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The main focus of this work is to test the ideas related to the oblique confinement in a theoretically
controllable manner using the “deformed QCD” as a toy model. We explicitly show that the oblique
confinement in the weakly coupled gauge theories emerges as a result of condensation of N types of
monopoles shifted by the phase expði θþ2πm

N Þ in Bloch type construction. It should be contrasted with the
conventional and commonly accepted viewpoint that the confinement at θ ≠ 0 is due to the condensation of
the electrically charged dyons which indeed normally emerge in the systems with θ ≠ 0 as a result of
Witten’s effect. We explain the basic reason why the “dyon”mechanism does not materialize—it is because
the Witten’s effect holds for a static magnetic monopole treated as an external source. It should be
contrasted with our case when N-types of monopoles are not static, but rather the dynamical degrees of
freedom which fluctuate and themselves determine the ground state of the system.
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I. INTRODUCTION AND MOTIVATION

A study of the QCD vacuum state in the strong coupling
regime is the prerogative of numerical Monte Carlo lattice
computations. However, a number of very deep and
fundamental questions about the QCD vacuum structure
can be addressed and, more importantly, answered using
some simplified versions of QCD. In the present paper, we
study a set of questions intimately connected to the ground
state with θ ≠ 0. We use the so-called “deformed QCD”
and similar toy models wherein we can work analytically.1

These models belong to the class of the weakly coupled
gauge theory, which, however, preserves many essential
elements expected for true QCD, such as confinement,
degenerate topological sectors, proper θ dependence, etc.
This allows us to study difficult and nontrivial features,
particularly related to vacuum structure at θ ≠ 0, in an
analytically tractable manner.
The θ dependence in the system is intimately related to

the presence of the metastable states which always accom-
pany the gauge systems even at θ ¼ 0. The fact that some
high energy metastable vacuum states must be present in a
gauge theory system in the large N limit has been known
for quite some time [1]. A similar conclusion also follows
from the holographic description of QCD as originally
discussed in [2]. Therefore, the understanding of the

microscopical description of the ground state at θ ≠ 0 in
terms of the monopoles (in the “deformed QCD” and other
toy models as will be discussed in the present work)
inevitably requires the microscopical understanding of
these metastable states as both constructions, the θ ≠ 0
states and the metastable states at θ ¼ 0, must be described
simultaneously in terms of the same degrees of freedom and
in terms of the same fundamental gauge configurations.

A. θ ≠ 0: Phenomenological motivation

The questions being addressed in the present work, as
highlighted above, are very deep and fundamental prob-
lems of the strongly coupled gauge theory. One could
naively think that these problems with θ ≠ 0 are pure
academic questions which have no physics applications,
observable consequences or any phenomenological signifi-
cance as it is known that θ ¼ 0 with extremely high
accuracy in our Universe at present time. However we
want to emphasize here that, in fact, the problems high-
lighted above were largely motivated by an attempt to
understand the QCD transition in the early Universe when θ
was not identically zero, but rather was slowly relaxing to
zero field as a result of the axion dynamics, see original
papers [3–9] and review articles [10–16] on the theory of
axion and recent advances in the axion search experiments.
The recent lattice studies [17–20] addressing related

questions on the axion dynamics during the QCD transition
essentially are capable to compute the correlation func-
tions, such as the topological susceptibility (1) at θ ¼ 0,
while the gauge configurations at θ ≠ 0 are not accessible
by conventional lattice methods. The study of the dynamics
of the system at θ ≠ 0 represents a very challenging
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1We use one and the same term “deformed QCD” model for

systems with and without quarks. We hope it does not confuse the
readers as the specific description of the system should be
obvious from the context of the discussions.
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technical problem as a result of the so-called “sign
problem”. Therefore, at present time the lattice studies
can provide limited information on microscopical dynam-
ics of the strongly coupled gauge theories at finite θ ≠ 0
[21,22], especially the regions in the vicinity of θ≃ π when
the level-crossing phenomena are expected to occur, and
metastable states become almost degenerate with the
ground vacuum states.
At the same time, a precise understanding of the structure

of the ground state at θ ≠ 0 and its microscopical descrip-
tion during this complicated time evolution plays a crucial
role in computations of the axion production rate, possible
formation of the axion domain walls,2 possible role of the
metastable states (which inevitably are present in the
system as will be argued in this work), and many other
related questions which essentially determine the dark
sector of the Universe at present time.
The main claim which will be advocated in the present

work is that the microscopical description of the oblique
confinement at θ ≠ 0 is due to the condensation of the same
fractionally charged monopoles in “deformed QCD” model
which are responsible for the confinement at θ ¼ 0. The same
microscopic description remains also valid for themetastable
vacuum states which are always present in gauge theories.
The only modification which occurs in the description for
metastable states and θ ≠ 0 states is that the vacuum expect-
ation value of the magnetization operator gets shifted by the
phase expði θþ2πm

N Þ in Bloch type construction. We reiterate
the same claim as follows: we do not see any roomwithin our
framework for the commonly accepted “dyon mechanism”
for the oblique confinement, speculated long ago by ‘t’Hooft
[25] when the electrically charged dyons condense.
We conjecture that this picture we have just described

holds in strongly coupled regimes as well, not only in the
weakly coupled “deformed QCD” model. We present few
arguments supporting this conjecture in the next subsection.

B. Smooth transition between weakly
coupled and strongly coupled regimes

When some deep questions are studied in a simplified
version of a theory, there is always a risk that some effects
which emerge in the simplified version of the theory could
be just artifacts of the approximation, rather than genuine
consequences of the original underlying theory. Our present
studies in this work using the “deformed QCD” and other
toy models are not free from this difficulty of possible
misinterpretation of artifacts as inherent features of

underlying QCD. Nevertheless, there are a few strong
arguments suggesting that we indeed study some intrinsic
features of the system rather than some artificial effects.
The first argument has been presented in the original paper
on “deformed QCD” [26] where it has been argued that this
model describes a smooth interpolation between strongly
coupled QCD and the weakly coupled “deformed QCD”
without any phase transition. In addition, there are a fewmore
arguments based on previous experience [26–39] with the
“deformed QCD” and other toy models which also strongly
suggest that we indeed study some intrinsic features of QCD
rather than some artifacts of the deformations.
Most of the arguments, with very few exceptions, from the

previous studies [26–39] of the system which are related to
the θ dependent physics are purely analytical in nature as they
cannot be independently verified or tested by using some
other means, such as the numerical lattice simulations.
Fortunately, some of the observables, such as the topological
susceptibility χ defined as

χ ¼ ∂2EvacðθÞ
∂θ2

����
θ¼0

¼ lim
k→0

Z
eikxd4xhqðxÞ; qð0Þi ð1Þ

with qðxÞ being the topological density operator, are highly
sensitive to theθ behaviour even atθ ¼ 0 because χmeasures
the response of the systemwith respect to the insertion of the
external parameter θ as one can see from the definition (1).
What ismore important is that the topological susceptibility χ
can be also studied on the lattice at θ ¼ 0.
The topological susceptibility χ has been introduced into

the theory long ago [40–42] in a course of studies related to
the resolution of the Uð1ÞA problem in QCD in the large N
limit. As a result of its fundamental importance for the
phenomenological particle physics the topological suscep-
tibility χ has been extensively studied in lattice numerical
simulations. The computations [28,34] of the topological
susceptibility in the “deformed QCD” model is perfectly
consistent with the lattice results, including some extremely
nontrivial features related to the “wrong sign” of the contact
term.3 and exact cancellation (in the chiral limit) of the

2In particular, the so-calledN ¼ 1 domain walls corresponding
to the interpolation of the axion θðxÞ field between topologically
distinct but physically identical states θ ¼ 0 and θ ¼ 2π will
inevitably form due to the 2π periodicity in θ and presence of the
metastable states mentioned above. The formation of such kind of
N ¼ 1 domain walls happen irrespectively whether the inflation
occurs before or after the PQ phase transition, see comments in
[23,24].

3It is known that the contact term with a positive sign (in the
Euclidean formulation) in χ is required for the resolution of the
Uð1ÞA problem [40–42]. At the same time, any physical propa-
gating degrees of freedommust contributewith a negative sign, see
[28] with details. In [40] this positive contact term has been simply
postulated while in [41,42] an unphysical Veneziano ghost was
introduced into the system to saturate this term with the “wrong”
sign in the topological susceptibility. This entire, very nontrivial
framework, has been successfully confirmed by a number of
independent lattice computations and precisely reproduced in
the “deformed QCD” model. In addition, one can explicitly see
how the Veneziano ghost postulated in [41,42] is explicitly
expressed in terms of auxiliary topological fields which saturate
the contact term in this model [34]. One can also see that the η0
becomes massive in this theory as a result of the mixture of a
“would be”Goldstone field with auxiliary topological fields which
saturate the contact term in (1).
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contact term with the “wrong sign” with physical term in
agreement with the Ward Identities, as described in the
original papers [28,34].
Fortunately enough, there is still one more analytical

study in the small circle limit that sheds light on the nature
of the phase structure of gauge theories at θ ≠ 0. In [35] a
conjectured continuity between mass deformed N ¼ 1
super Yang-Mills on a small circle and pure Yang-Mills
at finite temperature was exploited to study the behavior of
the thermal phase transition in the latter theories as a
function of θ. According to this conjecture, quantum phase
transitions in mass deformed N ¼ 1 on R3 × S1 are
analytically connected to thermal phase transitions in pure
Yang-Mills [31,37]. Thus, one can perform all computa-
tions in the small circle limit, where the theory is under
analytical control, and then extract conclusions about the
strongly coupled theories. It was found in [35] that the
deconfining temperature of any SUðNÞ gauge theory
decreases as θ increases and also the strength of the first
order transition increases with θ. This is in accordance with
the lattice simulations that were performed for small θ in
strongly coupled theories [21,22] and arrived at the same
conclusions of [35].
We conclude this subsection with the following generic

comment. All the features related to the θ dependence
which are known to be present in the strongly coupled
regime also emerge in the weakly coupled “deformed
QCD” and other toy models. Therefore, we interpret such
nice agreement as a strong argument supporting our
conjecture that these models properly describe, at least
qualitatively, the microscopical features related to the θ
dependent effects in the strongly coupled gauge theories.

C. The relation to N = 2 Seiberg-Witten model
and the structure of the paper

Our presentation is organized as follows. We start in
Sec. II by reviewing a simplified (“deformed”) version of
QCD which, on one hand, is a weakly coupled gauge
theory wherein computations can be performed in a
theoretically controllable manner. On other hand, this
deformation preserves all the elements relevant to our
study such as confinement, degeneracy of topological
sectors, nontrivial θ dependence, and other crucial aspects
pertinent to the study of the oblique confinement for
metastable states and θ ≠ 0 states. In Sec. III we explain
the classification of the θ states while in Sec. IV we
explicitly show that oblique confinement in this model is
due to the identically same fractionally charged monopoles
which are responsible for the confinement at θ ¼ 0.
This is obviously an expected result especially in view of

the arguments presented above suggesting that this result
holds in the strongly coupled regime as well due to the
smooth transition between the weakly coupled “deformed
QCD” and strongly coupled QCD realized in nature. At the
same time the common lore in the community is that the

oblique confinement at θ ≠ 0 is a result of condensation of
the electrically charged dyons which emerge as a result of
the Witten’s effect [43]. This common lore is mostly based
on analysis of the N ¼ 2 Seiberg-Witten model where the
dyons are known to be part of spectrum. Therefore, it is
indeed a quite natural assumption that these dyons will
condense at θ ≠ 0, similar to the monopole’s condensation
in the original Seiberg-Witten model at θ ¼ 0.
Motivated by these arguments we turn to N ¼ 2

Seiberg-Witten model with the goal to understand the
nature of the oblique confinement at θ ≠ 0 in supersym-
metry (SUSY) gauge theories and its relation to studies in
“deformed QCD” model presented in Sec. IV. We start, in
Sec. V by reviewing the N ¼ 2 SUSY model defined on
R4 with emphasis on the structure of the conventional static
dyons and the monopoles in this model. As our goal is to
understand the role of these particles in the confinement
mechanism at θ ≠ 0 and the relation with oblique confine-
ment in “deformed QCD” model, we formulate N ¼ 2

SUSY model on R3 × S1 in Sec. VI and show that the
nonperturbative spectrum of the theory on a sufficiently
small circle consists of a tower of monopoles with higher
winding numbers. In Sec. VII we explain Witten’s effect
[43] in the context of this work; i.e. we explain that the
static magnetic monopoles, i.e. ‘t’ Hooft lines, indeed
become the dyons in the presence of θ ≠ 0. However,
the magnetic monopoles which play the key role in the
confinement mechanism are not static, but rather the
dynamical degrees of freedom which fluctuate and them-
selves determine the ground state of the system. In the
former case the monopoles become the dyons, while in the
later case they remain pure monopoles with zero electric
charges.
Throughout this work we use the word dyon-particles

to mean genuine particles (solitons) that carry both
electric and magnetic charges. They are genuine in the
sense that they sweep timelike worldlines. We also use
dyon-instantons to mean pseudoparticles that carry both
electric and magnetic charges. They are pseudo since they
are only instantaneous events in the Euclidean space and
do not sweep worldlines. Dyons with zero electric charges
are monopoles; these are either monopole-particles or
monopoles-instantons. The words dyons or monopoles will
be used to mean either particles or instantons when the
distinction is either not important or understood from the
context.

II. “DEFORMED QCD” MODEL

Here we overview the “center-stabilized” deformed
Yang-Mills developed in [26]. In this section and in
Sec. III and Sec. IV we use the words monopoles and
dyons to mean monopole-instantons and dyon-instantons,
respectively. In the deformed theory an extra “deformation”
term is put into the Lagrangian in order to prevent the center
symmetry breaking that characterizes the QCD phase
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transition between “confined” hadronic matter and “decon-
fined”quark-gluon plasma, thereby explicitly preventing that
transition. Basically the extra term describes a potential for
the order parameter. The basics of this model are reviewed in
this section, while in Sec. III we classify themetastable states
which are inherent elements of the system.
We start with pure Yang-Mills (gluodynamics) with

gauge group SUðNÞ on the manifold R3 × S1 with the
standard action

SYM ¼
Z
R3×S1

d4x
1

2g2
tr½F2

μνðxÞ�; ð2Þ

and add to it a deformation action,

ΔS≡
Z
R3

d3x
1

L3
P½ΩðxÞ�; ð3Þ

built out of the Wilson loop (Polyakov loop) wrapping the
compact dimension

ΩðxÞ≡ P½ei
H

dx4A4ðx;x4Þ�: ð4Þ

The parameter L here is the length of the compactified
dimension which is assumed to be small. The coefficients
of the polynomial P½ΩðxÞ� can be suitably chosen such that
the deformation potential (3) forces unbroken symmetry at
any compactification scales. At small compactification L
the gauge coupling is small so that the semiclassical
computations are under complete theoretical control [26].
As described in [26], the proper infrared description of

the theory is a dilute gas of N types of monopoles,
characterized by their magnetic charges, which are propor-
tional to the simple roots and affine root αa ∈ Δaff of the
Lie algebra of the gauge group Uð1ÞN . For a fundamental
monopole with magnetic charge αa ∈ Δaff (the affine root
system), the topological charge is given by

Q ¼
Z
R3×S1

d4x
1

16π2
tr½Fμν

~Fμν� ¼ � 1

N
; ð5Þ

and the Yang-Mills action is given by

SYM ¼
Z
R3×S1

d4x
1

2g2
tr½F2

μν� ¼
8π2

g2
jQj: ð6Þ

The θ-parameter in the Yang-Mills action can be included
in the conventional way,

SYM → SYM þ iθ
Z
R3×S1

d4x
1

16π2
tr½Fμν

~Fμν�; ð7Þ

with ~Fμν ≡ ϵμνρσFρσ=2.
The system of interacting monopoles, including the θ

parameter, can be represented in the dual sine-Gordon form
as follows [26]

Sdual ¼
Z
R3

d3x
1

2L

�
g
2π

�
2

ð∇σÞ2

− ζ

Z
R3

d3x
XN
a¼1

cos

�
αa · σ þ θ

N

�
; ð8Þ

where ζ is magnetic monopole fugacity which can be
explicitly computed in this model using the conventional
semiclassical approximation. The θ parameter enters the
effective Lagrangian (8) as θ=N which is the direct
consequence of the fractional topological charges of the
monopoles (5). Nevertheless, the theory is still 2π periodic.
This 2π periodicity of the theory is restored not due to the
2π periodicity of Lagrangian (8) as it was (incorrectly)
claimed in the original Ref. [26]. Rather, it is restored as a
result of summation over all branches of the theory when
the levels cross at θ ¼ πðmod2πÞ and one branch replaces
another and becomes the lowest energy state as presented
in [28].
The dimensional parameter which governs the dynamics

of the problem is the Debye correlation length of the
monopole’s gas,

m2
σ ≡ Lζ

�
4π

g

�
2

: ð9Þ

The average number of monopoles in a “Debye volume” is
given by

N ≡m−3
σ ζ ¼

�
g
4π

�
3 1ffiffiffiffiffiffiffiffi

L3ζ
p ≫ 1: ð10Þ

The last inequality holds since the monopole fugacity is
exponentially suppressed, ζ ∼ e−1=g

2

, and in fact we can
view (10) as a constraint on the region of validity where
semiclassical approximation is justified. This parameter N
measures the “semiclassicality” of the system.
It is convenient to express the action in terms of

dimensionless variables as follows x ¼ x0=mσ such that
x0 becomes a dimensionless coordinate. All distances now
are measured in units of m−1

σ . With this rescaling the action
(8) assumes a very nice form:

S ¼ N
Z
R3

d3x
XN
n¼1

1

2
ð∇σnÞ2

−N
Z
R3

d3x
XN
a¼1

cos

�
σn − σnþ1 þ

θ

N

�
; ð11Þ

with σNþ1 identified with σ1. In formula (11) we used x as
the dimensionless coordinate (rather than x0) to simplify
notations. The Lagrangian entering the action (11) is then
dimensionless with a large semiclassical prefactor N ≫ 1
defined by (10).
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III. CLASSIFICATION SCHEME
OF THE VACUUM STATES

We start with a short overview of a well-known formal
mathematical analogy between the construction of the jθi
vacuum states in gauge theories and Bloch’s construction
of the allowed/forbidden bands in condensed matter (CM)
physics (see e.g. [44]). The large gauge transformation
operator T plays the role of the crystal translation operator
in CM physics. T commutes with the Hamiltonian H and
changes the topological sector of the system

T jmi ¼ jmþ 1i; ½H; T � ¼ 0; ð12Þ

such that the jθi-vacuum state is an eigenstate of the large
gauge transformation operator T :

jθi ¼
X
m∈Z

eimθjmi; T jθi ¼ e−iθjθi:

The θ parameter in this construction plays the role of the
“quasimomentum” θ → qa of a quasiparticle propagating
in the allowed energy band in a crystal lattice with unit cell
length a.
An important element, which is typically skipped in

presenting this analogy but which plays a key role in our
studies is the presence of the Brillouin zones classified
by integers k. Complete classification can be either pre-
sented in the so-called extended zone scheme where
−∞ < qa < þ∞, or the reduced zone scheme where each
state is classified by two numbers, the quasimomentum
−π ≤ qa ≤ þπ and the Brillouin zone number k.
In the classification of the vacuum states, this corre-

sponds to describing the system by two numbers jθ; ki,
where θ is assumed to be varied in the conventional range
θ ∈ ½0; 2πÞ, while the integer k describes the ground state
(for k ¼ 0) or the excited metastable vacuum states (k ≠ 0).
In most studies devoted to the analysis of the θ vacua,
the questions related to the metastable vacuum states have
not been addressed. Nevertheless, it has been known for
some time that the metastable vacuum states must be
present in non-Abelian gauge systems in the large N limit
[1]. A similar conclusion also follows from the holographic
description of QCD as originally discussed in [2].
In the present context the metastable vacuum states have

been explicitly constructed in a weakly coupled “deformed
QCD” model [39]. We follow this construction by keeping
both: the metastable states as well as θ ≠ 0 states, such that
our complete classification is jθ; mi when the integer m
describes the metastable states for a given θ ∈ ½0; 2πÞ.
In terms of the CM physics we use the so-called reduced
zone scheme, rather than the extended zone scheme as
defined above.
The Euclidean potential density for the σ fields assumes

the following form (11)

Uðσ; θÞ ¼ N
XN
n¼1

�
1 − cos

�
σn − σnþ1 þ

θ

N

��
; ð13Þ

where we have added a constant term so that the potential is
positive semidefinite. In Eq. (13) the field σNþ1 is identified
with σ1 as before.
The lowest energy state, is the state with all σ fields

sitting at the same value (σn ¼ σnþ1) and has zero energy.
This is clearly the true ground state of the system, but there
are also potentially some higher energy metastable states
even for θ ¼ 0. For an extremal state we must have

∂U
∂σn ¼ 0; ð14Þ

for all n, which gives immediately

sin

�
σn − σnþ1 þ

θ

N

�
¼ sin

�
σn−1 − σn þ

θ

N

�
: ð15Þ

A necessary condition for a higher energy minimum of the
potential is thus that the σ fields are evenly spaced around
the unit circle or (up to a total rotation),

σn ¼ m
2πn
N

; ð16Þ

where m is an integer which labels the metastable states in
the extended classification scheme jθ; mi. This parameter
plays the same role as the Brillouin zone number k in CM
physics as discussed above. A sufficient condition is then

∂2U
∂σ2n > 0; ð17Þ

again for all n. This gives us

cos

�
σn − σnþ1 þ

θ

N

�
þ cos

�
σn−1 − σn þ

θ

N

�
> 0; ð18Þ

which using (16) gives

cos

�
2πm
N

−
θ

N

�
> 0: ð19Þ

This condition determines possible metastable states m for
a given θ ∈ ½0; 2πÞ and N. From (19) it is quite obvious that
metastable states always exist for sufficiently large N even
for θ ¼ 0, which is definitely consistent with old and very
generic arguments [1]. In our simplified version of the
theory one can explicitly see how these metastable states
emerge in the system, and how they are classified in terms
of the scalar magnetic potential fields σðxÞ for arbitrary θ.
One should remark here that a nontrivial solution for

θ ¼ 0 with m ≠ 0 in (19) does not exist in the “deformed
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QCD” model for the lowest N ¼ 2, 3, 4 as it was originally
discussed in [39]. However, for sufficiently large θ ≠ 0 the
metastable states always emerge forN ≥ 3, whileN ¼ 2, as
usual, requires a special treatment [30]. What is more
important is that Eq. (19) explicitly shows that at θ ¼ π a
metastable state with m ¼ 1 becomes degenerate with the
ground state with m ¼ 0 and the level crossing phenome-
non takes place precisely as it was originally described in
[28] for this specific model. When θ further increases the
metastable state becomes the lowest energy state of the
system (13) for the given θ.

IV. OBLIQUE CONFINEMENT FOR jθ;mi STATES
To understand the physical meaning of the solutions

describing the nontrivial metastable vacuum states, one
should compute the vacuum expectation value hMaðxÞi
of themagnetization for a given state jθ; mi classified by two
parameters m, θ as presented in previous Sec. III. The
corresponding operator MaðxÞ is defined as the creation
operator of a single monopole of type αa at point x. It has
been originally computed for the “deformed QCD”model in
[28]. The corresponding computations can be easily gener-
alized for arbitrary θ ≠ 0. The result of computations is

MaðxÞ ¼ eiðαa·σðxÞþθ
NÞ: ð20Þ

In the computation of (20) it has been assumed that the
external magnetic source is infinitely heavy. If one identifies
the correspondingmagnetic sourcewith themonopoles from
the ensemble then the corresponding operator is accompa-
nied by conventional classical contribution 8π2=ðg2NÞ.
Therefore, the resulting creation operator of a single monop-
ole of type αa at point x assumes the form

MaðxÞ ¼ e
−8π2

g2N · eiðαa·σðxÞþθ
NÞ: ð21Þ

This expression for the operator identically coincides for
N ¼ 2with formula (63) derived in drastically different way
by starting fromN ¼ 2 supersymmetricmodel and breaking
the supersymmetry.
Now we are in position to compute the vacuum expect-

ation value hθ; mjMaðxÞjθ; mi describing the magnetiza-
tion of the system. It can be easily computed for each given
state jθ; mi. Indeed, using the solutions (16), the magneti-
zation assumes the form

hθ; mjMaðxÞjθ; mi ∼ exp

�
i
θ

N
− i

2πm
N

�
; ð22Þ

where one should pick up a proper branch which satisfies
condition (19) describing the lowest energy state.
A different, but equivalent way to describe all these

jθ; mi states is to compute the expectation values for the
topological density operator for those states. By definition,

hθ; mj 1

16π2
tr½Fμν

~Fμν�jθ; mi≡ −i
∂SdualðθÞ

∂θ
¼ i

ζ

L
sin

�
2πm
N

−
θ

N

�
; ð23Þ

where the dual action SdualðθÞ is given by (8). The
imaginary i in this expression should not confuse the
readers as we work in the Euclidean space-time. In
Minkowski space-time this expectation value is obviously
a real number. A similar phenomenon is known to occur in
the exactly solvable two dimensional Schwinger model
wherein the expectation value for the electric field in the
Euclidean space-time has an i. The expectation value (23) is
the order parameter of a given jθ; mi state.
As expected, the ground state with m ¼ 0 at θ ¼ 0 the

expectation value (23) vanishes, which of course, implies
that the ground state respects P and CP symmetries. It is
not the case for a generic states with θ ≠ 0. These
symmetries are also broken for metastable states m ≠ 0
even for θ ¼ 0 as emphasized in [39].
The fact that the confinement in this model is due to the

condensation of fractionally charged monopoles has been
known since the original paper [26]. Our original claim
here is that the microscopical structure of the arbitrary
jθ; mi states can be also thought of as a condensate of the
same fractionally charged monopoles. The only difference
in comparison with the original construction [26] is that the
corresponding magnetization receives a nontrivial phase
(22) which depends on θ and integer numbermwhich plays
the same role as k-th Brillouin zone in the reduced
classification scheme in CM physics.
Now we want to present a few additional arguments

suggesting that the confinement in this system is indeed
generated by the samemagneticmonopoleswith no trace for
any dyons in this system which would provide a conven-
tional “dyon mechanism”. Indeed, the presence of the
electrically charged dyons would imply that the interaction
pattern between twoBogomol'ny-Prasad-Sommerfeld (BPS)
dyons at distance r must have the following structure

∼
1

4πr

�
e2q · q0 þ

�
2π

e2

�
m ·m0

�
: ð24Þ

At the same time there is no trace for such kind of interaction
in the original partition functionwhich assumes the form [26]

e
−2π2L
g2

hP
N
a;b¼1

P
MðaÞ
k¼1

P
MðbÞ
l¼0

αa·αbQ
ðaÞ
k QðbÞ

l GðxðaÞk −xðbÞl Þ
i
; ð25Þ

whereGðxðaÞ
k − xðbÞ

l Þ is the corresponding Green’s function.
Precisely this interaction generates the dual action (8) which
provides a proper low energy description of the system. One
can explicitly see that there is no electric portion of the
interaction in formula (25), in contrast with the anticipated
structure expressed as (24)which is the conventional formula
describing the interaction of two non-BPS dyons carrying
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simultaneously themagnetic and electric charges. In Sec. VI
Bwe come back to this point re-emphasize it from a different
perspective.
The argument presented above obviously dismisses the

presence of the electric charge of the constituents. It also
evidently raises the following question. How does the self-
duality work in this case if the electric charges are not
carried by the constituents? The answer is as follows: the
BPS self-duality for the monopole’s solutions is perfectly
satisfied. However, the electric portion of the self-duality
equation is due to the generation of the nontrivial holonomy
rather than due to the electric charges of the dyons. Indeed,
the self-duality equations for the monopoles assume the
conventional form

DiAa
4 ¼ Ba

i ; hAðaÞ
4 i ¼ 2π

NL
μa; μa · αb ¼ δab; ð26Þ

which is precisely the key element in the original con-
struction [26] when the holonomy hAðaÞ

4 i plays the role of
the vacuum expectation value for the Higgs field.
Another related question can be formulated as follows.

The topological charge operator is normally expressed
as the product of the magnetic and electric fields,
qðxÞ ∼ EðaÞðxÞ · BðaÞðxÞ. At the same time we claim that
only magnetic monopoles are present in the system. These
monopoles generate the oblique confinement, and saturate
the vacuum expectation values (22) and (23). How does it
work? The answer is as follows. The topological charge
operator assumes the form

Z
R3×S1

d4xqðxÞ¼
Z
R3×S1

d4x
g
4π2

XN
a¼1

hAðaÞ
4 i½∇ ·BðaÞðxÞ�

¼
Z
R3

d3x
1

N

XN
a¼1

XMðaÞ

k¼1

QðaÞ
k δðrðaÞk −xÞ; ð27Þ

where we integrated by parts and used formula (26) for the

holonomy hAðaÞ
4 i. One can explicitly see from (27) that the

only constituents of the system are fractionally charged

magnetic monopoles located at δðrðaÞk − xÞ with zero
electric charges as the corresponding sources are entirely
determined by the divergence of the magnetic field
½∇ ·BðaÞðxÞ�. In other words, there is no trace for the
dyons to play any role in the system.4

Nevertheless, the gap is generated at θ ≠ 0, the confine-
ment takes place in the conventional manner through the
condensation of the monopoles (22), the θ parameter enters
all the observables precisely as it should. This example
explicitly shows that the conventional view that the con-
finement in gauge theories at θ ≠ 0 is a result of the
condensation of the dyons cannot be correct, at least in
this simplified “deformed QCD” model. Furthermore, as
the transition between the “deformed QCD” model and
strongly coupled gauge theories should be smooth, we
expect that the picture presented above must hold in the
strongly coupled regime as well. These results should be
contrasted with the common lore which assumes that the
oblique confinement at θ ≠ 0 is a result of condensation of
the electrically charged dyons. In the next sections we
consider supersymmetric models to understand the nature
of this difference.

V. DYONS AND MONOPOLES IN N = 2
SUPER YANG-MILLS

Dyons and monopoles are the main nonperturbative
players in confinement in mass deformed N ¼ 2 super
Yang-Mills onR4, as the monopole’s condensation leads to
the confinement of electric charge probes at θ ¼ 0 as
originally discussed in [45]. It is commonly assumed that
these monopoles at θ ≠ 0 become the dyons as a result of
the Witten’s effect [43]. The condensation of the dyons
would lead to the oblique confinement speculated long ago
by ‘t’ Hooft [25]. On the other hand, it is the pure
monopoles and not the dyons that lead to confinement
in deformed Yang-Mills onR3 × S1 as explained above. To
elucidate this difference and track what really happens as
we go from N ¼ 2 super Yang-Mills to deformed Yang-
Mills on a circle, we start by reviewing the field contents of
the former theory. We warn the reader that unlike in
previous sections, now we care to distinguish between
Minkowskian and Euclidean quantities. This is important to
arrive at distinct conclusions.
N ¼ 2 super Yang-Mills theory has a massless N ¼ 2

hypermultiplet that contains four bosonic and four fer-
mionic degrees of freedom; see e.g. the textbook [44].
Alternatively, one can decompose theN ¼ 2multiplet into
two N ¼ 1 mutiplets: vector and chiral mutiplets; both are
in the adjoint representation of the gauge group. The
bosonic part of the Lagrangian of N ¼ 2 super Yang-
Mills is given by [in Minkowski space, where we work with
the signature ηMN ¼ ðþ1;−1;−1;−1Þ]

L ¼ 1

g2
tr

�
−
1

2
FMNFMN þDMϕ

†DMϕþ 1

2
½ϕ†;ϕ�2

�
; ð28Þ

where M;N ¼ 0, 1, 2, 3, the covariant derivative is
DM ¼ ∂μ þ i½AM; �, the field strength is FMN ¼ ∂MAN −
∂NAM þ i½AM; AN �, and the Lie algebra generators ta are

4The electric field symbol, EðaÞ, that appears in the topological
charge operator does not represent a genuine electric field irre-
spective of using the symbol E. In fact, in the BPS limit (e.g. in
N ¼ 1 supr Yang-Mills) this field mediates attractive force
between similar charges; i.e., it plays the role of a dilaton or scalar
field. As we break SUSYand go to the deformed pure Yang-Mills
limit, the scalar field is gapped andwe are left onlywith interactions
due to the magnetic field, as given by Eq. (25); i.e., there are only
objects that carrymagnetic charges. Hence, there are no dyons. The
same conclusion will be reached in Sec. VI.
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normalized as tr½tatb� ¼ δab
2
. For simplicity, we will mainly

work with SUð2Þ gauge group. Without loss of generality
we can always choose the vev of ϕ to be along the Cartan
generators, i.e. along the t3 direction in the SUð2Þ case.
Therefore, we take ϕ ¼ vt3 such that SUð2Þ is broken
down to Uð1Þ, i.e., we are in the Coulomb branch, and the
potential term tr½ϕ†;ϕ�2 vanishes, i.e., we are in the BPS
limit. We can also take the gauge invariant field u ¼ tr½ϕ2�
to parametrize the moduli space of the gauge theory. The
theory has a strong coupling scale Λ such that in the limit
u ≫ Λ2 the theory is in the weakly coupled regime,5 g ≪ 1.
In the weakly coupled regime, both perturbative and

nonperturbative spectra of the theory can be determined
using semiclassical analysis. As we mentioned above, the
theory is Higgsed down to Uð1Þ, and therefore, the bosonic
part of the perturbative spectrum consists of a massless
photon and W-bosons of charges �1 with respect to the
unbroken Uð1Þ. Since we are in the BPS limit, the non-
perturbative spectrum can be obtained via the Bogomol’nyi
completion of the energy functional (see [46] for a review):

E ¼ 1

g2

Z
d3xtr½E2

i þ B2
i þ ðD0ϕÞ2 þ ðDiϕÞ2�

¼ 1

g2

Z
d3xtr½ðBi ∓ cos αDiϕÞ2 þ ðEi ∓ sin αDiϕÞ2

þ ðD0ϕÞ2� � v cos αQM � v sin αQE

≥ �v cos αQM � v sin αQE; ð29Þ

where Ei ¼ Fi0, Bi ¼ 1
2
ϵijkFjk, and we have used integra-

tion by parts and the Bianchi identity DiBi ¼ 0. The
magnetic and electric charges, QM and QE, are defined via

QM ¼ 2

g2v

Z
d2Sitr½ϕBi�;

QE ¼ 2

g2v

Z
d2Sitr½ϕEi�; ð30Þ

where Si is a two-sphere at spatial infinity. Similarly, one
can define the scalar (dilaton) charge as

QS ¼
2

g2v

Z
d2Sitr½ϕDiϕ�: ð31Þ

The most stringent inequality E ≥ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

E þQ2
M

p
is obtained

by setting α ¼ tan−1ðQE
QM

Þ. The equality is saturated by a
configuration that satisfies the first order equations

Bi ¼ � cos αDiϕ;

Ei ¼ � sin αDiϕ;

D0ϕ ¼ 0: ð32Þ

Equations (32), with the upper sign, are solved by the
ansatz:

Aa
i ¼ ϵiamr̂m

�
1 − uðrÞ

r

�
;

Aa
0 ¼ r̂ajðrÞ; ϕa ¼ r̂ahðrÞ: ð33Þ

Substituting (33) into (32) one finds the solution

uðrÞ ¼ ~vr
sinhð ~vrÞ ;

hðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

M þQ2
E

p
QM

�
~v coth ð~vrÞ − 1

r

�
;

jðrÞ ¼ −
QE

QM

�
~v coth ð ~vrÞ − 1

r

�
; ð34Þ

where ~v ¼ v QMffiffiffiffiffiffiffiffiffiffiffiffi
Q2

EþQ2
M

p . Equations (34) constitute Julia-Zee

dyon-particle [47]. This configuration has a total energy
(mass)

E ¼ M ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

M þQ2
E

q
: ð35Þ

In the limit r → ∞ one can use (33) and (34) to show that

Ei ∼
QExi
r3

; Bi ∼
QMxi
r3

; Diϕ ∼ −
QSxi
r3

; ð36Þ

where QS ¼ QM
cos α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

E þQ2
M

p
. Thus, the dyon mass

satisfies the relation

M ¼ vQS: ð37Þ

Using (34) in the energy functional (29) we obtain the
interaction energy of two BPS dyon-particles with charges
ðQM;QEÞ and ðQ0

M;Q
0
EÞ and located at r and r0:

Eint ∼ g2
QEQ0

E þQMQ0
M −QSQ0

S

jr − r0j : ð38Þ

We see that, as expected, the interaction force of the Uð1Þ
field is repulsive, while the dilaton field is attractive [48].
Dyons are genuine particles6 that carry both electric and

magnetic charges. Classically, a dyon can have an arbitrary
electric charge, while it can only have quantized magnetic
charge QM ¼ 4πn

g2 , where n is a positive or negative integer,

5To one-loop order we have 4π
g2 ¼ 2

π log
v
Λ.

6More precisely, they are solitons.
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due to obvious topological reasons. However, quantum
mechanical consistency demands that a pair of dyon-
particles with charges ðQM;QEÞ and ðQ0

M;Q
0
EÞmust satisfy

the Dirac quantization condition QEQ0
M −Q0

EQM ¼ n 4π
g2 ,

where n is an integer. Therefore, both electric and magnetic
charges must be quantized: ðQM;QEÞ ¼ ð4πnMg2 ; nEÞ, where
nM, nE ∈ Z, and we find that the BPS spectrum is given by

MðnM; nEÞ ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2M

�
4π

g2

�
2

þ n2E

s
: ð39Þ

The BPS masses MðnM; nEÞ do not receive quantum
corrections, thanks to the high level of supersymmetry in
N ¼ 2 super Yang-Mills. In addition, one can take into
account the effect of the θ-vacuum, θ

32π2
~FMNFMN , by

making the substitution nE → nE þ nM θ
2π, which is

Witten’s effect [43]. One finally finds:

MðnM; nE; θÞ ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2M

�
4π

g2

�
2

þ
�
nE þ nM

θ

2π

�
2

s
: ð40Þ

We could also set nE ¼ 0, which is the limiting case of
‘t’ Hooft Polyakov monopole particles. However, a single
monopole has four collective coordinates: three translation
coordinates and one coordinate corresponding to a Uð1Þ
global transformation. The Uð1Þ collective coordinate is
compact [remember that Uð1Þ is descendent from SUð2Þ,
which is a compact group]. The Hamiltonian corresponding

to the compact coordinate is HUð1Þ ¼ p2
ϕ

2I , with I ¼ 4π
g2v.

Upon quantization, the magnetic monopole acquires an
electric charge; this is one of the eigenvalues of HUð1Þ.
Thus, quantum fluctuations in the background of an
‘t’ Hooft Polyakov monopole dresses it with a quantized
electric charge and gives rise to a dyon, with its mass given
by the BPS expression (40).
While the spectrum (40) is a well-established feature of

N ¼ 2 supersymmetry in weakly coupled regime at large
v, the role of these dyons in confined strongly coupled
regime is less understood. We review below some features
of the system relevant for our studies by paying special
attention to the dyon-particles. Precisely these degrees of
freedom, according to the conventional wisdom, should
condense at θ ≠ 0 and provide a precise realization for the
oblique confinement as envisaged by ‘t’ Hooft [25].
As we approach the strong coupling regime of the theory,

v ∼ Λ, most of the dyon-particles decay except the ones
with lowest charges (1,0) or (1,1), which become massless.
This theory is electrically strongly coupled and magneti-
cally weakly coupled. Therefore, the theory can be
described by a dualN ¼ 2 supersymmetric electrodynamic
of massless monopoles or dyons.

Now we insert a small mass term into the action with
m ≪ Λ. It breaks the symmetry from N ¼ 2 down to
N ¼ 1. One could naively think that the oblique confine-
ment might take place as a result of the dyon condensation.
However, the oblique confinement does not occur, at least
in weakly coupled regime [49,50]. The basic reason for that
is that the “pure monopoles” rather than dyons condense at
both points u ¼ �Λ2 as argued in [49,50]. This is in spite
of the fact that near u ¼ −Λ2 the dyons (1,1) rather than
monopoles (1,0) become massless particles. The absence of
the oblique confinement in the system is obviously con-
sistent with our analysis of the “deformed QCD” model in
Sec. IV. However, one cannot make a definite conclusion
with a large supersymmetry breaking in this construction
when the question on oblique confinement remains open
[49,50]. It should be contrasted with results of Sec. IV
where the transition to strongly coupled regime of ordinary
QCD is expected to be smooth as argued in Sec. I B.
One can also insert Nf flavours into the system [51]. It

turns out that the oblique confinement occurs for Nf ¼ 3

model, but does not occur for Nf ¼ 2 nor for Nf ¼ 1

models. All the arguments of Refs. [49–51] are crucially
depend on the specific properties of supersymmetric
theories. Therefore, it is not obvious if one can learn
any lessons for ordinary QCD. With this motivation in
mind we consider the Seiberg-Witten model being formu-
lated on R3 × S1 when one can approach the weakly
coupled regime by varying the size of S1.

VI. DYON-INSTANTONS VS MONOPOLE-
INSTANTONS ON R3 × S1

In this section we show that the nonperturbative sector of
N ¼ 2 on R3 × S1 consists of a variety of dyons, similar to
our previous discussions. However, in this section we
consider the Euclidean, rather than Minkowski formulation.
Thereforewe compute the Euclidean action generated by the
pseudoparticles, rather than particles. To avoid confusion
with terminologywe coin the corresponding pseudoparticles
the dyon-instantons to emphasize their Euclidean nature.We
will show that for sufficiently small S1 circles in the weakly
coupled regime where our computations are under control,
the partition function is saturated by the tower of monopole-
instantons rather than dyon-instantons. In our presentations
we closely follow [27,52–55].

A. R3 × S1: the large circle limit

We start our treatment by compactifying the x3-direction
over a circle and considering the Euclidean version of the
theory. The Euclidean time direction will be denoted by x4
such that x4 ≡ ix0, while the rest of coordinates are left
intact. We also define the Euclidean fields Âi ¼ −Ai, and
Â4 ¼ −iA0. Again, we assume that v ≫ Λ, and hence, the
theory is in its semiclassical regime. The Euclidean action
is given by
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SE ¼ 1

g2

Z
R3×S1

tr

�
1

2
F̂MNF̂MN þ ðD̂MϕÞ2

�

¼ 1

g2

Z
R3×S1

tr½ð ~EμÞ2 þ ð ~BμÞ2 þ ðD̂3ϕÞ2 þ ðD̂μϕÞ2�;

ð41Þ

where M, N ¼ 1, 2, 3, 4, F̂a
MN ¼ ∂MÂ

a
N − ∂NÂ

a
Mþ

fabcÂb
MÂ

c
N , D̂Mϕ

a ¼ ∂Mϕ
a þ fabcÂb

Mϕ
c, where fabc are

the group structure constants. We also defined ~Eμ ¼ F̂μ3,
~Bμ ¼ 1

2
ϵμναF̂να, where μ, ν ¼ 1, 2, 4. Notice that here we

distinguish between the electric and magnetic fields Êi, B̂i,
where i ¼ 1, 2, 3, and ~Eμ and ~Bμ. Although not mandatory,
this distinction is convenient since it will enable us to keep
track of various quantities. Comparing the Euclidean action
(42) with the energy functional (29), we immediately reveal
that a finite action solution can be obtained using the exact
same procedure we followed to obtain Julia-Zee dyon-
particles. The existence of a finite action solution demands
that the fields profiles are independent of x3 (exactly like
the dyon-particle solution is independent of x0). One
then can think of this solution as wrapping around the
x3-direction, and hence, in the Euclidean setup we obtain
dyon-instantons7 to be contrasted with dyon-particles
considered in Sec. V. Taking the length of the S1 circle
to be L, we immediately find that the action of the BPS
dyon-instanton is given by

SðnM;nE;θÞ¼LMðnM;nE;θÞ

¼Lv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2M

�
4π

g2

�
2

þ
�
nEþnM

θ

2π

�
2

s
: ð42Þ

In addition, two BPS dyon-instantons carrying charges
ðQM;QEÞ and ðQ0

M;Q
0
EÞ and located at r and r0 in the

Euclidean space will interact as in (38):

Sint ∼ g2
QEQ0

E þQMQ0
M −QSQ0

S

jr − r0j ; ð43Þ

where the Euclidean radial coordinate is defined as
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x24

p
, such that the profile functions in

(33) now depend on the newly defined r. Since dyon-
instantons have a finite action, they will contribute to the
Euclidean partition function. On R3 × S1 the gauge poten-
tial Â3 is a compact scalar with period L: Â3 ≅ Â3 þ 1=L.
For convenience let us define ω as

Â3 ≡ ω=L: ð44Þ

In addition, we can go to a dual description such that

F̂μν ¼
g2

2πL
ϵμνα∂ασ: ð45Þ

Again, one can show that σ is a compact scalar with period
2π. Let us also define Φ ¼ ϕ=L. Then, in terms of the
scalars ω, σ, and Φ, the insertion of a dyon-instanton in the
partition function can be represented by the vertex:

D ¼ e−SðnM;nE;θÞ

× e
iðnEþ θ

2πnMÞωþinMσþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2Mð4πg2Þ

2þðnEþ θ
2πnMÞ2

p
Φ

× fermion zero modes: ð46Þ

In the absence of fermion zero modes one can easily
show that this vertex will also reproduce the interaction
(43) such that ω mediates the force between QE charged
objects, σ mediates the force between QM charged objects,
while ϕ mediates the force between QS charged objects.8

This interaction is repulsive for both ω and σ fields [since
both ω and σ are parts of the electromagnetic Uð1Þ field;
notice the imaginary number i in front of these fields],
while it is attractive for Φ (a scalar field; notice the absence
of i in front of it).
A key point of this subsection is that the dyons are

generic configurations of the system. The interaction
pattern (43) obviously shows that they would be genuine
static dyons if one treats the Euclidean x3 coordinate as a
time variable. Based on these configurations one could
naively think that oblique confinement should occur as a
result of the condensation of the dyons as the generic gauge
configurations of the system. Nevertheless, as we demon-
strate next in Sec. VI B this naive picture is incorrect: if one
proceeds with computations in a theoretically controllable
way, the confinement occurs as a result of the monopole’s
(not dyon’s) condensation for arbitrary θ ≠ 0, similar to our
analysis in Sec. IV in “deformed QCD” model.

B. R3 × S1: the small circle limit

Our goal now is to consider the small circle limit where
computations can be carried out in a theoretically control-
lable way. With this goal in mind we ignore the fermion

7One should not confuse these dyon-instantons with the gauge
configurations considered in Refs. [56–58], which were (incor-
rectly) coined as the dyons or dyon-instantons. Those configu-
rations representing the instanton constituents from Refs. [56–58]
do not carry the electric charges and should be considered as
monopoles-instantons in our classification scheme.

8This can be shown by writing the Abelian part of the kinetic
term FMNFMN þ ðDMϕÞ2 in terms of the three-dimensional
fields ω, σ, and Φ:

K:E: ¼ 1

2g2
ð∂μωÞ2 þ

1

2g2
ð∂μΦÞ2 þ g2

8π2
ð∂μσÞ2; ð47Þ

which is derived in Sec. (VII). Then we insert the vertex Dðx1Þ in
the partition function and solve for the quadratic Lagrangian to
obtain expression (43).
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zero modes9 and consider a tower of dyon-instantons with a
unit magnetic charge and an arbitrary number of electric
charges ðQM;QEÞ ¼ ð4πg2 ; nEÞ:

S ¼
X
nE∈Z

e−Sð1;nE;θÞe
iðnEþ θ

2πÞωþiσþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4π
g2
Þ2þðnEþ θ

2πÞ2
p

Φ
: ð48Þ

Then, one can approximate the sum in (48) as

S ≅ e
−4πðLv−ΦÞ

g2
þiσ X

nE∈Z
eiðnEþ

θ
2πÞω−g2Lv

8π ðnEþ θ
2πÞ2 : ð49Þ

A fast convergence of the series demands that
Lv ≫ 4π

g2 ≫ 1. Therefore, for a very large circle the sum

will rapidly converge. For a small circle, however, the series
is poorly convergent and a method of resummation is
indispensable. To achieve this, we use the Poisson resum-
mation formula defined as:X

nE∈Z
fðnEÞ ¼

X
nW∈Z

~fðnWÞ;

~fðnWÞ ¼
Z

dkfðkÞe−2πnWk: ð50Þ

Applying this method to the series (48) we find [52],
modulo pre-exponential factor,

S ≅
X
nW∈Z

e
iσ−4π

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLv−ΦÞ2þðωþ2πnWÞ2

p
þinWθ: ð51Þ

In the limit vL ≫ ω we obtain the approximation

S ≅ e
−4πðLv−ΦÞ

g2
þiσ X

nW∈Z
e
− 2π
g2Lv

ðωþ2πnWÞ2þinWθ
: ð52Þ

The series (52) is rapidly convergent10 in the small S1 limit
vL ≪ 1. A careful inspection of (51) reveals that the sum is
over a tower of twisted monopole-instantons that carry
magnetic charges �1 and winding numbers nW ∈ Z, as we
show in details at the end of this section. This is a
remarkable result since in the small circle limit we can
think only about monopole-instantons instead of dyon-
instantons. This claim holds for any θ ≠ 0, as is evident
from (51).
Let us now make the shift ω → ωþΩ, where 0 < Ω <

2π is a background holonomy (remember that ω is the
scaled Â3 component), in (51). It will suffice to consider

only the two terms nW ¼ 0 and nW ¼ −1. For small
fluctuations of Φ and ω the terms nW ¼ 0 and nW ¼ −1
are given by

M0 ¼ e−S0e
iσþ4π

g2

Ωðω−LvΩΦÞffiffiffiffiffiffiffiffiffiffiffiffi
ðLvÞ2þΩ2

p
;

M−1 ¼ e−S−1e
iσ−iθþ4π

g2

ðΩ−2πÞðω− Lv
Ω−2πΦÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðLvÞ2þðΩ−2πÞ2
p

; ð53Þ

where S0 ¼ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLvÞ2þΩ2

p
g2 and S−1 ¼ 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLvÞ2þðΩ−2πÞ2

p
g2 are,

respectively, the actions of BPS and twisted (or
Kaluza-Klein) monopole-instantons. Notice that both
monopole-instantons have positive magnetic charges,
nM ¼ 1, as is evident from the same sign in front of
iσ in (53). This should be expected since the series (52)
originated from the sum over a tower of dyon-instantons
all having the same magnetic charge nM ¼ 1. Also, the
imaginary number in front of σ means that objects
carrying the same magnetic charges will experience a
repulsive force, which is also expected. The interesting
thing, though, is the absence of i in front of ω and Φ,
which means that the combination of the fields ω − Lv

Ω Φ
or ω − Lv

Ω−2πΦ mediates a scalar force rather than an
electromagnetic one. This is a fascinating phenomenon
since we start with a tower of dyon-instantons at large
S1. The dyon-instantons experience a repulsive electro-
magnetic force (for both electric ω and magnetic σ
parts) as in (43), in addition to a scalar force (mediated
by the scalar field Φ). Then, we resum over the electric
charges of this tower, using the Poisson resummation
formula, to find that at a small S1 the electric force is
incarnated as a scalar force. Using Qb to denote the
charge of the monopole-instanton under any of these
combinations, we find that two monopoles carrying
charges ðQM;QbÞ and ðQ0

M;Q
0
bÞ and located at r and

r0 experience a force

Sint ∼
QMQ0

M −QbQ0
b

jr − r0j : ð54Þ

In particular, for the BPS and twisted monopole-instan-
tons we have jQMj ¼ jQbj ¼ 4π

g2 . This formula obviously

shows that the only configurations which contribute to
the partition function in the regime, where computations
are under complete theoretical control, are the monop-
oles and twisted monopoles, but not the dyons carrying
the electric charges.
The last element which completes our analysis of this

subsection is the demonstration that the sum in (52) is
indeed over a tower of twisted monopole-instantons.
To this end, we set D̂3ϕ ¼ 0 in (42) [notice that this is
exactly compatible with the third equation in (32)] and
we also set ∂3 ¼ 0. This at least is enough to obtain

9Fermion zero modes in the duality we consider below is a
subtle issue that has yet to be understood, see [27,52].

10Remember that we are still in the semiclassical regime
g ≪ 1. Thus, the series (52) is valid in the parameter range
4π
g2 ≫ Lv ≫ ω.
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the zero-winding number (BPS) monopole-instanton.
Monopoles with higher winding numbers (twisted monop-
oles) can be obtained by replacing Â3 → Â3 þ 2πn

L . The
lowest (zero-winding) monopole-instanton action reads

SE ¼ 2

g2

Z
R3×S1

tr½ðD̂μA3Þ2 þ ðB̂μÞ2 þ ðD̂μϕÞ2�

¼ 2

g2

Z
tr½ðD̂μÂ3 ∓ sin β ~BμÞ2 þ ðD̂μϕ ∓ sin β ~BμÞ2

�2 sin βD̂μÂ3
~Bμ � 2 cos βD̂μϕ ~Bμ�

≥ LQM

�
�2

Ω
L
sin β � 2v cos β

�
; ð55Þ

where v and Ω
L are respectively the vevs of ϕ and Â3

and the vevs are taken along the fourth direction in
color space11 We also defined the magnetic charge:
QM ¼ 1

g2
R
dSμB̂

4
μ, where the integral is over a two-

sphere at infinity. The most stringent inequality SE ≤
QM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2v2 þ Ω2

p
is obtained by setting tan β ¼ Ω

Lv, while
the inequality is saturated by

D̂μϕ ¼ �B̂μ cos β;

D̂μA3 ¼ �B̂μ sin β: ð56Þ

A linear superposition of (56) can be written as

B̂μ ¼ �D̂μΨ1;

0 ¼ D̂μΨ2; ð57Þ

where

Ψ̂1 ¼ sin βÂ3 þ cos βϕ

Ψ̂2 ¼ cos βÂ3 − sin βϕ: ð58Þ

Equation (57) is the (anti)self-dual BPS monopole-
instanton equation. The solution of the self-dual
equation is

Âa
μ ¼ ϵμaνx̂ν

�
1 − uðrÞ

r

�
;

Ψ̂a
1 ¼ x̂hðrÞ;

Ψ̂2 ¼ 0; ð59Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x24

p
and

uðrÞ ¼ ~vr
sinhð ~vrÞ ;

hðrÞ ¼ ~v

�
coshð~vrÞ − 1

r

�
; ð60Þ

and ~v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

L2 þ v2
q

.

Now, to obtain the twisted-monopole solutions we just
need to make the substitution Ω → Ωþ 2πnW for all
integers nW . Thus, the action of the twisted monopole-
instantons with magnetic charge 4π

g2 is given by

SnW ¼ 4π

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2v2 þ ðΩþ 2πnWÞ2

q
; ð61Þ

which is exactly the action in the sum (51).
The main lesson to be learnt from these computations is

as follows. The generic gauge configurations of the system
obviously include the dyons. However, if one tries to
compute the partition function in a theoretically control-
lable region, the corresponding configurations can be
described exclusively in terms of the monopoles, without
any trace of the dyons. It is perfectly consistent with our
analysis of the “deformed QCD” model in Sec. IV, where
confinement is generated for any θ ≠ 0 as a result of
condensation of the monopoles. In Sec. VI C we show that
the picture also holds when supersymmetry is broken.

C. Supersymmetry breaking

In order to break supersymmetry in a controlled way we
first add a suitable scalar mass term mϕ for the field ϕ and
its super partner. In the limit mϕ ≫ Λ the scalar decouples,
which in turn breaks N ¼ 2 down to N ¼ 1. If this
decoupling happens in the large S1 limit, then the theory
flows to strong coupling regime, we loose theoretical
control, and the dyon-instantons picture is no longer
trusted. However, if the decoupling happens at a small
S1, then the theory stays in its weakly coupled regime and
preserves its center symmetry, i.e., Ω ¼ π. Setting v ¼ 0

(since the scalar ϕ decouples), defining b ¼ 4π
g2 ω, and

shifting σ → σ þ θ
2
, we find that the monopole-instanton

operators (53) are given by

M0;1 ¼ e−Smeiσ�ðbþiθ
2
Þ; ð62Þ

and Sm ¼ 4π2

g2 .

In order to further break N ¼ 1 we give the gaugino a
mass larger than the strong scale. Again, we can guarantee
that the theory is in the weakly coupled regime as long as
the circle is kept sufficiently small. Preserving the center
symmetry, however, requires that we add a double trace
deformation. This theory is our “deformed QCD” model
though in this case it represents pure gauge Yang-Mills

11Remember that we are in a Euclidean setup where our
infinite dimensions are taken along x1, x2, x4. Given our
numbering convention, then we also take the color space index
a to run over 1,2,4, where the diagonal Pauli matrix is taken along
the 4-direction.
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fields, see footnote in the Introduction regarding this
terminological convention. In this case the scalar field b
is gapped and we end with the monopole operators:

M0;1 ¼ e−Smeiσ�iθ
2: ð63Þ

This expression identically coincides with formula (21) for
“deformed QCD” model derived in a drastically differ-
ent way.
We conclude this section with the following generic

comment. In all cases when the computations can be
performed in a theoretically controllable way, the gauge
configurations which saturate the partition function are the
monopole-instantons for arbitrary θ ≠ 0. This claim holds
forN ¼ 2,N ¼ 1, and the nonsupersymmetric “deformed
QCD” model. This result should be contrasted with
conventional wisdom that the oblique confinement in the
system for θ ≠ 0 occurs as a result of the condensation of
the electrically charged dyons.

VII. WITTEN’S EFFECT

Since there is no trace of dyons in the spectrum of
theories on R3 × S1 in the small circle limit, one may
wonder how Witten’s effect is realized in this case. The
answer is that this effect can be seen for static (non
dynamical) electric or magnetic charges, i.e. Wilson or
‘t’ Hooft loops, which we use to probe the system [59]. In
order to show this explicitly, we start from the Abelian
action written in Minkowski space:

S ¼
Z
R3×S1

1

4g2
FMNFMN þ θ

32π2
FMN

~FMN

¼
Z
R3×S1

1

2g2
ðEμEμ − BμBμÞ −

θ

8π2
EμBμ; ð64Þ

where ~FMN ¼ ϵMNPQFPQ=2. Next, we dimensionally
reduce the action (64) by neglecting all dependence on
the x3-direction and use the fields ω and σ defined via (44)
and (45) (now in Minkowski space) to find12

Fνρ ¼ g2

2πL
ϵμνρ

�
∂μσ þ θ

2π
∂μω

�
; ð65Þ

and

S¼−
1

2L

Z
d3x

1

g2
ð∂μωÞ2þ

g2

4π2

�
∂μσþ

θ

2π
∂μω

�
2

: ð66Þ

From (65) we easily find (keeping in mind that the
Greek letters run over 0,1,2, while the Latin letters M,
N run over 0,1,2,3)

B1 ¼
∂2ω

L
; B2 ¼ −

∂1ω

L
;

B3 ¼
g2

2πL

�
∂tσ þ θ

2π
∂tω

�
;

E1 ¼ −
g2

2πL

�
∂2σ þ θ

2π
∂2ω

�
;

E2 ¼
g2

2πL

�
∂1σ þ θ

2π
∂1ω

�
;

E3 ¼ −
∂tω

L
: ð67Þ

A Wilson loop operator that measures the magnetic
flux in the y − z plane and warps around the S1 circle is
given by

WðμeÞ ¼ eiμe
H

A·dl ¼ e
iμe
R

y2
y1

dy
R

L

0
dzB1 → eiμeωðx;yÞ; ð68Þ

where μe is the electric charge of the Wilson line probe and
we used (67). Also, the ‘t’ Hooft loop operator that
measures the electric flux penetrating the y − z plane is
given by

T ðμm; θÞ ¼ e
−iμm2π

g2

R
y−z

dsn1E1 → eiμmðσðx;yÞþ θ
2πωðx;yÞÞ; ð69Þ

and μm is the probe magnetic charge.
Now, starting with a pure ‘t’ Hooft operator at θ ¼ 0, we

find upon sending θ → θ þ 2π

T ðμm; θ → θ þ 2πÞ ¼ T ðμm; θ ¼ 0ÞWðμmÞ; ð70Þ

i.e. the magnetic probe acquires an electric charge μm. This
is Witten’s effect at work.
The main lesson to be learnt here is that the static

monopole considered as the external source becomes the
electrically charged dyon, in full agreement with the
Witten’s effect [43]. However, when the monopoles
become the dynamical degrees of freedom and themselves
determine the ground state of the ensemble they remain
pure magnetic monopoles as demonstrated in Sec. VI.
At this point one may wonder how and why the θ

parameter remains to be an observable parameter of the
theory when exclusively Abelian gauge fields are present in
the system. Indeed, normally we assume that the θ
parameter in Maxwell Abelian QED is not physical because
the θ term in Maxwell QED can be expressed as the total
derivative which can be removed from the action due to the
triviality of the topology. The key point relevant for our
present discussions is that Witten’s effect for the Abelian
magnetic monopole is operational because the monopole
itself determines the nontrivial topology and the θ param-
eter becomes the physical parameter in QED in the non-
trivial topological (not vacuum) sector determined by the
monopole’s charge.

12The duality relation (45) can be incorporated into the action
(64) using the auxiliary action 1

4π

R
d3xϵμνα∂μσFνα.
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A similar effect when θ becomes a physically observable
parameter also holds for Maxwell QED when the external
magnetic flux selects a nontrivial topological sector of the
system, as argued in [60]. This effect, in fact, represents a
novel idea on the axion search experiments when the
system is sensitive to θ itself, rather than to ∂μθ as in
conventional axion search experiments.
In the context of the present work these arguments make

it clear that the external magnetic monopoles become the
electrically charged dyons in the presence of θ ≠ 0 in the
given topological winding sector determined by the exter-
nal magnetic charge itself. The dynamical magnetic
monopoles remain pure monopoles as they cannot select
the topological winding sector for the entire system.
Precisely these dynamical monopoles condense and deter-
mine the ground state of the system. This interpretation is
perfectly consistent with our conclusion at the end of
Sec. VI that the confinement in supersymmetric and non-
supersymmetric theories at θ ≠ 0 is due to the condensation
of the same magnetic monopoles, rather than dyons.

VIII. CONCLUSION

The main claim of the present work can be formulated as
follows. We showed that the confinement in the gauge
systems with θ ≠ 0 is a result of the condensation of the
same monopole’s configurations which generate the con-
finement at θ ¼ 0. It should be contrasted with a conven-
tional lore that the confinement at θ ≠ 0 is a result of the
condensation of the dyons.
The θ parameter is obviously a physical parameter of the

system since all other observables, including the vacuum
energy, are explicitly dependent on θ. Furthermore, CP
invariance is explicitly broken for θ ≠ 0 as the computa-
tions of the vacuum expectation value of the topological
density (23) suggest. However, the θ dependence emerges
in the system not as a result of any modifications of any
gauge configurations, in comparison with θ ¼ 0 case.
Rather, the θ dependence emerges in the system as a result
of selection of the specific superposition of the jθ; mi states
as discussed in Sec. III.
A simple way to interpret this result is to view the

classification jθ; mi in gauge theories in terms of the
reduced Brillouin zone scheme as it is normally done in
condensed matter physics, when θ parameter plays the role
of the quasimomentum in the m-th Brillouin zone. In our
classification the parameter m corresponds to the m−th
metastable state. Using this analogy it is quite obvious that
all the microscopical elements for any jθ; mi states are the
same. It is just a specific selection of the Bloch type
superposition (constructed from the condensates of N
different of monopole’s species) which provides a complete
description of the jθ; mi state.
We conclude this work with the following short com-

ments. It has been recent renewal interests in CP invariance
of the gauge theories at θ ¼ π [61,62]. While the questions

addressed in [61,62] and in our work are somewhat
different, nevertheless we observe a number of generic
features discussed in [61,62] which have their counterparts
in our simplified “deformed QCD” model. For example we
obviously observe that there is a degeneracy at θ ¼ π in our
framework as one can see from classification scheme
presented in Sec. III. Furthermore, one can explicitly see
from (22), (23) that CP invariance is spontaneously broken
at θ ¼ π, and the sign of CP violation is different
depending on the direction this point is approached:
θ ¼ π � ϵ. These drastic changes correspond to complete
reconstruction of the ground state when the system jumps
to another Brillouin zone in the reduced classification
scheme as described in Sec. III. Such a behavior obviously
signals a phase transition at θ ¼ π. The superpositions of
these two degenerate states at θ ¼ π can make CP odd and
CP even ground states.
One can trace the presence of the metastable states (which

eventually become degenerate states at θ ¼ π) to the pres-
ence of nonlocal operator, the holonomy, in the system.
Exactly this feature of nonlocality leads to a number of
properties in “deformed QCD” model which are normally
attributed to topologically ordered systems as argued in [34].
Precisely this sensitivity to arbitrary large distances in
gapped theories might be the key element in understanding
of the vacuum energy in cosmology because this type
of the vacuum energy is generated by nonlocal physics
and cannot be renormalized by any UV counter-terms, as
recently advocated in [63].
There are many arguments, presented in Sec. I B,

suggesting that this picture holds in the strongly coupled
regime as well. Therefore, we strongly believe that in QCD
we have precisely the same picture for the confinement at
θ ≠ 0 including metastable states. If this is indeed the case,
it may have profound observational effects on the axion
production rate as mentioned in Sec. I A due to the
nontrivial topological features of the system. It may be
also important for understanding of the nature of the
vacuum energy in cosmology as mentioned above. It
may also affect the axion domain wall formation due to
the 2π periodicity in θ and presence of the metastable
states; see footnote for references. The very same meta-
stable states, in general, violate CP invariance of the
system as they effectively correspond to nonvanishing
θeff ¼ 2πm=N. One could speculate [39] that precisely
these metastable states might be responsible for the CP-odd
correlations observed at RHIC and the LHC.
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