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ABSTRACT
Full multiple spawning (FMS) offers an exciting framework for the development of strategies to simulate the excited-state dynamics of molec-
ular systems. FMS proposes to depict the dynamics of nuclear wavepackets by using a growing set of traveling multidimensional Gaussian
functions called trajectory basis functions (TBFs). Perhaps the most recognized method emanating from FMS is the so-called ab initio multiple
spawning (AIMS). In AIMS, the couplings between TBFs—in principle exact in FMS—are approximated to allow for the on-the-fly evaluation
of required electronic-structure quantities. In addition, AIMS proposes to neglect the so-called second-order nonadiabatic couplings and the
diagonal Born–Oppenheimer corrections. While AIMS has been applied successfully to simulate the nonadiabatic dynamics of numerous
complex molecules, the direct influence of these missing or approximated terms on the nonadiabatic dynamics when approaching and cross-
ing a conical intersection remains unknown to date. It is also unclear how AIMS could incorporate geometric-phase effects in the vicinity
of a conical intersection. In this work, we assess the performance of AIMS in describing the nonadiabatic dynamics through a conical inter-
section for three two-dimensional, two-state systems that mimic the excited-state dynamics of bis(methylene)adamantyl, butatriene cation,
and pyrazine. The population traces and nuclear density dynamics are compared with numerically exact quantum dynamics and trajectory
surface hopping results. We find that AIMS offers a qualitatively correct description of the dynamics through a conical intersection for the
three model systems. However, any attempt at improving the AIMS results by accounting for the originally neglected second-order nonadi-
abatic contributions appears to be stymied by the hermiticity requirement of the AIMS Hamiltonian and the independent first-generation
approximation.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0071376

I. INTRODUCTION

Simulating the dynamics of a molecule following photoexci-
tation in an excited electronic state is a dantesque task due to the
breakdown of the Born–Oppenheimer approximation, as it implies
that one should explicitly account for nonadiabatic effects resulting
from the coupling between electronic motion and nuclear motion.1,2

An accurate description of such processes would require an exact
solution of the molecular time-dependent Schrödinger equation
(TDSE), a task only achievable for the smallest molecular sys-
tems, unfortunately. As a result, simulating the excited-state dynam-
ics of molecular systems requires an approximate solution of the
TDSE.

One family of approximate methods, coined mixed quan-
tum/classical, proposes to propagate the nuclear degrees of freedom
classically while preserving a quantum treatment of the electrons.3
One of the most famous members of the mixed-quantum/classical
family is trajectory surface hopping (TSH),4,5 where the dynamics
of nuclear wavepackets are approximated by swarms of indepen-
dent classical trajectories that can jump between adiabatic potential
energy surfaces (PESs) when they encounter regions of strong non-
adiabaticity. Mixed-quantum classical methods are appealing from a
computational perspective, but they can sometimes suffer from their
inherent independent trajectory approximation.

Another family of methods for nonadiabatic dynamics emerged
from the idea of expanding the nuclear wavefunctions into a basis of
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coupled moving multidimensional Gaussian functions, the so-called
trajectory basis functions (TBFs).6–9 In stark contrast with mixed-
quantum/classical methods, these Gaussian-based strategies can be
derived from first-principles and have an exact limit. By approximat-
ing the couplings between TBFs, Gaussian-based approaches can be
made compatible with on-the-fly dynamics and become an alterna-
tive to TSH for simulating the photodynamics of molecular systems.
Different families of Gaussian-based techniques emerge depending
on the approximations made to the couplings between TBFs and
the TBF dynamics itself. Variational multiconfigurational Gaussian
(vMCG) uses a Dirac–Frenkel variational principle for the time evo-
lution of the TBFs and relies on a diabatic representation for the elec-
tronic states.10,11 Multiconfigurational Ehrenfest (MCE) employs
classically evolving TBFs that follow a time-dependent Ehren-
fest (mean-field) potential.12,13 Full multiple spawning (FMS) and
ab initio multiple spawning (AIMS) propagate the TBFs classically
along adiabatic PESs and allow the number of TBFs to grow during
the dynamics for an accurate description of nonadiabatic events.14,15

In the following, we will focus our attention on the FMS and AIMS
strategies.

FMS offers an in principle exact strategy to simulate the
excited-state dynamics of molecular systems. However, the calcu-
lation of coupling terms between TBFs hampers the use of this
method for the study of molecular systems (as explained in more
detail in Sec. II). Two key approximations can be applied to the cou-
plings between TBFs in FMS, leading to the AIMS method that is
compatible with on-the-fly dynamics. The first approximation—the
saddle-point approximation (SPA)—proposes to approximate the
electronic-structure quantity appearing in the coupling elements
between TBFs. The second approximation—the independent first-
generation approximation (IFGA)—suggests neglecting the cou-
plings between all the parent TBFs, that is, the set of TBFs used to
describe the initial state of the nonadiabatic dynamics. The SPA and
IFGA will be discussed in detail in Sec. II, together with the spawning
algorithm in AIMS.

Earlier works have focused on understanding the influence of
the IFGA and the SPA in the excited-state dynamics of simple model
systems.16–19 Nevertheless, a gray area still remains around addi-
tional contributions to the coupled electron-nuclear dynamics that
are typically neglected in any practical implementations of AIMS:
the second-order nonadiabatic couplings (NACs) and the diago-
nal Born–Oppenheimer corrections (DBOCs). As AIMS proposes
to perform nonadiabatic dynamics in the adiabatic representation
of the electronic states, one may also inquire about the inclusion of
geometric-phase (GP) effects in its formalism. Geometric (or Berry)
phase effects can emerge when a nuclear wavepacket evolving on
adiabatic PESs encircles a conical intersection (see Sec. II).20 The
inclusion of DBOCs in the dynamics of the TBFs in AIMS has been
discussed in an earlier work,21 and the question of how the lack
of GP might affect the AIMS dynamics has already been raised in
the past.22–24 No work has, however, tested the quality of the AIMS
approximations to describe the nonadiabatic dynamics through con-
ical intersections and the influence of the missing NACs, DBOCs,
and GP terms mentioned above.

In the following, we propose to closely investigate the qual-
ity of the coupling elements between TBFs in AIMS in the con-
text of a dynamics through a conical intersection. In particular,
we focus our attention on the neglected contributions to these

coupling terms in the original formulation of AIMS. We propose
a thorough discussion of the original coupling elements in AIMS
and how one could include the missing NACs, DBOCs, and geomet-
ric phase while preserving the hermiticity of the AIMS Hamiltonian
(Sec. II). To highlight the quality of the AIMS dynamics, we propose
a numerical comparison between AIMS, numerically exact quantum
dynamics (QD), and TSH for a series of challenging two-state two-
dimensional model systems parameterized to reproduce key features
of the excited-state dynamics of bis(methylene)adamantyl (BMA),
butatriene cation, and pyrazine.20,25 We compare the excited-state
population traces and the (reconstructed) ground-state nuclear den-
sities for the different nonadiabatic methods (Secs. IV A and IV B).
While preserving the philosophy of the AIMS approximations, we
test the inclusion of NACs, DBOCs, and GP effects in the cou-
pling terms (Sec. IV C), before questioning the use of Born–Huang
(BH) vs Born–Oppenheimer PESs for the dynamics of the TBFs
(Sec. IV D). In short, we show that the original AIMS formalism can
qualitatively capture well the excited-state dynamics on these model
systems and that including additional terms challenges the existing
practical approximations of AIMS.

II. THEORY
This section introduces the standard working equations for

the full and ab initio multiple spawning starting from the time-
dependent molecular Schrödinger equation. We then present the
different approximations introduced by AIMS and the challenge in
improving such approximations while preserving the hermiticity of
the Hamiltonian matrix. We then show, for a two-state system, how
to include second-order nonadiabatic couplings and the DBOCs.
Finally, we present a set of transformed equations for the AIMS
matrix elements that incorporate GP effects.

A. Full and ab initio multiple spawning
The time evolution of a molecular wavefunction Ψ(r, R, t) is

obtained by solving the time-dependent Schrödinger equation

i∂tΨ(r, R, t) = Ĥmol(r, R)Ψ(r, R, t)

= (T̂n(R) + Ĥel(r, R))Ψ(r, R, t), (1)

with the electronic Hamiltonian Ĥel(r, R) and the nuclear kinetic
energy operator T̂n(R) = −∑3N

ρ
1

2Mρ
∂2

Rρ (with ∂2
Rρ ≡

∂2

∂R2
ρ
). R and r

are collective variables for the coordinates of the N nuclei and Nel
electrons forming the molecule, respectively, and ρ is used as an
index for the 3N nuclear coordinates. Note that we use atomic units
throughout this work.

The molecular wavefunction Ψ(r, R, t) can be expressed
within the Born–Huang ansatz,26 which uses the eigenfunctions of
Ĥel(r, R), the so-called electronic wavefunctions {ΦJ(r; R)}∞J=1 with
J being a label for electronic states, as a basis,

Ψ(r, R, t) =
∞
∑

J
ΦJ(r; R)χJ(R, t). (2)

The time-dependent expansion coefficients, {χJ(R, t)}∞J=1, can be
seen as nuclear wavefunctions, each one associated with a given
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electronic state J. In this work, we focus on real electronic
wavefunctions.

Inserting the Born–Huang ansatz in the time-dependent
Schrödinger equation, left multiplying with Φ∗I (r; R), and inte-
gration over the electronic coordinates r lead to a set of coupled
equations of motion for the nuclear wavefunctions,

i∂tχI(R, t) =
⎛

⎝
−

3N

∑
ρ

1
2Mρ

∂2
Rρ + Eel

I (R)
⎞

⎠
χI(R, t)

−
3N

∑
ρ

⎛

⎝

∞
∑
J≠I

1
Mρ

dρ
IJ(R)∂Rρ χJ(R, t)

+
∞
∑

J

1
2Mρ

Dρ
IJ(R)χJ(R, t)

⎞

⎠
. (3)

The first two terms on the right-hand side are related to the adiabatic
propagation of the nuclear wavefunction in electronic state I, with
Eel

I (R) being the adiabatic electronic energy for state I (an eigen-
value of the electronic Hamiltonian) often called potential energy
surface. The two last terms are related to the nonadiabatic cou-
pling terms, responsible for the coupled electron-nuclear dynamics,
mediated by the first-order nonadiabatic coupling vectors (NACVs)
dIJ(R) = ⟨ΦI ∣∂R∣ΦJ⟩r and the second-order nonadiabatic couplings
(NACs), DIJ(R) = ⟨ΦI ∣∂

2
R∣ΦJ⟩r. The notation ⟨⋅ ⋅ ⋅⟩r is used to sym-

bolize an integration over all electronic coordinates. For real elec-
tronic eigenfunctions, the diagonal NACVs, dII(R), are equal to
zero. The diagonal NACs, DII(R), are non-zero and often called
diagonal Born–Oppenheimer corrections (DBOCs).

In the full multiple spawning (FMS) framework, the
Born–Huang ansatz is employed and each nuclear wavefunction is
expressed as a linear combination of multidimensional Gaussian
functions, the so-called trajectory basis functions (TBFs),14,15,27

(Ψ(r, R, t))FMS =
∞
∑

J

NJ
TBFs(t)
∑
m

CJ
m(t)χ̃

(J)
m (R; R̄(J)m (t), P̄(J)m (t), γ̄(J)m (t), α)

×ΦJ(r; R). (4)

The TBF m evolving in electronic state J,
χ̃(J)m (R; R̄(J)m (t), P̄(J)m (t), γ̄(J)m (t), α), is characterized by the central

positions R̄(J)m (t) and momenta P̄(J)m (t) of the nuclei, a phase
γ̄(J)m (t), and a width α. CJ

m(t) is the complex (nuclear) coefficient
associated with the TBF m evolving in electronic state J.

As indicated by its name, a TBF is not static but evolves
on a given potential energy surface, offering an adequate support
to describe the dynamics of the nuclear wavefunctions—in other
words, the TBFs can be seen as a moving grid to represent the
nuclear wavefunctions. In FMS, the TBFs evolve according to clas-
sical equations of motion, and their widths are kept frozen. More
importantly, it can be seen in Eq. (4) that the number of TBFs,
NJ

TBFs(t), is time-dependent. This time dependence comes from the
fact that any TBF in the dynamics has the possibility to create new
TBFs in the other electronic states when it enters regions of strong
nonadiabaticity. These spawning events allow for a smooth trans-
fer of nuclear amplitude between the TBFs as a result of nona-
diabatic couplings. More details on the spawning algorithm and

the dynamics of the TBFs can be found in Refs. 27–29. To initi-
ate an FMS dynamics, we need to project the initial nuclear wave-
function/wavepacket onto a certain number of TBFs. These TBFs,
called parent TBFs, are coupled from time t = 0 and will evolve
and spawn child TBFs. One common approximation to this pic-
ture is to consider that the parent TBFs are uncoupled, which is
justified by the fact that the initial nuclear wavepacket will spread
rapidly at the beginning of the dynamics. This so-called indepen-
dent first-generation approximation (IFGA) is employed in practi-
cal applications of FMS and AIMS. A detailed discussion of these
approximations can be found in Refs. 19, 27, and 29.

To better understand the couplings between TBFs
and how TBFs can exchange amplitude, we can insert the
FMS ansatz [Eq. (4)] into the time-dependent Schrödinger
equation [Eq. (1)]. We obtain, after left multiplication by
(χ̃(I)k (R; R̄(I)k (t), P̄(I)k (t), γ̄(I)k (t), α)ΦI(r; R))

∗
and integration

over all electronic and nuclear coordinates, a set of coupled
equations of motion for the complex coefficients,

dCI

dt
= −iS−1

II

⎡
⎢
⎢
⎢
⎣
(HII − iṠII)CI

+
∞
∑
J≠I

HIJCJ
⎤
⎥
⎥
⎥
⎦

. (5)

Here, SII is an overlap matrix between TBFs with elements
SII

km = ⟨χ̃
(I)
k ∣χ̃

(I)
m ⟩R. HII and HIJ are intra- and interstate Hamiltonian

matrices that will be discussed in detail in the following Sections.
The Hamiltonian matrix elements are crucial components of the
FMS and AIMS methods, as they couple the TBFs and offer excit-
ing opportunities to simplify the FMS equations of motion. As such,
they will be at the center of our attention for the remaining parts of
this section.

B. Original version of the ab initio multiple spawning
matrix elements

We derived above the equations of motion for the (nuclear)
complex coefficients in FMS [Eq. (5)]. In this part, we will focus
on the Hamiltonian matrix elements in FMS and how they can be
approximated—taking us to the AIMS method.

Let us start by describing the two types of Hamiltonian matrix
elements, the intrastate (coupled TBFs are in the same electronic
state) and interstate (coupled TBFs are in different electronic states)
couplings. Following our notation above, the intrastate couplings are
characterized by I = J ∀k, m, while the interstate couplings are given
by I ≠ J ∀k, m.

An example of an intrastate coupling would be the Hamiltonian
matrix element between two TBFs, k and m, that are evolving in the
same electronic state J,

(⟨χ̃(J)k ΦJ ∣Ĥmol∣ΦJ χ̃(J)m ⟩r,R)
FMS

= −
3N

∑
ρ

1
2Mρ
⟨χ̃(J)k ∣∂

2
Rρ ∣χ̃

(J)
m ⟩

R
+ ⟨χ̃(J)k ∣E

el
J ∣χ̃
(J)
m ⟩

R

−
3N

∑
ρ

1
2Mρ
⟨χ̃(J)k ∣D

ρ
JJ ∣χ̃
(J)
m ⟩

R
. (6)

The terms on the right-hand side encode the contributions of
the nuclear kinetic energy operator, the electronic energy, and the
DBOC introduced earlier. An interstate coupling is characterized
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by a matrix element where the two TBFs, k and m, are evolving in
different electronic states, I and J,

(⟨χ̃(I)k ΦI ∣Ĥmol∣ΦJ χ̃(J)m ⟩r,R)
FMS
= −

3N

∑
ρ

1
Mρ
⟨χ̃(I)k ∣d

ρ
IJ∂Rρ ∣χ̃

(J)
m ⟩R

−
3N

∑
ρ

1
2Mρ
⟨χ̃(I)k ∣D

ρ
IJ ∣χ̃
(J)
m ⟩R. (7)

The right-hand side of Eq. (7) shows that the non-
Born–Oppenheimer coupling between two TBFs is mediated
by the first-order NACVs and the second-order NACs. It is
important to realize at this stage that the Hamiltonian matrix
elements given above are formally exact, and the integrations
over the nuclear coordinates imply that the required electronic-
structure quantities—electronic energies, NACVs, DBOCs, and
NACs—should be known over the full nuclear configuration space.
This requirement dramatically limits the applicability of FMS to
molecular systems, and a key strategy to alleviate this issue is to
apply an approximation to the matrix elements containing these
electronic-structure quantities. This approximation will lead to the
AIMS method, which is an approximate strategy within the FMS
framework.

Within the AIMS strategy, the R-dependence of the electronic
energies and the NACVs is approximated by Taylor-expanding these
terms around the centroid position of the two TBFs under con-
sideration. In AIMS, only the contribution to zeroth order is pre-
served, leading to the so-called saddle-point approximation to order
zero (SPA0). In addition, AIMS neglects the NACs and the DBOCs,
that is, all DIJ(R) and DII(R) terms, due to their small size—we
will discuss this issue in a following part of this section. We note
that neglecting the DBOCs and NACs is an approximation also
employed in the practical implementation of ab initio MCE and mul-
tiple cloning13 within the adiabatic representation.30 As a result, the
intrastate Hamiltonian matrix elements within the AIMS strategy
reduce to

(⟨χ̃(J)k ΦJ ∣Ĥmol∣ΦJ χ̃(J)m ⟩
r,R
)

SPA0

AIMS
= −

3N

∑
ρ

1
2Mρ
⟨χ̃(J)k ∣∂

2
Rρ ∣χ̃

(J)
m ⟩

R

+ Eel
J (R̄km)⟨χ̃

(J)
k ∣χ̃

(J)
m ⟩

R
, (8)

while the interstate ones read

(⟨χ̃(I)k ΦI ∣Ĥmol∣ΦJ χ̃(J)m ⟩
r,R
)

SPA0

AIMS
= −

3N

∑
ρ

1
Mρ

dρ
IJ(R̄km)⟨χ̃

(I)
k ∣∂Rρ ∣χ̃

(J)
m ⟩

R
,

(9)

where, Eel
J (Rkm) is the electronic energy for state J evaluated at Rkm,

the centroid position of the TBFs k and m. The NACV contribu-
tion, dρ

IJ(Rkm), follows the same logic. One can appreciate at this
stage that the SPA0 addresses elegantly the complexity linked to the
R-dependence of the electronic energies and the NACVs: the Hamil-
tonian matrix elements can now be simply calculated by performing
at each time step a single point calculation at the centroid position

between each pair of TBFs, allowing us to form the different matri-
ces in Eq. (5) and propagate on-the-fly the complex coefficients on
the support of the TBFs. In other words, AIMS is a strategy fully
compliant with (on-the-fly) ab initio molecular dynamics and has
been used to simulate the nonadiabatic quantum dynamics of molec-
ular systems in their full dimensionality (see Ref. 27 for a list of
examples).

An important consideration has been swept under the carpet in
our presentation of the AIMS approximations above: neglecting the
NACs in the interstate matrix elements should break the hermiticity
of the Hamiltonian, that is, HIJ ≠ H∗JI .31 This is a result of the NACVs
being anti-Hermitian, dIJ(R) = −dJI(R), and would have the dra-
matic consequence that AIMS dynamics should not conserve norm.
Interestingly, the use of the SPA0 compensates for the neglect of
the NACs.27 Looking closely at the definition of the AIMS interstate
Hamiltonian matrix elements in the SPA0 [Eq. (9)], one can see that
the AIMS Hamiltonian is Hermitian as dIJ(Rkm) = −dJI(Rkm) and
⟨χ̃(I)k ∣∇R∣χ̃(J)m ⟩R = −⟨χ̃

(J)
m ∣∇R∣χ̃(I)k ⟩R. This compensation between the

SPA0 and the neglect of the NACs explains the Hermitian nature
of the AIMS Hamiltonian and its norm-conserving dynamics. How-
ever, this observation also indicates that one needs to be extremely
careful when trying to modify or improve the interstate Hamilto-
nian matrix elements in AIMS if one wants to preserve its Hermitian
nature, as exemplified in Sec. II C.

C. Issues when moving to the SPA1 in AIMS
Improving the quality of the AIMS matrix elements beyond the

SPA0 appears to be a trivial task: one can simply include higher-
order terms in the Taylor expansion discussed above. We will
show in the following that care has to be taken with the interstate
couplings.

Applying the SPA1 to the intrastate Hamiltonian matrix
elements is straightforward as it only requires the addition of
the first-order term of the Taylor expansion for the electronic
energy—the nuclear gradient—evaluated at the centroid position of
the two TBFs considered. The general expression for the intrastate
couplings is

(⟨χ̃(J)k ΦJ ∣Ĥmol∣ΦJ χ̃(J)m ⟩r,R)
SPA1

AIMS

= −
3N

∑
ρ

1
2Mρ
⟨χ̃(J)k ∣∂

2
Rρ ∣χ̃

(J)
m ⟩R + Eel

J (Rkm)⟨χ̃
(J)
k ∣χ̃

(J)
m ⟩R

+
3N

∑
ρ

∂Eel
J (R)
∂Rρ

RRRRRRRRRRRRρ=R̄km,ρ

⟨χ̃(J)k ∣(Rρ − R̄km,ρ)∣χ̃
(J)
m ⟩R, (10)

where the evaluation of the last term on the right-hand side only
requires the calculation of a nuclear gradient of the electronic energy
for state J at the centroid position.

Deriving the SPA1 for the interstate Hamiltonian matrix ele-
ments is substantially more challenging for two reasons. The first
issue comes from the fact that adding the first-order term of the
Taylor expansion for these matrix elements implies the evaluation of
the Jacobian of the NACVs—a quantity not commonly available in
electronic-structure packages. The Jacobian of the NACVs, JdIJ

(R),
is defined as
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JdIJ
(R) =

∂

∂R
dIJ(R) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂

∂R
d1

IJ(R)

⋮

∂

∂R
d3N

IJ (R)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂

∂R1
d1

IJ(R) . . .
∂

∂R3N
d1

IJ(R)

⋮
. . . ⋮

∂

∂R1
d3N

IJ (R) . . .
∂

∂R3N
d3N

IJ (R)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (11)

(The explicit form of the Jacobian for the NACVs for a two-state
two-dimensional case is provided in the supplementary material.)
Considering that we can obtain JdIJ

(R), the interstate couplings
within the SPA1 would be given by

(⟨χ̃(I)k ΦI ∣Ĥmol∣ΦJ χ̃(J)m ⟩r,R)
SPA1

AIMS
= −

3N

∑
ρ

1
Mρ

dρ
IJ(Rkm)⟨χ̃

(I)
k ∣∂Rρ ∣χ̃

(J)
m ⟩R

−
3N

∑
ρ

3N

∑
ρ′

1
Mρ
(JdIJ
(Rkm))ρρ′

× ⟨χ̃(I)k ∣(Rρ′ − R̄km,ρ′)∂Rρ ∣χ̃
(J)
m ⟩R,

(12)

with (JdIJ
(Rkm))ρρ′

being the element ρρ′ of the Jacobian matrix
[see Eq. (11)]. Without considering the difficulties in obtaining the
Jacobian, Eq. (12) reveals the second issue mentioned above: it is
non-Hermitian. Upon expanding the integrand of the Gaussian inte-
gral in the last term of the right-hand side of Eq. (12) (see the
supplementary material for the explicit expressions), it becomes
clear that most resulting contributions are Hermitian, with the
exception of the term ∑3N

ρ
1

2Mρ
(JdIJ
(Rkm))ρρ

⟨χ̃(I)k ∣χ̃
(J)
m ⟩R. This term

is anti-Hermitian as (JdIJ
(Rkm))ρρ

= −(JdJI
(Rkm))ρρ

and ⟨χ̃(I)k ∣χ̃
(J)
m ⟩R

= ⟨χ̃(J)m ∣χ̃
(I)
k ⟩R. The reader is referred to the supplementary material

for an explicit discussion of all the contributing terms for a two-level
two-dimensional system.

From the above analysis of the SPA1 interstate couplings,
it becomes clear that the original approximations in AIMS place
this method in a sweet spot where the SPA0 compensates for the
loss of hermiticity caused by neglecting the NACs in the inter-
state couplings. We may now wonder whether including back
the NACs could resolve the hermiticity issue observed within
the SPA1.

D. Including the NACs and DBOCs in AIMS—Two-state
systems

Based on the findings above that the SPA1 breaks the her-
miticity of the AIMS interstate couplings, we wish to investigate
whether including back the (long-neglected) NACs could lead to
Hamiltonian matrix elements that are Hermitian. We take this
opportunity to also discuss the inclusion of the DBOCs in the

interstate matrix elements, as they originate from the second-
order couplings. We note that discussions of the role of NACs
and DBOCs in AIMS have been proposed in Refs. 21 and 32, for
example.

To simplify our analysis, we propose here to restrict ourselves
to a two-state model, which will allow us to simplify the expressions
for the NACs and DBOCs. We start by expanding the NACs into a
symmetrized form,

Dρ
IJ(R) = ⟨ΦI ∣∂

2
Rρ ∣ΦJ⟩r = ∂Rρ⟨ΦI ∣∂Rρ ∣ΦJ⟩r

− ⟨∂Rρ ΦI ∣∂Rρ ΦJ⟩r. (13)

Inserting the resolution of the identity, ∑K ∣ΦK⟩⟨ΦK ∣ = 1, into the
last term of the right-hand side of Eq. (13), we obtain

Dρ
IJ(R) = ⟨ΦI ∣∂

2
Rρ ∣ΦJ⟩r =∂Rρ⟨ΦI ∣∂Rρ ∣ΦJ⟩r

−∑
K
⟨∂Rρ ΦI ∣ΦK⟩r⟨ΦK ∣∂Rρ ΦJ⟩r. (14)

For a two-state system, we can derive from Eq. (14) a simplified
expression for the DBOCs,

Dρ
JJ(R) = ⟨ΦJ ∣∂

2
Rρ ∣ΦJ⟩r = −∣⟨Φ1∣∂Rρ ∣Φ2⟩r∣

2
= −∣dρ

12(R)∣
2, (15)

and the NACs,

Dρ
IJ(R) = ⟨ΦI ∣∂

2
Rρ ∣ΦJ⟩r = ∂Rρ⟨ΦI ∣∂Rρ ∣ΦJ⟩r = ∂Rρ dρ

IJ(R). (16)

Hence, both the DBOCs and the NACs can be readily obtained from
the NACVs for a two-state model.

We can now use the definitions of DBOCs and NACs pro-
vided by Eqs. (15) and (16) in the AIMS matrix elements within the
SPA0. The additional term in any matrix elements incorporating the
DBOC reads, within the SPA0, as

⎛

⎝

3N

∑
ρ

1
2Mρ
⟨χ̃(J)k ∣DJJ ∣χ̃(J)m ⟩R

⎞

⎠

SPA0

AIMS

= −
3N

∑
ρ

1
2Mρ
∣dρ

12(Rkm)∣
2
⟨χ̃(J)k ∣χ̃

(J)
m ⟩R,

(17)

while the one containing the NACs is

⎛

⎝

3N

∑
ρ

1
2Mρ
⟨χ̃(I)k ∣DIJ ∣χ̃(J)m ⟩R

⎞

⎠

SPA0

AIMS

=
3N

∑
ρ

1
2Mρ
(JdIJ
(Rkm))ρρ

⟨χ̃(I)k ∣χ̃
(J)
m ⟩R.

(18)

In light of our discussion of Eq. (12), we know that the inter-
state coupling term, Eq. (18), is anti-Hermitian, as (JdIJ

(Rkm))ρρ

= −(JdJI
(Rkm))ρρ

, while ⟨χ̃(I)k ∣χ̃
(J)
m ⟩R = ⟨χ̃

(J)
m ∣χ̃

(I)
k ⟩R. However, this

anti-Hermitian contribution coming from Eq. (18) is exactly the
same as the anti-Hermitian contribution obtained from the expan-
sion of the last term of the right-hand side of Eq. (12) (interstate
coupling within the SPA1). Hence, if one combines the SPA1 for the
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NACVs with the SPA0 for the NACs, the two anti-Hermitian parts
cancel out, providing an overall Hermitian Hamiltonian. We note
that expanding the interstate matrix elements to different orders of
the SPA allows us to include all terms that contain the NACVs up to
their first-order derivatives.

In summary, we can propose the AIMS Hamiltonian matrix
elements for a two-state system using a combination of the SPA0
and SPA1 for both the intrastate couplings,

(⟨χ̃(J)k ΦJ ∣Ĥmol∣ΦJ χ̃(J)m ⟩r,R)
SPA1′

AIMS

= −
3N

∑
ρ

1
2Mρ
⟨χ̃(J)k ∣∂

2
Rρ ∣χ̃

(J)
m ⟩R + Eel

J (Rkm)⟨χ̃
(J)
k ∣χ̃

(J)
m ⟩R

+
3N

∑
ρ

∂Eel
J (R)
∂Rρ

RRRRRRRRRRRRρ=R̄km,ρ

⟨χ̃(J)k ∣(Rρ − R̄km,ρ)∣χ̃
(J)
m ⟩R

+
3N

∑
ρ

1
2Mρ
∣dρ

12(Rkm)∣
2
⟨χ̃(J)k ∣χ̃

(J)
m ⟩R, (19)

and the interstate couplings,

(⟨χ̃(I)k ΦI ∣Ĥmol∣ΦJ χ̃(J)m ⟩r,R)
SPA1′

AIMS
= −

3N

∑
ρ

1
Mρ

dρ
IJ(Rkm)⟨χ̃

(I)
k ∣∂Rρ ∣χ̃

(J)
m ⟩R

−
3N

∑
ρ

3N

∑
ρ′

1
Mρ
(JdIJ
(Rkm))ρρ′

× ⟨χ̃(I)k ∣(Rρ′ − R̄km,ρ′)∂Rρ ∣χ̃
(J)
m ⟩R

−
3N

∑
ρ

1
2Mρ
(JdIJ
(Rkm))ρρ

⟨χ̃(I)k ∣χ̃
(J)
m ⟩R.

(20)

We denote this combination of approximations for the Hamil-
tonian matrix elements SPA1′. The SPA1′ is the simplest approx-
imation to the FMS Hamiltonian matrix elements that allows
for the inclusion of the NACs and DBOCs while preserving
hermiticity. We can now deal with the last missing contribu-
tion emanating from the inherent use of the adiabatic repre-
sentation for the electronic eigenstates in AIMS—the geometric-
phase.

E. On the inclusion of geometric-phase effects
in ab initio multiple spawning

A GP arises in the vicinity of conical intersections when using
the adiabatic representation of the electronic states, that is, the eigen-
functions of Ĥel(r, R), {ΦJ(r; R)}∞J=1, which parametrically depend
on the nuclear coordinates. (See the Appendix for a more extended
discussion on this topic.) When following a closed path in (para-
metric) nuclear coordinates, an adiabatic electronic wavefunction
will acquire a phase. This phase will be exactly π if the path encir-
cles a conical intersection, leading to a change in sign of the (real)
electronic wavefunction that breaks its single-valuedness. To coun-
teract this effect and ensure that the molecular wavefunction is
singled valued, one can introduce a position-dependent phase fac-
tor, eiΩJ(R), for the corresponding nuclear wavefunction that will
also change sign when encircling a conical intersection. Based on
the seminal work by Mead and Truhlar33 on the topic, this phase
factor will be the same for both states considered in a two-state
system and can be chosen to be the mixing angle between the
diabatic states used in the unitary transformation between dia-
batic and adiabatic states. Hence, we can chose Ω1(R) = Ω2(R)
= Ω(R) for a two-state system. To perform quantum dynamics
in the adiabatic representation, it can be more convenient to per-
form a transformation of the adiabatic molecular Hamiltonian,
Ĥmol(r, R), to include the effect of a GP while keeping the stan-
dard nuclear wavefunctions.25 As a result, the molecular Hamil-
tonian for a two-state system becomes Ĥmol(r, R) → ĤGP

mol(r, R)
= eiΩ(R)Ĥmol(r, R)e−iΩ(R). As stated above, GP Ω(R) can be related
to the mixing angle, θ(R), that mediates the diabatic-to-adiabatic
transformation for a two-level system. As a result, knowing that
∇Rθ(R) = d12(R) allows us to choose the GP such that ∇RΩ(R)
= d12(R).20,33–37 The interested reader is referred to the Appendix
for a detailed discussion on this choice of GP.

Coming back to FMS and AIMS, one can evaluate the Hamilto-
nian matrix elements for ĤGP

mol(r, R), where the action of the Lapla-
cian in the diagonal elements and ∇R in the off-diagonal elements
gives rise to additional terms. These terms contain∇RΩ(R) and thus
are connected to d12(R) (see the Appendix for a complete derivation
of the GP effects in FMS and AIMS). Expanding all AIMS matrix
elements as done in the previous parts of this work and includ-
ing all terms up to the first-order derivative of dIJ(R), we obtain
the following expression for the intrastate GP Hamiltonian matrix
elements:

(⟨χ̃(J)k ΦJ ∣ĤGP
mol∣ΦJ χ̃(J)m ⟩r,R)

GP−SPA1′

AIMS
= −

3N

∑
ρ

1
2Mρ
⟨χ̃(J)k ∣∂

2
Rρ ∣χ̃

(J)
m ⟩R + Eel

J (Rkm)⟨χ̃
(J)
k ∣χ̃

(J)
m ⟩R +

3N

∑
ρ

∂Eel
J (R)
∂Rρ

RRRRRRRRRRRRρ=R̄km,ρ

⟨χ̃(J)k ∣(Rρ − R̄km,ρ)∣χ̃
(J)
m ⟩R

+
3N

∑
ρ

1
Mρ
∣dρ

12(Rkm)∣
2
⟨χ̃(J)k ∣χ̃

(J)
m ⟩R −

3N

∑
ρ

i
Mρ

dρ
IJ(Rkm)⟨χ̃

(J)
k ∣∂Rρ ∣χ̃

(J)
m ⟩R

−
3N

∑
ρ

3N

∑
ρ′

i
Mρ
(JdIJ
(Rkm))ρρ′

⟨χ̃(J)k ∣(Rρ′ − R̄km,ρ′)∂Rρ ∣χ̃
(J)
m ⟩R −

3N

∑
ρ

i
2Mρ
(JdIJ
(Rkm))ρρ

⟨χ̃(J)k ∣χ̃
(J)
m ⟩R, (21)

where the last three terms of the right-hand side arise from the inclusion of the GP. For the interstate GP Hamiltonian matrix elements, we
find
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(⟨χ̃(I)k ΦI ∣ĤGP
mol∣ΦJ χ̃(J)m ⟩r,R)

GP−SPA1′

AIMS
= −

3N

∑
ρ

1
Mρ

dρ
IJ(Rkm)⟨χ̃

(I)
k ∣∂Rρ ∣χ̃

(J)
m ⟩R −

3N

∑
ρ

3N

∑
ρ′

1
Mρ
(JdIJ
(Rkm))ρρ′

⟨χ̃(I)k ∣(Rρ′ − R̄km,ρ′)∂Rρ ∣χ̃
(J)
m ⟩R

−
3N

∑
ρ

1
2Mρ
(JdIJ
(Rkm))ρρ

⟨χ̃(I)k ∣χ̃
(J)
m ⟩R −

3N

∑
ρ

i
Mρ

dρ
IJ(Rkm)d

ρ
12(Rkm)⟨χ̃

(I)
k ∣χ̃

(J)
m ⟩R. (22)

Evaluating the AIMS matrix elements within SPA1′ for the GP-
transformed Hamiltonian ĤGP

mol(r, R) results in intrastate and inter-
state couplings containing both contributions from the DBOCs and
the NACs.

Armed with equations for the AIMS Hamiltonian matrix ele-
ments accounting for NACs, DBOCs, and GP effects while pre-
serving the hermiticity of the Hamiltonian matrix, we propose
to unravel the effects of these different contributions by study-
ing the nonadiabatic dynamics of a nuclear wavepacket evolving
through a conical intersection for two-dimensional, two-state model
systems.

III. COMPUTATIONAL DETAILS
We used for this study a series of two-dimensional, two-state

linear vibronic coupling (LVC) models. In the diabatic representa-
tion, the general form of the Hamiltonian is given by

Hdia(R) = T̂n(R)1 +
⎛
⎜
⎝

V11(R) V12(R)

V12(R) V22(R)

⎞
⎟
⎠

, (23)

with the following diabatic electronic energies:

V11(R) =
ω2

1

2
(X +

a
2
)

2
+

ω2
2

2
Y2
+

Δ
2

,

V22(R) =
ω2

1

2
(X −

a
2
)

2
+

ω2
2

2
Y2
−

Δ
2

,

V12(R) = cY

(24)

with R = (X, Y). The parameters a, ω1, ω2, Δ, and c were obtained
from Ref. 25 and chosen to create three models representative of
the conical intersection for the molecules bis(methylene)adamantyl
(BMA), butatriene cation, and pyrazine. The model potentials
describe, in a diabatic picture, two parabolas displaced in the
X direction and shifted in energy by the parameter Δ. Figure 1
depicts the general shape of the adiabatic potential energy surfaces
for the different molecules. The ground electronic state is indicated
by green contour lines, and the excited state is indicated with pur-
ple ones. We note that in the case of BMA, Δ = 0.0 a.u., which
means that the model is symmetric with a CI at RCI = (XCI, YCI)

= (0.0, 0.0) (see Fig. 1). In the following, units for the nuclear
coordinates are given in bohr.

We simulated the nonadiabatic passage of a nuclear wavepacket
through a conical intersection using three different methods: AIMS,
numerically exact QD, and TSH.

FIG. 1. Contour lines of the adiabatic ground (green) and excited (purple) poten-
tial energy surfaces for the three model systems: BMA, butatriene cation, and
pyrazine (from top to bottom). Higher energies are depicted by darker colors.
The pink circles indicate the location of the conical intersection, and the dark
blue crosses locate the center of the initial Gaussian nuclear wavepacket,
with an arrow indicating the initial motion of the nuclear wavepacket upon
relaxation.
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In the QD simulations, the initial state was given by a
Gaussian nuclear wavepacket with widths σX =

√
2

ω1
and σY

=
√

2
ω2

initialized in the adiabatic excited electronic state with
zero initial nuclear momenta. The widths (σX , σY) were set to
(16.07, 17.30) for BMA, (14.47, 24.43) for the butatriene cation,
and (23.41, 21.86) for pyrazine. Following earlier work by Izmaylov
and co-workers,25,37 the nuclear wavepacket was initially posi-
tioned on the Franck–Condon point of the corresponding full-
dimensional model, which gives (15.53, 0.0) for BMA, (−2.08, 0.0)
for the butatriene cation, and (5.10, 0.0) for pyrazine. The
full time-dependent Schrödinger equation was solved numeri-
cally in the diabatic representation employing a split-operator
formalism.38,39

The TSH dynamics were carried out with the LVC interface
of the SHARC 2.1 program.40,41 For consistency, we compared
the dynamics obtained from the LVC interface and the analyti-
cal potential routine of SHARC and obtained identical results. A
nuclear time step of 0.05 fs, that is, ∼2 atomic time units (atu),
was used for the classical propagation of the nuclei. The energy-
based decoherence correction was used with the standard para-
meter a = 0.1 hartree. Only the component of the nuclear velocities
parallel to the NACVs was rescaled after a hop or reflected after a
frustrated hop.

The AIMS dynamics were performed with a modified version
of the FMS90 code implemented in MOLPRO.42 The additional cor-
rection terms presented in Sec. II were included into the overlap
module of FMS90. A time step of 1 atu was used for the propaga-
tion of the TBFs, which was reduced to 0.25 atu in regions of strong
nonadiabaticity. The threshold to enter the spawning mode (abso-
lute value of the nonadiabatic coupling) was set to 0.0001 a.u.−1,
with a minimum population of 0.001 required for a TBF to spawn.
The widths for each TBF were chosen to be the same as those of the
initial nuclear wavepacket in the quantum dynamics, and all AIMS
simulations presented employed the IFGA.

The AIMS and TSH dynamics used the same 2000 initial
conditions, obtained by randomly sampling the Wigner distri-
bution corresponding to the initial Gaussian nuclear wavepacket
used in each QD simulations. We note that the additional terms
included in AIMS and discussed in Sec. IV C caused some numer-
ical instabilities for the AIMS dynamics of a few initial condi-
tions. As a result, the number of initial conditions used for the
different dynamics discussed in Sec. IV C varies between 1980 and
2000.

IV. RESULTS AND DISCUSSION
A. Excited-state population decay

Let us first start by investigating the excited-state population
decay for the three different models, comparing the QD results to
the decays predicted by TSH and AIMS within the SPA0 [Eqs. (8)
and (9)].

The BMA model is set up to recreate the diabatic trapping
occurring in the excited-state dynamics of the full molecule. As a
result, the numerically exact QD dynamics exhibits an almost com-
plete depletion of the initial excited-state population within the first
250 atu [black line in Fig. 2(a)], rapidly followed by a complete

FIG. 2. Excited-state population decays for the model of (a) BMA, (b) butatriene
cation, and (c) pyrazine. Three different nonadiabatic dynamics strategies are com-
pared for each model: QD (black), TSH (green), and AIMS-SPA0 (purple). The
colored stars in (b) mark different time snapshots that will be investigated in more
detail in Figs. 3 and 4.

revival of the excited-state population after 625 atu. The excited-
state population then decays again back to the ground electronic
state after around 1000 atu. TSH reproduces quite closely the QD
results for the excited-state population [green line in Fig. 2(a)]. Devi-
ations are observed after the first decay (at around 250 atu), where
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TSH does not fully decay the excited-state population. Another
marked difference can be observed during the revival of the excited-
state population (at around 750 atu), where TSH predicts that
nearly 20% of the population remains in the ground state. These
results are entirely consistent with the analysis of Izmaylov and co-
workers, who rationalized the overall good performance of TSH for
dynamics around conical intersections by a compensation of errors
between neglecting DBOCs and GP effects.43,44 The population trace
obtained with AIMS-SPA0 for BMA [purple line in Fig. 2(a)] is
almost identical to that obtained with QD, with only a small devia-
tion observed from the reference during the revival of the excited-
state population. This deviation is smaller than what is observed
for TSH, with only 10% of population left on the ground state for
AIMS-SPA0.

The second model is based on the excited-state dynamics of the
butatriene cation. The excited-state population described by QD suf-
fers an immediate decay, leaving ∼15% of population in the excited
state after 350 atu of dynamics [black line in Fig. 2(b)]. A brief
increase in this population is observed at around 550 atu, before it
carries on its decay. A sudden repopulation of the excited state is,
however, observed between 1500 and 2000 atu from around 5% to
over 30%. The time-trace of the excited-state population is repro-
duced qualitatively by both TSH and AIMS-SPA0 [green and pur-
ple lines in Fig. 2(b)]. The overall shape of the population trace
obtained with AIMS is closer to the QD reference than that of
TSH, but AIMS-SPA0 underestimates the overall decay of pop-
ulation. The TSH population trace matches that of QD between
850 and 1600 atu. Perhaps more noticeably, both approximate
methods miss the strong repopulation of the excited state after
1500 atu.

The third and last model studied is based on the photodynamics
of pyrazine. The QD population trace shows an initial decay start-
ing after ∼400 atu of dynamics until the excited-state population
reaches ∼15% of population after 1000 atu [black line in Fig. 2(c)].
While the population decay dramatically slows down after this first
transfer, the excited-state population decreases to less than 5% after
2250 atu of dynamics. A significant repopulation of the excited state
occurs at this time, leading to a maximum of excited-state pop-
ulation at around 3200 atu, before a decrease is again observed.
This rather complex population trace is quite well mimicked by
TSH and AIMS-SPA0 [green and purple lines in Fig. 2(c)]. Both
approximate methods describe the initial fast decay of excited-state
population, with AIMS transferring slightly less population to the
ground state than TSH. The plateau is then reached with, for both
TSH and AIMS, a slightly higher excited-state population than what
QD predicts (20% with TSH and 23% with AIMS). In contrast
with the dynamics of the butatriene cation described above, both
AIMS-SPA0 and TSH manage to describe the repopulation of the
excited state after 2250 atu. The overall shape of the repopulation
(and then decay) observed during the QD is better reproduced by
AIMS, while the variation of population depicted by TSH is smaller
(overestimation before the repopulation and underestimation
after it).

Overall, the TSH and AIMS-SPA0 agree surprisingly well with
the QD reference for these three non-trivial dynamics through a
conical intersection. The excellent agreement between the AIMS and
QD results obtained for BMA comes somehow as a surprise as it is
important to remember that the AIMS-SPA0 dynamics presented

here uses the SPA0 and the IFGA. The latter was originally justi-
fied for the study of molecules in their full dimensionality, but in
resonance with previous work,19,45 the IFGA appears to perform
well for models with a small number of nuclear degrees of freedom.
While these approximations can explain, in part, the deviations in
population between AIMS and QD observed for the two other mod-
els, it is crucial to realize that the AIMS dynamics presented here
do not account for GP effects and neglect the DBOCs and NACs.
As observed by Izmaylov for mixed-quantum classical methods,43,44

the somewhat encouraging results obtained for the three models
with AIMS-SPA0 seem to imply that AIMS benefits from a simi-
lar cancelation of errors as TSH—the lack of GP effects in AIMS
is compensated by the neglect of DBOCs. We note that the BMA
model is characterized by a rather asymmetric DBOC in the branch-
ing space, while the models for the butatriene cation and pyrazine
show a more symmetric DBOC.25,43 These observations and the
results above suggest that the approximations of AIMS-SPA0
may perform best, in general, for molecules with less symmetric
DBOCs.

The results reported here are somehow reassuring for the use
of AIMS-SPA0 to describe the dynamics through conical intersec-
tions for molecular systems. Given that AIMS-SPA0 encodes more
nuclear quantum effects than a mixed-quantum/classical method
such as TSH, it was not given that AIMS-SPA0 would perform
well in nonadiabatic dynamics around conical intersections when
NACs and geometric effects are significant. Differences are, how-
ever, non-negligible, and we propose in the following to investi-
gate more closely the influence of the different missing terms in
the AIMS Hamiltonian matrix elements. We focus our attention on
the butatriene cation model [Fig. 2(b)] as it appears to be the most
challenging model for AIMS-SPA0.

B. Ground-state nuclear dynamics for the butatriene
cation model

To complement our analysis of the excited-state population
dynamics, we propose here to visualize the ground-state nuclear
density obtained with the different methods. This quantity is
straightforward to access in the QD simulation (we note here that
we plot the adiabatic ground-state nuclear density). In AIMS-SPA0,
we can easily reconstruct the ground-state nuclear density from the
TBFs and their complex coefficients owing to the FMS ansatz dis-
cussed above. We note that the use of the IFGA implies that the
nuclear density is reconstructed for each AIMS-SPA0 run (each
parent TBF with their respective child) individually. The overall
AIMS-SPA0 nuclear density is obtained by performing an incoher-
ent average over the nuclear density of each AIMS-SPA0 run. TSH
does not offer an ansatz for the nuclear wavefunctions due to its
independent trajectory approximation. Hence, we approximate the
nuclear density in TSH by broadening each TSH trajectory with a
Gaussian function, whose width is chosen to be identical to that of
the TBFs in AIMS-SPA0.

We compare the ground-state nuclear density at four different
times for the butatriene dynamics—200, 552, 1000, and 2000 atu,
indicated by colored stars in Fig. 2(b). These times were selected as
they correspond to a specific behavior in the excited-state popula-
tion trace: the initial decay of the population (200 atu), the max-
imum of the weak repopulation (552 atu), the beginning of the
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plateau (1000 atu), and the end of the dynamics after the repop-
ulation (2000 atu). Figure 3 shows the different snapshots of the
ground-state nuclear density for the QD, AIMS-SPA0, and TSH
dynamics (from top to bottom), reconstructed at these four times.
The pink circle in the plots indicates the location of the conical
intersection.

At 200 atu, nuclear density starts to appear in the ground elec-
tronic state. While the location of the nuclear density given by
AIMS-SPA0 and TSH matches that of the QD result, the QD nuclear
density shows a nodal region near the position of the conical inter-
section, which is not reproduced by either AIMS-SPA0 or TSH. The
approximations of AIMS-SPA0 can be held responsible for this devi-
ation from the QD result, considering that the AIMS-SPA0 simu-
lation presented invokes the SPA0 and the IFGA (and no geomet-
ric effects are included). At later times, the ground-state nuclear
density spreads on the ground-state potential energy surface (see
Fig. 1), ending up being mostly delocalized by t = 2000 atu. While
AIMS-SPA0 and TSH reproduce well the overall shape and local-
ization of the nuclear density at most times, it is surprising to see
how qualitatively well AIMS-SPA0 captures the main features of
the structure of the QD nuclear density, in particular at t = 552 atu
and t = 1000 atu, considering the crude approximation of its
Hamiltonian matrix elements and the use of the IFGA. This good
match between QD and AIMS-SPA0 is further observed in the actual
movies of the evolution of the ground-state nuclear density (see the
supplementary material). These movies further highlight that the
good agreement between the QD and AIMS-SPA0 nuclear densities
is not coincidental at the selected times. Comparing the movies for
the AIMS-SPA0 and TSH dynamics offers a clear illustration of the
fundamental difference between the two methods. The TSH movie
makes it obvious that the motion of the nuclear density is simply
correlated to the dynamics of the independent classical trajecto-
ries on the ground-state potential energy surface. Conversely, the
AIMS-SPA0 movie shows that the complex amplitude is transferred

between the TBFs, which serve as moving grid points on which the
nuclear density is distributed.

This observation is further supported by comparing the posi-
tions of the TSH trajectories with those of the TBF centers in
AIMS-SPA0 at the various snapshot times (Fig. 4). In AIMS-SPA0,
the TBFs evolve from being mainly around y = 0 at 200 atu to
mostly everywhere in space at later times—an essential element for
the success of the method if one considers that the actual posi-
tions of the TBFs are not critical as long as they offer a proper
support to describe the nuclear wavepacket dynamics, described
in AIMS-SPA0 via the complex coefficients. This coverage of the
configuration space by the TBFs is made possible by the spawn-
ing algorithm, which increases the number of TBFs continuously
during the dynamics. This growing distribution and spreading of
the TBFs are in stark contrast with the distribution of the TSH
trajectories.

C. Adding new contributions to the Hamiltonian
matrix elements in AIMS

Now that we characterized the nonadiabatic dynamics obtained
with AIMS-SPA0 for the different models, we wish to investigate the
effect of including additional contributions to the AIMS Hamilto-
nian matrix elements, focusing, in particular, on some terms that
are usually neglected in AIMS—GP effect, DBOCs, and NACs—and
discussed in Sec. II.

Let us first start by considering the influence of improving the
quality of the intrastate matrix elements in AIMS-SPA0 by mov-
ing to the SPA1 [intrastate-SPA1 in Fig. 5(a), dark purple dashed
line], that is, by using Eq. (10) for the intrastate couplings and main-
taining the SPA0 [Eq. (9)] for the interstate couplings. No major
variations of the population trace can be observed by improving
the intrastate couplings. This observation could be rationalized by
the fact that, within a given AIMS run, TBFs might separate in

FIG. 3. Snapshots of the ground-state nuclear density taken at four characteristic times of the nonadiabatic dynamics of the butatriene cation. The four different times
selected are indicated by the corresponding colored stars in Fig. 2. The ground-state nuclear density is reconstructed for QD (top panels), AIMS-SPA0 (middle panels), and
TSH (lower panels). The pink circles indicate the location of the conical intersection. We note that the colorbar range is rescaled by a factor of two for the snapshots at 200
atu (left panels).
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FIG. 4. Snapshots of the positions of the AIMS-SPA0 TBFs (upper panel) and the TSH trajectories (lower panel) evolving on the ground state at four characteristic times
for the nonadiabatic dynamics of the butatriene cation. The snapshot times are the same as those presented in Fig. 3 and indicated by colored stars in Fig. 2(b). The pink
circles indicate the location of the conical intersection.

phase space sufficiently such that they are not strongly affected by
their respective intrastate couplings. An interesting test to validate
the importance of the coupling between TBFs on the same state
consists in removing all intrastate couplings [pseudo-independent

FIG. 5. Excited-state population decay for the butatriene cation model using differ-
ent flavors of AIMS. (a) Alterations of the intrastate coupling terms: standard AIMS
formulation using the SPA0 for all coupling terms (AIMS-SPA0, purple line, iden-
tical to the population depicted in Fig. 2), using SPA1 for the intrastate couplings
(intrastate-SPA1, dark purple dashed lines), and removing all intrastate couplings
(pITA-AIMS, gray dashed line). (b) Modifications of both inter- and intrastate cou-
plings: the standard AIMS formulation for reference (AIMS-SPA0, purple line),
using the SPA1 and including NACs (AIMS + NACs, gray line), using the SPA1
and including both NACs and DBOCs (AIMS-SPA1′, dark blue dashed line), and
using the SPA1′ and adding the GP correction (GP-SPA1′, palatinate line).

trajectory approximation in AIMS, pITA-AIMS, in Fig. 5(a), gray
dashed line]. Once more, the population trace obtained within
this approximation does not significantly deviate from the origi-
nal AIMS one, validating the weak influence of the intrastate cou-
pling within the current approximations. It is important to note that
removing the IFGA may significantly alter this result, as all parent
TBFs and their child TBFs would become coupled. Before mov-
ing to the next step and including the NACs and GP effects, we
note that we tested the bra-ket averaged Taylor (BAT) expansion
to order zero proposed in Ref. 13 for the NACVs (instead of the
SPA0) and obtained a population trace in very close agreement with
AIMS-SPA0.

We are now in a good position to include terms in the Hamil-
tonian matrix elements that are usually neglected within the con-
ventional AIMS framework based on our analysis in Sec. II. The
first step consists in including the NACs in the interstate couplings.
As discussed in our analysis in Sec. II, preserving the hermiticity
of the Hamiltonian matrix requires that we use the SPA1 for the
interstate couplings. The resulting strategy [AIMS + NACs, gray line
in Fig. 5(b)] uses the SPA1 for the intrastate couplings [Eq. (10)]
and the interstate couplings [Eq. (20)], including the NACs. AIMS
+ NACs shows a population transfer initially accelerated in com-
parison to AIMS-SPA0, but this acceleration rapidly slows down,
and a significantly smaller population transfer toward the ground
state is observed between 400 and 750 atu. The excited-state popu-
lation then slowly converges toward that of AIMS-SPA0. Based on
our earlier consideration with intrastate-SPA1 and pITA-AIMS, it
does not come as a surprise that adding the DBOCs to this dynam-
ics [AIMS-SPA1′, dark blue dashed line in Fig. 5(b), using Eq. (19)
for intrastate couplings and Eq. (20) for interstate couplings] does
not alter the population transfer in comparison to AIMS + NACs.
Overall, the inclusion of NACs and DBOCs appears to slow down
the population transfer for the butatriene cation model—an obser-
vation for AIMS in resonance with earlier findings on TSH, where
the inclusion of DBOCs was found to slow down significantly the
population transfer.43 (See Sec. IV D for additional information on
the inclusion of DBOCs in AIMS.) The final contribution that we
can include is the GP correction within SPA1′ (GP-SPA1′, palatinate
line in Fig. 5) using Eq. (21) for intrastate couplings and Eq. (22)
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for interstate couplings. The population trace obtained with AIMS
under GP-SPA1′ deviates even more from the AIMS-SPA0 (and QD
result), exhibiting a dramatic slowdown of the excited-state popula-
tion transfer. This result is surprising as one would expect, based
on earlier works,25,43 that including a GP correction in the inter-
state coupling terms should increase the nonadiabatic transfer of
population.

To shed further light on this observation, we propose to
focus our attention on a representative parent–child TBF pair
and monitor their interstate coupling when approaching the con-
ical intersection.46 Following the strength of the interstate cou-
pling for each TBF using AIMS-SPA0 [Fig. 6(b)], one can see
how the TBFs meet in configuration space when their coupling
strength is maximal—a behavior encoded in the spawning algo-
rithm. When now monitoring the strength of the interstate cou-
plings for the same pair of TBFs but including GP effects [GP
+ SPA1′, Fig. 6(c)], one can immediately observe that the nonadi-
abatic strength is almost ten times stronger than without the GP
effects. Hence, it appears that, as expected, the nonadiabatic strength
is dramatically enhanced when GP effects are included in AIMS.
What happens, then, to the population transfer between this pair
of TBFs?

The norm of the Hamiltonian matrix element for the inter-
state coupling for AIMS-SPA0, (HIJ

m,km)
SPA0

AIMS
, or for GP-SPA1′,

(HGP,IJ
m,km)

GP−SPA1′

AIMS
, are taken as proxies for the nonadiabatic coupling

strength in a situation without or with GP effects. We start by mon-
itoring the excited-state population trace for this pair of TBFs using
AIMS-SPA0 and GP + SPA1′ for the matrix elements [Fig. 6(a)].
The population trace using AIMS-SPA0 shows a smooth and mono-
tonic decay. However, upon inclusion of the GP effects, one sees that,
while the population starts to decay earlier than in AIMS-SPA0, it

then exhibits some rapid oscillations between 1.0 and 0.5, hindering
the population transfer. While the TBFs feel a much stronger mutual
interstate coupling, the nuclear amplitude oscillates in a Rabi-way
between the two TBFs without a stable transfer to the ground-state
one. One reason for that could be that there are, at this time, only
two TBFs in the dynamics (one on each state) and, therefore, that
once transferred to the TBF in the ground state, the amplitude can-
not spread toward other ground-state TBFs and remains trapped on
the child TBF, still strongly coupled with the parent TBF—leading
to an oscillation of the amplitude between the two TBFs, a sort of
overcoherent effect due to the locality of the parent/child TBF pair.
Including the GP effects only in the interstate couplings [palati-
nate dashed line in Fig. 6(a)] further enhances these oscillations.
Hence, we appear to be facing, in this particular case, one of the
limitations of AIMS: the use of the IFGA, which limits the num-
ber of coupled TBFs at the early times. To circumvent this issue,
it would be necessary to start the dynamics with a large number of
coupled TBFs. While this solution would potentially be tractable for
a model system, its cost would simply be prohibitive for molecular
systems.

We come to the interesting conclusion that including GP
effects in AIMS would likely require getting rid of some of
the practical approximations (SPA0 and IFGA) that made AIMS
a successful strategy to investigate the nonadiabatic dynamics
of molecular systems. These tests also reveal that these non-
adiabatic processes can be easily described within these strong
approximations by relying on cancelation of errors—a reason why
TSH performs so well for molecular systems. However, trying to
account properly for additional quantum effects such as GP in
AIMS would require a dramatic improvement of its underlying
approximations.

FIG. 6. Early dynamics of a representative parent–child TBF pair evolving in different electronic states: (a) Excited-state population transfer with AIMS-SPA0 (purple line),
AIMS including GP effects within the SPA1′ (GP-SPA1′, palatinate, solid line), and AIMS including only the interstate coupling corrections for the GP with the SPA1′ (GP,
palatinate dashed line). (b) The effective nonadiabatic coupling strength (norm of the Hamiltonian matrix element for interstate couplings, ∣HIJ

m,km∣) between the two TBFs
present in the simulation, depicted along each TBF for the first 115 atu of AIMS-SPA0 dynamics. (c) The effective nonadiabatic coupling strength (norm of the Hamiltonian
matrix element for interstate couplings—∣HGP,IJ

m,km ∣) between the two TBFs present in the simulation, depicted along each TBF for the first 115 atu of AIMS GP-SPA′ dynamics.
Note that the scale of the color bar for (c) has been divided by a factor of 10 in comparison to (b), i.e., the effective nonadiabatic coupling strength is a factor of 10 larger than
it is for AIMS-SPA0.
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D. Born–Oppenheimer or Born–Huang potential
energy surfaces in AIMS

Up to this point, we have focused our attention only on the
Hamiltonian matrix elements connecting the TBFs. However, one
should keep in mind that, while the dynamics of the complex coef-
ficients is obtained via the time-dependent Schrödinger equation
[Eq. (5)], the TBFs are propagated classically and meant to follow
the dynamics of the nuclear wavepackets. In the standard version
of AIMS (AIMS-SPA0), the TBFs evolve on the Born–Oppenheimer
potential energy surfaces (BO PESs) given by Eel

I (R). Considering
the inclusion of DBOCs in the Hamiltonian matrix elements of
AIMS-SPA0 raises the question of also including these terms in the
dynamics of the TBFs. The resulting Born–Huang (BH) PESs are
then defined for the electronic state I as Eel

I (R) +DII(R). The BH
PESs have been investigated extensively for electron transfer pro-
cesses in the context of non-Born–Oppenheimer effects.47–49 The
BO PESs are very similar to the BH PESs for a given molecule as
long as electronic states are far apart in energy. However, one can
show for a two-level system that the DBOCs are proportional to
the squared norm of the NACVs [as discussed earlier; see Eq. (15)].
Hence, the shape of the BH PESs will dramatically differ from that of
the BO PESs in the vicinity of a conical intersection, as the NACVs
are inversely proportional to the electronic energy gap between
the two coupled states. Looking at our model for the butatriene
cation, one can see that the typical conical shape of the BO PES
[Fig. 7(a)] is completely altered by the inclusion of the DBOCs,
leading to BH PESs both displaying a singularity at the exact loca-
tion of the conical intersection [Fig. 7(b)]. The addition of this sin-
gular barrier on both BH PESs is made more visible in Fig. 7(c)
by performing a cut on the BH and BO PESs along the Y = 0
axis.

This comparison between the shape of BO and BH PESs makes
it clear that nonadiabatic dynamics methods based on classical tra-
jectories will be strongly affected by this additional barrier. Earlier
work on TSH showed that including the DBOCs in the propaga-
tion of the classical trajectories dramatically hampers the nonadia-
batic population transfer.43,44 Hence, focusing now on AIMS-SPA0,
it does not come as a surprise that the TBFs are avoiding the regions
of the conical intersection when evolving on the BH PESs [Fig. 8(b)].
Interestingly, though, the width of the TBFs makes that the recon-
structed ground-state nuclear density [Fig. 8(a)], combined with the
approximate nature of the interstate and intrastate couplings, still

FIG. 8. Snapshot at 200 atu of the (a) AIMS ground-state nuclear density and (b)
TBF centers for an AIMS dynamics where the TBFs are evolved on BH PESs for
the butatriene cation model. The pink circles indicate the location of the conical
intersection.

displays some nuclear density in the direct vicinity of the conical
intersection. As expected from the distribution of the TBFs, the over-
all excited-state population decay predicted by AIMS-SPA0 when
employing BH PESs to propagate the TBFs is dramatically deceler-
ated (light blue line in Fig. 9) in comparison to the AIMS-SPA0 on
BO PES (purple line in Fig. 9). This observation is in line with earlier
findings on propagating TBFs on BH PESs within the AIMS-SPA0
formalism21 and earlier work on the inclusion of DBOCs only in QD
and TSH.20,25,43,44

Accounting for GP effects into the AIMS dynamics on BH
PESs (at the GP-SPA1′ level; see Sec. IV C) results in a slight
speed-up of the excited-state population transfer. This behavior is
expected due to the enhanced interstate couplings resulting from
the inclusion of the GP (see Fig. 6) and shows that TBFs can
still interact next to the conical intersection. However, the classical
motion of the TBFs on the BH PESs, combined with the limita-
tions in the description of the interstate and intrastate couplings
and the IFGA (described above), does not allow for an overall
improved description of the excited-state population transfer. This

FIG. 7. Comparison of the potential energy surfaces for the ground state (GS) and the excited state (ES) of the butatriene cation around the conical intersection. (a)
Born–Oppenheimer potential energy surfaces (BO PESs). (b) Born–Huang potential energy surfaces (BH PESs). (c) Cut through the BO PESs (light and dark purple lines)
and the BH PESs (light and dark blue lines) along the axis Y = 0.

J. Chem. Phys. 155, 174119 (2021); doi: 10.1063/5.0071376 155, 174119-13

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 9. Excited-state population decay with AIMS-SPA0, with TBFs evolving on
standard BO PESs (purple line) or BH PESs (light blue line). The dark blue line
shows the propagation on the BH PES but including the GP corrections in the
Hamiltonian matrix elements (BH PES + GP).

finding reinforces earlier work on the incorporation of DBOCs into
AIMS.21,32

V. CONCLUSION
In this work, we analyzed the influence of the missing contribu-

tions to the Hamiltonian matrix elements in the AIMS method for
nonadiabatic dynamics around conical intersections. Based on three
two-dimensional model systems, we could show that AIMS—in
its original formulation, that is, using the SPA0 and IFGA and
neglecting the NACs, DBOCs, and GP corrections—offers a least
qualitatively correct description of the dynamics through a coni-
cal intersection. The results obtained with AIMS align with what is
observed for the mixed-quantum/classical method TSH. As AIMS is
not per se a mixed-quantum/classical method but is derived from
the in-principle exact FMS framework, possible improvements of
the method can be envisaged. We derived different sets of equations
aiming at improving the Hamiltonian matrix elements coupling the
TBFs. We discussed the potential loss of hermiticity for the AIMS
Hamiltonian when including either higher-order terms of the SPA
or the NACs and GP corrections. Interestingly, adding terms in the
interstate or intrastate couplings outside of the realm of the original
AIMS approximations does not appear to improve the description
of population transfer at a conical intersection. The limited accu-
racy in the Hamiltonian matrix elements combined with the IFGA
seems to be responsible for such shortcomings. Considering that
the complexity related to dynamics through a conical intersection
is particularly enhanced in the three low-dimensional models pre-
sented in this work, the adequate behavior of the original AIMS
in such conditions offers an empirical validation for the simulation
of nonadiabatic processes in higher dimensions using this method.
The shortcomings of AIMS when improving its Hamiltonian matrix
elements in the adiabatic representation are also highly stimulating
for developing new TBF-based strategies for nonadiabatic dynamics
employing dedicated (time-dependent) diabatic electronic quanti-
ties.21,50,51 The exact factorization of the molecular wavefunction,52

which produces smooth time-dependent electronic quantities in the

vicinity of a conical intersection,53 also offers an exciting venue for
the development of coupled-trajectory methods for nonadiabatic
dynamics.54,55

SUPPLEMENTARY MATERIAL
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form of the SPA1 for the first-order nonadiabatic couplings, an
overview of the terms included in the matrix elements for vari-
ous AIMS flavors, and a movie of the ground-state nuclear den-
sity for the butatriene cation model as depicted by AIMS, QD,
and TSH.
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APPENDIX: ADIABATIZATION, GEOMETRIC PHASE,
AND CONNECTION WITH HAMILTONIAN MATRIX
ELEMENTS IN AIMS

In this appendix, we provide additional information on the adi-
abatization of the model potentials used in the main text and how the
geometric phase appears in this context. We also derive the working
equations for the AIMS Hamiltonian matrix elements that include
geometric phase effects.

The diabatic Hamiltonian of our two-state model system is
defined by

Hdia(R) = T̂n(R)1 +
⎛
⎜
⎝

V11(R) V12(R)

V12(R) V22(R)

⎞
⎟
⎠

. (A1)

Diagonalizing the potential energy matrix to obtain adiabatic elec-
tronic states can be done through the unitary transformation
matrix20,34

U(R) =
⎛
⎜
⎝

cos θ(R) sin θ(R)

− sin θ(R) cos θ(R)

⎞
⎟
⎠

, (A2)

where θ(R) is the mixing angle, also known as the adiabatic-to-
diabatic transformation angle, between the diabatic electronic states
V11(R) and V22(R). θ(R) is defined as
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θ(R) =
1
2

arctan
2V12(R)

V11(R) − V22(R)
. (A3)

The diabatic-to-adiabatic transformation produces adiabatic elec-
tronic wavefunctions, ∣ΦJ(R)⟩, from the diabatic electronic wave-
functions, ∣Φdia

J (R)⟩, according to

∣Φ1(R)⟩ = cos θ∣Φdia
1 (R)⟩ + sin θ∣Φdia

2 (R)⟩,

∣Φ2(R)⟩ = − sin θ∣Φdia
1 (R)⟩ + cos θ∣Φdia

2 (R)⟩.
(A4)

The ground and excited adiabatic electronic energies, Eel
−(R) and

Eel
+(R), respectively, are obtained as

Eel
±(R) =

V11(R) + V22(R)
2

±
1
2

√

(V22(R) − V11(R))2 + 4V2
12(R).

(A5)

The nonadiabatic coupling terms can be expressed in terms of
derivatives of the mixing angle θ(R),34,36,37

τ12(R) = d12(R)∇R +
1
2

D12(R)

= ⟨Φ1(R)∣∇R∣Φ2(R)⟩r∇R +
1
2
⟨Φ1(R)∣∇2

R∣Φ2(R)⟩r

= ∇Rθ(R)∇R +
1
2
∇

2
Rθ(R). (A6)

Closer investigation of θ(R) shows that upon encircling a con-
ical intersection (a point of degeneracy of the adiabatic electronic
eigenstates), the phase of the adiabatic electronic wavefunction will
change by a factor of π.25,33,37,56–58 This factor of π means that
the (real) adiabatic wavefunctions, given by Eq. (A4), will change
their sign by circling around a conical intersection. This phase
shift and subsequent flip of sign are a manifestation of the geo-
metric phase.56,57 However, the geometric phase leads to a double-
valuedness of the electronic wavefunctions. For a proper descrip-
tion of the molecular wavefunction (which is now doubled-valued),
one would need to use doubled-valued boundary conditions for
the nuclear wavefunctions as well. However, as suggested by Mead
and Truhlar,33 this can be avoided by, instead, transforming the
Hamiltonian as

ĤGP
adi(R) = eiθ(R)Ĥadi(R)e−iθ(R). (A7)

The choice of eiθ(R) for the geometric phase is valid in the two-state
models used in this work, but it is not universal. For a detailed
discussion of this choice, its validity, and further implications, we
refer the interested reader to Refs. 59 and 60.

We will make use of this approach for the inclusion of the
geometric phase in AIMS. The molecular Hamiltonian used in
FMS, denoted as Ĥmol(r, R) in the main text, will be transformed
into Ĥmol(r, R) → ĤGP

mol(r, R) = eiθ(R)Ĥmol(r, R)e−iθ(R). Using this
transformed Hamiltonian in FMS leads to a new set of equa-
tions for the Hamiltonian matrix elements, where for the
intrastate couplings, the action of the Laplacian (coming from the
nuclear kinetic energy operator) on the phase gives rise to new
terms,

(⟨χ̃(J)k ΦJ ∣ĤGP
mol∣ΦJ χ̃(J)m ⟩r,R)

GP

FMS

= −
3N

∑
ρ

1
2Mρ
⟨χ̃(J)k ∣∂

2
Rρ ∣χ̃

(J)
m ⟩R + ⟨χ̃

(J)
k ∣E

el
J ∣χ̃
(J)
m ⟩R

+
3N

∑
ρ

1
2Mρ
⟨χ̃(J)k ∣∣d

ρ
12∣

2
∣χ̃(J)m ⟩R +

3N

∑
ρ

1
2Mρ
⟨χ̃(J)k ∣(∂Rρ θ)2

∣χ̃(J)m ⟩R

−
3N

∑
ρ

i
2Mρ
⟨χ̃(J)k ∣(∂

2
Rρ θ)∣χ̃(J)m ⟩R−

3N

∑
ρ

i
Mρ
⟨χ̃(J)k ∣(∂Rρ θ)∂Rρ ∣χ̃

(J)
m ⟩R.

(A8)

The last three terms on the right-hand side are the additional terms
arising from the geometric phase.

For the interstate couplings, the presence of the ∇R operator
(with the NACV term) gives rise to an additional term (last term on
the right-hand side),

(⟨χ̃(I)k ΦI ∣ĤGP
mol∣ΦJ χ̃(J)m ⟩r,R)

GP

FMS

= −
3N

∑
ρ

1
Mρ
⟨χ̃(I)k ∣d

ρ
IJ∂Rρ ∣χ̃

(J)
m ⟩R −

3N

∑
ρ

1
2Mρ
⟨χ̃(I)k ∣(∂Rρ dρ

IJ)∣χ̃
(J)
m ⟩R

−
3N

∑
ρ

i
Mρ
⟨χ̃(I)k ∣d

ρ
IJ(∂Rρ θ)∣χ̃(J)m ⟩R. (A9)

As seen above in Eq. (A6), it is possible to connect the derivative
of the mixing angle ∇Rθ(R) and the NACVs d12(R). Thus, we can
rewrite Eqs. (A8) and (A9) with the additional contributions now
given in terms of the NACVs dρ

12(R),

(⟨χ̃(J)k ΦJ ∣ĤGP
mol∣ΦJ χ̃(J)m ⟩r,R)

GP

FMS
= −

3N

∑
ρ

1
2Mρ
⟨χ̃(J)k ∣∂

2
Rρ ∣χ̃

(J)
m ⟩R + ⟨χ̃

(J)
k ∣E

el
J ∣χ̃
(J)
m ⟩R +

3N

∑
ρ

1
Mρ
⟨χ̃(J)k ∣∣d

ρ
12∣

2
∣χ̃(J)m ⟩R

−
3N

∑
ρ

i
2Mρ
⟨χ̃(J)k ∣(∂Rρ dρ

12)∣χ̃
(J)
m ⟩R −

3N

∑
ρ

i
Mρ
⟨χ̃(J)k ∣d

ρ
12∂Rρ ∣χ̃

(J)
m ⟩R,

(⟨χ̃(I)k ΦI ∣ĤGP
mol∣ΦJ χ̃(J)m ⟩r,R)

GP

FMS
= −

3N

∑
ρ

1
Mρ
⟨χ̃(I)k ∣d

ρ
IJ∂Rρ ∣χ̃

(J)
m ⟩R −

3N

∑
ρ

1
2Mρ
⟨χ̃(I)k ∣(∂Rρ dρ

IJ)∣χ̃
(J)
m ⟩R −

3N

∑
ρ

i
Mρ
⟨χ̃(I)k ∣d

ρ
IJd

ρ
12∣χ̃

(J)
m ⟩R.

(A10)
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From this set of equations, we can now derive a practical expression for AIMS by applying a series of approximations. One can expand
the electronic energy term and all terms including the NACVs within the SPA to first order (SPA1), while all the DBOC and NAC terms
[including ∣dρ

12(R)∣
2 and ∂Rρ dρ

IJ(R)] are expanded to zeroth order (SPA0). Within this framework, we arrive at the following equation for the
intrastate couplings:

(⟨χ̃(J)k ΦJ ∣ĤGP
mol∣ΦJ χ̃(J)m ⟩r,R)

GP−SPA1′

AIMS
= −

3N

∑
ρ

1
2Mρ
⟨χ̃(J)k ∣∂

2
Rρ ∣χ̃

(J)
m ⟩R + Eel

J (Rkm)⟨χ̃
(J)
k ∣χ̃

(J)
m ⟩R +

3N

∑
ρ

∂Eel
J (R)
∂Rρ

RRRRRRRRRRRRρ=R̄km,ρ

⟨χ̃(J)k ∣(Rρ − R̄km,ρ)∣χ̃
(J)
m ⟩R

+
3N

∑
ρ

1
Mρ
∣dρ

12(Rkm)∣
2
⟨χ̃(J)k ∣χ̃

(J)
m ⟩R −

3N

∑
ρ

i
Mρ

dρ
IJ(Rkm)⟨χ̃

(J)
k ∣∂Rρ ∣χ̃

(J)
m ⟩R

−
3N

∑
ρ

3N

∑
ρ′

i
Mρ
(JdIJ
(Rkm))ρρ′

⟨χ̃(J)k ∣(Rρ′ − R̄km,ρ′)∂Rρ ∣χ̃
(J)
m ⟩R −

3N

∑
ρ

i
2Mρ
(JdIJ
(Rkm))ρρ

⟨χ̃(J)k ∣χ̃
(J)
m ⟩R, (A11)

and we arrive at the following one for the interstate couplings:

(⟨χ̃(I)k ΦI ∣ĤGP
mol∣ΦJ χ̃(J)m ⟩r,R)

GP−SPA1′

AIMS
= −

3N

∑
ρ

1
Mρ

dρ
IJ(Rkm)⟨χ̃

(I)
k ∣∂Rρ ∣χ̃

(J)
m ⟩R −

3N

∑
ρ

3N

∑
ρ′

1
Mρ
(JdIJ
(Rkm))ρρ′

⟨χ̃(I)k ∣(Rρ′ − R̄km,ρ′)∂Rρ ∣χ̃
(J)
m ⟩R

−
3N

∑
ρ

1
2Mρ
(JdIJ
(Rkm))ρρ

⟨χ̃(I)k ∣χ̃
(J)
m ⟩R −

3N

∑
ρ

i
Mρ

dρ
IJ(Rkm)d

ρ
12(Rkm)⟨χ̃

(I)
k ∣χ̃

(J)
m ⟩R. (A12)

These two equations are those employed in the main text under the
name GP-SPA1′. This framework preserves the hermiticity of the
AIMS Hamiltonian.
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