, this compendium covers energy-based models, variational autoencoders,
generative adversarial networks, autoregressive models, normalizing flows, in addition to numerous hybrid approaches. These
techniques are compared and contrasted, explaining the premises behind each and how they are interrelated, while reviewing current

state-of-the-art advances and implementations.

Index Terms—Deep learning, generative models, energy-based models, variational autoencoders, generative adversarial networks,

autoregressive models, normalizing flows

1 INTRODUCTION

GENERATIVE modelling using neural networks has its ori-
gins in the 1980s with aims to learn about data with no
supervision, potentially providing benefits for standard
classification tasks; collecting training data for unsuper-
vised learning is naturally much lower effort and cheaper
than collecting labelled data but there is considerable infor-
mation still available making it clear that generative models
can be beneficial for a wide variety of applications.

Beyond this, generative modelling has numerous direct
applications including image synthesis: super-resolution,
text-to-image and image-to-image conversion, inpainting,
attribute manipulation, pose estimation; video: synthesis
and retargeting; audio: speech and music synthesis; text:
summarisation and translation; reinforcement learning;
computer graphics: rendering, texture generation, character
movement, liquid simulation; medical: drug synthesis,
modality conversion; and out-of-distribution detection.

The central idea of generative modelling stems around
training a generative model whose samples & ~ py(Z) come
from the same distribution as the training data distribution,
x ~ pq(x). Early neural generative models, energy-based
models achieved this by defining an energy function on
data points proportional to likelihood, however, these
struggled to scale to complex high dimensional data such as
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natural images, and require Markov Chain Monte Carlo
(MCMC) sampling during both training and inference, a
slow iterative process. In recent years there has been
renewed interest in generative models driven by the advent
of large freely available datasets as well as advances in both
general deep learning architectures and generative models,
breaking new ground in terms of visual fidelity and sam-
pling speed. In many cases, this has been achieved using
latent variables z which are easy to sample from and/ or calcu-
late the density of, instead learning p(z, z); this requires mar-
ginalisation over the unobserved latent variables, however in
general, this is intractable. Generative models therefore typi-
cally make trade-offs in execution time, architecture, or opti-
mise proxy functions. Choosing what to optimise for has
implications for sample quality, with direct likelihood optimi-
sation often leading to worse sample quality than alternatives.

Interrelated with generative models is the field of self-
supervised learning where the focus is on learning good
intermediate representations that can be used for down-
stream tasks without supervision [105]. As such, generative
models can in general also be considered self-supervised,
however, not all self-supervised models are generative mod-
els. Types of self-supervised objectives include auxiliary
classification losses such as predicting the rotation of inputs,
masked losses where the model must predict the true value
of some inputs which have been masked out, and contrastive
losses which learn an embedding space where similar data
points are close and different points are far apart.

There exists a variety of survey papers focusing on par-
ticular generative models such as normalizing flows [125],
[175], generative adversarial networks [70], [249], and
energy-based models [202], however, naturally these dive
into the intricacies of their respective method rather than
comparing with other methods; additionally, some focus on
applications rather than theory. While there exists a recent
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TABLE 1
Comparison Between Deep Generative Models in Terms of Training and Test Speed, Parameter Efficiency, Sample Quality,
Sample Diversity, and Ability to Scale to High Resolution Data. Quantitative Evaluation is Reported on the CIFAR-10 Dataset [127] in
Terms of Fréchet Inception Distance (FID) and Negative Log-Likelihood (NLL) in Bits-Per-Dimension (BPD).

Method Train ~ Sample Num. Resolution Free-form Exact FID NLL (in
Speed Speed Params. Scaling Jacobian Density BPD)
Generative Adversarial Networks
DCGAN [181] FrkAk ok kAK Fokk Ak Fokkkk v X 37.11 -
ProGAN [114] ok Ak Kokkkk oAk A ok Ak Ak v X 15.52 -
BigGAN [19] Fkkk Fk KA K *kk Ak *kkk v X 14.73 -
StyleGAN2 + ADA [115] * Frhhk HAK FdA Ak v X 2.42 -
Energy Based Models
IGEBM [46] Fokk Hox Forkhk Foxk v X 37.9 -
Denoising Diffusion [87] ok Ak k *k Kok ke - v ) 317 <3.75
DDPM-++ Continuous [205] Fokkkok *k Ak Fokkok v ) 2.20 -
Flow Contrastive (EBM) [55] * ok Hok >k v X 37.30 =~ 3.27
VAEBM [246] Sk Fokokk * Foxkok v X 12.19
Variational Autoencoders
Convolutional VAE [123] Fokkokk Fokhkk —— Kok v ) 106.37 < 4.54
Variational Lossy AE [29] *okk * * *k X ) - <2.95
VQ-VAE [183], [234] Hok Fokk * Forkohk X ) - < 4.67
VD-VAE [31] * ok kA k *okk Sk Ak v 2] - < 2.87
Autoregressive Models
PixelRNN [233] Hok * * Foxk X v - 3.00
Gated PixelCNN [232] Fokk * * R X v 65.93 3.03
PixellIQN [173] Fokk * * Foxk X v 49.46 -
Sparse Trans. + DistAug [32], [110]  #xxx * Fokk Sk X v 14.74  2.66
Normalizing Flows
RealNVP [43] Kk Kok kA Kok kK *okk X v/ - 3.49
GLOW [124] * Fokkkk ok Foxkok X v 4599 3.35
FFJORD [62] * Fokk FokAkok Hok v ) - 3.40
Residual Flow [26] *% Ak r— Hokkk v ) 46.37 3.28

survey on generative models as a whole [173], it is less
broad, diving deeply into a few specific implementations.
This survey provides a comprehensive overview of gener-
ative modelling trends, introducing new readers to the field,
comparing and contrasting so as to explain the modelling
decisions behind each respective technique. Additionally,
advances old and new are discussed in order to bring the
reader up to date with current research. A specific focus on
image models is taken reflecting the predominance in litera-
ture, however, concepts are often relevant across modalities.
In particular, this survey covers energy-based models,
unnormalised density models, variational autoencoders,
variational approximation of a latent-based model’s poste-
rior, generative adversarial networks, two models set in a
mini-max game, autoregressive models, model data decom-
posed as a product of conditional probabilities, and normal-
izing flows, exact likelihood models using invertible
transformations. This breakdown is defined to closely match

TABLE 2
Rules for the Star Ratings in Table 1
1Star 2Stars 3 Stars 4 Stars 5 Stars
Training >5days <5days <2days <ldays < % day
Sampling AR MCMC Middle <20steps 1step
Params >120M <120M  <60M <30M <10M
Resolution <32 32 64 or 128 256 or 512 >1024

the typical divisions within research, however, numerous
hybrid approaches exist that blur these lines, these are dis-
cussed in the most relevant section or both where suitable.

For a brief insight into the differences between architec-
tures, we provide Table 1 which contrasts a diverse array of
techniques. For the column “Exact Density”, v represents
tractable densities, (v') approximate densities, and X intracta-
ble densities. On a number properties assessed we use a star
system to allow easy comparisons, with rules defined in
Table 2 based on CIFAR-10. In particular, we acknowledge
that ranking measures such as training speed in days can be
considered anecdotal since it is dependent on the year and
compute available. Nevertheless, this allows a comparison
based on properties such as stability and convergence rates
which cannot be easily judged, for instance, by simply look-
ing at number of function evaluations per iteration.

2 ENERGY-BASED MODELS

Energy-based models (EBMs) [132] are based on the obser-
vation that any probability density function p(z) for z € R”
can be expressed in terms of an energy function E(z) :
RP — R which associates realistic points with low values
and unrealistic points with high values

eiE(z)

p(x) = T 1

—EB(z)*
iex ©
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(a) Boltzmann machine. (b) Restricted Boltzmann machine.

Fig. 1. Restricted Boltzmann machines [82] have restricted architectures
to allow faster sampling than Boltzmann machines [83].

Modelling data in such a way offers a number of perks,
namely the simplicity and stability associating with training
a single model; utilising a shared set of features thereby
minimising required parameters; and the lack of any prior
assumptions eliminates related bottlenecks [45]. Despite
these benefits, scaling to high dimensional data is difficult,
however, recent advances have made substantial strides.

A key issue with EBMs is how to optimise them; since the
denominator in Eq. (1) is intractable for most models, a pop-
ular proxy objective is contrastive divergence where energy
values of data samples are ‘pushed” down, while samples
from the energy distribution are ‘pushed” up. Formally, the
gradient of the negative log-likelihood loss L(0) =
Eznp,[—Inps(z)] has been shown to approximately demon-
strate the following property [22], [206],

VoLl =Eginp, [VoEy(z")] — Eg-npy[VoEo(z )], )

where £~ ~ py is a sample from the EBM found through a
Markov Chain Monte Carlo (MCMC) generating procedure.

2.1 Early Energy-Based Models
Before moving to recent advances, we start with some of the
earliest neural generative models.

2.1.1 Boltzmann Machines

A Boltzmann machine [82] is a fully connected undirected
network of binary neurons (Fig. 1) that are turned on with
probability determined by a weighted sum of their inputs
i.e. for some state s;, p(s; = 1) = o(>_; wi;s;). The neurons

can be divided into visible v € {0,1}” units, those which
are set by inputs to the model, and hidden h € {0, l}P units,
all other neurons. The energy of the state {v, h} is defined
(without biases for succinctness) as

Ey(v,h) = — 1vTL'v - lhTJh - 1vTWh7 (3)
2 2 2

where W, L, and J are symmetrical learned weight matri-

ces. In order to train Boltzmann machines via contrastive

divergence, equilibrium states are found via Gibbs sam-

pling, however, this takes an exponential amount of time in

the number of hidden units making scaling impractical.

2.1.2 Restricted Boltzmann Machines

Many of the issues associated with Boltzmann machines can
be overcome by restricting their connectivity. One approach,
known as the restricted Boltzmann machine (RBM) [83] is to
remove connections between units in the same group
(Fig. 1b), allowing exact calculation of hidden units.

7329

Although obtaining negative samples still requires Gibbs
sampling, it can be parallelised and in practice a single step
is sufficient if v is initially sampled from the dataset [83].

By stacking RBMs, using features from lower down as
inputs for the next layer, more powerful functions can be
learned; these models are known as deep belief networks
[84]. Training an entire model at once is intractable so
instead they are trained greedily layer by layer, composing
densities thus improving the approximation of p(v).

2.2 Deep EBMs via Contrastive Divergence

To train more powerful architectures through contrastive
divergence, one must be able to efficiently sample from
po. Specifically, we would like to model high dimen-
sional data using an energy function with a deep neural
network, taking advantage of recent advances in discrim-
inative models [251]. MCMC methods such as random
walk and Gibbs sampling [84], when applied to high
dimensional data, have long mixing times, making them
impractical. A number of recent approaches [45], [247]
have advocated the use of stochastic gradient Langevin
dynamics [186], [243] which permits sampling through
the following iterative process,

. g 8E9($7)

4
5 oz, + €, 4)

xo ~ po(T) Tit1 = Tj

where € ~ N(0,aI), po(x) is typically a uniform distribution
over the input domain and « is the step size. As the number
of updates N — co and « — 0, the distribution of samples
converges to py [243]; however, o and € are often tweaked
independently to speed up training.

While Langevin MCMC is more practical than other
approaches, sampling still requires a large number of steps.
One solution is to use persistent contrastive divergence [45],
[214] where a replay buffer stores previously generated
samples that are randomly reset to noise; this allows sam-
ples to be continually refined with a relatively small number
of steps while maintaining diversity. Short-run MCMC [165]
which samples using as few as 100 update steps from noise
has also been used to train deep EBMs, however, since the
number of steps is so small, samples are not truly from the
correct probability density. Nevertheless, there are other
advantages such as allowing image interpolation and recon-
struction (since short-run MCMC does not mix) [166]. Other
approaches include initialising MCMC chains with data
points [247] and samples from an implicit generative model
[246], as well as adversarially training an implicit generative
model, mitigating mode collapse somewhat by maximising
its entropy [65], [120], [129]. Improved/augmented MCMC
samplers with neural networks can also improve the effi-
ciency of sampling [62], [88], [134], [199], [215].

One application of EBMs of this form comes by using
standard classifier architectures, f; : R — R%X, which map
data points to logits used by a softmax function to compute
po(y|z). By marginalising out y, these logits can be used to
define an energy model that can be simultaneously trained
as both a generative and classification model [64],

, exp(fo(z[y]))

po(x) = ZPe(l‘,y) = > Z(6) ) (5a)
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Ey(z) = —In Y _ exp(fo(x[y))). (5b)

2.3 Score Matching and Denoising Diffusion
Although Langevin MCMC has allowed EBMs to scale to
high dimensional data, training times are still slow due to
the need to sample from the model distribution, addition-
ally, the finite nature of the sampling process means that
samples can be arbitrarily far away from the model’s distri-
bution [63]. An alternative approach is score matching [100]
which is based on the idea of minimising the difference
between the derivatives of the data and model’s log-density
functions; the score function is defined as s(z) = V, Inp(x)
which does not depend on the intractable denominator and
can therefore be applied to build an energy model [207] by
minimising the Fisher divergence between p,; and py,

1

L =5Ep@lll so(2) — sa(e)|[3); (©)
however, the score function of data is usually not available.
Various methods exist to estimate the score function includ-
ing spectral approximation [194], sliced score matching
[201], finite difference score matching [174], and notably
denoising score matching [237] which allows the score to be
approximated using corrupted data samples ¢(z|z). In par-
ticular, when ¢ = N (z|z, 0%I), Eq. (6) simplifies to

2
] . @

That is, sy learns to estimate the noise thereby allowing it to
be used as a generative model [190], [200]. Since the Lange-
vin update step uses V, Inp(z) it is possible to sample from
a score matching model using Langevin dynamics [224].
This is only possible, however, when trained over a large
variety of noise levels so that z covers the whole space.

r—x

Sg(il?) -+

o2

1
L= §Epd($)E§:~N(zﬁQI) [

2.3.1 Denoising Diffusion Probabilistic Models

Closely related are diffusion models [1], [11], [86], [197]
which gradually destroy data z, by adding noise over a
fixed number of steps T" using a noise schedule B;.; deter-
mined so that zr is approximately normally distributed.
The forward process is defined by a discrete Markov chain,

T
g(zrr|zo) = [ [ al@ilziv), (82)
t=1
a(zi|zi-1) = N (245 \/1 = Bmi-1, BiI). (8b)

The parameterised reverse process is trained to gradually
remove noise, i.e. approximate py(z;_1|z;), by optimising a
re-weighted variant of the ELBO, similar to Eq. (7).

Diffusion models have also been applied to categorical
data; multinomial diffusions [92] define a forward process
where each discrete variable switches randomly to a differ-
ent value and the reverse process is trained to approximate
the noise. Self-supervised language models such as BERT
[40] have similar training objectives: variables are randomly
masked out and the model is trained to predict the original
values; these models can be viewed as Markov random
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fields and sampled using Gibbs/Metropolis Hastings via
iterative sampling of the masked distributions [60], [238].

2.3.2 Speeding up Sampling

Sampling from score-based models requires a large number
of steps leading to various techniques being developed to
reduce this. A simple approach is to skip steps at inference:
cosine schedules [161] spend more time where larger visual
changes are made reducing the impact of skipping; another
approach is to use dynamic programming to find what steps
should be taken to minimise ELBO based on a computation
budget [241]. Taking the continuous time limit of a diffusion
model results in a stochastic differential equation (SDE),
numerical solvers can therefore be used, reducing the num-
ber of steps required [107], [204]. Another proposed
approach is to model noisy data points as g(z;_1|z;, zo),
allowing the generative process to skip some steps using its
approximation of end samples z, [198].

2.4 Correcting Implicit Generative Models

While EBMs offer powerful representation ability due to
unnormalized likelihoods, they can suffer from high vari-
ance training, long training and sampling times, and strug-
gle to support the entire data space. In this section, a
number of hybrid approaches are discussed which address
these issues.

2.4.1 Exponential Tilting

To eliminate the need for an EBM to support the entire
space, an EBM can instead be used to correct samples from
an implicit generative network, simplifying the function to
learn and allowing easier sampling. This procedure,
referred to as exponentially tilting an implicit model, is
defined as

1 —Ey(z
Pog(T) = Zd,%(z)e Bo(e), (9)

By parameterising ¢, (z) as a latent variable model such as a
normalizing flow [3], [164] or VAE generator [245], MCMC
sampling can be performed in the latent space rather than
the data space. Since the latent space is much simpler, and
often uni-modal, MCMC mixes much more effectively. This
limits the freedom of the model, however, leading some to
jointly sample in latent and data space [3], [245].

2.4.2 Noise Contrastive Estimation

Noise contrastive estimation [51], [74] transforms EBM
training into a classification problem using a noise distribu-
tion g4 (z) by optimising the loss function,

Po() 99 ()

Eri [lnpe(x) +qp(z) } * B {lnpe(m) +qp(z) } ’
where py(z) = e#(*)=¢. This approach can be used to train a
correction via exponential tilting [164], but can also be used
to directly train an EBM and normalizing flow [54]. Eq. (10)
is equivalent to GAN Equation (18), however, training for-
mulations differ, with noise contrastive estimation explicitly
modelling likelihood ratios.

(10)



BOND-TAYLOR ETAL.: DEEP GENERATIVE MODELLING: A COMPARATIVE REVIEW OF VAES, GANS, NORMALIZING FLOWS, ENERGY-BASED...

2.5 Alternative Training Objectives
As aforementioned, energy models trained with contrastive
divergence approximately maximises the likelihood of the
data; likelihood however does not correlate directly with
sample quality [213]. Training EBMs with arbitrary f-diver-
gences is possible, yielding improved FID scores [250].
Since score estimates have high variance, the Stein dis-
crepancy has been proposed as an alternative objective,
requiring no sampling and more closely correlating with
likelihood [63]. A middle ground between denoising score
matching and contrastive divergence is diffusion recovery
likelihood [11] which can be optimised via a sequence of
denoising EBMs conditioned on increasingly noisy samples
of the data, the conditional distributions being much easier
to MCMC sample from than typical EBMs [55].

3 VARIATIONAL AUTOENCODERS

One of the key problems associated with energy-based
models is that sampling is not straightforward and mixing
can require a significant amount of time. To circumvent this
issue, it would be beneficial to explicitly sample from the
data distribution with a single network pass.

To this end, suppose we have a latent based model
po(z|z) with prior py(z) and posterior py(z|x); unfortunately
optimising this model through maximum likelihood is
intractable due to the integral in py(z) = [, ps(x|2)ps(2)da.
Instead, variational inference allows thlS problem to be
reframed as an optimisation problem by introducing an
approximation of the true intractable posterior gy(z|z) =
arg ming Dy, (qs(2|z)||ps(2|z)) that allows a tractable bound
on py(z) to be formed. In particular, variational autoen-
coders amortize the inference process, that is, approximate
gs(z|z) using a feedforward inference network allowing
scaling to large datasets [122], [185]. From the definition of
KL divergence we get

Dicaas(e0) (1) = Euya | 2420 |
= Eq¢ (z]z) [ln q¢(z|z)] Eq¢(z\z) [lnpe(Z, m)]

+Inpy(x), (11)

which can be rearranged to find an alternative definition for
po(x) that does not require the knowledge of py(z|z)

D1 (gg(2|2)]|po(2lz)) —
+ Eqy(zz) [Inpo(z, z)]
> —Eyy oz [In G4 (2|2)] + Eqy (21 [In po(2, 7))

Inpy(z) = Eq¢<z|z) [In g (z|z)]

—E g, (o) 10 45 (212)] + Egy (o] I po (2)] (12)

+ Egy(zlz) [In py(x|2)]
= —Dx1(gp(2|2)||po(2)) + Eyy(z1a) [In po (] 2)]
= L(0.¢;2),

where L is known as the evidence lower bound (ELBO) [108].
To optimise this bound with respect to 6 and ¢, gradients
must be backpropagated through the stochastic sampling
process z ~ q4(z|z). This is permitted by reparameterizing z
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using a differentiable function g, (€, ) of a noise variable e:
z = gg(€, ) with € ~ p(e) [122], [185].

Monte Carlo gradient estimators can be used to approxi-
mate the expectations, however, this yields very high variance
making it impractical. Alternatively, if Dy (g, (2|z)||ps(2)) can
be integrated analytically then the variance is manageable. A
prior with such a property needs to be simple enough to sam-
ple from but also sufficiently flexible to match the true poste-
rior; a common choice is a normally distributed prior with
diagonal covariance, z~ qg(z|z) = N(2;u,0%I) with z=
u+o©®eand e ~ N (0, I). In this case, the loss simplifies to

M&

(1+m((09)?) ~ (1) - (o9)?)

1
Lyap (0, ¢;x) ~ 32

—_

==
M=

+ Inpe(z|Z). (13)

=1

Despite success on small scale datasets, when applied to
more complex datasets such as natural images, samples
tend to be unrealistic and blurry [44]. This blurriness has
been attributed to the maximum likelihood objective itself
and MSE reconstruction loss, however, there is evidence
that limited approximation of the true posterior is the root
cause [258]; with MSE causing highly non-Gaussian posteri-
ors. As such, the Gaussian posterior implies an overly sim-
ple model which, when unable to perfectly fit, maps
multiple data points to the same encoding leading to
averaging.

There are a number of other issues associated with lim-
ited posterior approximation, namely under-estimation of
the variance of the posterior, resulting in poor predictions,
and biases in the MAP estimates of model parameters [222].
Additionally, amortized inference leads to an amortization
gap, the difference in ELBO for the amortized posterior and
optimal approximate posterior [36]. Increasing the capacity
of the encoder and decoder can reduce this gap by improv-
ing the posterior approximation and better fitting the choice
of approximation respectively. Other proposed improve-
ments include combining with adversarial training [97],
[131], [149], improving the ELBO [20], as well as using dif-
ferent regularisation such as Wasserstein distance [216].

Reweighting the ELBO by multiplying D, with an extra
hyperparameter g allows the capacity of the latent represen-
tation to be altered. When g > 1 a more disentangled repre-
sentation is learned where each latent unit is responsible for
a single generative factor [81]. This approach has been gen-
eralised, allowing more precise states in the compression-
representation trade-off to be targeted [2].

3.1 Beyond Simple Priors

One approach to improve variational bounds and increase
sample quality is to improve the priors used for instance by
careful selection to the task or by increasing its complexity
[89]. Complex priors can be learned by warping simple dis-
tributions and inducing variational dependencies between
the latent variables: variational Gaussian processes permit
this by forming an infinite ensemble of mean-field distribu-
tions [218]; EBMs and score matching can be used to model
flexible priors [265], [227]; normalizing flows (see Section 6)
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Fig. 2. Variational autoencoder [122], [185] with a normally distributed
prior. € is sampled from A/(0, I).

transform distributions through a series of invertible para-
meterised functions [13], [61], [96], [124], [184], [189].

By rewriting the VAE training objective to have two reg-
ularisation terms [149],

,C(@, (]5; :l,‘) = Ezwq(z) [E%(Z‘I) [111p9(:12|2! ]]

(14)
+ Barga) [H [9 (2]2)]] = Enyz) [Po(2)],

the latter of which is the cross entropy between the aggregate
posterior and the prior, the prior can be defined as the aggre-
gate posterior, thus obtaining a rich multi-modal latent
representation that combats inactive latent variables. Since
the true aggregate posterior is intractable, VampPrior [217]
approximates it for a set of pseudo-inputs, tensors with the
same shape as data points learned during training. Exemplar
VAEs [168] scale this approach up, using the full training set
to approximate the aggregate posterior, by approximating
the prior using k-nearest-neighbours. Alternatively, the
aggregate posterior can be approximated with a learned
prior; this has been achieved with a learned rejection sam-
pling procedure that transforms a base distribution [7].

In some instances, it can be helpful to compress data to
discrete latent representations [17], [110], however, gra-
dients through discrete sampling procedures are ill-defined.
The Gumbel-Softmax/Concrete distribution is a differentia-
ble continuous approximation of a categorical distribution
containing a temperature coefficient that converges to a dis-
crete distribution in the limit [103], [147].

Alternatively, it has been argued that simple Gaussian
priors are not a hindrance. When the data of dimension d
lies on a sub-manifold of dimension 7 and r < d then global
VAE optimum exist that do no recover the data distribution,
however, when r = d, global optimums do recover the data
distribution; as such, 2 stage VAEs that first map data to
latents of dimension r then use a second VAE to correct the
learned density can better capture the data [37].

3.1.1 Hierarchical VAEs

Hierarchical VAEs build complex priors with multiple lev-
els of latent variables, each conditionally dependent on the
last, forming dependencies depthwise though the network,

po(2) = po(20)pe(21|20) - - - po(2n|2<N), (15a)

49 (2[2) = 4s(20%)qs(21] 20, 2) - - - 4 (22 < v, ). (15b)

Ladder VAEs [209] achieve this conditioning structure
using a bidirectional inference network where a deterministic
“bottom-up” pass generates features at various resolutions,
then the latent variables are processed from top to bottom
with the features shared (Fig. 3). Specifically, they model
latents as normal distributions conditioned on the last latent,
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Fig. 3. A hierarchical VAE with bidirectional inference [125].
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po(2ilzi-1) = N(Zi|,up,i(zi—l)7U?,ﬁ;j(zi—l))- (16)

By introducing skip connections around the stochastic sam-
pling process, latents can be conditioned on all previously
sampled latents [124], [146], [226]. Such an architecture gen-
eralises autoregressive models; inferring latents in parallel
allows for significantly fewer steps compared to typical
autoregressive models since many latents are statistically
independent and allows different latent levels to corre-
spond to global/local details depending on their depth. It
has been argued that a single level of latents is sufficient
since Gibbs sampling performed on that level can recover
the data distribution [257]. Despite that, Gibbs sampling
converges slowly, making hierarchical representations
more efficient; in support of this, deeper hierarchical VAEs
have been shown to improve likelihood, independent of
capacity [30].

3.2 Regularised Autoencoders

Related to VAEs are regularised autoencoders (RAEs)
which apply regularisation to the latent space of a determin-
istic autoencoder then subsequently train a density estima-
tor on this space to obtain a complex prior [57]. Since the
approximate posterior is a degenerate distribution, RAEs
have little connection with variational inference. Vector
Quantized-Variational Autoencoders (VQ-VAE) [181], [233]
achieve this by training an autoencoder with a discrete
latent space, then approximating encodings with an
autoregressive model (see Section 5). The encoder’s out-
puts are compared to a codebook of latent vectors and
set to the code they are closest to; the gradient of this
discretisation process is approximated using the straight
through estimator [10]. Meanwhile, latent vectors in the
codebook are moved closer to the encoder’s outputs. To
model larger images, hierarchy of codes have been
applied [182], as well as adversarial learning to increase
compression rate [52].

3.3 Data Modelling Distributions

Unlike energy-based models, VAEs must model an explicit
density p(z|z). For efficient sampling, typically this distribu-
tion is decomposed as a product of independent simple dis-
tributions, allowing unrestricted architectures to be used to
parameterise the chosen distributions. Common instances
include modelling variables as Bernoulli [141], Gaussian
[122], multinomial distributions, or as mixtures [188].



BOND-TAYLOR ETAL.: DEEP GENERATIVE MODELLING: A COMPARATIVE REVIEW OF VAES, GANS, NORMALIZING FLOWS, ENERGY-BASED...

3.3.1 Autoregressive Decoders

To introduce dependencies between the output variables,
numerous works have used powerful autoregressive net-
works [72]. While these approaches allow complex distribu-
tions to be learned, they increase the runtime and often suffer
from posterior collapse since early in training the approxi-
mate posterior contains little knowledge about z meaning
that it is easy to minimise Dy, which in turn reduces the gra-
dient between the encoder and decoder making it difficult to
escape this minima [17]; in fact, for a sufficiently powerful
generative distribution, this can occur even at optimum solu-
tions [28]. Various methods to prevent posterior collapse
have been proposed: by restricting the autoregressive
network’s receptive field to a small window, it is forced to use
latents to capture global structure [28]; a mutual information
term can be added to the loss to encourage high correlation
between z and z [259]; encouraging the posterior to be diverse
by controlling its geometry to evenly covering the data space,
redundancy is reduced and latents are encouraged to learn
global structure [145].

3.4 Bridging Amortized and Stochastic Inference
While variational approaches offer substantial speedup
over MCMC sampling, there is an inherent discrepancy
between the true posterior and approximate posterior
despite improvements in this field. To this end, a number of
approaches have been proposed to find a middle ground,
yielding improvements over amortized methods with lower
costs than MCMC. Semi-amortised VAEs [121] use an
encoder network followed by stochastic gradient descent on
latents to improve the ELBO, however, this still relies on an
inference network. The inference network can be removed
by assigning latent vectors to data points, then optimising
them with Langevin dynamics or gradient descent, during
training; although this allows fast training, convergence for
unseen samples is not guaranteed and there is still a large
discrepancy between the true posterior and latent approxi-
mations due to lag in optimisation [15], [77]. Short-run
MCMC has also been applied however it has poor mixing
properties [167]. Gradient Origin Networks [16] replace the
encoder with an empirical Bayes approximation of the pos-
terior that only requires a single gradient step.

VAEBMs offer a different perspective, rather than per-
forming latent MCMC sampling based on the ELBO, they
use an auxiliary energy-based model to correct blurry VAE
samples, with MCMC sampling performed in both the data
space and latent space. This setup is defined by hgg(z, 2) =

ﬁpg(z)pg(ﬂz)e’%(z), where py(2)pg(z|2) is the VAE, and

E4(x) is the energy model. This, however, requires 2 stages
of training to avoid calculating the gradient of the normalis-
ing constant Zy ¢, training only the VAE and fixing the VAE
and training the EBM respectively.

4 GENERATIVE ADVERSARIAL NETWORKS

Another approach at eliminating the Markov chains used in
energy models is the generative adversarial network (GAN)
[58]. GANs consist of two networks, a discriminator D :
R" — [0,1] which estimates the probability that a sample
comes from the data distribution = ~ p,(x), and a generator
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Fig. 4. Generative adversarial networks [58] set two networks in a game:
D detects real from fake samples while G tricks D.

G :R™ — R" which given a latent variable z ~ p,(z), cap-
tures pq by tricking the discriminator into thinking its sam-
ples are real. This is achieved through adversarial training
of the networks: D is trained to correctly label training sam-
ples as real and samples from G as fake, while G is trained
to minimise the probability that D classifies its samples as
fake. This can be interpreted as D and G playing a mini-
max game, as with prior work [192], [193], optimising the
value function V(G, D),

mén max V(G, D) = Egrppy(z)[In D(z)]
+ Ezvp.(»[In(l — D(G(2)))].

17

For a fixed G, the objective for D can be reformulated as

max V(G, D) = Egp,[In D(z)] + Egep, [In(1 — D(z))]

= Ezp, [hl;#x;g(z)}
Ppy(z) }

Pa() + py(x)

(18)
+ Ezep, [ln

= Dir(pall (pa + py)) + Drr(pgll5 (pa + py)) + C.

Therefore the loss is equivalent to the Jensen-Shannon
divergence between the generative distribution p, and the
data distribution pg and thus with sufficient capacity, the
generator can recover the data distribution. The use of sym-
metric JS-divergence is well behaved when both distribu-
tions are small unlike the asymmetric KL-divergence used
in maximum likelihood models. Additionally, it has been
suggested that reverse KL-divergence, Dgr(py||pa), is a bet-
ter measure for training generative models than normal KL-
divergence, Dkr(pallpy), since it minimises E.,, [Inpi(z)]
[99]; while reverse KL-divergence is not a viable objective
function, JS-divergence is and behaves more like reverse
KL-divergence than KL-divergence alone. With that said,
JS-divergence is not perfect; if 0 mass is associated with a
data sample in a maximum likelihood model, KL-diver-
gence is driven to infinity, whereas this can happen with no
consequence in a GAN.

4.1 Stabilising Training

The adversarial nature of GANs makes them notoriously
difficult to train [4]; Nash equilibrium is hard to achieve
[187] since non-cooperation cannot guarantee convergence,
thus training often results in oscillations of increasing
amplitude. As the discriminator improves, gradients passed
to the generator vanish, accelerating this problem; on the
other hand, if the discriminator remains poor, the generator
does not receive useful gradients. Another problem is mode
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Name Discriminator Loss Generator Loss : ig_‘éiN
NSGAN[59]  — E[ln(o(D(2)))] — Eln(1 — o(D(G(2)))]  —E[ln(o(D(G(=))))] e WGAN
WGAN [5] E[D(z)] — E[D(G(z))] E[D(G(=2))] ——LSGAN
LSGAN [151]  E[(D(z) — 1)*] + E[D(G(2))?] E[(D(G(2)) —1)?] —+— Hinge
Hinge [136] ~ E[min(0, D(z)—1)]-E[max(0,1+D(G(2)))] —E[D(G(2))]

EBGAN [257] D(x) + max(0,m — D(G(z))) D(G(z))
RSGAN [107]  E[ln(o(D(z) — D(G(2))))] Elln(o(~D(G(2) - D(x)))] -

(a) GAN losses.

D(G(2))

(b) Generator loss functions.

Fig. 5. A comparison of popular losses used to train GANs. (a) Respective losses for discriminator/generator. (b) Plots of generator losses with
respect to discriminator output. Notably, NS-GAN'’s gradient disappears as discriminator gets better.

collapse, where one network gets stuck in a bad local min-
ima and only a small subset of the data distribution is
learned. The discriminator can also jump between modes
resulting in catastrophic forgetting, where previously
learned knowledge is forgotten when learning something
new [211]. This section explores proposed solutions to these
problems.

4.1.1 Loss Functions

Since the cause of many of these issues can be linked with
the use of JS-divergence, other loss functions have been pro-
posed that minimise other statistical distances; in general,
any f-divergence can be used to train GANs [169]. One
notable example is the Wasserstein distance which intui-
tively indicates how much “mass” must be moved to trans-
form one distribution into another. Wasserstein distance is
defined formally in Eq. (19a), which by the Kantorovich-
Rubinstein duality is equivalent to Eq. (19b) [236]

inf

W(pd7 p!]) =
vell(Pa-pg)

E(zy~y(llz = yll], (192)

W(Pd,pg) = Ssup EINPd[D(x)]

Dl <1

= Eauy,[D(2)], (19b)

where the supremum is taken over all 1-Lipschitz functions,
that is, f such that for all z; and =, ||f(z1) — f(z2)], <
lz1 — x2],. Optimising Wasserstein distance, as described
in Table 5a, offers linear gradients thus eliminating the van-
ishing gradients problem (see Fig. 5). Moreover, Wasser-
stein distance is also equivalent to minimising reverse KL-
divergence [156], offers improved stability, and allows
training to optimality. Numerous approaches to enforce 1-
Lipschitz continuity have been proposed: weight clipping
[5] invalidates gradients making optimisation difficult;
applying a gradient penalty within the loss is heavily
dependent on the support of the generative distribution and
computation with finite samples makes application to the
entire space intractable [71]; spectral normalisation (dis-
cussed below) applies global regularisation by estimating
the singular values of parameters. Other popular loss func-
tions include least squares GAN, hinge loss, energy-based
GAN, and relativistic GAN (detailed in Table 5a).

The catastrophic forgetting problem can be mitigated
by conditioning the GAN on class information, encourag-
ing more stable representations [18], [155], [253]. Never-
theless, labelled data, if available, only covers limited
abstractions. Self-supervision achieves the same goal by

training the discriminator on an auxiliary classification
task based solely on the unsupervised data. Proposed
approaches are based on randomly rotating inputs to the
discriminator, which learns to identify the angle rotated
separately to the standard real/fake classification [27].
Extensions include training the discriminator to jointly
determine rotation and real/fake to provide better feed-
back [221], and training the generator to trick the dis-
criminator at both the real/fake and classification tasks
[221]. A more explicit approach is to model the generator
with a normalizing flow, avoiding collapse by jointly
optimising the GAN and likelihood objectives [69].

4.1.2 Spectral Normalisation

Spectral normalisation [156] is a technique to make a
function globally 1-Lipschitz utilising the observation
that the Lipschitz constant of a linear function is its larg-
est singular value (spectral norm). The spectral norm of
a matrix A is

LA,
wio [,

'N(A) = .
SN(4) = max AR, ©0)

thus a weight matrix W is normalised to be 1-Lipschitz by
replacing the weights with Wy ::%. Rather than
using singular value decomposition to compute the norm,
the power iteration method is used; for randomly initialised
vectors v € R" and u € R™, the procedure is

w1 = Wuy, v = Whu, SN(W) =~ u Wo. (21)
Since weights change only marginally with each optimi-
sation step, a single power iteration step per global opti-
misation step is sufficient to keep v and u close to their
targets.

As aforementioned, enforcing the discriminator to be
1-Lipschitz is essential for WGANSs, however, spectral
normalisation has been found to dramatically improve
sample quality and allow scaling to datasets with thou-
sands of classes across a variety of loss functions [18],
[156]. Spectral collapse, has been linked to discriminator
overfitting when spectral norms of layers explode [18] as
well as mode collapse when spectral norms fall in value
significantly [138]. Additionally, regularising the discr-
iminator in this manner helps balance the two networks,
reducing the number of discriminator update steps
required [18], [253].
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4.1.3 Data Augmentation

Augmenting training data to increase the quantity of train-
ing data is often common practice; when training GANs the
types of augmentations permitted are limited to more sim-
ple augmentations such as cropping and flipping to prevent
the generator from creating undesired artefacts. Several
approaches independently proposed applying augmenta-
tions to all discriminator inputs, allowing more substantial
augmentations to be used [114], [220], [260], [261]; the train-
ing procedure for a WGAN with augmentations is

[*D = EIdi(z) [D(T(.’l}))] - IEz~p(z) [D(T(G(Z)))], (22a)

La = B [D(T(G(2)))]; (22b)

where T is a random augmentation. These approaches
have been shown to improve sample quality on equiva-
lent architectures and stabilise training. Each work offers
a different perspective on why augmentation is so effec-
tive: the increased quantity of training data in conjunc-
tion with the more difficult discrimination task prevents
overfitting and in turn collapse [18], notably this applies
even on very small datasets (100 samples); the nature of
GAN training leads to the generated and data distribu-
tions having non-overlapping supports, complicating
training [208], strong augmentations may cause these
distributions to overlap further. If an augmentation is
differentiable and represents an invertible transformation
of the data space’s distribution, then the JS-divergence is
invariant, and the generator is guaranteed to not create
augmented samples [114], [220].

4.1.4  Discriminator Driven Sampling

In order to improve sample quality and address overpow-
ered discriminators, numerous works have taken inspira-
tion from the connection between GANSs and energy models
[256]. Interpreting the discriminator of a Wasserstein GAN
[5] as an energy-based model means samples from the gen-
erator can be used to initialise an MCMC sampling chain
which converges to the density learned by the discrimina-
tor, correcting errors learned by the generator [159], [223].
This is similar to pure EBM approaches, however, training
the two networks adversarially changes the dynamics. The
slow convergence rates of high dimensional MCMC sam-
pling has led others to instead sample in the latent space
[23], [205].

4.1.5 GANSs Without Competition

Originally proposed as a proxy to measure GAN conver-
gence [68], the duality gap is an upper bound on the JS-
divergence that can be directly optimised [67], defined as

DG(D,G) = max V(G, D) — néi/n V(G', D). (23)

Cooperative training simplifies the optimisation procedure,
avoiding oscillations. Each training step, however, requires
optimising for D' and G’ which slows down training and
could suffer from vanishing gradients.
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4.2 Architectures

Careful network design is a key component for stable GAN
training. Scaling any deep neural network to high-resolution
data is non-trivial due to vanishing gradients and high mem-
ory usage, but since the discriminator can classify high-reso-
lution data more easily, GANs notably struggle [170].

Early approaches designed hierarchical architectures,
dividing the learning procedure into more easily learnable
chunks. LapGAN [39] builds a Laplacian pyramid such that
at each layer, a GAN conditioned on the previous image res-
olution predicts a residual adding detail. Stacked GANs
[98], [254] use two GAN s trained successively: the first gen-
erates low-resolution samples, then the second upsamples
and corrects the first, thus fewer GANSs need to be trained.
A related approach, progressive growing [113], [116], itera-
tively trains a single GAN at higher resolutions by adding
layers to both the generator and discriminator upscaling the
previous output, after the previous resolution converges.
Training in this manner, however, not only takes a long
time but leads to high frequency components being learned
in the lower layers, resulting in shift artefacts [117].

Accordingly, a number of works have targeted a single
GAN that can be trained end-to-end. DCGAN [180] intro-
duced a fully convolutional architecture with batch normal-
isation [101] and ReLU/LeakyReLU activations. BigGAN
[18] employ a number of tricks to scale to high resolutions
including using very large mini-batches to reduce variation,
spectral normalisation to discourage spectral collapse, and
using large datasets to prevent overfitting. Despite this, train-
ing collapse still occurs thus requiring early stopping.
Another approach is to include skip connections between the
generator and discriminator at each resolution, allowing gra-
dients to flow through shorter paths to each layer, providing
extra information to the generator [112], [117], [228]. By treat-
ing subsets of the generator’s parameters as smaller genera-
tors, Anycost GANSs extend this approach, allowing samples
to be generated at multiple resolutions and speeds[136]. To
learn long-range dependencies, GANSs can be built with self-
attention components [104], [234], [253], however, full qua-
dratic attention does not scale well to high dimensional data.

4.3 Training Speed
The mini-max nature of GAN training leads to slow conver-
gence, if achieved at all. This problem has been exacerbated
by numerous works as a byproduct of improving stability or
sample quality. One such example is that by using very large
mini-batches, reducing variance and covering more modes,
sample quality can be improved significantly, however, this
comes at the cost of slower training [18]. Small-GAN [195]
combats this by replacing large batches with small batches
that approximate the shape of the larger batch using core set
sampling [195], significantly improving the mode coverage
and sample quality of GANs trained with small batches.
While strong discriminator regularisation stabilises train-
ing, it allows the generator to make small changes and trick
the discriminator, making convergence very slow. Rob-GAN
[140], include an adversarial attack step [148] that perturbs
real images to trick the discriminator without altering the
content inordinately, adapting the GAN objective into a min-
max-min problem. This provides a weaker regularisation,
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enforcing small Lipschitz values locally rather than globally.
This approach has been connected with the follow-the-ridge
algorithm [240], [262], an optimisation approach for solving
mini-max problems that reduces the optimisation path and
converges to local mini-max points.

Another approach to improve training speed is to design
more efficient architectures. Depthwise convolutions [32]
apply separate convolutions to each channel of a tensor
reducing the number of operations and hence also the run-
time, have been found to have comparable quality to stan-
dard convolutions [160]. Lightweight GANs [137] achieve
fast training using a number of tricks including small batch
sizes, skip-layer excitation modules which provide efficient
shortcut gradient flow, as well as using a self-supervised
discriminator forcing good features to be learned.

5 AUTOREGRESSIVE LIKELIHOOD MODELS
Autoregressive generative models [9] are based on the chain
rule of probability, where the probability of a variable that
can be decomposed as z = z1,. .., z, is expressed as

p(x) =pla1,...,x,) = HP(%‘\ZIH, e Tio1). (24)
=1

As such, unlike GANs and energy models, it is possible to
directly maximise the likelihood of the data by training a
recurrent neural network to model p(x;|z;,;—1) by minimis-
ing the negative log-likelihood,

—Inp(z) = thlp(xAxl,...,xi,l). (25)

While autoregressive models are extremely powerful den-
sity estimators, sampling is inherently a sequential process
and can be exceedingly slow on high dimensional data.
Additionally, data must be decomposed into a fixed order-
ing; while the choice of ordering can be clear for some
modalities (e.g. text and audio), it is not obvious for others
such as images and can affect performance depending on
the network architecture used.

5.1 Architectures

The majority of research is focused on improving network
architectures to increase their receptive fields and memory,
ensuring the network has access to all parts of the input to
encourage consistency, as well as increasing the network
capacity, allowing more complex distributions to be modelled.

5.1.1 Masked Multilayer Perceptrons

One approach to build autoregressive models is to mask the
weights of simple multilayer perceptron (MLP) autoen-
coders so as to satisfy the autoregressive property. The neu-
ral autoregressive density estimator (NADE) [130], which
can be viewed as a mean-field approximation of a restricted
Boltzmann machine, achieves this for binary data by placing
time-dependent masks on an MLP with one hidden layer.
Specifically, at time step ¢, weights are masked so that the
entire hidden state h; and output p(z;|z -,;) are dependent
only on z . ;; formally this can be defined as

plxi =1z ;) = o(bi + (W), hy), (262)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

hi=o(c+W. xz), (26b)
where W. . is the first d — 1 columns of a shared weight
matrix W, and b, and c are biases. The RNADE [225] gener-
alises NADE to real valued data by instead modelling
p(xi|x <;) with mixture distributions parameterised by the
network. An alternative masking procedure known as
MADE [56] allows for parallel density estimation by placing
a mask fixed over time on an MLP so that no connections
exist between p(z;|x.;) and z-;. Additionally, MADE is
more readily vectorisable and does not suffer from neuron
saturation since the number of inputs to all neurons is con-
stant with respect to time.

5.1.2 Recurrent Neural Networks

A natural architecture to apply is that of standard recurrent
neural networks (RNNs) such as LSTMs [87], [212], [232]
and GRUs [34], [151] which model sequential data by track-
ing information in a hidden state. However, RNNs are
known to forget information, limiting their receptive field
thus preventing modelling of long range relationships. This
can be improved by stacking RNNs that run at different fre-
quencies allowing long data such as multiple seconds of
audio to be modelled [34]. Nevertheless, their sequential
nature means that training can be too slow for many tasks.

5.1.3 Causal Convolutions

An alternative approach is that of causal convolutions,
which apply masked or shifted convolutions over a
sequence [29], [188], [231]. When stacked, this only provides
a receptive field linear with depth, however, by dilating the
convolutions to skip values with some step the receptive
field can be orders of magnitude higher.

5.1.4 Self-Attention

Neural attention is an approach which at each successive
time step is able to select where it wishes to ‘look’ at previ-
ous time steps. This concept has been used to autoregres-
sively ‘draw’ images onto a blank ‘canvas’ [66] in a manner
similar to human drawing. More recently self-attention
(known as Transformers when used in an encoder-decoder
setup) [234] has made significant strides improving not only
autoregressive models, but also other generative models
due to its parallel nature, stable training, and ability to effec-
tively learn long-distance dependencies. This is achieved
using an attention scheme that can reference any previous
input where an entirely independent process is used per
time step so that there are no dependencies. Specifically,
inputs are encoded as key-value pairs, where the values V'
represent the inputs, and the keys K act as an indexing
method. At each time step a query ¢ is made; taking the dot
product of the queries and keys, a similarity vector is
formed that describes which value vectors to access. This
process can be expressed as

T
Attention(Q, K, V) = softmax ( Qi) v, (27

Vi

where dj, is the key/query dimension and is used to normal-
ise gradient magnitudes. Since the self-attention process
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T Z2 r3 - Tp-1
Fig. 6. Autoregressive models decompose data points using the chain
rule and learn conditional probabilities.

contains no recurrence, positional information must be
passed into the function. A simple effective method to
achieve this is to add sinusoidal positional encodings which
combine sine and cosine functions of different frequencies
to encode positional information [234]; alternatively others
use trainable positional embeddings [31].

The infinite receptive fields of attention provides a power-
ful tool for representing data, however, the attention matrix
QK" grows quadratically with data dimension, making scal-
ing difficult. Approaches include scaling across large quanti-
ties of GPUs [19], interleaving attention between causal
convolutions [29], attending over local regions [177], and
using sparse attention patterns that provide global attention
when multiple layers are stacked [31]. More recently, a num-
ber of linear transformers have been proposed whose mem-
ory and time footprints grow linearly with data dimension
[33], [118], [239]. By approximating the softmax operation
with a kernel function with feature representation ¢(x), the
order of multiplications can be rearranged to

(#(Q)p(K)")V = ¢(Q)(6(K)'V), ©8)

allowing ¢(K)"V to be cached and used for each query.

5.1.5 Multiscale Architectures

Even with a linear autoregressive model, O(N) for N pixels,
scaling to high-resolution images grows quadratically with
resolution. One multi-scale approach reduces this complex-
ity to O(In N) by successively upscaling images, making the
assumption that when upscaling, each pixel is dependent
only on its adjacent area and the previous resolution image,
allowing scaling to high resolutions [183]. To avoid making
independence assumptions, [154] partition images in an
interleaving pattern so that sub-images are the same size
and capture global structure. Sub-images are generated
autoregressively pixel-wise and are conditioned on previ-
ously generated sub-images; while this reduces the memory
required, sampling times are still slow.

5.2 Data Modelling Decisions

When generating text, output variables are often modelled
using a multinomial distribution since tokens are discrete
and are in general unrelated. However, this modelling
assumption can cause complications or be infeasible in other
cases such as 16-bit audio modelling, in which magnitude
would not be intrinsically modelled and 65,536 output neu-
rons would be required. Solutions proposed include:

e Applying p-law, a logarithmic companding algo-
rithm which takes advantage of human perception
of sound, then quantizing to 8-bit values [229].

e First predicting the first 8-bits, then predicting the
second 8-bits conditioned on the first.
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Fig. 7. Normalizing flows build complex distributions by mapping a
simple distribution through invertible functions.

e Modelling output probabilities using a mixture of
logistic distributions (MoL) has the benefits of pro-
viding more useful gradients and allowing intensi-
ties never seen to still be sampled [188].

Nevertheless, these assumptions restrict the expressive-

ness of the network, for instance, MoLs struggle to model
high frequency signals as found in raw image data; a simple
solution in this case is to add Gaussian noise, reducing the
Lipschitz constant of the data distribution [152]. This restric-
tion can be removed at the expense of less efficient sampling
by learning an autoregressive energy model, for instance, by
approximating normalising constants [158] or through score
matching [153]. Alternatively, quantile regression, which
minimises Wasserstein distance, can be used to learn an
approximation of the inverse cumulative distribution [172].
When modelling images, many works use “raster scan”
ordering [188], [231], [232] where pixels are estimated row
by row. Alternatives have been proposed such as “zig-zag”
ordering [29] which allows pixels to depend on previously
sampled pixels to the left and above, providing more rele-
vant context. Another factor when modelling images is how
to factorise sub-pixels. While it is possible to treat them as
independent variables, this adds additional complexity.
Alternatively, it is possible to instead condition on whole
pixels, and output joint distributions in a single step [188].

6 NORMALIZING FLOWS

While training autoregressive models through maximum
likelihood offers plenty of benefits including stable training,
density estimation, and a useful validation metric, the slow
sampling speed and poor scaling properties handicaps
them significantly. Normalizing flows are a technique that
also allows exact likelihood calculation while being effi-
ciently parallelisable as well as offering a useful latent space
for downstream tasks. Consider an invertible, smooth func-
tion f: RY — R% by applying this transformation to a ran-
dom variable = ~ p(z), then the distribution of the resulting
random variable y = f(x) can be determined through the
change of variables rule (and application of the chain rule),

-1

af !
dy

af

b

p(y) = p(z)|det = p(z)| det (29)

Consequently, arbitrarily complex densities can be con-
structed by composing simple maps and applying Eq. (29)
[235]. This chain is known as a normalizing flow [184] (see
Fig. 7). The density px(z ) obtained by successively trans-
forming a random variable z, with distribution p, through
a chain of K transformations f;. can be defined as
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TABLE 3
Normalizing Flow Layers: ® Represents Elementwise Multiplication, x; Represents a Cross-Correlation Layer
Description Function Inverse Function Log-Determinant
Low Rank
Planar [185] y =2z + uh(w'z+0b) No closed form inverse In |1+ uw?'W(w!'z + b)w|

Withw e R?,u ¢ R”,beR

Sylvester [14], [79] y=x+Uh(W'z +b)

No closed form inverse

Indet (I + diag(h' (W= + b))WUT)

Coupling/Autoregressive

General Coupling YD) = gl

y(d+1:D) — h(x(dH:D); fg(z.(l:d)))
MAF[177] Yy = (s fo(z71))
IAF [125] Y@ = h(z®; fo(y 1Y)
Affine Coupling [43] h(z;0) =z © exp(6,) + 6>
Flow++ [86] h(z;0) = exp(61) © F(z,63) + 6>

where F'is a monotone function.

Spline Flows [158][50][51] h(z;0) = Spline(z; 0)

where 6 are the spline’s knots.

2(d) — (1)

~1(y;0) = Spline~

In | det vz(rHl,D) h‘

D oy
=h" ( f9< (Lt 1)) _E(:IIH‘SZ(r)‘
; (t)
=17 @O foly ) T2 2l
vH(Y;0) = (y — 62) © exp(—61) Lo
N d ) IF(2.03);
Calculated through bisection search Y77, 6" + In ==

Y(y; 0) Computed in closed-form as a

product of quotient derivatives

B-NAF [39] y = Wa" for blocked weights: No closed form inverse In >4, exp(Wy)
W=exp(W)O M;+W oM,
where M selects diagonal blocks and
M, selects off-diagonal blocks.

Convolutions

1x1 Convolution [124] h x w x ctensor x & ¢ X ¢ tensor W

th] : yi,j = me'
Emerging Convolutions [91] k=w; ©Omy,
y = kx(gxz)

g=wy ©Omy

Vl,j N zi.j = Wﬁl’yw

2= (Y — i1 Grizi) /Gy
= (z — Y Kuizi) /Ky

h-w-In|det W|

2 ke cmyme Gecamyn,

Lipshitz Residual

i-ResNet [8] y =z + f(x) where [|f]|, <1

T =Y.
converging at an exponential rate

Top =Y — fzn) tr(In(I + V. fgg

Zk 1( DT

¢ = fro---o fao fi(mo), (30a)
& ofr
Inpg (zx) = Inpo(zo) — ;ln det o= (30b)

Each transformation therefore must be sufficiently
expressive while being easily invertible and have an efficient
to compute Jacobian determinant. While restrictive, there
have been a number of works which have introduced more
powerful invertible functions (see Table 3). Nevertheless,
normalizing flow models are typically less parameter effi-
cient than other generative models.

One disadvantage of requiring transformations to be
invertible is that the input dimension must be equal to the
output dimension which makes deep models inefficient and
difficult to train. A popular solution to this is to use a multi-
scale architecture [42], [123] (see Fig. 8) which divides the
process into a number of stages, at the end of each half of the
remaining units are factored out and treated immediately as
outputs. This allows latent variables to sequentially repre-
sent course to fine features and permits deeper architectures.

6.1 Coupling and Autoregressive Layers

A simple way of building an expressive invertible function
is the coupling flow [41], which divide inputs into two and
applies a bijection h on one half parameterised by the other,

i) — ), (31a)

y(d+l:D) _ h(z,(dJrl:D); f@ (‘,L,(lzu,’)))7 (31b)
here f can be arbitrarily complex i.e. a neural network. A
tends to be selected as an elementwise function making the
Jacobian triangular allowing efficient computation of the
determinant, i.e. the product of elements on the diagonal.

6.1.1 Affine Coupling
A simple example of this is the affine coupling layer [42],

y ) = g 0 exp(fy (@) + fuaD), B2)

which has a simple Jacobian determinant and can be trivi-
ally rearranged to obtain a definition of z(*:?) in terms of
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Fig. 8. Factoring out variables at different scales allows normalizing
flows to scale to high dimensional data.

y, provided that the scaling coefficients are not 0. This sim-
plicity, however, comes at the cost of expressivity; while
stacking numerous such flows increases their expressivity,
allowing them to learn representations of complex high
dimensional data such as images [123], it is unknown
whether multiple affine flows are universal approximators
[175].

6.1.2 Monotone Functions

Another method of creating invertible functions that can be
applied element-wise is to enforce monotonicity. One possi-
bility to achieve this is to define h as an integral over a posi-
tive but otherwise unconstrained function g [242],

X4

h(z:;6) :/ g (01 )dex + s, 33)

0
however, this integration requires numerical approxima-
tion. Alternatively, by choosing g to be a function with a
known integral solution, h can be efficiently evaluated. This
has been accomplished using positive polynomials [102]
and the CDF of a mixture of logits [85]. Both cases, however,
don’t have analytical inverses and have to be approximated
iteratively with bisection search. Another option is to repre-
sent g as a monotonic spline: a piecewise function where
each piece is easy to invert. As such, the inverse is as fast to
evaluate as the forward pass. Linear and quadratic splines
[157], cubic splines [49], and rational-quadratic splines [50]
have been applied so far.

6.1.3 Autoregressive Flows

For a single coupling layer, a significant proportional of
inputs remain unchanged. A more flexible generalisation of
coupling layers is the autoregressive flow, or MAF [176],

Y = h(z; fo(zV)). (34)

Here fy can be arbitrarily complex, allowing the use of
advances in autoregressive modelling (Section. 5), and h is a
bijection as used for coupling layers. Some monotonic bijec-
tors have been created specifically for autoregressive flows,
namely Neural Autoregressive Flows (NAF) [95] and Block
NAF [38]. Unlike coupling layers, a single autoregressive
flow is a universal approximator.

Alternatively, an autoregressive flow can be conditioned
on y*1) rather than z(!*~1, this is known as an Inverse
Autoregressive Flow, or IAF [124]. While coupling layers
can be evaluated efficiently in both directions, MAF permits
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parallel density estimation but sequential sampling, and
IAF permits parallel sampling but sequential density
estimation.

6.1.4  Probability Density Distillation

Inverse autoregressive flows [124] offer the ability to sample
from an autoregressive model in parallel, however, training
via maximum likelihood is inherently sequential making
this infeasible for high dimensional data. Probability den-
sity distillation [230] has been proposed as a solution to this
where a second pre-trained autoregressive network is used
as a ‘teacher’ network while an IAF network is used as a
‘student’ and mimics the teacher’s distribution by minimis-
ing the KL divergence between the two distributions

Dgr(psllpr) = H(ps, pr) — H(ps), (35)
where pg and pr are the student’s and teacher’s distribu-
tions respectively, H(ps, pr) is the cross-entropy between pg
and pr, and H(pg) is the entropy of ps. Crucially, this never
requires the student’s inverse function to be used allowing
it to be computed entirely in parallel.

6.2 Convolutional

A considerable problem with coupling and autoregressive
flows is the restricted triangular Jacobian, meaning that all
inputs cannot interact with each other. Simple solutions
involve fixed permutations on the output space such as
reversing the order [41], [42]. A more general approach is to
use a 1 x 1 convolution which is equivalent to a linear trans-
formation applied across channels [123]. Numerous works
have been proposed to generalise these to larger kernel
sizes. A number of these apply variations on causal convo-
lutions [229], including emerging convolutions [90] whose
inverse is sequential, MaCow [144] which uses smaller con-
ditional fields allowing more efficient sampling, and Min-
tNet [203] which approximates the inverse using fixed-
point iteration. Alternative approaches to causal masking
involve imposing repeated (periodic) structure [111], how-
ever in general this is not a good assumption for image
modelling, as well as representing convolutions as exponen-
tial matrix-vector products, exp(M )z, approximated implic-
itly with a power series, allowing otherwise unconstrained
kernels [91].

6.3 Residual Flows

Residual networks [79] are a popular technique to build
deep neural networks that alleviate the vanishing gradients
problem. By restricting fy, invertible residual networks can
be built by stacking blocks of the form

y=2z+ fo(x). (36)

6.3.1 Matrix Determinant Lemma

If a function has a certain residual form, then its Jacobian
determinant can be computed with the matrix determinant
lemma [184]. A simple example is planar flow [184] which
is equivalent to a 3 layer MLP with a single neuron bottle-
neck
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y =z +uh(w'z +b), (37)

where u, w € R%, b € R, and 1 is a differentiable non-linear-
ity function. Planar flows are invertible provided some sim-
ple conditions are satisfied, however its inverse is difficult
to compute making it only practical for density estimation
tasks. A higher rank generalisation of the matrix determi-
nant lemma has been applied to planar flows, known as Syl-
vester flows, removing the severe bottleneck thus allowing
greater representation ability [13], [78].

6.3.2 Lipschitz Constrained

By restricting the Lipschitz constant of fy, || fo]|, < 1, then
this block is invertible [8]. The inverse, however, has no
closed form definition but can be found through fixed-point
iteration which by the Banach fixed-point theorem con-
verges to a fixed unique solution at an exponential rate
dependant on || fy||,. The authors originally proposed a
biased approximation of the log determinant of the Jacobian
as a power series where the Jacobian trace is approximated
using Hutchkinson’s trace estimator (see Table 3), but an
unbiased approximator known as a Russian roulette estima-
tor has also been proposed [25]. Unlike coupling layers,
residual flows have dense Jacobians, allowing interaction.
Enforcing Lipschitz constraints has been achieved with con-
volutional networks [59], [138], [156] as well as self-attention
[119].

Making strong Lipschitz assumptions severely restricts
the class of functions learned; an NN layer residual flow net-
work is at most 2V-Lipshitz. Implicit flows [142] bypass this
by solving implicit equations of the form
where both fy and f, both have Lipschitz constants less than
1. Both the forwards (solve for y given x) and backwards
(solve for x given y) directions require solving a root finding
problem similar to the inverse process of residual flows;
indeed, an implicit flow is equivalent to the composition of
a residual flow and the inverse of a residual flow. This
allows them to model arbitrary Lipschitz transformations.

6.4 Surjective and Stochastic Layers

Restricting the class of functions available to those that are
invertible introduces a number of practical problems related to
the topology-preserving property of diffeomorphisms. For
example, mapping a uni-modal distribution to a multi-modal
distribution is extremely challenging, requiring a highly vary-
ing Jacobian [43]. By composing bijections with surjective or
stochastic layers these topological constraints can be bypassed
[163]. While the log-likelihood of stochastic layers can only be
bounded by their ELBO, functions surjective in the inference
direction permit exact likelihood evaluation even with altered
dimensionality. Surjective transformations have the following
likelihood contributions

(39)
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where p(z|y) is deterministic for generative surjections, and
q(y|z) is deterministic for inference surjections.

One approach to build a surjective layer is to augment
the input space with additional dimensions allowing
smoother transformation to be learned [24], [47], [94]; the
inverse process, where some dimensions are factored out, is
equivalent to a multi-scale architecture [42]. Another
approach known as RAD [43] learns a partitioning of the
data space into disjoint subsets {);}*, and applies piece-
wise bijections to each region g, : X — );,Vi e {1,...,K}.
The generative direction learns a classifier on X, i ~ p(i|z),
allowing the inverse to be calculated as y = g;(z). Similar to
both of these approaches are CIFs [35] which consider a con-
tinuous partitioning of the data space via augmentation
equivalent to an infinite mixture of normalizing flows.
Other approaches include modelling finite mixtures of
flows [46].

Some powerful stochastic layers have already been dis-
cussed in this survey, namely VAEs [122] and DDPMs [86].
Stochastic layers have been incorporated into normalizing
flows by interleaving small energy models, sampled with
MCMC, between bijectors [244].

6.5 Discrete Flows

The normalizing flow framework can be extended to dis-
crete distributions, by restricting transformation functions
to be discrete e.g. f: X — x“. Integer discrete flows (IDF)
achieve this using additive coupling layers, rounding trans-
lation values to the nearest integer and approximating gra-
dients with the straight-through estimator [93]; discrete
flows [219] apply affine coupling layers in modulo space
while also restricting the translation and scaling coefficients
to a finite number of possible values. In this case the change
of variables rule (Eq. (29)) simplifies to [93], [219]

p(z) = p(f(z)).

Unlike the continuous case, there is no Jacobian determinant
term; intuitively this term adjusts for volume changes, how-
ever, in a discrete space there is no volume. As such, there
is no requirement for f to have an efficiently computable
Jacobian determinant [219]. The absence of this term is
restricting, however, discrete flows can only permute the
values of p(x), not change them i.e. a uniform base distribu-
tion can only be mapped to another uniform distribution
[175]. Nevertheless, this can be avoided by embedding the
data into a space with more values than the data, making
IDFs more flexible than discrete flows [12].

(40)

6.6 Continuous Time Flows

It is possible to consider a normalizing flow with an infinite
number of steps that is defined instead by an ordinary dif-
ferential equation specified by a Lipschitz continuous neu-
ral network f with parameters 6, that describes the
transformation of a hidden state z(¢) € R” [26],

ox(t)
T - f(.’E(t), tae)'

(41)

Starting from input noise z(t;), an ODE solver can solve an
initial value problem for some time ¢;, at which data is
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defined, z(t;). Modelling a transformation in this form has a
number of advantages such as inherent invertibility by run-
ning the ODE solver backwards, parameter efficiency, and
adaptive computation. However, it is not immediately clear
how to train such a model through backpropagation. While
it is possible to backpropagate directly through an ODE
solver, this limits the choice of solvers to differentiable ones
as well as requiring large amounts of memory. Instead, the
authors apply the adjoint sensitivity method which instead
solves a second, augmented ODE backwards in time and
allows the use of a black box ODE solver. That is, to opti-
mise a loss dependent on an ODE solver

£lolt) = £(s(t) + [ fa(0.1.0)),
= £(ODESOIVG($(t0), f, t(], tl, 9)),

(42)

the adjoint a(t) = #ﬁ) can be used to calculate the derivative

of loss with respect to the parameters in the form of another
initial value problem [178],

%/:( oL )Taf(a:(t)t,@)dm 43)

0 dx(t) a0

which can be efficiently evaluated by automatic differentia-
tion at a time cost similar to evaluating f itself.

Despite the complexity of this transformation, the contin-
uous change of variables rule is remarkably simple

dlnp(z(t)) _ —tr< 0

ot oz (t) @D

fa(t.1.0)),

and can be computed using an ODE solver as well. The
resulting continuous-time flow is known as FFJORD [61].
Since the length of the flow tends to infinity (an infinitesimal
flow), the true posterior distribution can be recovered [184].

As previously mentioned, invertible functions suffer
from topological problems; this is especially true for Neural
ODEs since their continuous nature prevents trajectories
from crossing. Similar to augmented normalizing flows
[94], this can be solved by providing additional dimensions
for the flow to traverse [47]. Specifically, a p-dimensional
Euclidean space can be approximated by a Neural ODE in a
(2p + 1)-dimensional space [252].

6.6.1 Regularising Trajectories

ODE solvers can require large numbers of network evalua-
tions, notably when the ODE is stiff or the dynamics change
quickly in time. By introducing regularisation, a simpler
ODE can be learned, reducing the number of evaluations
required. Specifically, all works here are inspired by optimal
transport theory to encourage straight trajectories. Monge-
Ampere Flow [255] and Potential Flow Generators [248]
parameterise a potential function satisfying the Monge-
Ampere equation [21], [235] with a neural network. RNODE
[53] applies transport costs to FFJORD as well as regularis-
ing the Frobenius norm of the Jacobian, encouraging
straight trajectories. By combining these approaches, OT-
Flow [171] utilises the optimal transport derivation to derive
an exact trace definition with cost similar to stochastic
estimators.
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7 EVALUATION METRICS

A huge problem when developing generative models is
how to effectively evaluate and compare them. Qualitative
comparison of random samples plays a large role in the
majority of state-of-the-art works, however, it is subjective
and time-consuming to compare many works. Calculating
the log-likelihood on a separate validation set is popular for
tractable likelihood models but comparison with implicit
likelihood models is difficult and while it is a good measure
of diversity, it does not correlate well with quality [213].

One approach to quantify sample quality is Inception
Score (IS) [187] which takes a trained classifier and deter-
mines whether a sample has low label entropy, indicating
that a meaningful class is likely, and whether the distribu-
tion of classes over a large number of samples has high
entropy, indicating that a diverse range of images can be
sampled. A perfect IS can be scored by a model that creates
only one image per class [143] leading to the creation of
Fréchet Inception Distance (FID) [80] which models the acti-
vations of a particular layer of a classifier as multivariate
Gaussians for real and generated data, measuring the
Fréchet distance between the two.

These approaches are trivially solved by memorising
the dataset and are less applicable to non-natural image-
related data. Kernel Inception Distance (KID) [14] instead
calculates the squared maximum mean discrepancy in
feature space, however, pretrained features may not be
sufficient to detect overfitting. Another approach is to
train a neural network to distinguish between real and
generated samples similar to the discriminator from a
GAN; while this detects overfitting, it increases the com-
plexity and time required to evaluate a model and is
biased towards adversarial models [73].

8 APPLICATIONS

In general, the definition of a generative model means that
any technique can be used on any modality/task, how-
ever, some models are more suited for certain tasks. Stan-
dard autoregressive networks are popular for text/audio
generation [19], [31], [229]; VAEs have been applied but
posterior collapse is difficult to mitigate [6], [17]; GANs
are more parameter efficient but struggle to model discrete
data [162] and suffer from mode collapse [127]; some nor-
malizing flows offer parallel synthesis, providing substan-
tial speedup [179], [219], [264]. Video synthesis is more
challenging due its exceptionally high dimensionality, typ-
ically approaches combine a latent-based implicit genera-
tive model to generate individual frames, with an
autoregressive network used to predict future latents [6],
[128], [133] similar to how world models are constructed
in reinforcement learning [75], [76]. Modality conversion
has been achieved using GANs [263], VAE-GANs [139],
and DDPMs [191].

8.1 Implicit Representation

Typically deep architectures discussed in this survey are
built with data represented as discrete arrays thus using dis-
crete components such as convolutions and self-attention.
Implicit representation on the other hand treats data as
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(a) Implicit GON [16]. (b) Implicit GAN [48].

Fig. 9. Implicit networks model data continuously permitting arbitrarily
high resolutions. Dashed lines represent gradients, F is an implicit
network, and H is a hypernetwork.

continuous signals, mapping coordinates to data values
[196], [210]. Implicit Gradient Origin Networks (GONs;
Fig. 9a) [16] form a latent variable model by concatenating
latent vectors with coordinates which are passed through
an implicit network; here latent vectors are calculated as the
gradient of a reconstruction loss with respect to the origin.
By sampling using a finer grid of coordinates, super-resolu-
tion beyond resolutions seen during training is possible.
Other approaches to learn an implicit generative model as a
GAN include directly feeding latents through an implicit
network with upsampling [115] and mapping latents to the
weights of an implicit function using a hyper-network [48]
(Fig. 9b).

9 CONCLUSION

While GANSs have led the way in terms of sample quality
for some time now, the gap between other approaches is
shrinking; the diminished mode collapse and simpler
training objectives make these models more enticing than
ever, however, the number of parameters required in addi-
tion to slow run-times pose a substantial handicap.
Despite this, recent work in hybrid models offers a balance
between extremes at the expense of extra model complex-
ity that hinders broader adoption. The varied connections
between these systems mean that advances in one field
inevitably benefit others, for instance, improved varia-
tional bounds are beneficial for VAEs, diffusion models,
and surjective flows, and the application of innovative
data augmentation strategies has been found to offer bene-
fits across numerous model classes without necessitating
more powerful architectures. When it comes to scaling
models to high-dimensional data, attention is a common
theme, allowing long-range dependencies to be learned;
recent advances in linear attention will aid scaling to even
higher resolutions. Implicit networks are another promis-
ing direction, allowing efficient synthesis of arbitrarily
high resolution and irregular data. Similar unified genera-
tive models capable of modelling continuous, irregular,
and arbitrary length data, over different scales and
domains will be key for the future of generalisation.
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http://dx.doi.org/10.1109/TNNLS.2020.3028042
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