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R3×S1
L with double-trace deformations or adjoint fermions and hold it at temperatures near

the deconfinement transition. This theory is dual to a multi-component (electric-magnetic)

Coulomb gas that can be mapped either to an XY-spin model with Zp symmetry-preserving

perturbations or dual Sine-Gordon model. The entanglement entropy of the dual Sine-

Gordon model exhibits an extremum at the critical temperature/crossover. We also com-

pute Rényi mutual information (RMI) of the XY-spin model by means of the replica trick

and Monte Carlo simulations. These are expensive calculations, since one in general needs

to suppress lower winding vortices that do not correspond to physical excitations of the

system. We use a T-duality that maps the original XY model to its mirror image, making

the extraction of RMI a much efficient process. Our simulations indicate that RMI follows

the area law scaling, with subleading corrections, and this quantity can be used as a gen-
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1 Introduction

Information-theoretic techniques in quantum/statistical field theory has become an increas-

ingly important tool for studying quantum as well as classical phases of matter [1, 2]. The

power of information theory is that it provides probes that are able to distinguish between

different phases, even in the absence of local order parameters. This is attributed to the fact

that the information encrypted in a system is independent of the nature of its fundamental

constituents.

In the simplest setup, one uses correlation functions, C(x, y), of fields that appear in

a Lagrangian to form probes that transform non-trivially under certain global symmetries.

C(x, y) tells us how different parts of the system correlate to eachother as the system

transits from one phase to the other. In certain situations, however, there exists no global

symmetries or that C(x, y) is not sufficient to characterize the correlation in the system. In
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these cases quantities like entanglement entropy and mutual information are indispensable

for studying various quantum and classical phase transitions.

Continuum and lattice gauge theories have also been investigated in the light of infor-

mation theory, with often puzzling conclusions [3–11]. The complexity of gauge theories

stems from the fact that they are invariant under gauge redundancies and one needs to

be careful to account only for the physical rather than the spurious degrees of freedom.

Moreover, nonabelian asymptotically free theories are strongly coupled in the IR, making

the calculations of entanglement entropy a rather daunting task. A lattice formulation

of the problem is also plagued with ambiguities, since the gauge invariant Hilbert space

cannot be factorized into a tensor product of gauge invariant subspaces and one needs

to extend the definition of the Hilbert space. This fact was first realized in [4] and then

further investigated in subsequent works, see e.g., [12–16]. Such difficulties may be circum-

vented by invoking the gravity dual, as was first proposed in [17–19] and further examined

in many works, see, e.g., [4, 20, 21]. In these works it was argued that the entanglement

entropy between a spatial segment ` and its complement experiences a phase transition as

the length of the segment approaches a critical value `c. This behavior was interpreted as

a confinement/deconfinement transition.

One wonders, however, whether there is an alternative route that enables us to directly

study the entanglement entropy, and other information-theoretic quantities, in confining

gauge theories and examine their behavior near the deconfinement transition without the

need to invoke the gauge/gravity duality or facing the ambiguities of the lattice formulation

of gauge theory. In the present work we show that the answer to this question is affirmative.

We study Yang-Mills theory compactified on a small spatial circle S1
L and considered

at temperatures near the deconfinement transition. The center of the theory is stabilized

by means of deformations or by adding fermions obeying periodic boundary conditions

along the circle. In the Euclidean setup we say that the theory lives on R2 × T2, where

the two-torus T2 = S1
L × S1

β and S1
β is the thermal circle. This class of theories is adi-

abatically connected to Yang-Mills on R4 as we decompactify S1
L, see, e.g., [22–26]. For

small enough S1
L the theory is weakly coupled and dual to an XY-spin model with Zp

symmetry-preserving perturbations [27]. The connection between the XY-spin model and

Yang-Mills on R2 × T2 was made by mapping the partition functions of both theories to

a multi-component (dual) electric-magnetic Coulomb gas [28, 29].1 The duality can also

be derived more rigorously using the heat kernel methods in the presence of a non-trivial

holonomy [31]. Perturbations and vortices in the spin system map to magnetic charges

(monopole- or bion-instantons) and electrically charged W-bosons in field theory (or vice

versa, depending on the duality frame). Unlike the Svetitsky and Yaffe classification of

the deconfinement transition [32], which is based on modeling the center symmetry of the

gauge group using a scalar field theory, the gauge theory/XY-spin model duality is an exact

mapping between both sides of the duality, at least within the validity of the Coulomb gas

as an effective field description of gauge theory.

1Also, there have been attempts to describe the thermal dynamics of QCD on R3 × S1
β as a plasma of

classical electric and magnetic charges, see, e.g., [30].
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In fact, it can be shown that there exists two equivalent XY-spin descriptions of the

gauge theory, which are the T-dual of each other. Moreover, an XY-spin model with

Zp symmetry-preserving perturbations is equivalent to a dual Sine-Gordon model, which

again can be shown via the use of the dual Coulomb gas. This furnishes a web of dualities

between Yang-Mills on a torus, XY-spin models, and dual Sine-Gordon models.

We exploit this web of dualities to study the entanglement entropy and mutual infor-

mation in various flavors of Yang-Mills on R2 × T2. In particular, we consider Yang-Mills

with center-preserving deformations in the absence and presence of fundamental fermions.

We also consider a third example where we preserve the center by adding adjoint fermions

obeying periodic boundary conditions along S1
L. In the three examples we study the en-

tanglement entropy in the dual Sine-Gordon model and show that this quantity exhibits a

maximum at the transition/crossover temperature.

Next, we study the Rényi mutual information (RMI) in the XY-spin models with Zp-
preserving perturbations. We achieve this by considering a lattice version of the model

and perform the computations using the replica trick and Monte Carlo simulations. The

advantage of the lattice XY-spin model over the lattice formulation of gauge theories is that

the former does not suffer from ambiguities related to factorization of the Hilbert space.

We find that RMI follows the area law scaling, with subleading corrections, and its finite

size scaling exhibits a clear crossing at the critical temperature, which is consistent with

the location of the discontinuity of the magnetic susceptibility. We observe this behavior in

Yang-Mills with deformation and with adjoint fermions, while adding fundamental fermions

washes out this effect.

Our calculations are the first examples of using the entanglement entropy and RMI to

probe phase transformations in weakly coupled confining gauge theories.

This work is organized as follows. In section 2 we introduce our construction and

review the main perturbative and nonperturbative ingredients of the theory. Since this

class of theories have been extensively studied over the past decade, we keep our discussion

brief. The interested reader can refer to a vast literature for more details. In section 3

we consider the theory at temperatures near the transition point and construct the dual

Coulomb gas. We also show the equivalence between this gas and XY-spin and dual Sine-

Gordon models. The T-duality of the XY-spin model is also elucidated in this section. A

reader who is familiar with the web of dualities we discuss in the present work can skip

directly to section 4, which is devoted to the study of the entanglement entropy and mutual

information. After a brief introduction to these tools, we study the behavior of the former

quantity in the dual Sine-Gordon model via analytical techniques. Next, we turn to a

lattice version of the XY-spin model and use the replica trick and Monte Carlo simulations

to numerically calculate RMI. Our numerical results are presented in section 5. We end

with a discussion and future directions in section 6.
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2 Theory and formulation

We consider SU(2) Yang-Mills theory compactified over a circle S1
L with circumference L,

which is taken to be much smaller than the strong coupling scale, i.e., LΛQCD � 1:

SSU(2) =

∫
R3×S1L

1

2g2
trF [FMNFMN ] , (2.1)

where g is the 4-D coupling constant. We say that the theory lives on R3×S1
L, and we take

the circle in the x3 direction. In this work we use the upper case Latin letters to denote

four dimensional quantities, M,N = 0, 1, 2, 3, while we use Greek alphabets to denote

quantities on R3, i.e., µ, ν = 0, 1, 2. We also adopt the normalization trF
[
τaτ b

]
= δab,

where {τa} are the SU(2) color matrices. This amounts to using the fundamental weight

ω = 1√
2

and the root α =
√

2. Since the circle is small, the theory is in its weakly coupled

regime and we can perform reliable perturbative/semi-classical analysis. However, in this

regime the theory breaks its center symmetry. In order to restore the center, one needs to

modify the theory in one of two ways.

The first option is to add a double-trace deformation to the 3-dimensional reduced

theory [33]:

∆S =

∫
R3

a

L3
|Ω|2 , (2.2)

where a is a dimensionless coefficient that has to be taken large enough to win over the

gauge field fluctuations that destabilize the center. The quantity Ω = trF

[
e
i
∮
S1
L
A3

]
=

trF

[
eiLA

3
3τ3
]

is the fundamental Polyakov loop wrapping around the circle, and we have

chosen the gauge field A3 to lie along the third direction in the color space.2 This theory

is known as deformed Yang-Mills, or dYM for short.

The other method we can use in order to preserve the center symmetry is to add

fermions in the adjoint representation of the gauge group and give them periodic boundary

conditions along S1
L. In this regard, this theory is distinct from thermal field theories,

where the fermions obey anti-periodic boundary conditions. Upon dimensionally reducing

the theory to 3-D, we integrate out a tower of Kaluza-Klein excitations of fermions and

gauge fields [34]. This gives rise to the effective action [22]

∆S =

∫
R3

2(−1 + nf )

π2L3

∞∑
n=1

1

n4
|Ωn|2 , (2.3)

where nf is the number of the massless Weyl fermions.3 We call this class of theories

QCD(adj). In fact, one can also use massive adjoint fermions with masses m ≤ L−1 in

order to stabilize the center. This is, however, effectively equivalent to adding a double-

trace deformation. In this work we limit our treatment to dYM and QCD(adj) with

2Such a choice can always be made using an SU(2) global transformation.
3For asymptotically free theory we take nf ≤ 5.5. The case nf = 1 corresponds to super Yang-Mills

(SYM), and we refrain from discussing it in this work. For extensive works on SYM on R3×S1
L see [25, 35–37].
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massless fermions. The reader can refer to the following list of references [26, 36, 38–46],

which examined different aspects of QCD-like theories on a circle.

In order to examine the effect of fundamental matter on the deconfinement transition,

we also consider dYM in the presence of fundamental Dirac fermions4 obeying periodic

boundary conditions along S1
L. Indeed, the addition of fundamental fermions will push the

theory towards breaking the center symmetry. However, we can always counter act this

effect by taking the coefficient a in (2.2) to be large enough. We call this theory deformed

Yang-Mills with fundamentals, or dYM(F) for short.

2.1 The perturbative spectrum

In this section we analyze the perturbative spectrum of each of the three theories we

considered above: dYM, dYM(F), and QCD(adj). Upon dimensionally reducing these

theories to 3-D, a nonzero vacuum expectation value (vev) of A3 develops, and therefore,

the gauge group SU(2) breaks spontaneously to U(1). One can use (2.2) or (2.3) to show

easily that the vev of A3 is given by LA3
3 = π√

2
. As we mentioned above, the vev respects

the center symmetry because of either adding a deformation to the theory or using adjoint

fermions. In 3-D the photon has a single degree of freedom, and hence, we can go to

a dual picture where we can describe it using a single scalar σ via the duality relation

F 3
µν = g2

4πL∂ασεαµν . Then, the photon’s kinetic energy reads

LU(1) =
g2

16π2L
(∂µσ)2 . (2.4)

σ is a compact scalar valued in R/2πω, or in other words, we impose the identification

σ ∼ σ+ 2π√
2
. The gauge field components that are perpendicular to the third color direction

acquire a mass MW = π
L and become charged under the unbroken U(1); namely these are

the electrically charged W-bosons with electric charges valued in the root system.5 In

particular, the charges are QW = ±
√

2. Upon adding fundamental fermions to dYM, i.e.,

for dYM(F), one finds that the fermions acquire a mass MF = A3
3ω = π

2L and charges

±ω = ± 1√
2

under U(1). The fundamental fermions are lighter than the W-bosons, and

hence, we expect that they will dominate the dynamics in dYM(F). Finally, upon adding

adjoint fermions we find that their component along the third direction is massless and

uncharged under U(1), and thus, it does not participate in the dynamics of our theory. The

other two components acquire a mass Madj = MW = π
L and charges Qadj = QW = ±

√
2.

In this regard, they are indistinguishable from W-bosons on the classical level. We will see

below that near the deconfinement transition all particles behave classically and one needs

not distinguish between adjoint fermions and W-bosons. This completes the discussion of

the perturbative spectrum. For more details the reader should consult [42, 47].

4The maximum number of Dirac fermions one can add before losing the asymptotic freedom of the

theory is 11.
5There are also higher Kaluza-Klein modes of W-bosons, which are much heavier than MW , and hence,

we neglect them in our treatment.
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2.2 The nonperturbative spectrum

In addition to the perturbative sector, our theories admit nonperturbative saddles. These

are monopole- and bion-instantons. The monopole-instantons are a direct sequence of the

nontrivial second homotopy group. In fact, in a center-symmetric vacuum we have two

types of monopole-instantons with the exact same action SM = 4π2

g2
and charges QM =

±
√

2: the normal BPS (’t Hooft-Polyakov) and twisted (first Kaluza-Klein) monopoles,6

see [48, 49]. In dYM both types of monopoles participate in the dynamics; the proliferation

of these monopoles causes the theory to develop a mass gap and the electric charges to

confine. This is the celebrated Polyakov’s confining mechanism [31, 50]. The presence of

fundamental fermions in dYM(F) modifies this picture slightly. While the twisted monopole

does not get affected by the presence of fermions, the BPS monopole will acquire a single

fermionic zero mode. This can be envisaged either by solving the Dirac’s equation in the

background of a single monopole [51, 52] or from the Callias’ index [53–55]. Therefore,

only one type of monopoles participates in the generation of the mass gap in dYM(F).

The effect of monopoles can be taken into account in the partition function by inserting

the vertex e
− 4π2

g2
e±i
√

2σ(x)

at arbitrary spacetime points. Since g � 1, we find that the mean

free path between the monopoles ∼ Le
4π2

3g2 is much larger than their core radius (∼ L). This

is the dilute gas limit, and thus, one can perform a reliable summation of the monopole

contribution to the partition function. The resulting effective IR Lagrangian of both dYM

and dYM(F) takes the form

Leff =
g2

16π2L

[
(∂µσ)2 +m2

σ cos(
√

2σ)
]
, (2.5)

where mσ ∼ e
− 4π2

g2

L is the mass gap (monopole fugacity). From the discussion above we

conclude that the fugacity of dYM is twice that of dYM(F).

The adjoint fermions in QCD(adj) makes the magnetic sector more complex. The index

theorem indicates that both types of monopoles have two fermionic zero modes, and hence,

they cannot participate directly in generating a mass gap. However, correlated monopole

events made of a single BPS and a single twisted monopoles can form. The resulting

molecules are dubbed magnetic-bions [22, 47]. They carry twice the action and twice the

charge of a single monopole-instanton: SB = 8π2

g2
, QB = ±2

√
2. The IR Lagrangian takes

the form

Leff =
g2

16π2L

[
(∂µσ)2 +m2

σ cos(2
√

2σ)
]
, (2.6)

where mσ ∼ e
− 8π2

g2

L is the mass gap (bion fugacity) of QCD(adj).

Finally, since both dYM and QCD(adj) have a ZC2 center symmetry, an order param-

eter that transforms nontrivially under this symmetry can be used to distinguish between

different phases. This is the Polyakov loop that wraps around the time circle. In addition,

6There is an infinite tower of these monopoles. However, only the ones with the smallest action modify

the IR dynamics of the theory.

– 6 –



J
H
E
P
0
8
(
2
0
1
8
)
1
7
5

x
1

x
0

x
2

x
1

x
2

dimensional

reduction

0

β

Figure 1. The 3-D system at finite temperature consists of W-bosons (represented by blue vortices)

and instantons (represented by red square). The W-bosons are genuine particles, and hence, they

trace worldlines (these are the blue vortices). In addition to the W-bosons we have instantons,

which appear as localized objects in the Euclidean space. At finite temperature we identify the

time-direction x0 = 0 ∼ β and the worldlines of W-bosons become closed circles. Near the transition

we can neglect all the Matsubara modes keeping only the zero mode; the system becomes effectively

a 2-D Coulomb gas.

QCD(adj) enjoys a Zdχ2 discrete chiral symmetry, which is broken in the low temperature

regime [22]. We discuss the thermal properties of our systems in the next section.

3 Finite temperature effects: the dual Coulomb gas, XY-spin model,

dual Sine-Gordon model, and deconfinement

3.1 The dual Coulomb gas

In this section we analyze the competing degrees of freedom as we consider our theory

at a finite temperature. To this end we formulate dYM, dYM(F), and QCD(adj) on

R2× S1
L× S1

β , where S1
β is the time (thermal) circle. Thus, the fermions obey anti-periodic

boundary conditions along S1
β , while they still obey periodic boundary conditions along S1

L.

The temperature T = 1
β is assumed to be much smaller than the W-boson mass, i.e., β � L,

and hence, we are far from the point of SU(2) symmetry restoration (melting point of the

W-bosons). At this range of temperatures, both W-bosons and heavy fermions participate

in the dynamics of the theory. Their fugacities will follow the Boltzmann’s distribution:

ξW ∼
T

L
e−

MW
T , ξF ∼

T

L
e−

MF
T . (3.1)

At temperatures close to the deconfinement transition, which will be shown to be much

smaller than the melting temperature of W-bosons, only the massless mode along S1
β is

important. Therefore, our theories can be dimensionally reduced to 2-D and effectively we

have a gas of magnetic (monopoles or bions) and electric (W-bosons or charged fermions)

– 7 –
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QF ξF QW ξW QM ξM QB ξB

dYM — — ±
√

2 T
Le
−MW

T ±
√

2 e
− 4π2

g2

L3T
— —

dYM(F) ± 1√
2

T
Le
−MF

T ±
√

2 T
Le
−MW

T ±
√

2 e
− 4π2

g2

L3T
— —

QCD(adj) — — ±
√

2 T
Le
−MW

T — — ±2
√

2 e
− 8π2

g2

L3T

Table 1. Charges and fugacities of the electric and magnetic components in each theory.

charges; see figure 1. The fugacities of magnetic monopoles and bions are [27]:

ξM ∼
e
− 4π2

g2

L3T
, ξB ∼

e
− 8π2

g2

L3T
. (3.2)

This gas has been considered before in [27, 56] in great details. Here, we only sum-

marize the final picture. First, any electrically charged objects in 2 + 1-D will experience

logarithmic potential, which is also true after compactifying the time direction [57]:

V (Qe1 , Qe2) = −g
2Qe1Qe2
4πLT

log T |R1 −R2| . (3.3)

The potential between magnetically charged instantons in 3-D Euclidean space follows

the inverse square law. Upon dimensionally reducing the theory to 2-D we obtain the

logarithmic potential:

V (Qm1 , Qm2) = −4πLTQm1Qm2

g2
log T |R1 −R2| . (3.4)

In addition, magnetic and electric charges will experience Aharonov-Bohm interaction:

V (Qe, Qm) = i2QeQmΘ(Re −Rm) , (3.5)

where Θ is the angle between the vector Re −Rm and the x2-axis.

The mean free path between the various components of the gas is exponentially larger

than their core radius (∼ L). For example, the mean free path between W-bosons or

fermions is lmfp ∼ Le
MW,F

3T . We show below that the transition temperature Tc ∼ g2

πL ,

and therefore, lmfp ∼ Le
π2

g2 � L. Also, near the transition temperatures the momentum

of W-bosons or fermions is p ∼
√
MW,FTc and the corresponding De Broglie wavelength,

λ ∼ L
g2

, is much smaller than the mean free path. We conclude that our Coulomb gas is

classical in nature.

At this stage, with the help of table 1, we are ready to write down the dual (multi-

component) Coulomb gas Hamiltonian for our theories.7 In the following we will use

subscripts with upper case Latin letters to denote W-bosons, lower case Latin letters to

7It is dual in the sense that both electric and magnetic components are present in the gas.

– 8 –
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denote monopoles or bions, and Greek letters to denote Fundamental fermions. The dual

Coulomb gas of dYM contains W-bosons and magnetic monopoles. Its Hamiltonian reads:

−βHdYM =
8πLT

g2

∑
a>b

qaqb log T |Ra −Rb|+
g2

2πLT

∑
A>B

qAqB log T |RA −RB|

+i2
∑
A,a

qAqaΘ (Ra −RA) , (3.6)

where we use {qa, qA = ±1} to denote the positive and negative charges. The dual Coulomb

gas of dYM(F) contains the fundamental fermions as an extra component:

−βHdYM(F ) =
8πLT

g2

∑
a>b

qaqb log T |Ra −Rb|+
g2

2πLT

∑
A>B

qAqB log T |RA −RB|

+
g2

8πLT

∑
α>β

qαqβ log T |Rα −Rβ |+
g2

4πLT

∑
α,A

qαqA log T |Rα −RA|

+i2
∑
A,a

qAqaΘ(Ra −RA) + i
∑
α,a

qαqaΘ(Ra −Rα) . (3.7)

In fact, since the fundamental fugacity is exponentially larger than that of the W-bosons

(the fundamental fermions are much lighter than the W-bosons), we can neglect the latter

in the Coulomb gas. Finally, the dual Coulomb gas of QCD(adj) is

−βHQCD(adj) =
32πLT

g2

∑
a>b

qaqb log T |Ra −Rb|+
g2

2πLT

∑
A>B

qAqB log T |RA −RB|

+i4
∑
A,a

qAqaΘ (Ra −RA) . (3.8)

Here, we note that both W-bosons and the heavy adjoint fermions are treated on equal

footing since they are indistinguishable classically: they have the same fugacity and we use

the same letter A to denote both of them.

The grand canonical partition function of the dual Coulomb gas is given by an arbitrary

sum over all species weighted by their fugacities:

Z =
∞∑
k=0

∫
d2RA1

∫
d2RA2 . . .

∫
d2RAk (ξe)

k

×
∞∑
p=0

∫
d2Ra1

∫
d2Ra2 . . .

∫
d2Rap (ξm)p e−βH , (3.9)

where ξe and ξm are respectively the electric and magnetic fugacities. The competition

between the different degrees of freedom of the gas determines the nature of phase transition

or crossover as we dial the temperature. Also, different theories enjoy different discrete

symmetries, as we discuss below. These symmetries get broken/restored in different phases.

– 9 –
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3.2 Equivalence between dual Coulomb gas and XY-spin model

The 2-D dual Coulomb gas described by the partition function (3.9) and the Hamiltoni-

ans (3.6), (3.7), or (3.8) can be mapped to a 2-D XY-spin model. Such equivalence was

rigorously proven in various previous works, see e.g., [28, 58]. Here we demonstrate this

equivalence by showing that the partition function of the XY-spin model reproduces the

grand canonical partition function of the dual Coulomb gas.

The XY-spin model action is given by

S[K,Gp, p] =

∫
d2x

K

4π
(∂µθ)

2 − 2Gp cos (pθ) , (3.10)

where θ is a compact scalar field, i.e., θ ∼ θ + 2π, and Gp cos (pθ), where p ∈ Z+, are Zp
symmetry-preserving perturbations. The kinetic term is invariant under a U(1) symmetry,

θ → θ + c, which is explicitly broken by the perturbations down to a Zp subgroup: θ →
θ + 2π

p . The partition function reads:

Z[K,Gp, p;Hw, w] =

∫
Dθe−S[K,Gp,p] . (3.11)

The meaning of K,Gp, p as arguments of Z is evident, while the meaning of Hw and w is

not yet clear. In the following we clarify this meaning and elucidate the connection between

the XY-spin model and dual Coulomb gas.

To this end we write 2Gp cos(pθ) in (3.10) as Gp
(
eipθ + e−ipθ

)
and expand the action

as a series in Gp:

e
∫
d2x2Gp cos(2θp) =

∑
k≥0

(2Gp)
k

k!

(∫
d2x

eipθ(R) + e−ipθ(R)

2

)k

=
∑
n≥0

∑
qJ=±1

(Gp)
2n

(n!)2

2n∏
J=0

∫
d2xJe

iqJθ(RJ ) . (3.12)

qJ is interpreted as the charge of a particle inserted at location RJ . In other words, the

insertion of the operator eiqJθ(RJ ) creates a charge qA at position RJ . This is the first

step needed in order to recognize that the partition function of the XY-spin model can

be rewritten as the grand canonical partition function of a collection of charged particles.

Notice that we have assumed an equal number of positive and negative charges in going

from the first to second line above. The neutrality of the total charge of the system,

i.e.,
∑

A qJ = 0, is important in order to have a well defined partition function in 2-

D [59]. Next, we insert (3.12) into (3.11) to find that the Gaussian action
∫
d2x(∂µθ)

2 is

sourced by the charges located at RJ . The resulting equation of motion of θ reads ∇2θ =

−i∑J pqJδ
(2)(R − RJ). Since θ is a compact scalar, its most general solution contains

vortices with arbitrary integer winding numbers w = qj located at arbitrary positions Rj :

θ(R) = − ip
K

∑
J

qJ log T |R−RJ |+
∑
j

qjΘ(R−Rj) + θ0(R) , (3.13)
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where the temperature T is an IR regulator that is introduced to make the argument of

the log dimensionless8 and also for an obvious convenience, θ0(R) are periodic spin-wave

fluctuations, and the vortices satisfy the neutrality condition
∑

a qj = 0. The creation of

a vortex costs a certain amount of core energy which increases with the winding number.

Therefore, the partition function (3.11) depends implicitly on the vortex winding number

w and its fugacity Hw. Finally, we substitute the solution (3.13) into (3.11) and sum over

an arbitrary number of vortices of charge q = ±w and fugacity Hw, to obtain

Z[K,Gp,p;Hw,w] = Z0

∑
m,qj=±w

∑
n,qJ=±1

G2n
p

(n!)2

H2m
w

(m!)2

2n∏
J=0

∫
d2xJ

2m∏
j=0

∫
d2xj

×exp

∑
J1>J2

p2

K
qJ1qJ2 logT |RJ1−RJ2 |+

∑
j1>j2

Kqj1qj2 logT |Rj1−Rj2 |

+ ip
∑
J,j

qJqjΘ(Rj−RJ)

 , (3.14)

where Z0 is the partition function of the spin-wave fluctuations. The fugacity Hw is an

implicit parameter of the partition function (3.14) since its precise value can’t be deter-

mined apriori. In a UV regularization of the theory the value of Hw is of the same order of

magnitude of the cutoff scale, i.e., Hw ∼ Λ2 . For example, one can regularize the theory

by putting it on a lattice to find Hw ∼ a−2, where a is the lattice spacing, see [28, 58, 60]

for more details. This is exactly what we do in section 4.6.

It is important to emphasize that the subscripts j and J in (3.14) can denote either

the electrically or magnetically charged particles, with no preference at this point. The

partition function (3.14) is invariant under a 2π monodromy of Θ(Rj −RJ), and hence,

the product pqjqJ ∈ Z. This completes the proof of the equivalence between the partition

function of the XY-spin model and dual Coulomb gas.

The fact that qj and qJ could denote either the electric or magnetic charges give us

the freedom to write two equivalent XY-spin models for each theory we have at hand. In

one model the electric charges are explicit while the magnetic charges are implicit, and

vice versa for the second model. In fact, these two equivalent models are mapped to each

other via a T-duality. In the following we elucidate this construction for dYM, dYM(F),

and QCD(adj).

dYM and dYM(F).

1. The partition function of a description where the ’t Hooft-Polyakov magnetic

monopoles are explicit is given by:

S

[
K =

g2

8πLT
,G1 = ξM

]
=

∫
d2x

g2

32π2LT
(∂µθ)

2 − 2ξm cos θ ,

Z

[
K =

g2

8πLT
,G1 = ξM , p = 1;H1, H2, w = {1, 2}

]
=

∫
Dθe−S . (3.15)

8One can also introduce a UV cutoff for the same reason.
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This action can also be obtained from the 3−D action (2.5) after dimensionally re-

ducing the theory to 2-D and making the substitution
√

2σ = θ. The operator e±iθ

creates an ’t Hooft-Polyakov magnetic monopole with a unit charge, which is the low-

est magnetic charge allowed in this description. The winding numbers w = 1, 2 are the

fundamental and adjoints charges, receptively. Therefore, the vortices are the Dirac

fermions (w = 1) and W-bosons (w = 2). This can be easily envisaged from compar-

ing the general Coulomb gas in (3.14) with (3.6) and (3.7). The fugacity of a unit

winding vortex H1 is naturally bigger than that of a vortex with twice the winding H2

(or in other words, the core energy of w = 2 is bigger than that of w = 1). This exactly

matches our expectation that the fugacity of the fundamental fermions is bigger than

that of the W-Bosons. We conclude that H1 = ξF , H2 = ξW . Therefore, (3.15) is a

natural description of dYM(F). In order to remove the fermions from the description,

and hence describe dYM, one has to exclude the unit-winding vortices.

The action in (3.15) does not have an order parameter in the presence of w = 1

vortices, and hence, one does not expect to see a phase transition in this system. In

fact, it can be shown that this system is always in a gapped phase.

2. In the dual description the W-bosons and fundamental fermions are explicit. The

action and partition function take the form

S

[
K =

8πLT

g2
,G1 = ξF ,G2 = ξW

]
=

∫
d2x

2LT

g2
(∂µθ)

2−2ξF cosθ−2ξW cos(2θ) ,

Z

[
K =

8πLT

g2
,G1 = ξF ,G2 = ξW ,p= {1,2};H1,w= 1

]
=

∫
Dθe−S . (3.16)

The operators e±iθ and e±2iθ create a Dirac fermion and W-boson, respectively. The

vortex with the lowest winding number w = 1 corresponds to monopoles, i.e., H1 =

ξM , as can be checked directly by comparing (3.14) with (3.6) and (3.7). Therefore,

the action (3.16) describes dYM(F) and in the special case ξF = 0 it describes dYM.

Setting ξF = 0, i.e., for dYM, we find that the system enjoys a Z2 symmetry:

θ → θ + π. This is the ZC2 zero-form center symmetry, which emerges upon

compactifying the theory over S1
β .

QCD(adj).

1. We start with the XY-model that explicitly accounts for the magnetic bions [27]:

S

[
K =

g2

8πLT
,G2 = ξB

]
=

∫
d2x

g2

32π2LT
(∂µθ)

2 − 2ξB cos (2θ) ,

Z

[
K =

g2

8πLT
,G2 = ξB, p = 2;H2, w = 2

]
=

∫
Dθe−S . (3.17)

This is the direct generalization of (3.15) from p = 1 to p = 2. The action (3.17)

can be obtained from the 3-D theory (2.6) after dimensionally reducing it to 2-D and

making the substitution
√

2σ = θ. The operator e±i2θ creates a magnetic bion, while
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the monopoles are not dynamical in this system. Instead, one can use the operator

e±iθ as an external probe. The system allows for both w = 1, 2 vortices. One needs,

however, to suppress the w = 1 vortices since they correspond to fundamental electric

charges, while the allowed w = 2 vortices are the adjoint fermions and W-bosons.

2. In the dual description the action and partition function take the form

S

[
K =

8πLT

g2
, G4 = ξW

]
=

∫
d2x

2LT

g2
(∂µθ)

2 − 2ξW cos (4θ) ,

Z

[
K =

8πLT

g2
, G4 = ξW , p = 4;H1, w = 1

]
=

∫
Dθe−S . (3.18)

The operator e±i4θ creates W-bosons, while w = 1 vortices are the magnetic bions. An

insertion of the operator e±i2θ creates a nondynamical fundamental electric charge,

while the operator e±iθ represents one-quarter the charge of W-bosons (such charge

does not exist in SU(2)). This action is invariant under a Z4 discrete symmetry:

θ → θ + π
2 . QCD(adj) enjoys two types of discrete symmetries: the ZC2 center and

Zdχ2 discrete chiral symmetries. In fact, the action (3.18) enjoys the enhancement

ZC2 × Zdχ2 → Z4.

3.3 The dual Sine-Gordon model and deconfinement

Both the dual Coulomb gas and XY-spin model can also be mapped to the dual Sine-Gordon

model [61]. The latter can be used to estimate the critical temperature and universality

class of the transition. The dual Sine-Gordon action reads

S =

∫
d2x

1

2
(∂xΦ)2 +

1

2
(∂xχ)2 − i∂xΦ∂τχ−

α

κ2
cos (κΦ)− β

ρ2
cos (ρχ) , (3.19)

where both Φ and χ are noncompact scalars. The model enjoys a duality under the

exchange Φ ↔ χ, κ ↔ ρ, and α ↔ β. The equivalence between (3.19) and the dual

Coulomb gas can be shown by first rewriting the cosine terms in the form (3.12). The

partition function of (3.19) then becomes

Z =
∑

m,qj=±w

∑
n,qJ=±1

(−α
2κ2

)2n
(n!)2

(
−β
2ρ2

)2m

(m!)2

2n∏
J=0

∫
d2xJ

2m∏
j=0

∫
d2xj

〈
k∏
a=1

eiκΦ(RJa )
p∏
b=1

eiρχ(Rjb
)

〉
0

,

(3.20)

where the average 〈 〉0 is taken with respect to S0, which is the massless free part of (3.19),

and we also assumed the neutrality of the system. Using the expression of the free propaga-

tors (see [61]): 〈Tχ(R)χ(0)〉0 = 〈TΦ(R)Φ(0)〉0 = − 1
2π log T |R|, 〈Tχ(R)Φ(0)〉0 = i

2πΘ(R),

and repeating the steps that lead from (3.12) to (3.14), we readily find〈
k∏
a=1

eiκΦ(RJa )
p∏
b=1

eiρχ(Rjb
)

〉
0

= exp

 ∑
J1>J2

κ2

2π
logT |RJ1−RJ2 |+

∑
j1>j2

ρ2

2π
logT |Rj1−Rj2 |

−i
∑
J,j

κρ

2π
Θ(RJ−Rj)

 . (3.21)
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The scaling dimensions of cos (κΦ) and cos (ρΘ) can be obtained via the renormaliza-

tion group equations to find [62, 63]:

α(µ) = α0

(
µ

µ0

)∆α−2

, β(µ) = β0

(
µ

µ0

)∆β−2

, (3.22)

with ∆α ≡ κ2

4π and ∆β ≡ ρ2

4π are the conformal dimensions of the corresponding cosine

terms, µ0 is a UV energy scale, and α0, β0 are the values of α, β at µ0. Therefore, the

cosine terms are IR relevant for ∆α,∆β < 2.

In the following we analyze each of our theories in the light of (3.19) and (3.22).

dYM. Comparing the Coulomb gases (3.21) and (3.6) we find that Φ and χ are mapped

to W-bosons and magnetic monopoles, respectively. Therefore, we have

κ =
g√
LT

, ρ =
4π
√
LT

g
, (3.23)

and α, β, are respectively the electric and magnetic fugacities. One can distinguish between

three temperature ranges:

1. T < g2

8πL . In this temperature range, and according to (3.22), cos(κΦ) and cos(ρχ)

are IR irrelevant and relevant, respectively. Therefore, we expect the W-bosons to

be confined in neutral pairs, while the vacuum is populated by a magnetic plasma.

This is a magnetic discorded (gapped) phase. Therefore, one can integrate out the Φ

field, which yields a 2-D Sine-Gordon model of the magnetic plasma:

Lm =
1

2
(∂µχ)2 − β

ρ2
cos(ρχ) . (3.24)

2. T > g2

2πL . This is the dual phase: the magnetic monopoles are confined in neutral

pairs, while the W-bosons populate the vacuum. The system is in an electrically

disordered (gapped) phase. We integrate out the monopoles to obtain the 2-D Sine-

Gordon model of the electric plasma:

Le =
1

2
(∂µΦ)2 − α

κ2
cos(κΦ) , (3.25)

The Lagrangians (3.24) and (3.25) are the dual of each other. Thus, the dual Coulomb

gas of dYM enjoys electric-magnetic duality.

3. g2

8πL < T < g2

2πL . In this range both W-bosons and monopoles are relevant. A

phase transition may occur in this range of temperatures. This can be envisaged by

mapping the dual Sine-Gordon model to an effective fermionic theory via bosonization

techniques [29, 64]. An analysis of the fermionic theory [57, 61, 65] indicates that the

system exhibits a Z2 Ising criticality at Tc = g2

4πL . This is the self-dual point of the

electric-magnetic duality.
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dYM(F). The fugacity of the fundamental quarks is exponentially larger than that of W-

bosons, see table 1. Therefore, W-bosons do not play an important rule in the IR dynamics

and we ignore them in our treatment of dYM(F). Comparing (3.7) and (3.21) we find

κ =
g

2
√
LT

, ρ =
4π

g

√
LT , (3.26)

and α, β are the fugacities of fermions and monopoles, respectively. One can also divide the

temperature into three ranges as in the case of dYM. The system is dominated by electric

charges (fermions) at high temperatures, T > g2

16πL , by monopoles at low temperatures

T < g2

4πL , and by both electric and magnetic charges in the range g2

16πL < T < g2

4πL . The

system, however, is always in a gapped phase, and hence, it does not experience a phase

transition. This can be shown explicitly by mapping the dual Sine-Gordon model with

κ = g

2
√
LT

, ρ = 4π
g

√
LT into a dimerized spin-1/2 antiferromagnetic Heisenberg chain in a

staggered magnetic field [65]. The system exhibits a crossover as it transforms from the

electric to magnetic phases.

QCD(adj). The dual Coulomb gas of QCD(adj) gives

κ =
g√
LT

, ρ =
8π

g

√
LT , (3.27)

where α and β are respectively mapped to the W-boson and magnetic bion fugacities. The

theory again exhibits different behaviors in three different ranges of temperatures:

1. T < g2

8πL . At low temperature the magnetic bions dominate the plasma and one

integrates out the W-bosons to find that the system is described by the effective

Lagrangian (3.24).

2. T > g2

8πL . At high temperature the magnetic bions are confined and the W-bosons

populate the system. Integrating out the magnetic charges, one finds that the system

is described by the Lagrangian (3.25).

3. Tc = g2

8πL . The theory is Gaussian (free) and exhibits a critical behavior exactly at this

point, see [27, 65]. This can be shown rigorously by mapping the dual Sine-Gordon

model of QCD(adj) into an anisotropic version of the su(2)1 Wess-Zumino-Novikov-

Witten model with a current-current interaction [65].

4 Entanglement entropy and mutual information

In this work we are interested in using information-theoretic techniques to study gauge

theories near the deconfinement transition. This works not only as an alternative point

of view to Landau-Ginzburg criteria, but also as a new probe that may shed light on new

properties of gauge theories. In this section we review essential concepts in information

theory that are vital to our work.
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4.1 Elements of information theory

Let a manifold M be bipartitioned into A and B such that A ∪ B = M. Now, {xi} ∈ X
and {yi} ∈ Y are two sets of random variables (a statistical field) with support on A and

B, respectively. For example, they can be two sets of disjoint spins on a lattice. The

expectation value of the random variable is given by E(X) =
∑

x∈Φ p(x)x, and similarly

for E(Y ). The function p(x) is the probability distribution of the field, which could be,

for example, the Boltzmann distribution. The connected Green’s function (or correlation

function) is defined as C(X,Y ) =
∑

x∈X,y∈Y p(x, y)xy − E(X)E(Y ), where p(x, y) is the

joint probability distribution between X and Y . In the special case when p(x, y) factors into

p(x)p(y), the correlation function vanishes. Whence, C(X,Y ) carries information about

the correlation between different parts of the system. The disadvantage of C(X,Y ) is that

it depends not only on the joint probability, but also depends explicitly on the fields X

and Y , and therefore, it may overlook important mutual information between A and B.

This can happen, for example, if the values of {xi} and {yi} are small eventhough the

two subspaces are highly correlated. While the fields themselves are not physical (one can

always perform arbitrary transformations on the fields), the mutual information between

A and B, which is encoded in the joint probability between them, is physical.

Fortunately enough, there is a quantity in the context of information theory that quan-

tifies the correlation between two systems without making an explicit reference to the set of

random variables (or fields). This quantity is the mutual information, which is defined via:

I(X;Y ) ≡
∑

x∈X,y∈Y
p(x, y) log

(
p(x, y)

p(x)p(y)

)
. (4.1)

It is easy to see that I(X;Y ) ≥ 0 and vanishes iff the joint probability factorizes: p(x, y) =

p(x)p(y). The mutual information measures the amount of information shared between A
and B. In other words, it quantifies how much information about A reduces the uncertainty

about B.

The uncertainty of a physical quantity is quantified by entropy. In information theory

this uncertainty is given by Shannon’s entropy :

S = −
∑
i

pi log pi . (4.2)

Therefore, Shannon’s entropy of A ∪ B reads

S(A ∪ B) ≡ −
∑

x∈X,y∈Y
p(x, y) log p(x, y) . (4.3)

The reduced entropy, S(A), is obtained by tracing out the degrees of freedom of B:

S(A) = −
∑
x∈X

p(x) log p(x) , (4.4)

where p(x) =
∑

y∈Y p(x, y) and a similar expression for S(B). Then, one can show that [2]:

I(X;Y ) = S(A) + S(B)− S(A ∪ B), (4.5)
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and in the case of perfect correlation (e.g., at zero temperature) both I(X;Y ) and S(X) =

S(Y ) coincide. It can also be shown that I(X;Y ) is a non-increasing function as we

eliminate parts of the system, i.e., under the renormalization group flow, see [66]. In a

quantum system one replaces the probability p with the density matrix ρ and Shannon’s

entropy becomes S(A ∪ B) = −trA∪B [ρ log ρ], which is the von-Neumann entropy. The

reduced entropy S(A) can be found in two step: first, one traces over system B to find

the reduced density matrix ρ(A) = trBρ, and second, the reduced entropy is obtained via

S(A) = −trAρ(A) log ρ(A) .

In many situations the direct calculations of Shannon’s or von-Neumann entropies are

plagued by many difficulties. In this case one instead can use the generalized Rényi entropy,

which is defined as:

Sn(A ∪ B) =
1

1− n log

 ∑
x∈X,y∈Y

pn(x, y)

 , (4.6)

and

Sn(A) =
1

1− n log

(∑
x∈X

pn(x)

)
, (4.7)

such that Shannon’s entropy is reproduced in the limit S = limn→1 Sn. Similarly, Rényi

mutual information is given by the expression

In(X;Y ) = Sn(A) + Sn(B)− Sn(A ∪ B) . (4.8)

Shannon’s or von-Neumann entropies (S(A∪B), S(A), or S(B)), or their Rényi gener-

alization, are examples of entanglement entropies. Unlike thermodynamic entropy, which

scales with the system size, entanglement entropy scales with area.9 This behavior of en-

tropy was first observed in the scaling of the black hole entropy with the area of the event

horizon [67–69], and the concept was further developed by Takayanagi and Ryu in the

AdS/CFT context [17]. There has also been a plethora of applications of this concept in

many-body physics and critical phenomena, see, e.g., [70].

The area law scaling in noncritical systems is attributed to the fact that there is a

finite correlation length ζ between two disjoint systems A and B. Therefore, regions that

are separated by more than ζ will not contribute to the entanglement entropy [71]. To fix

ideas, we take a 2-D lattice and divide it into two disjoint regions A and B such that A
is the complement of B and ` is the length of the boundary between them, see figure 2.

Then, the entanglement entropy takes the general form10

S(A) = C`+ γ . (4.9)

9The area law term is the leading term at zero temperature. At finite temperatures, though, there will

also be a term that scales with volume.
10Again, we are neglecting a volume term, which appears at finite temperature; see the above footnote.

Entanglement entropy will also have UV divergences in the continuum description, which are cured by

putting the system on a lattice. Mutual information, on the other hand, is free from UV divergences.
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Figure 2. A 2-D lattice divided by the red contour of length ` into two disjoint regionsA and B. The

thickness of the shaded area is the correlation length ∼ ζ. The shaded region is the communication

channel between A and B. The entanglement entropy and mutual information scale with `.

In general, C depends on the correlation length ζ, while the constant term γ is known as

the topological entanglement entropy. Interestingly enough, even in systems that exhibit

divergent correlation functions, for example, near criticality, the area law scaling can still

be proven to hold11 [73]. This will be the case in the XY-models we study in this work.

Since mutual information I(X;Y ) is the sum of entanglement entropies, it will also follow

the area law.12 However, unlike entropy, which measures the uncertainty about the system,

mutual information will quantify the amount of information shared between parts of the

system, and hence, it can be a useful tool to detect subtle properties of different phases. In

this work we use both entanglement entropy and mutual information to study the nature

of the deconfinement phase transition in dYM, dYM(F), and QCD(adj).

4.2 The replica trick

The calculations of the entanglement entropy and mutual information is notoriously dif-

ficult and analytical expressions of these quantities can be obtained only in a few cases.

The standard method to calculate the entanglement entropy of a quantum field/statistical

field theory is the replica trick: we consider n replicas of the original system and take

the limit n → 1. In order to elucidate the procedure, we start from the general-

ized Rényi entropy defined in (4.6) and consider n = 2. Here, we follow the dis-

cussion in [74]. The joint probability p(x, y) is given by the Boltzmann distribution

p(x, y) = e−βE(x,y)/Z, where Z =
∑

x∈X,y∈Y e
−βE(x,y) and E(x, y) is the energy associ-

ated with the states x ∈ X and y ∈ Y . The probability p(x) is obtained by tracing

over y: p(x) =
∑

y∈Y e
−βE(x,y)/Z. Then, the second power of the probability is given by

11Entanglement entropy can also have a sub-leading logarithm, log `, which is typical in quantum critical

systems [72].
12The definition of mutual information, as given by (4.8), guarantees that the leading term in I(X;Y )

is the area law term, even at finite temperature. In other words, the volume term, which is present in the

entanglement entropy at finite temperatures, cancels out in the definition of mutual information.
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p2(x) =
(∑

y∈Y e
−βE(x,y)

)(∑
y′∈Y e

−βE(x,y′)
)
/Z2. Now, we define the replicated partition

function as:

Z[A, 2] ≡
∑
x∈X

∑
y,y′∈Y

e−β(E(x,y)+E(x,y′)) . (4.10)

Then, the generalized Rényi entropy is given from (4.7) as

S2(A) = − logZ[A, 2] + 2 logZ . (4.11)

As we discuss below, the replicated partition function (4.10) can be readily simulated by

means of Monte Carlo methods.

One can easily generalize this discussion to a generic value of n to find that the entan-

glement entropy is given by the limit

S(A) = lim
n→1

1

1− n log

(
Z[A, n]

Zn

)
. (4.12)

The replicated partition function Z[A, n] is the Boltzmann-weighted sum of fields in A
and n replicated (sheets) of fields in B. Having n replicas is equivalent to formulating the

theory on a flat cone with a deficit angle δ = 2π(1 − n), see [75]. In a lattice formulation

we use a specific number of replicas (in this work we limit our study to n = 2), while in

the continuum it is usually easier to compute the partition function on a cone with an

infinitesimal deficit angle.

4.3 Overview and strategy for calculating entanglement entropy and mutual

information in Yang-Mills on R2 × T2

As we mentioned in the introduction, the calculations of entanglement entropy in 4-D con-

fining gauge theories suffer from difficulties due to strong coupling and nonfactorizability of

the gauge invariant Hilbert space on a lattice. Compactifying the theory on a small circle re-

sults in breaking the gauge group to its U(1) part, and therefore, the 3D spectrum contains a

massless photon and a tower of heavy excitations. Deep in the IR the heavy excitations de-

couple along with their Hilbert space; they only leave a trace as a renormalization of the 3-D

effective coupling constant g3 ≡ g4/
√
L. Since the 3-D U(1) gauge theory is dual to a com-

pact scalar, its Hilbert space shouldn’t suffer from nonfactorizability.13 The compact nature

of U(1) allows for magnetic instantons to populate the vacuum giving rise to the confine-

ment phenomenon. When we consider the system at finite temperature (now we are com-

pactifying the time direction) heavy excitations are reintroduced into the partition function

of the 3-D theory via the Boltzmann weight, see figure 1. However, only the lightest charged

excitations, under U(1), will participate in the dynamics that lead to the deconfinement

transition. Computing the entanglement entropy or mutual information of the 3-D system

is a cumbersome task; we don’t attempt to do that here. Near the deconfinement transition,

however, we can neglect all the heavy Matsubara modes keeping only the zero mode; the

system effectively lives in 2D. At this stage we have a 2-D Coulomb gas that is mapped to

the XY-spin model with Zp symmetry-preserving perturbations or dual Sine-Gordon model.

13This is specially true when we put the theory on a lattice.
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The entanglement entropy/mutual information of these systems will be studied and

we shall draw conclusions about the behavior of such information theoretic quantities near

deconfinement. Here, one might wonder what happens to the gauge variables in the original

gauge theory as well as the ambiguity related to entanglement entropy. The answer is that

the gauge theory/ XY-spin model (or dual sine-Gordon model) duality that we use in this

work offers escape from the original problem. In a duality there are two equivalent facets of

reality, and usually it is much easier to compute certain physical quantities in one picture

than the other.14 Thus, woking in the XY-spin (or dual Sine-Gordon) model side of the

duality captures all the physical information of the gauge theory (near deconfinement)

without having to work with the original gauge variables.

We start our analysis with the dual Sine-Gordon model and approximate it as a CFT

with deformations. This allows us to use the entanglement entropy of CFT to study our

system near transition. Next, we calculate Rényi mutual information (RMI) of the XY-spin

model and study its behavior near the transition.

In fact, information about the CFT universality class can also be extracted from RMI

of the XY-spin model at the critical temperature (assuming that the temperature has been

determined precisely). This can be done by computing RMI for different partitions of

a given lattice size and trying to fit the next to leading term of RMI (the leading term

is being the area term) with general known behavior of CFT at finite interval [76]. An

alternative method would be determining the central charge off-criticality by computing

the correlators from Monte Carlo simulations. This can give a link between the analytical

expressions we obtain for the entanglement entropy in the dual Sine-Gordon model and

the numerical computation of RMI in the XY-spin models. We don’t try these calculations

in the present work leaving them for a future investigation.

4.4 Entanglement entropy in the continuum description: the Sine-Gordon

model

At this stage, we are equipped with enough tools to study mutual informa-

tion/entanglement entropy of the dual Coulomb gas. Our main purpose is to investigate

the interplay between the existence/absence of order parameters and information-theoretic

techniques.

Before starting our systematic study of entanglement entropy, we pause here to discuss

the expected behavior of this quantity in each of the theories at hand. At temperatures

much lower than the critical temperature, Tc, the system is dominated by magnetic charges.

The system is in a gapped phase and information cannot be communicated between distant

regions in the plasma. At temperatures much higher than Tc the system is populated

by electric charges and again is in a gapped phase. Similar to the magnetic phase, the

electric phase does not permit the communication of information over large distances. In

addition, there is a region of temperatures in between, where both electric and magnetic

charges proliferate. In both dYM and QCD(adj) there is also a point, Tc, where the system

14This is very similar to AdS/CFT duality: it is always much easier to compute in one side (usually the

AdS side) than the other.
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Figure 3. The one-dimensional space in 1 + 1 CFT is tripartitioned into regions A, B, and C. The

length of region B is `.

experiences a phase transition and develops a massless mode. It is exactly at Tc where one

expects to see an inflection point in entanglement entropy, which signals a change in the

role played by electric and magnetic components.

Analytical calculations of the entanglement entropy of the continuum XY-spin

model (3.10) is not a straightforward task because of the compact nature of the scalar

field. Instead, it is more appropriate to consider the entanglement entropy of the dual

Sine-Gordon model. The calculations here are also cumbersome and one needs to find an

approximation technique that will enable us to shed light on the entanglement entropy

near the transition.

As we discussed in section (3.3), there are temperature windows where we can integrate

out either the magnetic or electric charges and obtain effective Sine-Gordon models given

by (3.24) and (3.25) for the magnetic and electric disordered phases, respectively. The

calculations of the entanglement entropy of the Sine-Gordon model was done in [77] via

perturbation analysis, which treated the model as a free 1+1D CFT deformed by a primary

operator of dimension ∆α or ∆β . The calculations of the entanglement entropy of a CFT

demands the partition of space into three regions: M = A ∪ B ∪ C. This is necessary

since a CFT does not have a length scale and one needs to introduce some scale into the

problem. In particular, we take the intermediate region B to have a length `, see figure 3.

The entanglement entropy of the free CFT is S0 = 1
3 log `

a , where a is a UV cutoff [78].

The change of the entanglement entropy due to a primary operator is then given by [77]:

∆Sβ =
β2(µ)

128

(
ρ2

4π
− 2

)
log

(
`

a

)
, for magnetically disordered phase ,

∆Sα =
α2(µ)

128

(
κ2

4π
− 2

)
log

(
`

a

)
, for electrically disordered phase . (4.13)

These expressions are obtained in a regime where perturbation theory is valid, i.e. ∆α >

2 and ∆β > 2. In the following we make use of (4.13) to study the behavior of the

entanglement entropy of the dual Coulomb gas near the transition temperature.

Purely electric and purely magnetic systems. In order to appreciate the role of en-

tanglement entropy in detecting a phase transition or crossover, we first study purely elec-

tric and purely magnetic systems. Such systems are gases of one type of charges, either mag-
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netic or electric, and they are described by the Sine-Gordon models (3.24) or (3.25). Both

electric and magnetic gases experience a phase transition at ∆α = ∆β = 2, i.e., at Tc = g2

2πL .

In the magnetic gas the conformal dimension changes from ∆β < 2 for T < Tc (magnetic

disordered phase) to ∆β > 2 for T > Tc (free phase). While in the electric gas things hap-

pen in the reversed order: the conformal dimension changes from ∆α > 2 for T < Tc (free

phase) to ∆α < 2 for T > Tc (electric disordered phase). This is the celebrated Berezinsky-

Kosterlitz-Thouless (BKT) phase transition [79, 80]. Furthermore, from (3.22) we find

α(µ) = α0

(
µ

µ0

) g2

4πLT
−2

, β(µ) = β0

(
µ

µ0

) 4πLT
g2
−2

, (4.14)

where α0 = e−
MW
T and β0 = e

− 4π2

g2 are the UV fugacities, and we have neglected

pre-exponential coefficients. We take µ0 = a−1 to be the UV cutoff scale and µ = ζ−1 to

be the correlation length of the system in the IR. Then, we substitute (4.14) into (4.13)

and expend near ∆ = 2 to find

∆Sα,β ∝ (∆α,β − 2) +O
(

(∆α,β − 2)2
)
. (4.15)

Therefore, the change in the entanglement entropy is monotonic across the transition: in the

magnetic gas ∆Sβ interpolates between negative values for T < Tc to positive values for T >

Tc, while in the electric gas ∆Sα interpolates between positive values for T < Tc to negative

values for T > Tc, see figure 4. Whence, the entanglement entropy itself does not experience

a sharp change across the transition point in the purely electric or purely magnetic systems.

However, in hybrid systems one expects to see an exchange of the magnetic and electric

roles at the transition, and hence, a change in the behavior of the entanglement entropy.

dYM. The phase transition occurs in the temperature window g2

8πL < T < g2

2πL . In this

window both electric and magnetic perturbations are relevant (∆α < 2 and ∆β < 2): the

theory is strongly coupled and strictly speaking one should not trust (4.13). Nevertheless,

one can add both the electric and magnetic contributions to ∆S in order to crudely study

the qualitative behavior of the change of the entanglement entropy near the transition

temperature. Substituting (4.14) into (4.13) and assuming that ζ � ` � a, we find the

total change of the entanglement entropy

∆SdYM = ∆Sα + ∆Sβ (4.16)

=
log
(
`
a

)
128

α2
0

(
g2

4πLT
− 2

)(
a

ζ

) g2

2πLT
−4

+ β2
0

(
4πLT

g2
− 2

)(
a

ζ

) 8πLT
g2
−4
 ,

where α0 = e−
MW
T , β0 = e

− 4π2

g2 . This quantity attains a maximum at Tmax = g2

4πL , see

figure 4, which is exactly the transition temperature obtained via bosonization.
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Figure 4. From left to right: the behavior of ∆S as a function of x ≡ 4πLT
g2 for the pure electric,

pure magnetic, and dYM Coulomb gases. We use appropriate values of ζ and a in order to produce

the numerical graphs such that ζ � a.

magnetic electric

0.48 0.50 0.52 0.54

-3.5´ 10-6

-3.´ 10-6

-2.5´ 10-6

-2.´ 10-6

-1.5´ 10-6
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Figure 5. The behavior of ∆S as a function of x ≡ 4πLT
g2 . Left: ∆S of QCD(adj). ∆S attains

a maximum at Tc = g2

8πL . In addition ∆S = 0 exactly at Tc, which indicates that the theory is

Gaussian at the transition point. Right: ∆S of dYM(F).

QCD(adj). We can repeat the same exercise above for the dual Sine-Gordon model of

QCD(adj). The resulting change in entropy is given by:

∆SQCD(adj) =
log
(
`
a

)
128

α2
0

(
g2

4πLT
− 2

)(
a

ζ

) g2

2πLT
−4

+ β2
0

(
16πLT

g2
− 2

)(
a

ζ

) 32πLT
g2
−4
 ,

(4.17)

where α0 = e−
MW
T , β0 = e

− 8π2

g2 . The change in the entanglement entropy has a maximum

at Tmax = g2

8πL , which is again the critical temperature. Interestingly enough, we find

∆SQCD(adj)(T = Tmax = Tc) = 0, see figure 5. This shows that the entanglement entropy

does not get any additional contribution at Tc. Hence, the theory is free at Tc, the same

conclusion that can be reached via more advanced CFT technology.

dYM(F). Now, let us consider the same quantity for dYM(F):

∆SdYM(F ) =
log
(
`
a

)
128

α2
0

(
g2

16πLT
− 2

)(
a

ζ

) g2

8πLT
−4

+ β2
0

(
4πLT

g2
− 2

)(
a

ζ

) 8πLT
g2
−4
 ,

(4.18)

where α0 = e−
MF
T , β0 = e

− 4π2

g2 . Despite the fact that the theory is always in a gapped

phase, nevertheless, the change in entanglement entropy has a maximum at Tmax = g2

8πL ,

see figure 5. We anticipate that a cross over happens at this temperature.
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Figure 6. A typical configuration in calculating the second Rényi mutual information. There are

two replicas (left and right) and each one is divided into two regions A and B. Regions A of the

two replicas are strongly correlated in the sense that an update of any spin in A is accepted only

and only if the update affects the same spin in both replicas. On the other hand, the updates in

regions B are independent in each replica.

4.5 Entanglement entropy and mutual information on the lattice: a Monte

Carlo setup

The replica method enables us to compute the entanglement entropy and mutual informa-

tion on the lattice [81, 82]. As we stressed before, unlike the entanglement entropy, which

tells us about the amount of uncertainty in a system, mutual information, I(X;Y ), quan-

tifies the amount of information shared between different parts of the system. Fortunately

enough, one can calculate I(X;Y ) on the lattice using Monte Carlo methods. Here, we focus

on the second Rényi Mutual information I2(X;Y ) and consider the situation of a collection

of spins located at the lattice sites. To this end, we bipartition a latticeM into two regions

A and B and consider two replicasM1 andM2 such thatM1 = A1∪B1 andM2 = A2∪B2.

Now, we apply a boundary condition on the regions such that for a given configuration of

spins on A1 and A2, which is taken to be the exact same configuration in both A1 and A2,

we allow the spins in B1 and B2 to fluctuate independently, see figure 6. This boundary con-

dition amounts to tracing over the states of system B for a given state in A. The partition

function of the system is then given by the replicated partition function (4.10). According

to Z[A, 2], Monte Carlo simulations will use the energy E(x, y) + E(x, y′) to update the

spin moves, which cannot be accepted unless it satisfies the above mentioned boundary

condition. To be more specific, let us consider the Hamiltonian and partition function

E = −
∑
〈I,J〉

SI · SJ , Z =
∑
{SI}

e−E/T , (4.19)
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where the bracket indicates a sum over nearest neighbor pairs of spins. Then, the total

energy of the replicated system is given by

E(x, y) + E(x, y′) = −2
∑
〈IA,I′A〉

SIA · SI′A −
∑
〈IB ,I′B〉

SIB · SI′B −
∑
〈JB ,J ′B〉

SJB · SJ ′B . (4.20)

We see that there is a factor of 2 multiplying the first sum, which indicates that the

effective temperature of region A is T/2. Hence, one needs to distinguish between three

temperature ranges in the replicated system:

1. 0 < T < Tc, where Tc is the critical temperature of the non-replicated system: both

regions A and B are below criticality.

2. Tc < T < 2Tc: region B is above criticality, while region A is below it.

3. T > 2Tc: both regions A and B are above criticality.

Monte Carlo simulations don’t allow the direct computation of the partition function

or entropy. In order to extract the entropy from simulations, one needs to integrate the

energy estimator over a range of temperatures. The expectation value of energy is given

by 〈E〉 = −∂ logZ
∂β , and hence, using the definition (4.11) we find

S2(A;T ) =

∫ ∞
T

dT ′

T ′2
[
〈E〉A(T ′)− 2〈E〉0(T ′)

]
, (4.21)

where 〈E〉A and 〈E〉0 are respectively the energy expectation values of the replicated and

original (non-replicated) systems. Similarly, the Rényi Mutual information is given by the

expression

I2(X;Y ;T ) =

∫ ∞
T

dT ′

T ′2
[
2〈E〉A(T ′)− 2〈E〉0(T ′)− 〈E〉A∪B(T ′)

]
, (4.22)

where 〈E〉A∪B(T ) is the energy of the replicated system as we shrink B to ∅, i.e., it is the

energy of the original system at T/2.

In practice, we cutoff the integrals (4.21) and (4.22) at some Tmax � T . Therefore,

the extraction of entanglement entropy or mutual information in Monte Carlo method

requires simulations over a large range of temperatures, an expensive and long process.

Below, we show how one can partially circumvent this difficulty by making use of the T-

dual description of the XY-spin lattice, which also eliminates unwanted vortices with lower

winding number.

4.6 Mutual information from XY-spin models on the lattice and T-duality

As we showed above, the use of information theoretic techniques demands that we partition

the system into two or more disjoint regions. This procedure introduces ambiguities in the

lattice gauge theory calculations. Fortunately enough, we found that the gauge theory

upon compactification is dual to XY-spin models. Such models do not suffer from ambi-

guities when studied on a lattice, and the extraction of entanglement entropy and mutual

information from these systems is a more straightforward task.
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The lattice version of the continuum XY-spin model (3.10) is given by

E = −K
2π

∑
〈I,J〉

cos (θI − θJ)− 2Gp
∑
I

cos (pθI) , Z =

∫ 2π

0

∏
i

dθie
−E (4.23)

where we set the lattice spacing a = 1. The equivalence between (4.23) and (3.10) is easily

shown by expanding the first term in (4.23) to second order and taking a → 0. As we

showed in section (3.2), there exists two equivalent XY-spin models for each of the theories

we consider in this work. These models are the T-dual of eachother. This conclusion

applies also to the lattice formulation, as we discuss momentarily. To be more specific we

take QCD(adj) as an example. dYM and dYM(F) follow the same pattern.

In one of the descriptions the lattice partition function of QCD(adj) is given by (this

is the lattice version of the continuum description (3.17))

E = − g2

16π2

∑
〈I,J〉

cos (θI − θJ)− 2e
− 8π2

g2
∑
I

cos (2θI) ,

Z

[
K =

g2

8πT
,G2 = ξB, p = 2;H2, w = 2

]
=

∫ 2π

0

∏
i

dθie
−E/T , (4.24)

and we have set the size of the S1
L circle equal to the lattice spacing, i.e., L = a = 1.

The description (4.24) has two pitfalls. First, one needs to strict the monodromies of

{θI} to be even integers multiples of 2π. This is necessary in order to eliminate the unit

winding vortices from the spectrum of the theory (votices of unit windings are fundamental

electric charges, which are absent in QCD(adj)). Second, as we found in section (4.5), and

according to eq. (4.22), the extraction of mutual information from (4.24) entails performing

extended Monte Carlo simulations.

The T-dual lattice description. In order to overcome these drawbacks, we switch to

the T-dual description of (4.24). This is the lattice version of (3.18):

E = − 4

g2

∑
〈I,J〉

cos (θI − θJ)− 2e−
MW
T

∑
I

cos (4θI) ,

Z

[
K =

8πT

g2
, G4 = ξW , p = 4;H1, w = 1

]
=

∫ 2π

0

∏
i

dθie
−TE . (4.25)

Now, we need not worry about suppressing lower-winding vertices in Monte Carlo simula-

tions since magnetic bions (the magnetic excitations of QCD(adj)) in this description have

unit windings. The same conclusion can be reached for dYM and dYM(F).

The coefficients that appear in the energy functional (4.25) (or the energy functional

of dYM and dYM(F)) are not suitable for realistic Monte Carlo simulations given the

extremely small values of the coupling constant and fugacities. Instead of (4.25), we replace

it with the phenomenological model:

E = −
∑
〈I,J〉

cos (θI − θJ)− ỹ
∑
I

cos (pθI) ,

Z [ỹ, p;H1, w = 1] =

∫ 2π

0

∏
i

dθie
−TE . (4.26)
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This model is capable of capturing the essential features of dYM, dYM(F), and QCD(adj)

as follows:

1. p = 1. This is dYM(F), where p = 1 accounts for fundamental quarks and T ỹ is their

fugacity. In principle, one should also add
∑

I cos(2θI) term to account for the W-

bosons. However, the W-boson fugacity is exponentially small compared to that of the

fundamental quarks, and it is more appropriate to neglect the W-bosons all together

in the description. The unit-winding vortices, w = 1, are magnetic monopoles.

2. p = 2. This is dYM, where p = 2 accounts for the W-bosons and T ỹ is their fugacity.

Again, the unit-winding vortices are the magnetic monopoles.

3. p = 4. This is QCD(adj), where p = 4 denotes the W-bosons and T ỹ is their

fugacity. The unit-winding vortices are the magnetic bions.

In all cases, exciting a unit-winding vortex costs a core energy, roughly, O(T ) in lattice

units, which is determined by the kinetic term in (4.26). Therefore, vortices are suppressed

in the high temperature phase. On the other hand, as temperature increases, the fugacity

of the electric excitations (fundamental quarks or W-bosons) increases, and hence, their

core energies decrease.15 Thus, the electric excitations dominate the plasma at high tem-

peratures. This is exactly the expected behavior in dYM, dYM(F), and QCD(adj), which

is captured by the phenomenological model (4.26).

Although the phenomenological model (4.26) has O(1) fugacities, as opposed to the

original system (4.25), which has an exponentially small fugacity owing to its semi-classical

nature, it still captures the qualitative features of (4.25) since both models are expected to

belong to the same universality class. For example, renormalization-group analysis of (4.25)

(XY-pin model with Z4 symmetry-preserving perturbations and exponentially small fugac-

ities) showed that it exhibits a continuous phase transition with a fugacity-dependent

critical exponent [27]. This behavior was also confirmed by Monte Carlo simulations of the

phenomenological model (4.26), i.e., for large fugacities, see [83].

Now, we come to the point of extracting Rényi mutual information from (4.26). It

is trivial to see that the expectation value of energy is 〈E〉 = −∂Z
∂T , which replaces the

traditional expression 〈E〉 = −∂Z
∂β . This relation can be inverted to write the logarithm of

the partition function as an integral over the energy estimator log Z = −
∫ T

0 dT ′〈E〉(T ′).
Now, we make use of the definition (4.11) to find

I2(X;Y ;T ) =

∫ T

0
dT ′

[
2〈E〉A(T ′)− 2〈E〉0(T ′)− 〈E〉A∪B(T ′)

]
. (4.27)

It is remarkable that the T-dual lattice model (4.26) provides a neat and cheap method

to extract the mutual information compared to the original prescription (4.22), where one

needs to suppress lower winding vortices.

When using the replica method (we use only two replicas in this work) to compute

I2(X;Y ;T ), one needs to distinguish between three temperature regimes in (4.26) (as

15The core energy Ec is given by Ec = − log ξ, where ξ is the fugacity.
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Figure 7. Mutual information of (4.26) for p = 4 and various values of ỹ. We use lattice size

N = 16.

usual we divide our lattice into two regions A and B such that the spins of regions A of the

two replicas are updated simultaneously). Since the temperature T multiplies the energy

functional in (4.26), region A will effectively be at temperatures twice that of the original

system. The three temperature regimes are:

1. 0 < T < Tc/2, where Tc is the critical temperature of the non-replicated system:

both regions A and B are below criticality.

2. Tc/2 < T < Tc: region A is above criticality, while region B is below it.

3. T > Tc: both regions A and B are above criticality.

In the next section we perform numerical simulations of (4.26) and extract lessons from

I2(X;Y ;T ) about the deconfinement phase transition/crossover.

5 Monte Carlo simulations

This section is devoted to the numerical simulations of (4.26). In particular, we show that

mutual information can be used as a probe to detect phase transitions in our theories.

We use a single-flip Metropolis algorithm and divide our periodic lattice of size N ×N
into two regions A = B, such that each region is N × N/2 cylinder embedded in N ×
N torus. We start by studying Rényi mutual information (RMI) of (4.26) with p = 4,

QCD(adj), and various values of ỹ. The results are shown in figure 7, where we plot

I2(X;Y ;T )/` against the temperature and ` = 2N is the length of the boundary between

regions A and B. First, we see that all RMI curves coincide at small T , irrespective of

the value of ỹ. This is consistent with the fact that the electric excitations are confined

at low temperatures, their fugacities are irrelevant, and the system is dominated by a

plasma of magnetic charges. The correlation length in a plasma is extremely small and

the different parts of the system are uncorrelated. This is reflected in the fact that RMI is
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Figure 8. Finite size scaling for RMI of (4.26) with ỹ = 0. The curves cross at T ∼= 0.5 and T ∼= 1,

which are the values of Tc/2 and Tc, respectively.
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Figure 9. The fitting of I(X;Y, T ) to C(T )N + γ(T ) for ỹ = 0. The data is obtained from fitting

lattice sizes N = 8 to N = 56.

vanishingly small at low temperature. As we dial up T , the density of the magnetic charges

decreases, the correlation length increases, and information can be communicated across

larger distances. This can be seen as a spike in RMI, with a magnitude that depends on

the value of ỹ. At high enough temperatures (above the critical temperature Tc; we will

determine Tc below) RMI asymptotes to a constant value, which decreases with increasing

ỹ. In order to understand the significance of this behavior, we compare ỹ = 0 with ỹ =

0.1, 1.0, 2.0. The former case corresponds to eliminating W-bosons from our theory. In this

case the system exhibits a BKT phase transition, from a massive to massless phase, as we

dial up the temperature. This is in contradistinction with the case ỹ > 0: dialing up the

temperature will cause the system to transit from a massive (magnetic) phase to another

massive (electric) phase. Obviously, a massless phase can communicate information more

effectively than a massive one, and thus, at high enough temperatures RMI attains larger

values. Also, the bigger the value of ỹ, the higher the density of W-bosons in the electric

disordered phase and the lower the value of the asymptotic RMI.

Next, we further examine the case ỹ = 0 for different lattice sizes. The results are

shown in figure 8 for N = 8 to N = 56. We see that all the curves collapse onto a single
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curve for large values of N . This behavior is consistent with the assertion that Rényi

mutual information follows the area law scaling I(X;Y ;T ) = C(T )` + γ(T ), where C(T )

and γ(T ) are temperature-dependent coefficients. This behavior holds even at criticality

and can be used to extract the critical temperature, as we will see momentarily. As we

discussed at the end of section 4.6, the replicated system exhibits two critical temperatures

at Tc/2 and Tc. The system becomes scale invariant at these two points. Therefore, we

expect I(X;Y, T )/` to be a constant for all lattice sizes, and hence, γ(T ) is expected to

cross zero near Tc/2 and Tc. This behavior is easily seen in figure 9, where we fit C(T )

and γ(T ) using RMI data from N = 16 to N = 56. We also see that C(T ) attains the

asymptotic shape of figure 8. This explains the crossing of RMI curves and then their

fan out at Tc/2 and Tc. Thus, the finite size scaling of RMI can be used as a probe to

search for phase transitions [74]. Interestingly enough, the model given by (4.26) and ỹ = 0

(the T-dual XY spin model with no Zp symmetry-preserving perturbation) does not have

an order parameter that can be used to study the BKT phase transition.16 Instead, one

traditionally uses the spin stiffness to accurately estimate the critical temperature [84, 85].

RMI provides an alternative probe to accurately study phase transitions in this mode,

see [74] for more details. We elaborate more on this point below.

QCD(adj). Now, we move to the finite size scaling of QCD(adj). RMI for different

lattice sizes of this theory is depicted in the top panel of figure 10, where we used ỹ = 1 for

our study. The curves cross at Tc/2 and Tc with Tc ∼= 1. We also calculate the magnetic

susceptibility of the system, which is given by

χM =
d|M |
dT

, M =

N2∑
j

eiθj . (5.1)

QCD(adj) is invariant under Z4 symmetry: θj → θj + 2π
4 , while M → iM under the same

symmetry. Therefore, |M | and χM are good order parameters of the system. We plot χM in

the bottom panel of figure 10. We see that the susceptibility peaks at Tc ∼= 1, in agreement

with RMI calculations. Comparing figures 8 and 10, we see that the transition temperature

is independent of ỹ. This is in disagreement with the calculations of the transition tem-

peratures in section (3.3). One can see from the discussion of the dual Sine-Gordon model

and figures (4) and (5) that Tc ,y=0 = 2Tc ,QCD(adj). This disagreement, however, should not

come as a surprise since unlike the dual Sine-Gordon model, where both electric and mag-

netic fugacities are explicit parameters, the magnetic core energy of (4.26) is not an under-

control explicit parameter. In fact, the transition temperature of the XY-spin models have

only a mild dependence on the electric fugacity, as was also found in previous studies [83].

We also fit I(X;Y ;T ) to the form C(T )N + γ(T ). The results are shown in figure 11.

It is clear that γ(T ) changes signs at Tc/2 and Tc, while C(T ) attains the asymptotic shape

of RMI in figure 10. This explains the crossing of RMI curves at these two points, similar

to the case ỹ = 0.

16This is true despite the fact that the Hamiltonian of the system is invariant under a global U(1)

symmetry. The absence of symmetry breaking in XY model, or its T-dual description, is a result of the

Mermin-Wagner theorem, which prohibits continuous symmetry breaking in D ≤ 2.
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Figure 10. Top panel: the finite size scaling for RMI of (4.26) with p = 4 and ỹ = 1. This case

corresponds to QCD(adj). The curves cross at T ∼= 0.5 and T ∼= 1, which are the values of Tc/2

and Tc, respectively. Bottom panel: the magnetic susceptibility of the system. The susceptibility

peaks at T ∼= 1, in agreement with RMI.
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Figure 11. The fitting of I(X;Y, T ) to C(T )N + γ(T ) for p = 4 and ỹ = 1. The data is obtained

from fitting lattice sizes N = 8 to N = 56.
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Figure 12. Top panel: the finite size scaling for RMI of (4.26) with p = 2 and ỹ = 1. This case

corresponds to dYM. The curves cross at T ∼= 0.32 and T ∼= 0.65, which are the values of Tc/2 and

Tc, respectively. Bottom panel: the magnetic susceptibility of the system. The susceptibility peaks

at T ∼= 0.65, in agreement with RMI.

dYM and dYM(F). We repeat the above analysis for dYM, p = 2, and dYM(F),

p = 1. dYM is invariant under Z2 symmetry: θj → θj + 2π
2 and |M | and χM are good order

parameters of the system. RMI and magnetic susceptibility of dYM with ỹ = 1 are shown

in figure 12 . Again, the peak of the susceptibility coincides with the second crossing of

RMI curves indicating that the latter can probe phase transitions in this system.

On the other hand, dYM(F) does not entertain any global symmetry. RMI of dYM(F)

with ỹ = 1 is shown in figure 13. Unlike all previous cases, RMI of different lattice sizes do

not show any features of a phase transition. Also, the amplitude of RMI for p = 1 is sup-

pressed compared to that of p > 1. We anticipate that this behavior is tied to the absence

of global symmetries in this theory and that the theory experiences a smooth crossover from

one phase to the other. We further comment on this behavior in the Discussion section.
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Figure 13. RMI for p = 1 and ỹ = 1. This case corresponds to dYM(F). Unlike the previous cases,

RMI of different sizes does not show any features of a phase transition.

6 Discussion and future directions

In this paper we studied the deconfinement transition in Yang-Mills theory on R2 × T2

by means of information-theoretic techniques in the continuum and on the lattice. The

entanglement entropy calculations were achieved in the continuum via mapping the the-

ory to a dual Sine-Gordon model. We found that this quantity attains a maximum value

in dYM, dYM(F), and QCD(adj) at the transition/crossover point. The maximum is at-

tributed to the interchange of the role of both the magnetic and electric charges. We also

calculated Rényi mutual information (RMI) using a lattice version of the XY-spin model

with Zp symmetry-preserving perturbations. Unlike the entanglement entropy, which only

captures the amount of uncertainty about the system, mutual information gives a quan-

titative measure of the information shared between different parts of the system. Our

RMI study is free from ambiguities that usually plague lattice gauge theories due to the

non factorizability of the gauge invariant Hilbert space. We found that RMI follows the

area law scaling, with subleading corrections, and their finite size scaling can be used to

search for phase transitions in our theories. In particular, there is a clear crossing of RMI

curves at the transition temperature in both dYM and QCD(adj), while the addition of

fundamental matter washes out the crossing and dilute the information that can be shared

between the system parts. As a byproduct, we also found a new method to efficiently

extract RMI without the need to suppress low-winding vortices. This is done by using a

T-dual description of the XY-spin model. The web of dualities in our work is tied up to

the fact that Yang-Mills theory on R2 × T2 (with deformations or adjoint fermions) can

be mapped to a dual Coulomb gas, which faithfully captures all the effective degrees of

freedom near the deconfinement transition.

dYM has a ZC2 center symmetry that breaks in the deconfined phase. On the other

hand, QCD(adj) enjoys ZC2 center and Zdχ2 discrete chiral symmetries. Zdχ2 is broken in

the low temperature phase and gets restored in the deconfined phase. The renormalization

group calculations conducted in [27] and our simulations indicate that the breaking of ZC2
and restoration of Zdχ2 occurs at exactly the same critical temperature. In fact there is a

constraint on the order of the occurrence of deconfinement and discrete chiral symmetry
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restoration in gauge theories: Tdecon ≤ Tchiral. This inequality is implied from the Zdχ2 -[
ZC2
]2

mixed ’t Hooft anomaly, as was shown in [86, 87]. Deconfinemnet in QCD(adj) on

R2 × T2 saturates this inequality.

Adding fundamental matter to dYM breaks the center explicitly. In this case RMI does

not reveal any feature near the crossover, which is otherwise captured by the entanglement

entropy of the dual Sine-Gordon model. We also found that RMI of pure XY-spin model

(no Zp symmetry-preserving perturbations) captures the transition, while entanglement

entropy doesn’t show any specific feature near the transition.

Before concluding our work, it is amusing to reflect on the role RMI could have played

in 2-D physics had we learned about it half a century ago. First, let us note that Mermin-

Wagner theorem was published in 1966, 6 years before the discovery of the BKT phase

transition. This theorem forbids continuous phase transitions in 2D, and hence, BKT phase

transition in XY model came as a surprise to the physics community in 1973. Had people

calculated RMI (which was not known by that time, at least among the physics community)

of XY model with different Zp symmetry-preserving perturbations before 1973, they would

have revealed that pure XY model (with no perturbations) is in tension with Mermin-

Wagner theorem. For any p 6= 1 there is a discrete symmetry and symmetry breaking can

happen (Mermin-Wagner theorem is no-go only for continuous symmetries). The crossing of

RMI curves at a certain temperature signals the breaking of the Zp symmetry. When p = 1,

on the other hand, the system doesn’t enjoy any kind of symmetry, and hence, no crossing

of RMI should be expected. This is exactly what we see in our simulations. The striking

thing, however, is when we set the perturbations to zero. Although there is a U(1) symme-

try in one of the phases, Mermin-Wagner theorem forbids genuine symmetry breaking. RMI

curves, on the other hand, have a clear crossing indicating that there is a nontrivial transi-

tion in the system. This is what Berezinskii, Kosterlitz, and Thouless discovered in 1973.

On the gauge theory side, we know on symmetry grounds that the presence of funda-

mental quarks eliminates the possibility of using the Polyakov’s loop as a probe to detect

phase transformations. One, however, could argue that near the transition (or crossover)

the confined pairs of fundamentals and W-bosons would simply liberate making no striking

difference between the presence and absence of fundamentals in the picture. Contrary to

this expectation, our simulations indicate that the presence of fundamentals makes a dra-

matic difference, at least from information theory point of view. This points to a tantalizing

link between the absence/presence of symmetries and information stored in a system.

Future directions.

1. The special case of QCD(adj) on R3 × T2 with a single fermionic flavor is N = 1 su-

persymmetric glue dynamics. Deconfinement in this theory was extensively discussed

in [37] with conclusions similar to that of QCD(adj). The computation of RMI in this

theory near the critical temperature will be discussed in a future work. We expect,

however, that supersymmetry will not greatly affect the conclusions of our present

work.
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2. In [88] an SU(3) QCD(adj) theory on R2 × T2 was studied via the dual Coulomb

gas/ XY-spin model duality, and it was concluded that the deconfinement transition

is first order. It will be interesting to examine whether RMI can have a nontrivial

behavior at the transition point in this system.

3. Our work has also applications beyond gauge theory. The study of RMI to identify

classical transitions was first applied to the Ising and XY-models in [74] and later

extended to other systems like the classical toric code model [89]. In fact, XY-spin

models with perturbations are universal models that have a wide range of applications

from the roughing transitions to the 2-D solid melting, see [60]. The calculations of

RMI may help in identifying interesting features near the phase transition in these

systems.

4. Another interesting quantity that can be readily measured in XY-spin systems is the

topological entanglement entropy, the constant term in S = C`+ γtop. This quantity

is nonzero in systems that exhibit topological order, and hence, can be descried by

topological field theories (TFT) deep in the IR. The existence of discrete ’t Hooft

anomalies in QCD(adj) suggests that this theory may admit a TFT that saturates the

anomaly. The topological entanglement entropy can be calculated using either Levin

and Wen [90] or Kitaev and Preskil [91] schemes. Whether γtop is non-vanishing in

QCD(adj) is left for a future investigation.

5. Information about the CFT universality class can be extracted from RMI at the crit-

ical temperature. This can be done by computing RMI for different partitions of a

given lattice size and trying to fit the next to leading term of RMI (the leading term is

being the area) with general known behavior of CFT at finite interval. This will eluci-

date the link between the entanglement entropy of the dual Sine-Gordon model (which

we examined in this work via CFT with deformations) and RMI of the XY models.

6. Finally, it will be interesting to compute RMI of the full scale 4-D theory on the

lattice and examine whether this quantity has a similar behavior, near the transition,

to the one found in this work.
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[40] A. Cherman, S. Sen, M. Ünsal, M.L. Wagman and L.G. Yaffe, Order parameters and

color-flavor center symmetry in QCD, Phys. Rev. Lett. 119 (2017) 222001

[arXiv:1706.05385] [INSPIRE].

[41] Y. Tanizaki, T. Misumi and N. Sakai, Circle compactification and ’t Hooft anomaly, JHEP

12 (2017) 056 [arXiv:1710.08923] [INSPIRE].

[42] E. Poppitz and M.E. Shalchian T., String tensions in deformed Yang-Mills theory, JHEP 01

(2018) 029 [arXiv:1708.08821] [INSPIRE].

[43] K. Aitken, A. Cherman, E. Poppitz and L.G. Yaffe, QCD on a small circle, Phys. Rev. D 96

(2017) 096022 [arXiv:1707.08971] [INSPIRE].

[44] M.M. Anber and A.R. Zhitnitsky, Oblique confinement at θ 6= 0 in weakly coupled gauge

theories with deformations, Phys. Rev. D 96 (2017) 074022 [arXiv:1708.07520] [INSPIRE].

[45] A. Cherman and E. Poppitz, Emergent dimensions and branes from large-N confinement,

Phys. Rev. D 94 (2016) 125008 [arXiv:1606.01902] [INSPIRE].

[46] M.M. Anber and E. Poppitz, On the global structure of deformed Yang-Mills theory and

QCD(adj) on R3 × S1, JHEP 10 (2015) 051 [arXiv:1508.00910] [INSPIRE].

[47] M.M. Anber and E. Poppitz, Microscopic structure of magnetic bions, JHEP 06 (2011) 136

[arXiv:1105.0940] [INSPIRE].

[48] T.C. Kraan and P. van Baal, Monopole constituents inside SU(N) calorons, Phys. Lett. B

435 (1998) 389 [hep-th/9806034] [INSPIRE].

[49] K.-M. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys.

Rev. D 56 (1997) 3711 [hep-th/9702107] [INSPIRE].

[50] A.M. Polyakov, Quark confinement and topology of gauge groups, Nucl. Phys. B 120 (1977)

429 [INSPIRE].

[51] R. Jackiw and C. Rebbi, Solitons with Fermion number 1/2, Phys. Rev. D 13 (1976) 3398

[INSPIRE].
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Rényi mutual information, Phys. Rev. B 87 (2013) 195134.

[75] C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55

[hep-th/9401072] [INSPIRE].
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