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Abstract.We present mg-glam, a code developed for the very fast production of fullN -body
cosmological simulations in modified gravity (MG) models. We describe the implementation,
numerical tests and first results of a large suite of cosmological simulations for two broad
classes of MG models with derivative coupling terms — the Vainshtein- and Kmouflage-type
models — which respectively features the Vainshtein and Kmouflage screening mechanism.
Derived from the parallel particle-mesh code glam, mg-glam incorporates an efficient multi-
grid relaxation technique to solve the characteristic nonlinear partial differential equations of
these models. For Kmouflage, we have proposed a new algorithm for the relaxation solver, and
run the first simulations of the model to understand its cosmological behaviour. In a compan-
ion paper, we describe versions of this code developed for conformally-coupled MG models,
including several variants of f(R) gravity, the symmetron model and coupled quintessence.
Altogether, mg-glam has so far implemented the prototypes for most MG models of interest,
and is broad and versatile. The code is highly optimised, with a tremendous (over two orders
of magnitude) speedup when comparing its running time with earlier N -body codes, while
still giving accurate predictions of the matter power spectrum and dark matter halo abun-
dance. mg-glam is ideal for the generation of large numbers of MG simulations that can be
used in the construction of mock galaxy catalogues and accurate emulators for ongoing and
future galaxy surveys.

Keywords: cosmological simulations, modified gravity
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1 Introduction

The accelerated expansion of our Universe [1, 2] is one of the most challenging problems
in modern physics, and after decades of attempts to find its origin, we are still far from
reaching a clear conclusion. While the current standard cosmological model — Λ Cold Dark
Matter (ΛCDM), which assumes that this accelerated expansion is caused by the cosmo-
logical constant, Λ — is in excellent agreement with most observational data to date, this
model suffers from the well-known coincidence and fine-tuning problems. This suggests that
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a more fundamental theory is yet to be developed which can naturally explain the small
observationally inferred value of Λ. The alternative theoretical models proposed so far can
be roughly classified into two categories: one involves some exotic new matter species be-
yond the standard model of particle physics, the so-called dark energy [3], which usually
has a non-trivial dynamics; the other involves modifications of Einstein’s General Relativ-
ity (GR) on certain (usually cosmic) scales [4–6], or introduces new fundamental forces be-
tween matter particles.1 Some leading examples are quintessence [7–10], k-essence [11, 12],
coupled quintessence [13], f(R) gravity [14, 15] and chameleon model [16–19], symmetron
model [20–22], the Dvali-Gabadadze-Porrati braneworld (DGP) model [23], scalar [24, 25]
and vector [26–28] Galileons, Kmouflage [29], massive gravity [e.g., 30], etc.

In modified gravity (MG) models, in addition to a modified, and accelerated, expansion
rate that could explain observations, often the law of gravity is also different from GR,
which can further affect the evolution of the large-scale structure (LSS) of the Universe.
This suggests that we can use various cosmological observations to constrain and test these
models [e.g., 31–33]. In this sense, the study of MG models can be used as a testbed to verify
the validity of GR on cosmological scales, hence going beyond the usual small-scale or local
tests of GR [34].

In the last two decades, there have been substantial progresses in the size and quality
of cosmological observations, many of which can be excellent probes of dark energy and
modified gravity [e.g., 35, 36]. Some of the leading probes studied in the literature include
cosmic microwave background (CMB) [37–40], supernovae [1, 2, 41–48], galaxy clustering [49–
55] and baryonic acoustic oscillations (BAO) [56–61], gravitational lensing [62–66], and the
properties of galaxy clusters [63, 67–73]. In the near future, a number of large, Stage-IV,
galaxy and cluster surveys, such as DESI [74], Euclid [75, 76], Vera Rubin observatory [77]
and eROSITA [78], are expected to revolutionise our knowledge about the Universe and
our understanding of the cosmic acceleration, by providing cutting-edge observational data
with unprecedented volume and much better controlled systematics. Further down the line,
experiments such as CMB-S4 [79] and LISA [80] will offer other independent tests of models
using by improved CMB observables, such as CMB lensing and the kinetic Sunyaev-Zel’dovich
effect, and gravitational waves.

To exploit the next generation of observational data, we need to develop accurate the-
oretical tools to predict the cosmological implications of various models, in particular their
behaviour on small scales which encode a great wealth of information. However, predicting
LSS formation on small scales is a non-trivial work because structure evolution has entered
the highly non-linear regime here, with a lot of complicated physical processes, such as gravi-
tational collapse and baryonic interactions, being at play. The only tool that could accurately
predict structure formation in this regime is cosmological simulations, which follow the evo-
lution of matter through the cosmic time, from some initial, linear, density field all the way
down to the highly-clustered matter distribution on small, sub-galactic, scales at late times.
Modern cosmological simulation codes, e.g., ramses [81], gadget [82, 83], arepo [84], pkd-
grav [85], swift [86], have been able to employ hundreds of billions or trillions of particles
in Giga-parsec volumes [e.g., 85, 87, 88], and are nowdays indispensable in the confronta-
tion of theories with observational data. In particular, to achieve the high level of precision
required by galaxy surveys, one can generate hundreds or thousands of independent galaxy
mocks that cover the expected survey volume, based on these simulations. However, this

1The two classes of models can not always be clearly distinguished, and some of the modified gravity
models studied in this work can also considered as coupled dark energy.
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has so far been impossible for MG models, which usually involve highly non-linear partial
differential equations that govern the new physics, solving which has proven to be very ex-
pensive even with the latest codes, e.g., ecosmog [89–92], mg-gadget [93], isis [94] and
mg-arepo [95, 96] (see [97] for a comparison of several MG codes). For example, current
MG simulations can take between 2 to O(10) times longer than standard ΛCDM simulations
of the same specifications. Obviously, to best explore the future observations for testing MG
models, we need a new simulation code for these models with greatly improved efficiency
compared with the current generation of codes.

In this paper, we present such a code, mg-glam, which is an extension of the parallel
particle-mesh (PPM) N -body code glam2 [98], where various important classes of modified
gravity models are implemented. Efficiency is the main feature of mg-glam, which is partly
thanks to the efficiency and optimisations it inherits from its base code, glam,3 partly due to
optimised numerical algorithms tailored to solve the nonlinear equations of motion in these
modified gravity models, and partly thanks to a careful design of the code and data structures
to reduce memory footprint of simulations.

Modified gravity models can be classified according to the fundamental properties of
their new dynamical degrees of freedom, and the interactions the latter have. Here, we
study two classes of MG models which introduce new scalar degrees of freedom that have
derivative-coupling interactions: the normal-branch of the DGP [23] braneworld model, which
is a representative example of Vainshtein-type gravity models, and the Kmouflage model [29].
These models generally introduce a new force (fifth force) between matter particles, but they
can both employ screening mechanisms to evade Solar System constraints [29, 102] on the fifth
force. These two models have been widely studied in recent years and, as we argue below, the
implementation of them can lead to prototype MG codes that can be modified to work with
minimal effort for other classes of interesting models. In a twin paper [103], we will describe
the implementation and analysis of several other classes of MG models, including the coupled
quintessence [13], chameleon [16, 17] f(R) gravity [104], and symmetron models [20, 21],
which are examples of conformally coupled scalar fields.

As we will demonstrate below, the inclusion of modified gravity solvers in mg-glam
adds an overhead to the computational cost of glam, and for the models considered in this
paper and its twin paper [103], a mg-glam run can take about 2-5 times (depending on
the resolution) the computing time of an equivalent ΛCDM simulation run using default
glam. All in all, this makes this new code at least around 100 times faster than other
modified gravity simulation codes such as ecosmog [89–92] and mg-arepo [95, 96] for the
same simulation boxsize and particle number. In spite of such a massive improvement in
speed over those latter codes, it is worthwhile to note that mg-glam is not an approximate
code: it solves the full Poisson and MG equations, and its accuracy is only limited by the
resolution of the PM grid used, which can be specified by users based on their particular
scientific objectives. This makes it different from fast approximate simulation codes such as
those [105–108] based on the COmoving Lagrangian Acceleration method (cola) [109].

The paper is organised as follows. Section 2 presents the theoretical aspects of the
modified gravity models studied here. In section 3 we discuss the numerical implementation
of mg-glam. The description and results of several code tests are shown in section 4 and in

2glam stands for GaLAxy Mocks, which is a pipeline for massive production of galaxy catalogues in the
ΛCDM (GR) model.

3The glam code has been shown to be 1.6–4 times faster than similar codes such as cola [99], icecola [100]
and fastpm [101], while still achieving high resolution and accuracy.
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section 5 we analyse the nonlinear power spectra and halo mass functions of the first derivative
coupling models performed with mg-glam. Finally, we summarise the main results and give
our conclusions in section 6.

Throughout this paper, we adopt the usual conventions that Greek indices label all
space-time coordinates (µ, ν, · · · = 0, 1, 2, 3), while Latin indices label the space coordinates
only (i, j, k, · · · = 1, 2, 3). Our metric signature is (−,+,+,+). We will strive to include the
speed of light c explicitly in relevant equations, rather than setting it to 1, given that in
numerical implementations c must be treated carefully. Unless otherwise stated, the symbol
≈ means ‘approximately equal’ or ‘equal under certain approximations as detailed in the
text’, while the symbol ' means that two quantities are of similar order of magnitude. An
overdot denotes the derivative with respect to (wrt) the cosmic time t, e.g., ȧ ≡ da/dt and the
Hubble expansion rate H(a) is defined as H = ȧ/a, while a prime (′) denotes the derivative
w.r.t. the conformal time τ , e.g., a′ = da /dτ , H(a) ≡ a′/a = aH(a). Unless otherwise stated,
we use a subscript 0 to denote the present-day value of a physical quantity, an overbar for
the background value of a quantity, and a tilde for quantities written in code units.

We note that, since they have a lot in common, including the motivation and the design
of code structure and algorithms, this paper has identical or similar texts with its twin pa-
per [103] in the Introduction section, as well as in sections 3.1, 3.1.1, 3.2 until 3.2.1, 3.2.1, 3.2.2,
the last paragraph of 3.2.5, and part of 4.1.

2 Modified gravity models with derivative coupling terms

In this section we briefly introduce the modified gravity models with derivative coupling
terms that are implemented in the mg-glam code. We start with the general action of scalar
field models in the Einstein frame,

S =
∫

d4x
√
−g

[
M2

Pl
2 R+K

[
(∇φ)2, (∇2φ)

]
− V (φ)

]
+
∫

d4x
√
−ĝL̂m

[
ψ̂(i)
m , ĝµν

]
, (2.1)

where g is the determinant of the metric tensor gµν , MPl(= 1/
√

8πG) is the reduced Planck
mass, G is Newton’s constant, R is the Ricci scalar, K is a general kinetic function which
contains nonlinear terms of the derivatives of the scalar field, V (φ) the potential energy of
the scalar field φ, ψ̂(i)

m are the matter fields, and ĝµν is the Jordan-frame metric that couples
to them.

The Jordan-frame metric ĝµν and Einstein-frame metric gµν are assumed to be related
to each other by the following conformal mapping,

ĝµν = A2(φ)gµν , (2.2)

where A is a function of the scalar field φ. Disformal relations between the two metrics are
possible, but they are not considered here.

By varying the action eq. (2.1) with respect to the scalar field, we obtain the following
equation of motion

1√
−g

∂µ
[√
−g∂µφK ′

]
= d lnA(φ)

dφ ρm + dV (φ)
dφ , (2.3)

where ρm is the density of non-relativistic matter. We define the coupling strength β(φ) as
a dimensionless function of φ:

β(φ) ≡MPl
d lnA(φ)

dφ . (2.4)

– 4 –
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Note the MPl in this definition, which is because φ has mass dimension 1. For later conve-
nience, we shall define a dimensionless scalar field as

ϕ ≡ φ

MPl
. (2.5)

Two classes of models of eq. (2.1) are of particular interest in the literature. The first
is what we call ‘Vainshtein-type’ modified gravity models, which employs the Vainshtein
screening mechanism [102] to decouple the scalar field from matter in regions where the
second derivatives of the field are large. The second is the ‘Kmouflage-type’ gravity models,
which employs the Kmouflage screening mechanism [29, 110] to hide the effect of the scalar
field in regions where the field has a large gradient. In the next subsections we describe the
theoretical aspects of both Vainshtein-type and Kmouflage-type gravity models.

2.1 Vainshtein-type gravity

An excellent example of Vainshtein-type models is the Galileon model [24] and its covariant
extension [25], which is a generic description of self-interacting scalar field models whose
Lagrangian is invariant under the Galilean shift, ∂µϕ→ ∂µϕ+ bµ, with bµ being a constant
4-vector. Simulations of these models have been carried out previously, e.g., [111, 112],
along with other approaches to studying the nonlinear structure formation in these models,
e.g., [113]. In recent years, the vector Galileon, or generalised Proca, theory has attracted
attentions, e.g., [114–116]. As the Galileon model, these models also employ the Vainshtein
screening mechanism to suppress the effect of modified gravity in regions where the second
derivative of the field is large. But unlike Galileons, here the dynamical degrees of freedom
are the spatial components of some vector field, whose transverse mode plays a negligible role
in cosmic structure formation [117] while the longitudinal mode behaves like the Galileon field
ϕ (with the difference that the vector field has no dynamics on the background). Simulations
of vector Galileons have been recently carried out in [117, 118]. These models have rich
phenomenology, able to modify the background expansion history as well as the gravitational
potential, and hence propagate a modified gravity — or fifth — force between matter particles
and affect large-scale structure formation.

In this paper, we consider another class of models that realise the Vainshtein screen-
ing mechanism, the Dvali-Gabadadze-Porrati (DGP) [23] brane-world model, as our toy
Vainshtein-type gravity model. This choice is for a few reasons. First, the DGP model has
been very popular in the literature, being widely used as a testbed for the Vainshtein mecha-
nism. Second, it has great flexibility in terms of the background expansion history (although
there is a catch as we will see later), and usually one can make the model have an expansion
rate identical to that of ΛCDM, to focus on the anaysis of the effects of the fifth force. Finally
and more importantly, owing to its simplicity, this model can be used as a prototype for all
Vainshtein-type models, to understand the effects of the screening mechanism; a simulation
code model can be easily modified to simulate the Galileon and vector Galileon models, as
well as generalised Galileons [119] and kinetic-gravity braiding models [120], which all share
a similar equation of motion for the dynamical field.

In the DGP model, the Universe is a four-dimensional ‘brane’ embedded in a five-
dimensional spacetime, or bulk. The total action of the model is written by,

S =
∫

brane
d4x
√
−g R

16πG +
∫

d5x
√
−g(5) R(5)

16πG(5) + Sm(gµν , ψi) , (2.6)

– 5 –
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where gµν , g, R and G are respectively the metric tensor, the determinant of the metric,
the Ricci scalar and the gravitational constant in the 4-D brane, while g(5), R(5) and G(5)

are their equivalents in the 5-D bulk, and Sm is the action of the matter fields ψi which are
assumed to be confined on the brane.

A new parameter can be introduced, which is defined as the ratio of G(5) and G and
known as the crossover scale, rc,

rc = 1
2
G(5)

G
. (2.7)

It has the physical meaning of being roughly the scale at which the behaviour of gravity
transitions from 4-D standard Einsteinian (r � rc) to 5-D (r � rc), where gravitons could
leak into the fifth dimension.

Here we study the normal-branch (nDGP) model, where the variation of the action,
eq. (2.6), yields the modified Friedmann equation

H(a)
H0

=
√

Ωma−3 + ΩDE(a) + Ωrc −
√

Ωrc, (2.8)

in a homogeneous and isotropic universe with Ωrc ≡ c2/(4H2
0r

2
c) where c is the speed of

light, Ωm is the present-day value of the matter density parameter, the dark energy density
parameter ΩDE(a) is defined as ΩDE(a) ≡ 8πGρDE(a)/3H2(a), a is the scale factor and H0
is the present-day value of the Hubble parameter. The nDGP model on its own cannot
lead to an accelerated Hubble expansion, which is why an extra dark energy component has
to be added to match observational data: because there is not much a priori requirement
on this dark energy component, it is often assumed to have such an equation of state that
the overall effect of eq. (2.8) is to give a ΛCDM expansion history (note that this is not
possible if this dark energy component is assumed to be a cosmological constant); also, the
dark energy component is assumed to be non-clustering so that its effect is only on the
background expansion. In this model, deviations from GR can be characterised in terms of
the parameter H0rc/c. As we can see from eq. (2.8) if H0rc/c→∞ then the equation of state
of the dark energy component approaches −1 in order to produce a ΛCDM expansion history.

The structure formation in the nDGP model is governed by the Poisson and scalar
equations in the quasi-static and weak-field limits: [121],

∇2Φ = 4πGa2δρm + 1
2∇

2ϕ , (2.9)

∇2ϕ+ r2
c

3βDGP(a)a2c2

[
(∇2ϕ)2 −∇i∇jϕ∇i∇jϕ

]
= 8πGa2

3βDGP(a)δρm , (2.10)

where ϕ is a scalar degree of freedom related to the bending modes of the brane (which
describes the position of the brane in the fifth dimension), the total modified gravitational
potential Φ is given by Φ = ΦN + 1

2ϕ with ΦN being the standard Newtonian potential,
δρm = ρm − ρ̄m is the perturbation of non-relativistic matter density, and

βDGP(a) = 1 + 2H rc

(
1 + Ḣ

3H2

)
= 1 + Ωma

−3 + 2ΩΛ
2
√

Ωrc(Ωma−3 + ΩΛ)
. (2.11)

In the last expression we have used the above assumption that the nDGP model has the
same expansion history as the ΛCDM model, i.e., the Hubble parameter is written as

H(a) = H0

√
Ωma−3 + ΩΛ , (2.12)

– 6 –
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where ΩΛ is the contribution of Λ in the ΛCDM model, defined as ΩΛ ≡ 1 − Ωm. Note
that throughout this paper we assume that the Universe is spatially flat, and neglect the
contribution by radiation unless otherwise stated.

From eq. (2.9), it is straightforward to identify the modified gravity contribution to the
gravitational acceleration,

aMG = −1
2∇ϕ. (2.13)

If we linearise eq. (2.10), the two nonlinear terms in the squared brackets vanish and
the modified Poisson equation, eq. (2.9), can be re-expressed as

∇2Φ = 4πGa2
(

1 + 1
3βDGP

)
δρm, (2.14)

which represents a time-dependent and scale-independent rescaling of Newton’s constant.
Since βDGP is always positive, the formation of structure is enhanced in this model with
respect to ΛCDM.

The linear growth for the matter fluctuations in the nDGP model can be obtained by
solving the equation of the linear growth factor, D,

d2D

dN2 +
[
2− 3

2Ωm(a)
]dD

dN −
3
2Ωm(a)

[
1 + 1

3βDGP(a)

]
D = 0 , (2.15)

where N = ln(a), and 1/3βDGP is the ratio between the strengths of the fifth and standard
Newtonian forces in the linear regime, which is scale independent (see derivation below).

2.1.1 Vainshtein screening mechanism
As mentioned above, the nDGPmodel is a representative class of modified gravity models that
feature the Vainshtein screening mechanism [102]. To illustrate how the Vainshtein mecha-
nism works, let us for simplicity consider solutions in spherical symmetry, where eq. (2.10)
can be written in the following form

2r2
c

3βDGPc2a2
1
r2

d
dr

[
r

(dϕ
dr

)2
]

+ 1
r2

d
dr

[
r2 dϕ

dr

]
= 8πG

3βDGP
δρma

2 . (2.16)

Defining the excess mass enclosed in radius r as

M(r) ≡ 4π
∫ r

0
δρm(r′)r′2dr′, (2.17)

we can rewrite eq. (2.16) as

2r2
c

3βDGPc2
1
r

(dϕ
dr

)2
+ dϕ

dr = 2
3βDGP

GM(r)
r2 ≡ 2

3βDGP
gN(r), (2.18)

in which for simplicity we have set a = 1, and gN is the Newtonian acceleration caused by
the mass M(r) at distance r from the centre, eq. (2.17).

If we further assume that δρm is a constant within a radius R and zero outside, then
eq. (2.18) has the physical solution

dϕ
dr = 4

3βDGP

r3

r3
V

√1 + r3
V
r3 − 1

 gN(r), (2.19)
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for r ≥ R and
dϕ
dr = 4

3βDGP

R3

r3
V

√1 + r3
V

R3 − 1

 gN(r), (2.20)

for r ≤ R. In these expressions rV is the Vainshtein radius which is defined as

rV ≡
[

8r2
crS

9β2
DGP

]1/3

=
[

4GM(R)
9β2

DGPH
2
0 Ωrc

]1/3

, (2.21)

where rS ≡ 2GM(R)/c2 is the Schwarzschild radius and M(R) ≡ 4π
∫ R

0 δρm(r′)r′2dr′ is the
total mass of the spherical object.

According to eq. (2.9), the fifth force is given by 1
2dϕ/dr. Therefore at r � rV we have

1
2

dϕ
dr →

1
3βDGP

gN (r), (2.22)

indicating that on scales larger than the Vainshtein radius gravity is enhanced (because
βDGP > 0 for the nDGP model) by a scale-independent factor 1/3βDGP. On the other hand,
for r,R� rV we have

1
2

dϕ
dr →

2
3βDGP

[
R

rV

]3/2
gN(r)� gN(r), (2.23)

indicating that the fifth force is suppressed (or screened), relative to the Newtonian force,
well within the Vainshtein radius.

2.2 Kmouflage-type gravity
The Kmouflage model [29] is another class of screened modified gravity models, in which
V (φ) = 0 and the scalar field satisfies an equation of motion, eq. (2.3), that takes the
following form [122, 123]:

∇i [KX (X)∇iϕ] = 8πGd lnA(ϕ)
dϕ a2δρm. (2.24)

where K(X) is the kinetic function in eq. (2.1) which needs to be specified for a given model,
which has mass dimension four, A(ϕ) is the coupling function between the scalar field and
matter, which in this work we assume to take the exponential form:

A(ϕ) = exp (βKmoϕ) = exp
(
βKmo

φ

MPl

)
, (2.25)

βKmo is a constant model parameter, KX = dK(X)/dX for a given function K(X). For
convenience, from here on we specify to the dimensionless versions of K(X) and X — which
for simplicity are still denoted by the same notations — where the dimensionless K will be
defined the dimensional kinetic function K in eq. (2.1) divided by Λ4, and

X ≡ −M
2
Pl

2Λ4∇
µϕ∇µϕ = M2

Pl
2Λ4

˙̄ϕ2 − M2
Pl

2Λ4 a
−2∇iϕ∇iϕ, (2.26)

is a dimensionless quantity and Λ is a model parameter of mass dimension 1 related to dark
energy. ϕ̄ is the background value of the scalar field ϕ, ∇i is raised by the metric δij , and the
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a−2 is because by default X should use the physical derivatives while here we have written
things using the comoving derivatives.

In addition to featuring a qualitatively different — and less explored — screening mech-
anism, the Kmouflage model can also be considered as a natural generalisation of the well-
known k-essence model [124, 125] by allowing a direct coupling of the k-essence scalar field
with matter via the coupling function A(ϕ). Furthermore, the equation of motion in the
Kmouflage model, eq. (2.24), is featured in other models, such as the charged dark matter
model proposed in [126] and the covariant models of MOdified Newtonian Dynamics (MOND;
e.g., [127, 128]). Thus, a simulation code for Kmouflage can be a prototype for simulating
these other models. There has been very little work on the simulations of Kmouflage models
so far, and in this work we will develop a code to do this.4

For convenience, we define a dimensionless parameter λ so that

Λ4

M2
Pl
≡ H2

0λ
2, (2.27)

and X can be rewritten more as

X = 1
2H2

0λ
2

˙̄ϕ2 − c2

2a2H2
0λ

2∇
iϕ∇iϕ, (2.28)

where we have explicitly included a factor containing the speed of light c. Note that the
parameter λ satisfies λ ∼ O(1), because the model parameter Λ is chosen such that it plays
the role of accelerating the cosmic expansion at late times, meaning that at low z we have
Λ4/M2

Pl ∼ 8πGρDE/3 ∼ H2
0 ΩDE. We will describe how to determine the numerical value of

λ in the mg-glam code later.
A possible choice of the function K(X) that has been studied previously [122, 123, 130,

131] is
K(X) = −1 +X +K0X

n, (2.29)

where the integer n satisfies n ≥ 2 and K0 is a dimensionless model parameter. In this model,
the modified Poisson equation is given by,

∇2Φ = 4πGa2A(ϕ)δρm , (2.30)

and the total force on matter particles is given by

d2r

dt2 = −∇Φ− c2βKmo∇ϕ− βKmoϕ̇
dr

dt , (2.31)

where r is the particle coordinate, t is the physical time, and dr/dt is the peculiar velocity and

βKmo(ϕ) ≡ d lnA(ϕ)
dϕ = βKmo. (2.32)

The force equation can be rewritten as

dp

dt = −∇ΦN − c2βKmo∇ϕ− a2βKmo ˙̄ϕdx

dt , (2.33)

4We note there have been codes to simulate MOND, e.g., [129], though our algorithm in this work will be
different.
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where x is the comoving coordinate and the ∇ symbol denotes the comoving gradient, with
p ≡ a2ẋ.

The linearised version of the full Kmouflage equation of motion, eq. (2.24), is

∇2ϕ = 8πGa2

1 + nK0

(
ϕ̄′2

2λ2a2H2
0

)n−1
−1

β2
Kmoe

βKmoϕ̄δρm . (2.34)

For completeness, here is the linear growth equation for matter density contrast δ (or
the linear growth factor itself) in the Kmouflage model:

δ′′ +
[
a′

a
+ d lnA(ϕ)

dϕ ϕ′
]
δ′ − 4πGρ̄m(a)a2A(ϕ̄)

[
1 + 2β2

Kmo
KX(X̄)

]
δ = 0, (2.35)

where ′ denotes the derivative with respect to the conformal time τ , and KX = dK/dX as
above — in our case

KX(X̄) = 1 + nK0X̄
n−1 = 1 + nK0

(
ϕ̄′2

2λ2a2H2
0

)n−1

. (2.36)

Therefore, we can already observe four effects the Kmouflage scalar field has on structure
formation: (i) the modified expansion history, cf. a′/a; (ii) a fifth force which can (but may
not) be screened by the Kmouflage mechanism, described by 2β2

Kmo/KX ; (iii) a rescaling
of the matter density field by A(ϕ) 6= 1 in the Poisson equation, implying that the matter
particle mass is effectively modified; and (iv) a velocity-dependent force5 described by the
term involving (d lnA/dϕ)ϕ′δ′. The fifth force has a ratio of 2β2

Kmo/KX to the Newtonian
force, and this will be derived explicitly shortly.

2.2.1 The Kmouflage screening mechanism
Similarly to the Vainshtein screening mechanism, let us consider the static and spherically
symmetric form of the Kmouflage equation of motion, eq. (2.24),

1
r2

d
dr

[
r2KX

dϕ(r)
dr

]
= 8πGβKmoδρm , (2.37)

which can be integrated once to give,

KX
dϕ(r)

dr = 2βKmo
GM(r)
r2 ≡ 2βKmogN(r) , (2.38)

in which for simplicity we have set a = 1, and gN is the Newtonian acceleration caused by
the mass M(r) at distance r from the centre, eq. (2.17). For a spherical symmetric object of
radius R, we can define with mass M(R), we can define the so-called Kmouflage radius

rK = 2βKmoGM(R)Mpl
cΛ2 . (2.39)

5This force is similar to the ‘frictional’ force on particles caused by the cosmic expansion, but we refrain
from using the word ‘frictional’ because, as we will see below, in our Kmouflage model it points to the same,
rather the opposite, direction of the particle velocity.
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From eq. (2.38) we can see that the fifth force, F5th ∝ βKmodϕ/dr (cf. eq. (2.31)), is suppressed
for r < rK where |X| is large if KX(X)� 1,

dϕ
dr = 2βKmo

KX
gN(r)� gN(r) . (2.40)

The condition for screening, r < rK, can be written as

GM

r2 >
Λ2

2βKmoMpl
. (2.41)

In the linear perturbation regime, we can neglect the contribution to X by the spatial
derivatives and therefore K, KX become purely time-dependent quantities, leading to a
constant ratio,

βKmodϕ/dr
gN(r) = 2β2

Kmo
KX(X̄)

, (2.42)

between the strengths of the fifth and standard Newtonian forces. This is what appears in
eq. (2.35).

3 Numerical implementation

This section is the core part of this paper, where we will describe in detail how the different
theoretical models of section 2 can be incorporated in a numerical simulation code, so that
the scalar degree of freedom can be solved at any given time with any given matter density
field. This way, the various effects of the scalar field on cosmic structure formation can be
accurately predicted and implemented.

3.1 The glam code

The glam code is presented in [98], and is a promising tool to quickly generate N -body sim-
ulations with reasonable speed and acceptable resolution, which are suitable for the massive
production of galaxy survey mocks.

As a PM code, glam solves the Poisson equation for the gravitational potential in a
periodic cube using fast Fourier Transformation (FFT). The code uses a 3D mesh for density
and potential estimates, and only one mesh is needed for the calculation: the density mesh is
replaced with the potential. The gravity solver uses FFT to solve the discrete analogue of the
Poisson equation, by applying it first in x- and then to y-direction, and finally transposing
the matrix to improve data locality before applying FFT in the third (z-)direction. After
multiplying this data matrix by the Green’s function, an inverse FFT is applied, performing
one matrix transposition and three FFTs, to compute the Newtonian potential field on the
mesh. The potential is then differentiated using a standard three-point finite difference
scheme to obtain the x, y and z force components at the centres of the mesh cells. These
force components are next interpolated to the locations of simulation particles, which are
displaced using a leapfrog scheme. A standard Cloud-in-Cell (CIC) interpolation scheme is
used for both the assignment of particles to calculate the density values in the mesh cells and
the interpolation of the forces.

A combination of parameters that define the resolution and speed of the glam code
are carefully selected. For example, it uses the FFT5 code (the Fortran 90 version of FFT-
pack5.1) because it has an option of real-to-real FFT that uses only half of the memory as
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compared to FFTW. It typically uses 1/2–1/3 of the number of particles (in 1D) as com-
pared with the mesh size — given that the code is limited by available RAM, this is a better
combination than using the same number of particles and mesh points.

glam uses openmp directives to parallelise the solver. Overall, the code scales nearly
perfectly, as has been demonstrated by tests run with different mesh sizes and on different
processors (later in the paper we will present some actual scaling test of mg-glam as well,
which again is nearly perfect). mpi parallelisation is used only to run many realisations on
different supercomputer nodes with very little inter-node communications. Load balance is
excellent since theoretically every realisation requires the same number of CPUs.

Initial conditions are generated on spot by glam, using the standard Zel’dovich approxi-
mation [132, 133] from a user-provided linear matter power spectrum P (k) at z = 0. The code
backscales this P (k) to the initial redshift zini using the linear growth factor for ΛCDM with
the specified cosmological parameters. Since the Zel’dovich approximation is less accurate at
low redshifts [134], the simulation is typically started at an initial redshift zini ≥ 100.

glam uses a fixed number of time steps, but this number can be specified by the user.
The standard choice is about 150–200. In this work, we have compared the model difference of
the matter power spectra between modified gravity mg-glam and ΛCDM glam simulations
and found that the result is converged with 160 time steps. Doubling the number of steps
from 160 to 320 makes negligible difference.

The code generates the density field, including peculiar velocities, for a particular cosmo-
logical model. Nonlinear matter power spectra and halo catalogues at user-specified output
redshifts (snapshots) are measured on the fly. For the latter, glam employs the Bound Den-
sity Maximum (BDM; [135, 136]) algorithm to get around the usual limitations placed on
the completeness of low-mass haloes by the lack of force resolution in PM simulations. Here
we briefly describe the idea behind the BDM halo finder, and further details can be found
in [136, 137]. The code starts by calculating a local density at the positions of individual
particles, using a spherical tophat filter containing a constant number Nfilter (typically 20)
of particles. It then gathers all the density maxima and, for each maximum, finds a sphere
that contains a mass M∆ = 4

3π∆ρcrit(z)R3
∆, where ρcrit(z) is the critical density at the halo

redshift z, and ∆ is the overdensity within the halo radius R∆. Throughout this work we
will use the virial density definition for ∆ given by [138]

∆vir(z) = 18π2 + 82 [Ωm(z)− 1]− 39 [Ωm(z)− 1]2 , (3.1)

where Ωm(z) is the matter density parameter at z. To find distinct haloes, the BDM halo
finder still needs to deal with overlapping spheres. To this end, it treats the density maxima
as halo centres and finds the one sphere, amongst a group of overlapping ones, with the
deepest Newtonian potential. This is treated as a distinct, central, halo. The radii and
masses of the haloes which correspond to the other (overlapping) spheres are then found by
a procedure that guarantees a smooth transition of the properties of small haloes when they
fall into the larger halo to become subhaloes of the latter. The latter is done by defining
the radius of the infalling halo as max(R1, R2), where R1 is its distance to the surface of the
larger, soon-to-be host, central halo, and R2 is its distance to the nearest density maximum
in the spherical shell [min(R∆, R1),max(R∆, R1)] centred around it (if no density maximum
exists in this shell, R2 = R∆). The BDM halo finder was compared against a range of other
halo finders in [137], where good agreement was found.

mg-glam extends glam to a general class of modified gravity theories by adding extra
modules for solving MG scalar field equations, which will be introduced in the following
subsection.
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3.1.1 The glam code units
Like most other N -body codes, glam uses its own internal unit system. The code units are
designed such that the physical equations can be cast in dimensionless form, which is more
convenient for numerical solutions.

Let the box size of simulations be L and the number of grid points in one dimension be
Ng. We can introduce dimensionless coordinates x̃, momenta p̃ and potentials Φ̃ using the
following relations [98]

x̃ =
(
Ng
L

)
x , p̃ =

(
Ng
H0L

)
p , Φ̃ =

(
Ng
H0L

)2
Φ . (3.2)

Having the dimensionless momenta, we can find the peculiar velocity,

vpec = 100
(
L

Ng

)(
p̃

a

)
km s−1 , (3.3)

where we assumed that box size L is given in units of h−1Mpc. Using these notations, we
write the particle equations of motion and the Poisson equation as

dp̃

da = −
(
H0
ȧ

)
∇̃Φ̃ , (3.4)

dx̃

da = −
(
H0
ȧ

)
p̃

a2 , (3.5)

∇̃2Φ̃ = 3
2Ωma

−1δ̃, (3.6)

where δ̃ is the code unit expression of the density contrast δ.
From eqs. (3.2) we can derive the following units,

∇̃ =
(
L

Ng

)
∇ , dt̃ = H0dt , ρ̃m =

(
a3

ρcrit,0Ωm

)
ρm , δ̃ = δ . (3.7)

In what follows, we will also use the following definition

c̃ =
(
Ng
H0L

)
c (3.8)

for the code-unit expression of the speed of light, c.
glam uses a regularly spaced three-dimensional mesh of size N3

g that covers the cubic
domain L3 of a simulation box. The size of a cell, ∆x = L/Ng, and the mass of each particle,
mp, define the force and mass resolution respectively:

mp = Ωm ρcrit,0

[
L

Np

]3

= 8.517× 1010
[ Ωm

0.30

] [
L/h−1Gpc
Np/1000

]3

h−1M�, (3.9)

∆x =
[
L/h−1Gpc
Ng/1000

]
h−1Mpc, (3.10)

where N3
p is the number of particles and ρcrit,0 is the critical density of the universe at present.
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3.2 Solvers for the extra degrees of freedom

We have seen in section 2 that in modified gravity models we usually need to solve a new,
dynamical, degree of freedom, which is governed by some nonlinear, elliptical type, partial
differential equation (PDE). Being a nonlinear PDE, unlike the linear Poisson equation solved
in default glam, the equation can not be solved by a one-step fast Fourier transform6 but
requires a multigrid relaxation scheme to obtain a solution.

For completeness, we will first give a concise summary of the relaxation method and its
multigrid implementation (section 3.2.1). Next, we will specify the practical side, discussing
how to efficiently arrange the memory in the computer, to allow the same memory space to
be used for different quantities at different stages of the calculation, therefore minimising the
overall memory requirement (section 3.2.2), and also saving the time for frequently allocating
and deallocating operations. After that, in sections 3.2.3–3.2.4, we will respectively discuss
how the nonlinear PDEs in Vainshtein- and Kmouflage-type gravity models can be solved
most efficiently. In section 3.2.5, we will present how to solve the evolution of the cosmic
background in the Kmouflage model. Much effort will be devoted to replacing the common
Newton-Gauss-Seidel relaxation method by a nonlinear Gauss-Seidel, which has been found
to lead to substantial speedup of simulations [140] (but we will generalise this to more models
than focused on in ref. [140]). For the coupled quintessence model, we will also briefly describe
how the background evolution of the scalar field is numerically solved as an integral part of
mg-glam, to further increase its flexibility.

3.2.1 Multigrid Gauss-Seidel relaxation

Let the partial differential equation (PDE) to be solved take the following form:

L(u) = 0, (3.11)

where u is the scalar field and L is the PDE operator. To solve this equation numerically,
we use finite difference to get a discrete version of it on a mesh.7 Since mg-glam is a
particle-mesh (PM) code, it has a uniform mesh resolution and does not use adaptive mesh
refinement (AMR). When discretised on a uniform mesh with cell size h, the above equation
can be denoted as

Lh(uh) = fh, (3.12)

where we have added a nonzero right-hand side, fh, for generality (while fh = 0 on the
mesh with cell size h, later when we discrete it on coarser meshes needed for the multigrid
implementation, f is no longer necessarily zero). Both uh and fh are evaluated at the cell
centres of the given mesh.

The solution we obtain numerically, û, is unlikely to be the true solution uh to the
discrete equation, and applying the PDE operator on the former gives the following, slightly
different, equation:

Lh(ûh) = f̂h. (3.13)
6This does not mean that FFT cannot be used under any circumstances. For example, ref. [139] used a

FFT-relaxation method to solve nonlinear PDEs iteratively. In each iteration, the equation is treated as if
it were linear (by treating the nonlinear terms as a ‘source’) and solved using FFT, but the solution in the
previous step is used to update the ‘source’, for the PDE to be solved again to get a more accurate solution,
until some convergence is reached.

7In this paper we consider the simplest case of cubic cells.
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Taking the difference between the above two equations, we get

Lh(uh)− Lh(ûh) = fh − f̂h = −dh, (3.14)

where
dh ≡ f̂h − fh, (3.15)

is the local residual, which characterises the inaccuracy of the solution ûh (this is because if
ûh = uh, we would expect f̂h = fh and hence there is zero ‘inaccuracy’). dh is also evaluated
at cell centres. Later, to check if a given set of numerical solution ûh is acceptable, we will
use a global residual, εh, which is a single number for the given mesh of cell size h. In this
work we choose to define εh as the root-mean-squared of dh in all mesh cells (although this
is by no means the only possible definition). We will call both dh and εh ‘residual’ as the
context will make it clear which one is referred to.

Relaxation solves eq. (3.12) by starting from some approximate trial solution to uh, ûhold,
and check if it satisfies the PDE. If not, this trial solution can be updated using a method that
is similar to the Newton-Ralphson iterative method to solve nonlinear algebraic equations

ûhnew = ûhold −
Lh
(
ûhold

)
− f̂h

∂Lh
(
ûhold

)
/∂ûh

. (3.16)

This process can be repeated iteratively, until the updated solution satisfies the PDE to an ac-
ceptable level, i.e., εh becomes small enough. In practice, because we are solving the PDE on
a mesh, eq. (3.16) should be performed for all mesh cells, which raises the question of how to
order this operation for the many cells. We will adopt the Gauss-Seidel ‘black-red chessboard’
approach, where the cells are split into two classes, ‘black’ and ‘red’, such that all the six direct
neighbours8 of a ‘red’ cell are black and vice versa. The relaxation operation, eq. (3.16), is
performed in two sweeps, the first for ‘black’ cells (i.e., only updating ûh in ‘black’ cells while
keeping their values in ‘red’ cells untouched), while the second for all the ‘red’ cells. This
is a standard method to solve nonlinear elliptical PDEs by using relaxation, known as the
Newton-Gauss-Seidel method. However, although this method is generic, it is not always effi-
cient, and later we will describe a less generic alternative which is nevertheless more efficient.

Relaxation iterations are useful at reducing the Fourier modes of the error in the trial
solution ûh, whose wavelengths are comparable to that of the size of the mesh cell h. If we
do relaxation on a fine mesh, this means that the short-wave modes of the error are quickly
reduced, but the long-wave modes are generally much slower to decrease, which can lead to a
slow convergence of the relaxation iterations. A useful approach to solve this problem is by
using multigrid: after a few iterations on the fine level, we ‘move’ the equation to a coarser
level where the cell size is larger and the longer-wave modes of the error in ûh can be more
quickly decreased. The discretised PDE on the coarser level is given by

LH(uH) = L
(
Rûh

)
−Rdh ≡ SH , (3.17)

where the superscript H denotes the coarse level where the cell size is H (in our case H = 2h),
and R denotes the restriction operator which interpolates quantities from the fine level to
the coarse level. In our numerical implementation, a coarse (cubic) cell contains 8 fine

8The direct neighbours of a given cell are the six neighbouring cells which share a common face with that
cell.
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(cubic) cells of equal volume, and the restriction operation can be conveniently taken as the
arithmetic average of the values of the quantity to be interpolated in the 8 fine cells.

Eq. (3.17) can be solved using relaxation similarly to eq. (3.13), for which the numerical
solution is denoted as ûH . This can be used to ‘correct’ and ‘improve’ the approximate
solution ûh on the fine level, as

ûh,new = ûh,old + P
(
ûH −Rûh

)
, (3.18)

where P is the prolongation operation which does the interpolation from the coarse to the
fine levels. In this work we shall use the following definition of the prolongation operation:
for a given fine cell,

1. find its parent cell, i.e., the coarser cell that contains the fine cell;

2. find the seven neighbours of the parent cell, i.e., the coarser cells which share a face
(there are 3 of these), an edge (there are 3 of these) or a vertex (just 1) with the above
parent coarser cell;

3. calculate the fine-cell value of the quantity to be interpolated from the coarse to the fine
levels, as a weighted average of the corresponding values in the 8 coarse cells mentioned
above: 27/64 for the parent coarse cell, and 9/64, 3/64 and 1/64 respectively for the
coarse cells sharing a face, an edge and a vertex with the parent cell.

The above is a simple illustration of how multigrid works for two levels of mesh resolu-
tion, h and H. In principle, multigrid can be and is usually implemented using more than
two levels. In this paper we will use a hierarchy of increasingly coarser meshes with the
coarsest one having 43 cells.

There are flexibilities in how to arrange the relaxations at different levels. The most-
commonly used arrangement is the so-called V-cycle, where one starts from the finest level,
moves to the coarsest one performing relaxation iterations on each of the intermediate levels
(cf. eq. (3.17)), and then moves straight back to the finest performing corrections using
eq. (3.18) on each of the intermediate levels. Other arrangements, such as F-cycle and W-
cycle (cf. figure 1), are sometimes more efficient in improving the convergence rate of ûh to
uu, and we have implemented them in mg-glam as well.

3.2.2 Memory usage
glam uses a single array to store mesh quantities, such as the matter density field and the
Newtonian potential, because at any given time only one of these is needed. The Newtonian
force at cell centres is calculated by finite-differencing the potential and then interpolated to
the particle positions. To be memory efficient, glam also opts not to create a separate array
to store the forces at the cell centres, but instead directly calculates them at the particle
positions immediately before updating the particle velocities.

With the new scalar field to be solved in modified gravity models, we need two additional
arrays of size N3

g , where N3
g is the number of cells of the PM grid (i.e., there are Ng cells

in each direction of the cubic simulation box). This leads to three arrays. Array 1 is the
default array in glam, which is used to store the density field ρ and the Newtonian potential
Φ (at different stages of the simulation). Note that the density field is also needed when
solving the scalar field equation of motion during the relaxation iterations, and so we cannot
use this array to also store the scalar field. On the other hand, we will solve the Newtonian
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h

2h

4h

8h
V-cycle F-cycle W-cycle

Figure 1. An illustration of the three different arrangements of multigrid relaxation method used
in this paper: from left to right, V-cycle, F-cycle and W-cycle. The horizontal dotted lines depict 4
multigrid levels of mesh, with the finest mesh (denoted by its cell size h) on top, and the coarsest
mesh (with cell size 8h) at the bottom. The relaxation always starts on the finest level, and the
solid lines show how the multigrid solver walks through the different levels, performing Gauss-Seidel
relaxation iterations at each level (denoted by the circles), called smoothing. Only one single full
cycle is shown for each case. The solver walks over the multigrid levels more times in W-cycle than
in F-cycle and V-cycle, and thus it requires fewer cycles in the former case to arrive at a converged
solution. However, it is also computationally more expensive. We will compare the performances of
the three different arrangements in real cosmological simulations in section 4.3.

potential after the scalar field, by when it is safe to overwrite this array with Φ. Array2 is
exclusively used to store the scalar field solution ûh on the PM grid, which will be used to
calculate the fifth force. Array3 is used to store the various intermediate quantities which
are created for the implementation of the multigrid relaxation, such as dh, ûH , Rûh, Rdh,
SH and ρH , the last of which is the density field on the coarser level H , which appears in the
coarse-level discrete PDE operator LH .

To be concrete, we imagine the 3D array (Array3) as a cubic box with N3
g cubic cells of

equal size. An array element, denoted by (i, j, k), represents the ith cell in the x direction,
jth cell in the y direction and kth cell in the z direction, with i, j, k = 1, · · · , Ng. We divide
this array into 8 sections, each of which can be considered to correspond to one of the 8
octants that equally divide the volume of the cubic box. The range of (i, j, k) of each section
and the quantity stored in that section of Array3 are summarised in the table below:

Section i range j range k range Quantity
1 1, · · · , Ng/2 1, · · · , Ng/2 1, · · · , Ng/2 d`, Rd`

2 Ng/2 + 1, · · · , Ng 1, · · · , Ng/2 1, · · · , Ng/2 d`, ρ`−1 = Rρ`

3 1, · · · , Ng/2 Ng/2 + 1, · · · , Ng 1, · · · , Ng/2 d`, Rû`

4 Ng/2 + 1, · · · , Ng Ng/2 + 1, · · · , Ng 1, · · · , Ng/2 d`, û`−1

5 1, · · · , Ng/2 1, · · · , Ng/2 Ng/2 + 1, · · · , Ng d`, recursion
6 Ng/2 + 1, · · · , Ng 1, · · · , Ng/2 Ng/2 + 1, · · · , Ng d`, d`−1

7 1, · · · , Ng/2 Ng/2 + 1, · · · , Ng Ng/2 + 1, · · · , Ng d`, S`−1

8 Ng/2 + 1, · · · , Ng Ng/2 + 1, · · · , Ng Ng/2 + 1, · · · , Ng d`

Let us explain this more explicitly. First of all, the whole Array3, of sizeN3
g , will be used

to store the residual value dh on the PM grid (which has N3
g cells). From now on, we label this
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grid by ‘level-`’, and use ‘level-(`−m)’ to denote the grid that are m times coarser, i.e., if the
cell size of the PM grid is h, then the cells in this coarse grid have a size of 2mh. In the table
above we have used d` to denote the dh on level-`, and so on. Note that we always useNg = 2`.

The local residual dh on a fine grid is only needed for two purposes: (1) to calculate
the global residual on that grid, εh, which is needed to decide convergence of the relaxation,
and (2) to calculate the coarse-level PDE operator LH that is needed for the multigrid
acceleration, as per eq. (3.17). This suggests that dh does not have to occupy Array3 all
the time, and so this array can be reused to store other intermediate quantities (see the last
column of the above table) after we have obtained εh.

In our arrangement, section 1 stores the residual Rd`, section 2 stores the restricted
density field ρ`−1 = Rρ`, sections 3 and 4 store, respectively, the restricted scalar field
solution Rû` and the coarse-grid scalar field solution û`−1 — the former is needed to calculate
S`−1 in eq. (3.17) and to correct the fine-grid solution using eq. (3.18), which is fixed after
calculation, while the latter is updated during the coarse-grid relaxation sweeps.9 Section 7
stores the coarse-grid source S`−1 for the PDE operator L`−1 as defined in eq. (3.17), and
finally section 6 stores the residual on the coarse level, d`−1. Note that all these quantities
are for level-(`− 1), so that they can be stored in section of Array3 of size (Ng/2)3. Section
8 is not used to store anything other than d`.

We have not touched section 5 so far — this section is reserved to store the same quanti-
ties as above, but for level-(`−2), which are needed if we want to use more than two levels of
multigrid. It is further divided into 8 section, each of which will play the same roles as detailed
in the table above.10 In particular, the (sub)section 5 of section 5 is reserved for quantities on
level-(`−3), and so on. In this way, there is no need to create separate arrays of various sizes to
store the intermediate quantities on different multigrid levels which therefore saves memory.

There is a small tricky issue here: as we mentioned above, the local residual d` on the
PM grid is needed to calculate the coarse-grid source S`−1 using eq. (3.17), thus we will be
using the quantity d` stored in Array3 to calculateRd` and then write it to (part of) the same
array, running the risk of overwriting some of the data while it is still needed. To avoid this
problem, we refrain from using the d` data already stored in Array3, but instead recalculate
it in the subroutine to calculate Rd` (this only needs to be done for level-`). With a bit of
extra computation, this enables use to avoid creating another array of similar size to Array3.

Since Array3 stores different quantities in different parts, care must be excised when
assessing these data. There is a simple rule for this: suppose that we need to read or write the
quantities on the coarse grid of level-(`−m) with m ≥ 1. These are 3-dimensional quantities
with the three directions labelled by I, J,K, which run over 1, · · · , 2`−m, and we have

R(d`−m+1) [I,J,K]↔ Array3[i= I, j= J ,k=K+(2m−2) ·2`−m],
R(ρ`−m+1) [I,J,K]↔ Array3[i= I+2`−m, j= J ,k=K+(2m−2) ·2`−m],
R(u`−m+1) [I,J,K]↔ Array3[i= I, j= J+2`−m,k=K+(2m−2) ·2`−m],

û`−m [I,J,K]↔ Array3[i= I+2`−m, j= J+2`−m,k=K+(2m−2) ·2`−m],
d`−m [I,J,K]↔ Array3[i= I+2`−m, j= J ,k=K+(2m−1) ·2`−m],
S`−m[I,J,K]↔ Array3[i= I, j= J+2`−m,k=K+(2m−1) ·2`−m], (3.19)

where i, j, k = 1, · · · , Ng run over the entire Array3.
9We use Rû` as the initial guess for û`−1 for the Gauss-Seidel relaxations on the coarse level.

10The exception is that, as d`−1 is already stored in section 6, it does not have to be stored in section 5 again.
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We can estimate the required memory for mg-glam simulations as follows. As men-
tioned above, the code uses a 3D array of single precision to store both the density field
and the Newtonian potential, and one set of arrays for particle positions and velocities. In
addition, two arrays are added to store the scalar field solution (Array2) and various interme-
diate quantities in the multigrid relaxation solver (Array3). In the cosmological simulations
described in this paper, we have used double precision for the two new arrays, and we have
checked that using single precision slightly speeds up the simulation, while agreeing with the
double-precision results within 0.001% and 0.5% respectively for the matter power spectrum
and halo mass function. Given its fast speed and its shared-memory nature, memory is ex-
pected to be the main limiting factor for large mg-glam jobs. For this reason, we assume
that all arrays are set to be single precision for future runs, and this leads to the following
estimate of the total required memory:

Mtot = 12N3
g + 24N3

p bytes ,

= 89.41
(
Ng

2000

)3
+ 22.35

(
Np

1000

)3
GB ,

≈ 112
(
Np

1000

)3
GB , for Ng = 2Np , (3.20)

where we have used 1 GB = 10243 bytes. This is slightly more than twice the memory
requirement of the default glam code, which is 52 (Np/1000)3 GB [98].

3.2.3 Implementation of Vainshtein-type gravity models
Having described the code and data structure of mg-glam, we next discuss in greater detail
how each of the two classes of models studied in this paper is implemented, starting from
Vainshtein-type models.

Since ϕ plays the role of the conservative potential of the fifth force (section 2.1), we
can choose the same code unit for it as for the Newtonian potential Φ:

ϕ̃ =
(
Ng
H0L

)2
ϕ. (3.21)

We also introduce the code-unit counterpart of the cross-over scale rc as

r̃c = Ng
L
rc, (3.22)

which is consistent with the code unit for comoving coordinate or length. Using the code
unit expression for the speed of light c, eq. (3.7), it can be shown that

rcH0
c

= 1
2
√

Ωrc
= r̃c

c̃
≡ Rc, (3.23)

where Rc is a new dimensionless model parameter and Ωrc has been introduced above. We
can then recast the DGP equation of motion, eq. (2.10), in code unit as

∇̃2ϕ̃+ R2
c

3βDGP(a)a2

[
(∇̃2ϕ̃)2 − ∇̃i∇̃jϕ̃∇̃i∇̃jϕ̃

]
= 1
βDGP(a)Ωma

−1δ̃. (3.24)

ãMG = −1
2∇̃ϕ̃, (3.25)
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where ãMG denotes the modified gravity contribution to the gravitational acceleration in
code units.

For simplicity, in what follows we neglect the tildes in eq. (3.24). Making the following
defining decomposition of the second derivative of the scalar field [112, 139],

∇i∇jϕ = ∇̂i∇̂jϕ+ 1
3δij∇

2ϕ, (3.26)

so that ∇̂i∇̂jϕ has zero trace, i.e., ∇̂i∇̂iϕ = 0, one can show that

∇i∇jϕ∇i∇jϕ = ∇̂i∇̂jϕ∇̂i∇̂jϕ+ 1
3
(
∇2ϕ

)2
. (3.27)

Eq. (3.24) can then be rewritten as [96, 141]

2
3
(
∇2ϕ

)2
+ α∇2ϕ− Σ = 0, (3.28)

where

α ≡ 3βDGP(a)a2

R2
c

,

Σ ≡ ∇̂i∇̂jϕ∇̂i∇̂jϕ+ α

βDGP
Ωma

−1δ . (3.29)

Eq. (3.28) has two branches of solutions:

∇2ϕ = 3
4

[
−α±

√
α2 + 8

3Σ
]
. (3.30)

Which branch is the physical solution depends on the sign of α and hence of the function
βDGP(a). The requirement is that, as δ → 0, i.e., for a homogeneous density field, we must
have a homogeneous scalar field, and so ∇2ϕ→ 0. Therefore, the solution can be written as

∇2ϕ = 3
4

[
−α+ sign(α)

√
α2 + 8

3Σ
]
, (3.31)

with the function sign(x) = 1 for x ≥ 0 and −1 for x < 0.
The solve it on a discrete mesh, the continuous equation, (3.31), is first discretised as

Lhϕi,j,k = 0, where the operator Lh is defined as

Lhϕi,j,k ≡
1
h2

(
ϕi+1,j,k + ϕi−1,j,k + ϕi,j+1,k + ϕi,j−1,k + ϕi,j,k+1 + ϕi,j,k−1 − 6ϕi,j,k

)
−3

4

[
−α+ sign(α)

√
α2 + 8

3Σi,j,k

]
, (3.32)
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with

Σi,j,k ≡
2

3h4

[(
ϕi+1,j,k + ϕi−1,j,k − 2ϕi,j,k

)2
+
(
ϕi,j+1,k + ϕi,j−1,k − 2ϕi,j,k

)2

+
(
ϕi,j,k+1 + ϕi,j,k−1 − 2ϕi,j,k

)2]
− 2

3h4 (ϕi+1,j,k + ϕi−1,j,k − 2ϕi,j,k) (ϕi,j+1,k + ϕi,j−1,k − 2ϕi,j,k)

− 2
3h4 (ϕi+1,j,k + ϕi−1,j,k − 2ϕi,j,k) (ϕi,j,k+1 + ϕi,j,k−1 − 2ϕi,j,k)

− 2
3h4 (ϕi,j+1,k + ϕi,j−1,k − 2ϕi,j,k) (ϕi,j,k+1 + ϕi,j,k−1 − 2ϕi,j,k)

+ 1
8h4

(
ϕi+1,j+1,k + ϕi−1,j−1,k − ϕi+1,j−1,k − ϕi−1,j+1,k

)2

+ 1
8h4

(
ϕi+1,j,k+1 + ϕi−1,j,k−1 − ϕi+1,j,k−1 − ϕi−1,j,k+1

)2

+ 1
8h4

(
ϕi,j+1,k+1 + ϕi,j−1,k−1 − ϕi,j+1,k−1 − ϕi,j−1,k+1

)2

+ α

βDGP
Ωma

−1δi,j,k , (3.33)

where h here denotes the simulation mesh cell size in code units, as introduced in section 3.2.1
(this is the same symbol as used for the dimensionless Hubble constant, but not confusion
should arise given the context); i, j, k are the indices of cells in the simulation mesh, with,
e.g., (i+ 1, j, k) denoting the neighbouring cell to the right of cell (i, j, k), with the same y, z
coordinates. This discretisation has second-order accuracy, meaning that its deviation from
the true value reduces as O

(
h2).

This equation can be solved using the multigrid relaxation method described above, for
which the code iterates to update the value of ϕi,j,k in all cells, and at each iteration the field
values changes as

ϕh,new
i,j,k = ϕh,old

i,j,k −
Lh
(
ϕh,old
i,j,k

)
∂Lh
(
ϕh,old

i,j,k

)
∂ϕh,old

i,j,k

, (3.34)

where we have
∂Lh

(
ϕh,old
i,j,k

)
∂ϕh,old

i,j,k

= − 6
h2 . (3.35)

As mentioned in [141], the operator splitting of eq. (3.26) and the manipulation of the de-
fault discrete DGP equation into the Poisson-equation-like form of eq. (3.31) are critical for
obtaining reasonable convergence properties of the relaxation solver. The latter also makes
the code more efficient as there is no need for expensive and approximate Newton-Gauss-
Seidel iterations.11 We will follow the same spirit in designing the relaxation algorithm for
Kmouflage-type models next.

11Eq. (3.34) can be considered as the exact solution of a linear equation for ϕh,new
i,j,k so that there is no need

for the Newton iterations, though we note that this linear equation itself is only an approximation to the full
DGP equation, (3.31), where Σ depends on the field itself. The key point here is that the discretion of Σ does
not depend on ϕi,j,k but only depends on the field values in neighbouring cells to (i, j, k).
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3.2.4 Implementation of Kmouflage-type models
For this model, we define the following code unit for ϕ,

ϕ̃ = cNg
H0L

ϕ = c̃ϕ. (3.36)

Crucially, we note that this unit only applies to the scalar field when we take the spatial
derivatives of it, while the time derivative of the scalar field is treated differently. Alterna-
tively, one can understand the ϕ here as the spatial perturbation of the total Kmouflage field,
i.e., δϕ = ϕ − ϕ̄. In the quasi-static approximation with which we work in this paper, the
equations to be solved contain only the spatial derivatives of δϕ and the field value or time
derivatives of ϕ ≈ ϕ̄ (because |δϕ| � |ϕ̄|). Therefore, we opt to use ϕ to also denote δϕ for
simplicity, and the context should make it clear which quantity is being referred to.

With this, we get the following expression of X̃, which is the code-unit counterpart of X,

X̃ = X = 1
2a2λ2

[(
ϕ̄′

H0

)2
−
(
∇̃ϕ̃

)2
]
, (3.37)

where, as stated in the introduction, ′ denotes the derivative with respect to the conformal
time τ , so that ϕ′ = aϕ̇. Then, in code units, the equation of motion, eq. (2.24), can be
recast as

c̃∇̃i
1 + γ

(
ϕ̄′2

H2
0
− ∇̃jϕ̃∇̃jϕ̃

)n−1
 ∇̃iϕ̃

 = 3dA(ϕ̄)
dϕ Ωma

−1δ̃, (3.38)

with
γ ≡ nK0

( 1
2a2λ2

)(n−1)
. (3.39)

Here we have evaluated dA(ϕ)/dϕ at ϕ̄ because the perturbation to the scalar field is gener-
ally much smaller than the background value ϕ̄ itself, which is of order 0.1 ∼ 1 at late times
(see section 4.1).

This equation, however, has a potential issue. To see this, let’s consider the simple
case of a 1D density field, say, which depends only on the x coordinate. Then the equation
becomes

c̃

1 + γ

(
ϕ̄′2

H2
0
−
(
∂̃ϕ̃
)2
)n−2(

ϕ̄′2

H2
0
− (2n− 1)

(
∂̃ϕ̃
)2
) ∂̃2

xϕ̃ = 3dA(ϕ̄)
dϕ Ωma

−1δ̃. (3.40)

The second term in the square brackets on the left-hand side is negative in the regime of

1
2n− 1

ϕ̄′2

H2
0
<
(
∂̃xϕ̃

)2
<
ϕ̄′2

H2
0
. (3.41)

While |ϕ̄′/H0| ' O
(
10−3) at late times, at z > 10 it can be much larger (note that the de-

nominator is H0). For γ > 0, in certain regimes the coefficient of ∂̃2
xϕ̃ can cross 0, which leads

to a singularity. Instead of the model being unphysical in these regimes, this is more likely a
consequence of deriving the equation in the quasi-static and weak-field approximations, be-
cause even when the coefficient of ∂̃2ϕ̃ is zero, the left-hand side of eq. (3.40) should have had
terms that involve time derivatives of the field so that the full equation is still physical. As
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we are mostly interested in the Kmouflage screening mechanism in this work, we circumvent
this potential numerical issue by slightly modify eq. (3.38) to the following form:

c̃∇̃i
1 + γ

(
ϕ′2

H2
0

)n−1

+ γ
(
∇̃jϕ̃∇̃jϕ̃

)n−1
 ∇̃iϕ̃

 = 3dA(ϕ̄)
dϕ Ωma

−1δ̃. (3.42)

This should not affect the Kmouflage screening because it mainly takes effect in the highly
nonlinear regime, where the spatial term in X (or X̃) is much larger than the temporary
contribution. In the linear regime, when the spatial contribution in X is subdominant, the
above equation should also reproduce the perturbation behaviour of the fifth force.

Eq. (3.42) is a nonlinear equation in ϕ̃. As mentioned towards the end of the last subsec-
tion, we also apply the operator splitting of eq. (3.26) to improve the stability and convergence
properties of the relaxation solver for the Kmouflage model. After some manipulation, this
leads to the following equivalent form of the Kmouflage equation,

c̃

1 + γ

(
ϕ′2

H2
0

)n−1

+ (2n+ 1)γ
3

(
∇̃jϕ̃∇̃jϕ̃

)n−1
 ∇̃2ϕ̃

= 3dA(ϕ̄)
dϕ Ωma

−1δ̃ − 2c̃(n− 1)γ
(
∇̃kϕ̃∇̃kϕ̃

)n−2 ˆ̃∇i ˆ̃∇jϕ̃∇̃iϕ̃∇̃jϕ̃, (3.43)

where we notice that, after discretisation, only the left-hand side contains ϕ̃i,j,k because
ˆ̃∇i ˆ̃∇jϕ̃ does not contain ϕ̃i,j,k, and neither does ∇̃iϕ̃. The latter is because, at second order
accuracy, we have the following discrete version of the scalar field gradient:

∇xϕ = ∂xϕ = 1
2h (ϕi+1,j,k − ϕi−1,j,k) . (3.44)

Therefore, the code-unit equation can be written in the following simplified form:

c̃∇̃2ϕ̃ = 1
Σ1

(
3dA(ϕ̄)

dϕ Ωma
−1δ̃ + Σ2

)
, (3.45)

where

Σ1 ≡ 1 + γ

(
ϕ′2

H2
0

)n−1

+ (2n+ 1)γ
3

(
∇̃jϕ̃∇̃jϕ̃

)n−1
,

Σ2 ≡ −2c̃(n− 1)γ
(
∇̃kϕ̃∇̃kϕ̃

)n−2 ˆ̃∇i ˆ̃∇jϕ̃∇̃iϕ̃∇̃jϕ̃, (3.46)

and Σ1,2 do not have contribution from the central cell, ϕ̃i,j,k, as described just now. This is
therefore essentially a linear equation for ∇̃2ϕ̃.
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The discrete version of ∇̂i∇̂jϕ∇iϕ∇jϕ (here we have again neglected the tildes tem-
porarily for simplicity) can be written as

∇̂i∇̂jϕ∇iϕ∇jϕ

= 1
12h4 (ϕi+1,j,k−ϕi−1,j,k)2(2ϕi+1,j,k+2ϕi−1,j,k−ϕi,j+1,k−ϕi,j−1,k−ϕi,j,k+1−ϕi,j,k−1)

+ 1
12h4 (ϕi,j+1,k−ϕi,j−1,k)2(2ϕi,j+1,k+2ϕi,j−1,k−ϕi+1,j,k−ϕi−1,j,k−ϕi,j,k+1−ϕi,j,k−1)

+ 1
12h4 (ϕi,j,k+1−ϕi,j,k−1)2(2ϕi,j,k+1+2ϕi,j,k−1−ϕi+1,j,k−ϕi−1,j,k−ϕi,j+1,k−ϕi,j−1,k)

+ 1
2h4 (ϕi+1,j+1,k+ϕi−1,j−1,k−ϕi+1,j−1,k−ϕi−1,j+1,k)(ϕi+1,j,k−ϕi−1,j,k)(ϕi,j+1,k−ϕi,j−1,k)

+ 1
2h4 (ϕi+1,j,k+1+ϕi−1,j,k−1−ϕi+1,j,k−1−ϕi−1,j,k+1)(ϕi+1,j,k−ϕi−1,j,k)(ϕi,j,k+1−ϕi,j,k−1)

+ 1
2h4 (ϕi,j+1,k+1+ϕi,j−1,k−1−ϕi,j+1,k−1−ϕi,j−1,k+1)(ϕi,j+1,k−ϕi,j−1,k)(ϕi,j,k+1−ϕi,j,k−1).

As mentioned in section (2.2), the Kmouflage field has 4 effects on cosmological structure
formation, and thus we also need to write the other effects in code units. Using the code-unit
expressions eqs. (3.2), (3.7) and (3.36), we can rewrite the force equation, eq. (2.33), into

dx̃

da = H0
a2ȧ

p̃, (3.47)
dp̃

da = −H0
ȧ

[
∇̃Φ̃N + βKmoc̃∇̃ϕ̃

]
− βKmo

dϕ̄
da p̃. (3.48)

Consider the linear-theory behaviour of the model, where eq. (3.45) can be simplified as

c̃∇̃2
ϕ̃ =

1 + γ

(
ϕ′2

H2
0

)n−1
−1

3βKmoA(ϕ̄)Ωma
−1δ̃. (3.49)

Meanwhile, the Poisson equation is modified to

∇̃2Φ̃N = 3
2A(ϕ̄)Ωma

−1δ̃. (3.50)

This means that as an approximation we have

c̃ϕ̃

Φ̃N
= 2

1 + γ

(
ϕ̄′2

H2
0

)n−1
−1

βKmo, (3.51)

and the ratio between the fifth force (βc̃∇̃ϕ̃) and Newtonian gravity (∇̃Φ̃N) is

F5
FN

= 2

1 + γ

(
ϕ̄′2

H2
0

)n−1
−1

β2
Kmo. (3.52)

Note that here the Newtonian gravity is the force that already accounts for the particle mass
variation. If FN is the standard Newtonian gravity force (no particle mass variation taken
into account yet), the ratio would become

F5
FN

= 2

1 + γ

(
ϕ̄′2

H2
0

)n−1
−1

β2
KmoA(ϕ̄). (3.53)
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These agree with the fifth-force-to-Newtonian-gravity ratio used in eq. (2.35), and so it con-
firms that the code-unit equations are correct and that the modification to eq. (3.42) indeed
does not change the linear theory evolution of the model.

3.2.5 Kmouflage background cosmology solver
Because eqs. (3.45), (3.47), (3.48), (3.50) involve various background quantities such as ȧ, ϕ̄
and dϕ̃/da, for any given Kmouflage model we need to solve its background evolution. This
is governed by the following equation [130], which is the background part of the Kmouflage
equation (2.24):

[
KX(X̄) + 2X̄KXX(X̄)

]
¨̄ϕ+ 3HKX(X̄) ˙̄ϕ+ dA(ϕ̄)

dϕ 8πGρ̄m(a) = 0, (3.54)

whereKXX ≡ d2K/dX2, along with the modified Friedmann equation (recall that we assume
here a flat Universe, k = 0)

H2 =
(
ȧ

a

)2
= 8πG

3 [ρ̄r(a) +A(ϕ̄)ρ̄m(a)] + 1
3KX(X̄) ˙̄ϕ2 − 1

3λ
2H2

0K(X̄), (3.55)

and the modified Raychaudhuri equation,

3
(
Ḣ +H2

)
= −4πG [2ρ̄r(a) +A(ϕ̄)ρ̄m(a)]−KX(X̄) ˙̄ϕ2 − 2λ2H2

0K(X̄), (3.56)

where ρ̄r denotes the background density of radiations (we assume that all three species of
neutrinos are massless and thus counted as radiation).

The Friedmann equation (3.55) contains ˙̄ϕ2, both explicitly and inside functions of X̄,
on the right-hand side. Writing

a ˙̄ϕ = ϕ̄′ = dϕ̄
dτ = dϕ̄

dN
dN
dτ = a′

a

dϕ̄
dN = H dϕ̄

dN ≡ H
˚̄ϕ, (3.57)

where N ≡ ln(a) and for simplicity we have used an over-circle to denote the derivative with
respect to N , that equation can be recast, after some manipulation, as

H2

H2
0

[
1− 1

6
˚̄ϕ
]

= 8πG
3H2

0

[
ρ̄r0a

−2 +A(ϕ̄)ρ̄m0a
−1
]

+ 1
3λ

2a2 + 2n− 1
3 λ2K0

[ ˚̄ϕ2

2λ2a2

]n [H2

H2
0

]n
,

(3.58)
where we have used ρr(a) = ρr0a

−4 and ρm(a) = ρm0a
−3, and have specified to the functional

form of K given in eq. (2.29). Likewise, eq. (3.56) can be rewritten as

H′

H2
0

= −4πG
3H2

0

[
2ρ̄r0a

−2 +A(ϕ̄)ρ̄m0a
−1
]

+ 2
3λ

2a2

− 2
3
H2

H2
0

˚̄ϕ2 − 1
3(n+ 1)K0

[ 1
2λ2a2

]n−1
[
H2

H2
0

]n
˚̄ϕ2n. (3.59)

Finally, using

ϕ̄′′ = H2 d2ϕ̄

dN2 +H′ dϕ̄dN = H2̊ ˚̄ϕ+H′˚̄ϕ, ¨̄ϕ = 1
a2
(
ϕ̄′′ −Hϕ̄′

)
, (3.60)
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the background Kmouflage field equation, (3.54), becomes

(
KX + 2X̄KXX

) [H2

H2
0
˚˚̄ϕ+ H

′

H2
0

˚̄ϕ
]

+ 2
(
KX − X̄KXX

) H2

H2
0

˚̄ϕ+ 3dA(ϕ̄)
dϕ Ωm exp(−N) = 0,

(3.61)
where for simplicity we have not expanded the coefficients of ¨̄ϕ and ˙̄ϕ.

Eqs. (3.61), (3.58), (3.59) must be solved simultaneously, with eq. (3.61) treated as
a differential equation with time variable N , and its coefficients depending on eqs. (3.58)
and (3.59). However, we note that eqs. (3.58), (3.59) also both depend on ˚̄ϕ, so that these
equations are coupled. To solve them, we note that for a given time (a or N) and ˚̄ϕ, eq. (3.58)
can be considered as a quadratic (in case of n = 2) or cubic (for n = 3) equation12 of H2/H2

0 ,
which can be solved analytically (the expressions of the solutions will not be presented here).
This can be substituted into eq. (3.59) to findH′/H2

0 at the same a (or N) and for the same ˚̄ϕ.
After that, ˚̄ϕ, H2/H2

0 and H′/H2
0 at time a or N can be used to calculate˚˚̄ϕ using eq. (3.61)

and this one we can integrate eq. (3.61) forward in time to obtain the whole evolution of ϕ̄
and H. The equation is solved using a fifth-sixth order continuous Runge-Kutta method.13

In our calculation we have included both radiation and non-relativistic matter, with
‘radiation’ including CMB photons with a current temperature of 2.7255 K and 3.046 flavours
of massless neutrinos. We defer the implementation of massive neutrinos which couple to the
scalar field in a different way from non-relativistic matter in the Kmouflage model, to future
works.

We remark that λ is not a free parameter of the model. Rather, once the density
parameters Ωm, ρr0 and H0 are specified, λ, which roughly quantifies the amount of dark
energy in this model, must take some certain value in order to ensure consistency — if λ
is too large, the predicted H(a = 1), by solving eqs. (3.61), (3.58), (3.59) with given initial
conditions of ϕ̄ and ˚̄ϕ, will be larger than the desired (input) value of H0, and vice versa. In
practice, mg-glam starts from a trial value of λ = 1, evolves the above equations from some
initial redshift (zi = 105) to z = 0, and checks if the calculated value of H(a = 1) is equal
to the desired value H0 (within a small relative error of order O

(
10−6)) — if the predicted

H(a = 1) value overshoots the desired H0, λ is decreased, and vice versa. This process is
repeated until we have obtained a good approximation to λ, with the relative error of the
predicted H0 less than 10−6. The initial conditions of ϕ̄ and ˚̄ϕ at zi = 105 are not important,
as long as their values are sufficiently small (in the mg-glam code we set them to be both
10−30). Once the value of λ has been determined in this way, it is stored to be used in other
parts of the code; also stored are a large array for the various background quantities such
as H, Ḣ, ϕ̄ and ˙̄ϕ — if needed at any time by the Kmouflage field solver of mg-glam, these
quantities will be linearly interpolated in the scale factor a or N = ln(a).

4 Numerical code tests

We have performed a series of code tests to check that our MG solvers work correctly following
the framework of the ecosmog and mg-arepo codes [96, 141]. To this end, we have run
low-resolution simulations with box size L = 256h−1Mpc and Ng = 256 grid cells in each
coordinate direction.

12Note that in this work we only consider Kmouflage models with n = 2 or 3.
13For this numerical integrator we have adapted subroutine dverk from the camb code, originally devel-

oped in Fortran 66 by K. R. Jackson.
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Figure 2. Cosmological background evolution tests. Left panel: the evolution of the background
scalar field in the Kmouflage model predicted by camb (solid lines) and mg-glam (dashed lines).
Right panel: the relative difference of the Hubble expansion rate between the Kmouflage and the GR
models measured from the outputs of a modified camb code (solid lines) and mg-glam (dashed lines)
codes. Different colours correspond to different values of K0 as shown in the legend. In all cases we
have used n = 2 and βKmo = 0.2.

4.1 Background cosmology tests

Of the two classes of models considered in this work, the nDGP models have an expansion
history identical to that of ΛCDM by design, but the Kmouflage models can have non-
negligible deviations from ΛCDM in background expansion [130]. Our numerical solver of
the background equations have been described in section 3.2.5, and in this subsection we test
the reliability of that implementation.

To this end, we have compared the predictions by the numerical Kmouflage background
solver in mg-glam with the results obtained using a modified version of the camb code
used in [130]. The results are shown in figure 2, where the left panel shows the background
Kmouflage field as a function of the scale factor a, and the right panel shows the ratio between
the modified expansion rate HMG(a) and that of standard ΛCDM, HGR(a), with the same
Ωm and H0. As we can see, for both quantities and all models tested here, the two codes
agree very well.

In this figure, we have shown the results of fixed n = 2 and βKmo = 0.2, but varying
values of K0; however, we have checked that the same agreement between the two codes hold
for other values of n and βKmo.

We note that in the models studied here, the background scalar field is negative, ϕ̄ <
0, and decays over time. This has two implications: (i) the direction-dependent force in
eq. (2.33) or eq. (3.48), −βKmo

dϕ̄
da p̃, points to the direction of the particle’s movement, which

means that it actually speeds up the particle rather than acting as a ‘friction’ force; (ii) given
that βKmo > 0 in the models studied here, we have A(ϕ̄) = exp (βKmoϕ̄) < 1 at late times,
which means that the particles contribute less to the Poisson equation, cf. the discussion
below eq. (2.35); equivalently, we can consider this as a decrease of the effective dark matter
particle mass over time.

Therefore, we can have a quick discussion about how the 4 effects of the Kmouflage
model in structure formation, discussed below eq. (2.35), depend on the parameter K0, when
n = 2 and βKmo is fixed. This may also help us appreciate the complexity of this model when
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discussing its effects on the halo mass function below.

• varying particle mass: the Kmofulage models have A(ϕ̄) < 1 and the smaller K0 is (we
only focus on the cases with K0 > 1 here), the smaller A(ϕ̄) becomes, which reduces
the Newtonian force and hence weakens structure formation.

• modified expansion rate: as shown in the right panel of figure 2, decreasing K0 slows
down the expansion rate more, which can enhance structure formation. However, even
for K0 = 1 the expansion rate is only ≈ 2% smaller than in ΛCDM, and so this effect
is expected to be small.

• direction-dependent force: for fixed βKmo, the amplitude of this force (for particles mov-
ing at the same speed) depends on |dϕ̄/da|, which is clearly larger for smallerK0 values.

• the fifth force: the ratio between the amplitudes of the fifth and Newtonian forces is
2β2

Kmo/KX , with KX(X̄) given in eq. (2.36). Neglecting the weak dependence of λ on
K0, we can see that the size of KX is a result of the competition between K0 and |ϕ̄′|
or equivalently |dϕ̄/da|: but from the left panel of figure 2 it is evident that K0 varies
more than (ϕ̄′)2, and so KX decreases with a decreasing K0, making the fifth force
relatively stronger.

Therefore, the effect of varying particle mass works against all the remaining three effects,
and which side wins the competition of boosting versus weakening structure formation can
only be answered by numerical solutions.

4.2 Density field tests

This subsection is devoted to the tests of the multigrid solvers for the nDGP and Kmouflage
models, using different density configurations for which the scalar field solution can be solved
analytically or using a different numerical code.

4.2.1 Uniform density field tests

For the first test we consider the case where the solution of the scalar field, ϕ, is constant in
space. A constant field should be obtained if we choose a homogeneous matter distribution
(i.e., the density field is uniform and equal to the cosmological background value). To check
this we have set δ̃i,j,k = 0 and chose a set of random values that follow a uniform distribution
in the range [−0.05, 0.05] as initial guesses of ϕ̃i,j,k, then we let the code run until the residual
is d` ≤ 10−8.

The results of this test are shown in the upper left panel of figure 3, where the orange
(blue) dots represent the initial guess, and the orange (blue) solid line is the numerical
solution after relaxation, in the nDGP (Kmouflage) case. In both cases a constant solution
is obtained by the code, as expected.

4.2.2 1D density field tests

For our next test, we consider a one-dimensional sine density field (varying in the x direction)
given by,

δ̃(x̃) = −aβDGP
ΩmN2

g
sin 2πx̃

Ng
, (4.1)
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for nDGP and

δ̃(x̃) = − ac̃

3βKmoΩm

1 + n(2n+ 1)K0
2a2λ2

(
2πK
Ng

)2

A sin 2πKx̃
Ng

[
2πA
Ng

cos 2πKx̃
Ng

]2(n−1)
 ,
(4.2)

for Kmouflage, where the model parameters are set as n = 2, K0 = 1, βKmo = 0.1, while
A = 0.1, K = 4 are extra parameters describing the specific density field. We have checked
other parameter values and found similar agreement, but we only present the results for one
set of parameters here, to make the plot easier to read.

The analytical solutions of the nDGP and Kmouflage scalar field equations of motion,
eq. (3.24) and eq. (3.45), for these density fields are,

ϕ̃(x̃) = 1
4π2 sin 2πx̃

Ng
, (4.3)

ϕ̃(x̃) = A sin 2πKx̃
Ng

, (4.4)

respectively.
The results of this test are shown in the upper right panel of figure 3, where the orange

(blue) dots correspond to the numerical solution and the orange (blue) solid line represents
the analytical solution for the nDGP (Kmouflage) model. The code is able to accurately
recover the analytical predictions in both models.

4.2.3 3D spherical overdensity field tests
The 3D spherical tests help us to check that the code is able to solve the nonlinear terms of
the nDGP and Kmouflage equations correctly. For the nDGP spherical test we use the code
units and a = 1, so that eqs. (2.19) and (2.20) can be written as

dϕ̃
dr̃ = 3βDGP

4Rc

[√
1 + 8ΩmRc

9β2
DGP

δ̃ − 1
]
r̃, (4.5)

for r̃ ≤ R̃ and
dϕ̃
dr̃ = 3βDGP

4Rc

√1 + 8ΩmRc
9β2

DGP

R̃3

r̃3 δ̃ − 1

 r̃, (4.6)

for r̃ ≥ R̃, where r̃ is the comoving radial distance from the centre of the spherical overdensity,
R̃ is the radius of the latter and δ̃ is the (constant) value of the overdensity inside R̃, all in
code units.

Similarly, the Kmouflage equation, (2.37), in code units can be solved (for the special
case of n = 2) as

dϕ̃
dr̃ = 1

6γ g
1/3(r̃)− 2

g1/3(r̃)
, (4.7)

where g(r̃) is a function defined as

g(r̃) ≡ γ2
[
108f(r̃) + 20.78460969

√
27f2(r̃) + 4

γ

]
, (4.8)
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Figure 3. Results of the code tests of the multigrid solver in mg-glam: Upper left panel: uniform den-
sity test, where the coloured dots represent the random initial guesses of the scalar field uniformly gen-
erated in the range [−0.05, 0.05] and the solid lines show the final solutions by mg-glam, orange for the
nDGP model and blue for Kmouflage. Upper right panel: the 1D sine density field tests, the solid lines
show the analytical solutions and the dots correspond to the numerical results, orange for the nDGP
model and blue for Kmouflage. Lower left panel: spherical overdensity test using δ̃ = 0.5 and R̃ =
0.1Ng for three nDGP models with H0rc = 0.5 (blue), H0rc = 1 (orange) and H0rc = 5 (green). The
lines represent the analytical solutions, while the dots correspond to mg-glam code test results. Lower
right panel: spherical overdensity test using δ̃ = 5000 and R̃ = 0.1Ng for three Kmouflage models, with
K0 = 1 (blue), K0 = 10 (orange) and K0 = 100 (green); in all cases we have used n = 2 and β = 0.2.
The lines represent the analytical solutions, while the dots correspond to the mg-glam results.

which is obtained by analytically solving a cubic equation satisfied by dϕ̃/dr̃, and the function
f(r̃) is defined as

f(r) ≡


βKmoΩmr̃

c̃
δ̃ , r̃ ≤ R̃ ,

βKmoΩm
c̃

R̃3

r̃2 δ̃ , r̃ > R̃ .
(4.9)

For these tests, we place the spherical overdensity in the centre of the grid and r̃ is
defined as,

r̃ ≡
√

(x̃−Ng/2)2 + (ỹ −Ng/2)2 + (z̃ −Ng/2)2 , (4.10)

where (x̃, ỹ, z̃) is the coordinate of a mesh cell in code units, with x̃, ỹ, z̃ running from 0
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Figure 4. Convergence tests. Comparison of the measured matter power spectrum from mg-glam
simulations with L = 256h−1Mpc, Np = 512 and Ng = 1024 at z = 0 for an nDGP model with
H0rc = 1 (left panel) and a Kmouflage model with n = 2, β = 0.2 and K0 = 1 (right panel) using
multigrid schemes with different number of V-cycles (V10, V3 and V2), F-cycles (F1) and W-cycles
(W1). Here ‘V10’ means 10 V-cycles and so on. The coloured lines are the relative differences with
respect to V10, and the dashed black lines show the 0.5 per cent level of difference. Within a given
cycle, two Gauss-Seidel sweeps (smoothings) are performed on each multigrid level (which applies to
V-cyles, F-cycles and W-cycles). For F-cycles and W-cycles, very good agreement is obtained after
just one cycle, and so we have only included results for F1 and W1.

to Ng. For cells with r̃ ≤ R̃, we set δ̃ to a nonzero value; otherwise δ̃ = 0.0. We use the
values of R̃ = 0.1Ng, δ̃ = 0.5 and H0rc = 0.5, 1, 5 for nDGP and R̃ = 0.1Ng, δ̃ = 5000 and
K0 = 1, 10, 100 with n = 2 and β = 0.2 for Kmouflage.

In both models, the above analytical solutions are for dϕ̃/dr̃. We then numerically
integrate this quantity to get the radial profiles of ϕ̃. The solutions ϕ̃(r̃) obtained this way
may have a constant shift relative to the numerical solutions obtained by mg-glam, which
is because the DGP and Kmouflage equations contain only spatial derivatives of the scalar
field,14 and so any solution to these equations shifted by a constant value everywhere would
still be a valid solution. Thus, to compare the analytical and numerical solutions, we shift
the former so that it has the same peak value as the latter.

The results from these tests are shown in the lower left and right panels of figure 3 for
the nDGP and the Kmouflage models, respectively. The coloured symbols in the different
panels represent the numerical solutions from mg-glam and the solid lines are the analytical
solutions. We can see that the two agree well, especially at small r̃, i.e., close to the centre
of the spherical overdensity. Far from the centre, the agreement becomes poorer because
the analytical solution does not assume periodicity of the spherical overdensity, while the
numerical code uses periodic boundary conditions so that the field sees the overdensities in
the replicated boxes as well.

14Recall that for the Kmouflage model what is solved is essentially the spatial perturbation of the scalar field
δϕ = ϕ − ϕ̄, rather than the total or background scalar field. While the latter does enter the equation, e.g.,
through A(ϕ) ≈ A(ϕ̄), what is solved by the relaxation is actually δϕ which does satisfy the shift symmetry,
cf., the discussion below eq. (3.36).
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Figure 5. Results of the strong scaling (left panel) and fixed-thread-number (right panel) tests of mg-
glam. The black dots correspond to the wallclock running time of a series of cosmological simulations
of the nDGP model with H0rc = 1, while the grey dashed lines show the ideal linear scaling relation.

4.3 Convergence tests
As mentioned in section 3.2.1, in mg-glam we have implemented three different arrangements
of the multigrid solver — V-cycles, F-cycles and W-cycles. We have compared the accuracy
and computational costs of these arrangements. To do so, we have run a series of smaller
simulations for the nDGP model with H0rc = 1 and for Kmouflage with n = 2, K0 = 1 and
βKmo = 0.2. The simulations follow the evolution of 5123 dark-matter particles in a cubic box
of length L = 256h−1Mpc with Ng = 1024 grid points in each direction. We use 10, 3 and 2
V-cycles (V10, V3 and V2), one F-cycle (F1) and one W-cycle (W1) to test the convergence
of the solution. In all cases, within each cycle the code transverse the mesh twice to perform
Gauss-Seidel relaxation.

In figure 4 we show the relative difference of the nonlinear matter spectrum measured
at z = 0 from our test simulations described above for the nDGP (left panel) and Kmouflage
(right panel) models where the benchmark case is V10 (black solid line). We find a permille
agreement between all the different schemes, and different numbers of cycles used to solve
the PDEs, on almost all scales. However, the running time is larger when using more cycles
or iterations, i.e., the slowest simulations are those using V10. The F-cycles and W-cycles
are more efficient in reducing the residual, which is not surprising given that they walk more
times across the fine and coarse multigrid levels. However, they are also slower than V2. As
a compromise between accuracy and cost, we have therefore decided to always use V2 in our
cosmological runs. It is actually incredible to reach convergence with just two V-cycles (and
two Gauss-Seidel passings of the entire mesh in each cycle), for nonlinear equations in the
DGP and Kmouflage models.

4.4 Scaling tests
To test the parallelisation performance and scalability of mg-glam, we have run a series of
simulations for the nDGP model with H0rc = 1, with varying sizes and/or resolutions. The
strong scaling is shown in the left panel of figure 5, where we test the speed-up of the code
when varying the number of openmp threads while fixing the size of the simulation. The
test simulations follow the evolution of N3

p = 2563 particles in a box of size L = 128h−1Mpc
with 5123 grids. We vary the number of threads from 1 to 56 (symbols) and found a nearly
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Figure 6. Left panel: comparison of the measured nonlinear power spectra from mg-glam simulations
of the nDGP H0rc = 1 model at z = 0 with different force and mass resolutions: (Np, Ng) =
(1024, 2048) (green line), (1024, 4096) (red) and (2048, 4096) (purple). The shaded region corresponds
to the 1σ error bar over five independent realisations of the Np1024Ng4096 simulations. Right panel:
relative difference between the different simulations with respect to the Np1024Ng4096 case. The
light and dark grey shaded regions show the two and one per cent deviations.

perfect agreement with the ideal linear scaling relation (dashed line) when using up to 16
threads. The code also shows good scalability when using up to 56 threads, and the deviation
from ideal scaling is likely caused by the fact that the test run has a small size so that the
overhead becomes a significant fraction of the total time when using too many threads.

The right panel of figure 5 displays the result of the tests with fixed number of openmp
threads (56), but varying the simulation size. For this test we run five simulations with differ-
ent number of grid points and DM particles, Ng = 256, 512, 1024, 2048 and 4096 (symbols)
with Np = Ng/2 and L = 512h−1Mpc in all cases. Again we find a nearly perfect agreement
with an ideal linear scaling (dashed line).

These tests suggest that mg-glam has excellent scalability, and the running times for
the simulations performed in this work can be used to reliably predict the requirement for
even larger runs.

4.5 Resolution tests

We performed a series of mass and force resolution tests for the nDGP model with
H0rc = 1. To do so, we ran three sets of five independent simulations with fixed
box size, L = 512h−1Mpc, and varying grid size and number of particles: (Ng, Np) =
(2048, 1024), (4096, 1024) and (4096, 2048). The setup of each simulation leads to the fol-
lowing mass and force resolution: (mp,∆x) = (1.07 × 1010 h−1M�, 0.25h−1Mpc), (1.07 ×
1010 h−1M�, 0.125h−1Mpc) and (1.34 × 109 h−1M�, 0.125h−1Mpc), respectively. We have
lower resolution runs than these, such as those used in the right panel of figure 5, but these
are not used in this comparison.

The measured nonlinear power spectra at z = 0 are shown in the left panel of fig-
ure 6, where we have multiplied Pm(k) by the wavenumber (k) to enhance any difference
on large-scales. We find a good agreement on large-scales, where the measurements of
the Np1024Ng2048 and Np2048Np4096 simulations are well within the error bars of the
Np1024Ng4096 case. In the right panel of figure 6 we confirm a one per cent agreement be-
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Figure 7. The same as figure 6 but for the differential halo mass function. Note that the light and
dark grey shaded regions in the right panel denote the five and two per cent deviations.

tween all simulations on scales k . 1hMpc−1. It also shows that for Ng = 4096, increasing
Np from 1024 to 2048 does not make a big difference.

The effects of mass and force resolution on the halo mass function (HMF) are shown
in figure 7. First, we observe an improvement of the completeness of the HMF down to
Mvir ∼ 1012 h−1M� for the highest force resolution simulations, i.e., those configurations
with ∆x = 0.125h−1Mpc or Ng = 4096 (see left panel of figure 7). In addition, the right
panel of figure 7 shows the level of agreement between the different configurations. We found
that the Ng = 4096 cases have a 2% agreement over a large range of masses, 1012.3 h−1M� <
Mvir < 1015 h−1M�, while the Ng = 2048 simulations show good convergence (better than
5% agreement) for haloes with massMvir > 1012.3 h−1M�. To have complete halo catalogues
down to 1012.5 h−1M�, the resolution of L512Np1024Ng2048 seems to be fine, while to have
haloes down to 1012 h−1M� we need the resolution of L512Np2048Ng4096.

4.6 Comparisons with previous simulations
Finally, we compare the dark matter power spectrum and the abundance of dark matter
haloes of the nDGP (H0rc = 1) model at the present time measured from our mg-glam
simulations with those from the L = 500h−1Mpc simulations presented in [142] ran with the
mg-arepo code [96].

The mg-arepo simulation follows the evolution of one realisation of 10243 particles in
a box of size 500h−1Mpc, with a force resolution 0.01h−1Mpc and mass resolution mp =
9.98×109 h−1M�. We take advantage of the performance of mg-glam to run 10 independent
realisations of the same nDGP model, using the same linear theory power spectrum as for the
mg-arepo runs. For the mg-glam simulations we use a box of size 512h−1Mpc and a mesh
withN3

g = 20483 grid points, giving a force resolution and particle mass of ∆x = 0.25h−1Mpc
and mp = 1.06× 1010 h−1M�, respectively.

The left panel of figure 8 shows the comparison of the power spectrum enhancement
predicted from the mean over 10 realisations of mg-glam (solid blue line) and mg-arepo
(dashed red line). We find a good agreement between the measurements of both codes on
scales k . 3hMpc−1 (with the smaller-scale discrepancy due to the lower force resolution of
the mg-glam runs), and the P (k) enhancement approaches to the linear theory prediction
(solid horizontal grey line) on large scales. mg-glam slightly under-predicts the power spec-
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Figure 8. Comparison of the measured matter power spectrum (left panel) and halo mass function
(right panel) enhancement from the simulations of the nDGP model with H0rc = 1 performed with
the mg-glam (the blue line with error bars correspond to the mean and standard deviation over 10
independent realisations) and the mg-arepo (red dashed lines) codes.

trum enhancement at large, linear scales, and this effect appears to be systematic, which is
independent of the simulation box size or resolution. However, we have performed checks
by running simulations of the same nDGP model using the ecosmog code, and found the
same behaviour, which to a less extent also exists in mg-arepo simulations (the red dashed
line here is a particular realisation). In any case, the agreement between these two codes is
consistent with that between ecosmog and mg-arepo, cf. figure A1 of [96].

The comparison of the cumulative halo mass function enhancement measured from mg-
glam (solid blue line with error bars) and mg-arepo (dashed red line) is presented in the
right panel of figure 8. For the latter we have run the halo finder with the same virial mass
overdensity halo definition as adopted for mg-glam, to be consistent. We again find a good,
percent-level, agreement between the results of both codes, especially for high-mass haloes
where the mg-arepo measurement is well within the mg-glam error bars (standard deviation
of the 10 realisations). The mg-arepo prediction appears to be slightly but consistently
lower than that of mg-glam. Indeed, while in mg-arepo the nDGP model enhances the
abundance of large haloes and reduces it for small haloes, for mg-glam the abundance is
always enhanced; the latter behaviour is seen in all the ecosmog simulations, e.g., figure 2
of [143] of the nDGP model. This is unlikely due to the different halo finding algorithms,
since [143] does not use the BDM halo finder and yet finds the same behaviour. Rather, we
suspect that this small discrepancy between mg-glam and mg-arepo is caused by differences
in other code details, such as force calculation.

All in all, we conclude that the mg-glam code has passed various tests, and is ready
for massive productions of simulations and mock catalogues. We will demonstrate a small-
scale — in terms of the very low cost compared to mg-arepo and ecosmog simulations —
application in the next section.

5 Cosmological simulations

As a taster of the mg-glam code, we have conducted a large suite of dark-matter only
simulations of the nDGP model and a few Kmouflage simulations, to have a quick look at
the nonlinear matter power spectrum and the halo mass function in these classes of models.
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Figure 9. Measured non-linear matter power spectrum from mg-glam simulations for 30 nDGP
models with H0rc logarithmically spaced between 0.25 and 10 (indicated by the colour bar in the
upper left panel) at z = 0 (left panel) and z = 1 (right panel). The lower subpanels show the relative
differences with respect to a ΛCDM model with the same cosmological parameters and simulation
specifications. We have used L = 512h−1Mpc, Np = 1024 and Ng = 2048.

For the former, we have run 30 nDGP models with H0rc logarithmically spaced between 0.25
and 10, and for the latter we have simulated 3 Kmouflage models with (n = 3, K0 = 1),
(n = 2, K0 = 1) and (n = 2, K0 = 0.5), all using βKmo = 0.2; for each Kmouflage model, we
also run a ‘linearised’ counterpart using eq. (2.34), which is obtained by linearising the full
field equation of motion by dropping all nonlinear terms. All the simulations have a box size
of L = 512h−1Mpc, N3

g = 20483 grid cells and contain 10243 dark matter particles, giving a
mass resolution of mp = 1.06× 1010 h−1M�.

For all simulations, we use the same ΛCDM linear perturbation theory power spec-
trum to generate the initial conditions at zini = 100 using the on-the-fly algorithm of mg-
glam. The cosmological parameters are chosen from those reported by the Planck collabo-
ration [144]:

{Ωb,Ωm, h, ns, σ8} = {0.0486, 0.3089, 0.6774, 0.9667, 0.8159}.

The linear matter power spectrum is generated using the camb code. The reason we can use
the same initial condition for all simulations is that the effect of the scalar field is very weak
at z > 100; we have checked that even the strongest Kmouflage model studied in this work
only differs from ΛCDM by O (0.1%) in the linear matter power spectrum at z = 100.

5.1 Matter power spectrum

The measured power spectra for all 30 nDGP models are displayed in figure 9 at z = 0 (left
panel) and z = 1 (right panel). The colorbar displays the values of H0rc from the strongest
(H0rc = 0.25; bluest solid line) to the weakest models (H0rc = 10, reddest solid line). From
the lower subpanels, we see that we can cover a wide range of enhancement amplitudes of the
power spectrum, with the relative differences between the nDGP and GR models spanning
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Figure 10. Measured nonlinear matter power spectra from mg-glam simulations for three linearised
(dashed lines) and fully nonlinear (solid lines) Kmouflage simulations, with n = 3, K0 = 1 (blue
lines), n = 2, K0 = 1 (orange lines) and n = 2, K0 = 0.5 (green lines), at z = 0 (left panel) and z = 1
(right panel). The lower subpanels show the relative difference with respect to a ΛCDM model with
the same cosmological parameters and simulation specifications. All simulations use L = 512h−1Mpc,
Np = 1024 and Ng = 2048.

from ≈ 1% to 40% on large scales at z = 0. At earlier times (z = 1; right panel), the
behaviour is qualitatively similar, but the enhancement is generally smaller (≈ 0.5%–25% on
large scales) as the fifth force has had less time to take effect.

The effect of the Vainshtein screening mechanism is reflected by the decay of the power
spectrum enhancement towards 0 at small scales (large k). However, notice that at this
resolution, we can only trust the result at k . 3h/Mpc, as shown by the comparison between
mg-glam and mg-arepo in section 4.6. Should the simulations be run at a higher resolution,
we expect the decay to 0 to happen faster at k > 3h/Mpc. This decay is because, according
to the halo model [145] of structure formation, the small-scale matter power spectrum is
determined by the one-halo term, which in turn depends on the inner density profiles of
dark matter haloes; the Vainshtein screening mechanism can effectively suppress the relative
strength of the fifth force, cf. eq. (2.23), inside and near massive bodies such as haloes [146],
so that in Vainshtein-type models the halo density profile is close to ΛCDM [118, 142, 147].

In figure 10, we show the nonlinear matter power spectra from our three pairs of
linearised (dashed lines) and fully non-linear (solid lines) Kmouflage simulations with
n = 3, K0 = 1 (blue lines), n = 2, K0 = 1 (orange), and n = 2, K0 = 0.5 (green) at
z = 0 (left panel) and z = 1 (right). To perform the linearised simulations we solved the
linearised Kmouflage equation of motion, eq. (2.34), equivalent to removing the screening
effect.

The lower subpanels of figure 10 display the relative difference between the measured
power spectra of the Kmouflage models and GR. In addition to the results of the full and
linearised simulations, we also show in dotted lines the linear-theory predictions at z = 0 (left
panel), obtained using the modified version of the camb code developed in [130]. In general,
we find that the linearised simulations give similar results to those of their full nonlinear

– 37 –

https://camb.info/


J
C
A
P
0
1
(
2
0
2
2
)
0
4
8

10-7

10-6

10-5

10-4

10-3

n
(
>
M

v
ir
) [
h

3
M

p
c−

3
]

z= 0

0.25

2.00

5.00

7.00

10.00

H
0
r c

12.0 12.5 13.0 13.5 14.0 14.5 15.0
log10(Mvir [h−1M¯ ])

0.0
0.5
1.0
1.5
2.0
2.5

∆
n
/
n

G
R

10-7

10-6

10-5

10-4

10-3

n
(
>
M

v
ir
) [
h

3
M

p
c−

3
]

z= 1

12.0 12.5 13.0 13.5 14.0 14.5 15.0
log10(Mvir [h−1M¯ ])

0.0
0.5
1.0
1.5
2.0
2.5

∆
n
/
n

G
R

Figure 11. Cumulative halo mass functions from mg-glam simulations for 30 nDGP models with
H0rc logarithmically spaced between 0.25 and 10 (indicated by the colour bar in the top left panel)
at z = 0 (left panel) and z = 1 (right panel). The lower subpanels show the relative difference with
respect to a ΛCDM model with the same cosmological parameters and simulation specifications. All
these simulations use L = 512h−1Mpc, Np = 1024 and Ng = 2048.

counterparts; also, all measurements approach to the linear theory predictions on large scales.
This shows that the Kmouflage screening mechanism is not efficient [148] in suppressing the
effect of the fifth force in cosmic structure formation. This is related to the way in which
screening works in this class of models, which requires |∇ϕ| � | ˙̄ϕ| ∼ H0, a condition that is
likely to be satisfied only on small (e.g., sub-galactic) scales. A corollary from this is that, in
cosmological simulations, solving the fully nonlinear Kmouflage equation of motion may not
be as important as for the other models such as nDGP and f(R) gravity [103].

Since this is the first time that cosmological simulations for the Kmouflage model are
conducted, let us comment on the qualitative behaviour shown in the lower subpanels of
figure 10. Overall, the power spectrum enhancement in this model looks very similar to that
in the nDGP model, cf. figure 9, but there is a critical difference: here the enhancement
becomes negative at small scales, k & 2h/Mpc. We have already seen that this can not be
due to the Kmouflage screening mechanism — actually, it is due to the lack of screening.
Unlike in nDGP, here even inside dark matter haloes particles still feel a strong fifth force
which has a nearly constant ratio with the strength of Newtonian gravity, and on top of this
the direction-dependent force discussed below eq. (2.35) can also speed up the particles; the
result of these two forces is that particles gain a higher kinetic energy, tend to move into
or stay in the outer regions of dark matter haloes and thus reduce the clustering on small
scales as compared to ΛCDM. Such distinct behaviours between the nDGP and Kmouflage
matter power spectra may offer a potential way to distinguish between them observationally,
although that is beyond the scope of this paper.

5.2 Halo mass functions

Modified gravity and screening mechanism effects can also be studied by exploring dark
matter halo populations. In figures 11 and 12 we show the cumulative halo mass function

– 38 –



J
C
A
P
0
1
(
2
0
2
2
)
0
4
8

10-7

10-6

10-5

10-4

10-3
n
(
>
M

v
ir
) [
h

3
M

p
c−

3
]

z= 0

GR

full

linearised

n= 3,  K0 = 1.0

n= 2,  K0 = 1.0

n= 2,  K0 = 0.5

12.0 12.5 13.0 13.5 14.0 14.5 15.0
log10(Mvir [h−1M¯ ])

0.25

0.00

0.25

0.50

∆
n
/n

G
R

10-7

10-6

10-5

10-4

10-3

n
(
>
M

v
ir
) [
h

3
M

p
c−

3
]

z= 1

12.0 12.5 13.0 13.5 14.0 14.5 15.0
log10(Mvir [h−1M¯ ])

0.25

0.00

0.25

0.50

∆
n
/n

G
R

Figure 12. Cumulative halo mass functions from mg-glam simulations for 3 linearised (dashed
lines) and fully nonlinear (solid lines) Kmouflage simulations with n = 3, K0 = 1 (blue lines), n = 2,
K0 = 1 (orange lines) and n = 2, K0 = 0.5 (green lines) at z = 0 (left panel) and z = 1 (right
panel). The lower subpanels show the relative difference with respect to a ΛCDM model with the
same cosmological parameters and simulation specifications. All simulations use L = 512h−1Mpc,
Np = 1024 and Ng = 2048.

(cHMF), which defines the number density of dark matter haloes more massive that a given
halo mass Mvir, measured from our BDM halo catalogues at z = 0 (left panels) and z = 1
(right panels). For nDGP the 30 models are colour-coded in the same away as in figure 9.

From the lower subpanels of figure 11, we see that the abundance of haloes is enhanced
by the fifth force, especially at low redshifts and for high-mass haloes. The same behaviour
has been found and discussed in previous works, e.g., [142, 143, 149]. We also notice that
the enhancement over ΛCDM is positive for the whole halo mass range, not just for massive
haloes, as already discussed in section 4.6. The abundance of haloes is enhanced from ≈ 1 to
250 percent for the different nDGP models. The large increase of high-mass haloes in the less
efficiently screened nDGP models (models with H0rc < 5) is due to the accretion of surround-
ing matter around these massive objects thanks to the enhanced gravity force: these objects,
often being the dominating object within some large surrounding region, can attract matter
from the whole region, including the accretion of smaller haloes to them, and so the fifth force
can strongly boost their masses; on the other hand, smaller objects, while also experiencing
the fifth force [96], are more likely to meet competitors and so their masses grow less.

On the other hand, the lower subpanels of figure 12 show the relative difference of
the cHMFs between the Kmouflage models and ΛCDM. In the same figure we compare
the predictions from the linearised Kmouflage simulations (dashed lines) with their fully
nonlinear counterparts (solid lines). Each pair of Kmouflage simulations produce roughly
the same abundances of dark matter haloes, as evident from the overlap between dashed and
solid lines in the entire mass range used to measure the cHMFs, confirming that the effects
of Kmoulfage screening are marginal. The abundance of massive haloes is enhanced by ≈ 50
percent at z = 1 and ≈ 20 percent at z = 0, consistent with the redshift evolution of the
matter power spectrum shown in the lower panels of figure 10.
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Also, we find that the Kmouflage model produces fewer low-mass haloes than GR,
especially at lower redshifts, and we believe this is the consequence of the competition between
the four effects of the Kmouflage model, discussed below eq. (2.36). As we have demonstrated
in section 4.1 for a few cases of fixed n and βKmo, this competition can be complicated and
not analytically predictable. As a result, to disentangle the four effects and to rank their
relative importance, we need to switch them on and off individually to observe the impact
on cosmological observables. While this is apparently an interesting and important thing to
do, it is beyond the scope of this paper and so we will leave such a study to future works.

Finally, before concluding this section, it is worthwhile to mention that, at the simulation
resolution used here, we can already get the HMF complete down to 1012.5h−1M�, as shown
in [103, 150].

5.3 Discussion

In this section we have had an initial taste of the mg-glam code, by running a large suite of
simulations covering all three classes of models studied in this paper.

One particularly relevant aspect of the mg-glam code is its fast speed (cf. section 4.4).
The 30 nDGP simulations described in this section have been run using 56 threads with
openmp parallelisation, and we find that the run time for the majority of them is ∼ 23, 000
seconds, or equivalently ' 357 CPU hours, roughly 105 times faster than mg-arepo, and
300 times faster than ecosmog, for the same simulation specifications. With such a high
efficiency, we can easily ramp up the simulation programme to include many more models
and parameter choices, and increase the size and/or resolution of the runs, e.g., using boxes of
at least 1h−1Gpc. The Kmouflage simulations, while having a different screening mechanism,
take about 22, 000 seconds each, similar to the nDGP runs. This is not unexpected given
that in both models we use the same number of V-cycles and 157 time-steps. As part of
the resolution tests in section 4.5, we have also run a few even larger simulations for ΛCDM
and N1, e.g., with L = 512h−1Mpc, Np = 2048 and Ng = 4096. These runs took around
40, 000 seconds for ΛCDM and 116, 000 seconds (wallclock time) for N1, using 128 threads
on the SKUN8@IAA supercomputer at the IAA-CSIC in Spain, suggesting that a single run
of specification L1000Np2048Ng4096, which would be useful for cosmological (e.g., galaxy
clustering and galaxy clusters) analyses should take at most 1.3 days to complete and is
therefore easily affordable with existing computing resources.

On the other hand, efficiency should not be achieved at the cost of a significant loss of
accuracy. For the runs used here, we have used a mesh resolution of 0.25h−1Mpc, which is suf-
ficient to achieve percent-level accuracy of the matter power spectrum at k . 1hMpc−1 [98],
matter power spectrum enhancement at k . 3hMpc−1, and (main) halo mass function down
to ∼ 1012.5h−1M� [103]. The particle number, N3

p , in glam simulations is normally set ac-
cording to Np = Ng/2, so that in the simulations here we have used 10243 particles. However,
we have checked that increasing the particle number to 20483 has little impact on the halo
mass function (cf. section 4.5). We notice that the completeness level of the HMFs here is
similar to ecosmog runs with the same simulation specifications, suggesting that mg-glam
is capable of striking an optimal balance between cost and accuracy.

6 Summary and conclusions

In this paper, along with a companion paper [103], we have presented the mg-glam code,
which is an extension of the glam pipeline [98] that enables very efficient and accurate
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production of full N -body simulations in a large variety of modified gravity models, with the
ultimate objective of covering all such models of interest. We have focused on the description
and numerical implementation of models with derivative coupling terms, while our twin
paper [103] explores the conformally coupled scalar field models, including thin-shell screening
models such as f(R) gravity and symmetrons, as well as the usual coupled scalar field models.

We studied two classes of derivative coupling models, the Vainshtein-type and the
Kmouflage-type gravity models, which employ the Vainshtein and Kmouflage screening mech-
anism, respectively. As an example of Vainshtein-type models, we considered the nDGP
braneworld model, which serves as a prototype for other classes of models such as Galileons,
vector Galileons, generalised Galileons and kinetic-gravity braiding models. The Kmouflage
models are comparatively new in the context of cosmological simulations, and we have pro-
posed a new numerical algorithm to solve their equations of motion in this work. This
algorithm, and its implementation in mg-glam, can be easily generalise to simulate other
classes of interesting models such as k-essence, MOND, and the scalar [151] or vector [126]
dark matter models with non-canonical kinetic terms of the k-essence type and possibly a
generic interaction potential.

To implement these models into the parent code glam, we have added subroutines to
solve the nonlinear partial differential equations that govern the formation of cosmological
structures in such models (cf. section 3.2). These nonlinear PDEs are solved using the
multigrid Gauss-Seidel relaxation technique, which uses one of three different arrangements
of the multigrid solver (V-cycles, F-cycles and W-cycles). In addition, we have included some
background cosmology solvers for the Kmouflage model (cf. section 3.2.5). For both classes
of models, we have designed the relaxation algorithm to avoid the Newton-Gauss-Seidel
iteration commonly used for nonlinear PDEs, which generally slows down the convergence
and is sometimes unstable. This is a key to the performance of mg-glam, which we find to
be 100–300 times faster than earlier modified gravity codes such as mg-arepo and ecosmog
for the same mass resolution; the force resolution is lower as mg-glam uses a fixed mesh
resolution, while the other codes use adaptive mesh refinements; but even with the resolution
used in this work, mg-glam is able to accurately predict the halo mass function down to
≈ 1012.5h−1M� (comparable to the performance of ecosmog) and the power spectrum
enhancement down to k ≈ 3hMpc−1.

We have performed a series of tests to check that our implementation of the multigrid
solvers works correctly, using different density configurations for which we can obtain analyti-
cal expressions of the scalar field solution (cf. section 4), and found that the mg-glam numer-
ical solutions agree very well with the analytical expectations. We have shown that using only
2 V-cycles, we can reach convergence for the nonlinear equations in the nDGP and Kmouflage
models. Also, we have compared the solutions of the background scalar field and the modi-
fied expansion rate in the Kmouflage model obtained with mg-glam and camb [130], finding
excellent agreement between both codes. Finally, we have compared the power spectrum en-
hancement and the abundance of dark matter haloes for one nDGP model (H0rc = 1.0)
predicted by mg-glam and the mg-arepo code [96]. To do so, we ran 10 independent
mg-glam realisations (to reduce cosmic variance) and use the L500-N1 simulation presented
in [142]. In general, mg-glam is able to reproduce the power spectrum enhancement and the
abundance of dark matter haloes from those high-resolution simulations with high accuracy.

For the first time, we have been able to run a large suite of nDGP simulations, for 30
models with H0rc logarithmically spaced between 0.25 and 10, and carried out the first fully
nonlinear N -body simulations for three Kmouflage models with βKmo = 0.2 and (n = 3, K0 =
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1), (n = 2, K0 = 1) and (n = 2, K0 = 0.5). In addition, we have run linearised simulations for
each of the Kmouflage models mentioned above. With this large suite of MG simulations we
are able to study in great detail the interplay between modified gravity effects and screening
mechanism on structure formation, as we have shown in the nonlinear matter power spectra
and cumulative halo mass function predictions, figures 9–12. Our nDGP simulations clearly
demonstrate the effect of Vainshtein screening in the matter power spectrum, and how that
evolves with time and depends on H0rc. The Kmofulage simulations, on the other hand,
indicates that the Kmouflage screening mechanism is much less efficient in the cosmological
regime, as the fully nonlinear and linearised simulations give similar predictions of the matter
power spectrum and halo mass function; this agrees with expectations.

The development of mg-glam will help in the construction of a large number of galaxy
mock catalogues in MG theories for Stage-IV galaxy surveys, such as DESI and Euclid. Owing
to its high efficiency and accuracy, this code can be used to perform > O(100) large (L >
1.0h−1Gpc at least) and high-resolution (mp < 1010h−1M�) simulations for each modified
gravity model, with minimal computational cost. These will allow for variations of not
only the gravitational but also cosmological parameters, and subsequently the construction
of accurate emulators for various physical quantities in different gravity models. This will
open up a wide range of possibilities for future works to test gravity using cosmological
observations. The prescriptions to populate dark matter haloes with galaxies will be explored
in an upcoming paper, as well as a more detailed study of halo properties, including halo
clustering, will be left in future works.
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