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We revisit models of natural inflation and show that the single-field effective theory described by the
potential VðaÞ ∼ cos af breaks down as the inflaton a makes large-field excursions, even for values of f
smaller than the Planck scale. To remedy the problem, we modify the potential in order to account for the
heavy degrees of freedom (hadrons) that become intertwined with the light inflaton as the latter rolls down
its potential. By embedding the low-energy degrees of freedom into an ultraviolet-complete gauge theory,
we argue that the intertwining between the two scales can be explained as the result of a generalized mixed
’t Hooft anomaly between the discrete chiral symmetry and background fractional fluxes in the baryon
number, color, and flavor directions. Further, we study the multifield inflation and show that it entertains
rich dynamics. Inflating near the hilltop excites the hadrons and spoils the slow-roll parameters, in
contradistinction with the expectations in the single-field inflation. Nevertheless, we identify a safe zone
where inflation can proceed successfully. We determine the conditions under which the Universe inflates by
at least 60 e-foldings and inflation leads to a power spectrum and tensor to scalar ratio that are consistent
with the cosmic microwave background data.
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I. INTRODUCTION

Inflationary models that make use of pseudo–Nambu-
Goldstone bosons are among the most compelling bottom-
up particle physics approaches to inflation. They are said to
be natural because the ratio of the inflaton mass to the
Hubble parameter is protected from large quantum correc-
tions. The first andmost influential idea in this direction is to
use axions as inflatons [1,2]. These pseudoscalar particles
enjoy a continuous shift symmetry, a → aþ constant, that
guards them against large loop corrections. The shift
symmetry is broken nonperturbatively, e.g., via anomalies,
to a discrete shift symmetry, leading to a potential of the form

VðaÞ ∼ Λ4

�
1 − cos

a
f

�
; ð1Þ

where f is the axion decay constant, or axion constant for
brevity. The scaleΛ is the strong-coupling scale of the gauge
group that causes the breaking of the shift symmetry. As one
takes Λ → 0, we restore the full shift symmetry, and hence
the flatness of the potential, which is related to the axion
mass ma ≈ Λ2

f , is natural in the sense of ’t Hooft [3].

The above potential has been extensively used in the
literature for the purpose of studying axion inflation as well
as other aspects of axion physics; see, e.g., Refs. [4–8].
Indeed, VðaÞ is a good effective field description at scales
approximately ma, which is much lower than Λ. However,
as we shall argue in this paper, VðaÞ breaks down as a
makes a large-field excursion a ∼ f, even for values of
f < MP, where MP is the reduced Planck mass.1 As a
traverses the field space, it becomes intertwined with heavy
degrees of freedom that were integrated out in the first place
and led to the potential (1). This raises the question about
the validity of VðaÞ to study models of natural inflation.
The main purpose of this paper is to address this concern
and elucidate what really happens during axion inflation.
Using chiral perturbation theory, we argue that the

potential (1) should be replaced with the correct effective
potential that accounts for the heavy degrees of freedom,

Vða; σÞ ∼ Λ4

�
1 − cos

σ

Λ
cos

a
f

�
; ð2Þ

where σ is the hadronic field.2

On another but related topic, ’t Hooft anomalies have
been known to play a pivotal role in understanding the IR*manber@lclark.edu
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1In this paper, we use the reduced Planck mass MP ≡ 1ffiffiffiffiffiffi
8πG

p ¼
2.435 × 1018 GeV, where G is Newton’s constant.

2We abuse the language and use the word “hadron” to mean
any strongly coupled degree of freedom in the infrared, including
glueballs.
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physics of strongly coupled gauge theories [3]. In this
regard, the IR particle spectrum has to exactly match a
’t Hooft anomaly that exists in the UV. The failure to match
an anomaly is a red flag that something is missing in the IR
picture. Although this type of anomaly has been known
since the 1980s, recently it was realized that it can further
be generalized and used to put extra constraints on the
possible IR realization of the global symmetries of a given
theory; see Refs. [9–12] and references therein.
As we discuss in this paper, one can obtain VðaÞ from a

UV-complete gauge theory and show that the IR effective
theory is missing important information about the matching
of a new type of generalized ’t Hooft anomaly that exists
deep in the UV, known as the baryon number-color-flavor
(BCF) anomaly [11,12]. To match the anomaly, we need to
incorporate the hadronic degrees of freedom into VðaÞ.
Here, however, one cannot make use of the chiral pertur-
bation theory. The form of Vða; σÞ is motivated by lessons
that have been learned over the past decade about an
adiabatic continuity between the four-dimensional (4D)
Yang-Mills theory and a circle compactified Yang-Mills
theory with deformations; see Refs. [13,14]. The anomaly
matching conditions provide a nonperturbative and
stronger statement about the necessity of reintroducing
the heavy degrees of freedom in the low-energy effective
field theory as the axion makes large excursions in the
field space.
Further, we use both numerical and analytical techniques

to study the inflationary potential Vða; σÞ. Unlike the
single-field effective theory, where the axion can start
rolling down the potential very close to the hilltop
a ≈ πf, starting near the maximum of Vða; σÞ spoils
inflation for any value of f. The hadronic degrees of
freedom kick the axion very hard toward a steep direction,
forcing inflation to end abruptly. However, if we start
inflating in a safe zone at values of a ≈ π

2
f, then the axion

rolls down slowly in a flat direction, and inflation can be
sustained. Whether we can have enough e-folds approx-
imately 50–60, which is the typical number required to
solve the problems of the standard big bang cosmology,
depends on the value of f. Taking f ≲MP does not yield
enough e-folds, which is dramatically different from
inflating in VðaÞ, where one can achieve approximately
50–60 e-folds of inflation even for values of f ≲MP by
starting very close to the hilltop. This behavior is a
manifestation of the intertwining phenomenon between
the axion and heavy degrees of freedom as the former
makes a large-field excursion. We also argue that this
complex dynamics is ultimately attributed to the BCF
anomaly, which is lurking deep in the IR and dictating
the behavior of the system.
Fortunately, we can achieve successful inflation that

yields a large number of e-folds by taking f > 9MP.
Although such large values of f are in conflict with
theories of quantum gravity, one can evade the problem,

for example, by invoking several axions as in models of
N-flation [4]. Further, we study the curvature perturbations
and show that the hadronic quantum fluctuations stay in the
vacuum at the time the axion fluctuations exit the horizon.
This leads to values of the spectral tilt and tensor to scalar
ratio that are compatible with the eosmic microwave
background (CMB) data [15].
This paper is organized as follows. In Sec. II, we discuss

the reason behind the breakdown of the single-field
potential and further describe a class of UV-complete
gauge theories coupled to fermions and a single or several
complex Higgs fields and lead to a low-energy effective
theory of axions. The UV theories are almost identical to
the ones that were described in the original paper on natural
inflation [2]; also see Refs. [16]. However, here we pay
extra attention to the global symmetries, as was done in
Ref. [17], since they play a pivotal role in identifying the
new type of ’t Hooft anomaly that constrains the IR
dynamics, i.e., the BCF anomaly. Throughout this section,
we consider the Euclidean version of the theory in the
background of a general manifold, but otherwise we turn
off the dynamical gravity. The Euclidean version is more
convenient to work with since it is easier to identify all the
global symmetries as well as their ’t Hooft anomalies in a
Euclidean setup. Then, we discusswhat goeswrongwith the
low-energy effective potential (1). To remedy the effective
theory, we use lessons from Yang-Mills theory on a small
circle with deformations. This class of theories respects the
BCF anomaly, and hence it provides clues about the form of
the low-energy effective potential (2) that should replace (1).
In Sec. III, we turn on gravity and study the dynamics of the
inflationary potential (2) in the Friedmann-Robertson-
Walker spacetime ds2 ¼ −dt2 þ b2ðtÞdx2, where bðtÞ is
the scale factor and t is the cosmic time. Finally, we study the
curvature and tensor perturbations and compare against the
results from the potential (1). We conclude in Sec. IV with
final comments. Many important and fine points are del-
egated to several footnotes, as we felt they might interrupt
the flow of the main text.

II. THEORY AND FORMULATION

The plan of this section is as follows. We first discuss the
breakdown of the single-field effective theory as the axion
makes large excursions in the field space. For this purpose,
we use chiral perturbation theory and show that one needs
to take into account the hadronic degrees of freedom in
order to cure the sick single-field theory. At this level, one
might be tempted to proceed right away and use the two-
field potential to study inflation. However, we take a long
pause before doing that in order to show that there can be a
deep reason, deeper than the rules of effective field theory,
why one needs to introduce the hadronic degrees of
freedom into the effective potential. This reason is attrib-
uted to a new ’t Hooft anomaly. However, to see how this
works, one needs to embed the axion as well as hadrons in a
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UV-complete gauge theory and trace the anomaly from the
UV down to the IR. As it turns out, as we flow to the IR we
lose control over the strong dynamics, and it becomes
unclear how to take into account the strongly coupled
degrees of freedom and at the same time match the
anomaly. Empowered with lessons we have learned over
the past decade from a model of Yang-Mills theory
compactified on a small circle, we propose a phenomeno-
logical model that (i) takes into account the effects of the
strong dynamics on axion and (ii) matches the anomaly.

A. Chiral Lagrangian

In this section, we explain why the potential (1) breaks
down as the axion makes large excursions in the field space.
Notice that this is true even for values of f smaller than the
Planck scale and that the problem stems from the fact that
we are neglecting heavy degrees of freedom that become
intertwined with the axion.
To this end, consider QCD3 with two light fundamental

quarks along with an axion and take the axion constant f to
be much larger than the strong scale. The low-energy chiral
Lagrangian is given by [18,19]

L¼ f2π
4
tr½∂μU†∂μU�þ1

2
ð∂μaÞ2þ

B0f2π
2

tr½UM†þMU†�;
ð3Þ

where U ¼ ei
π·τ
fπ , π ¼ ðπþ; π−; π0Þ, and τ ¼ ðτþ; τ−; τ3Þ are

the Pauli matrices; B0 ¼ m2
π

ðmuþmdÞ; and fπ , mπ , mu, and

md are the pion decay constant, pion mass, and up and
down quark masses, respectively. M is the mass matrix:
M ¼ diagðmue

iaf; mde
−iafÞ. If, for simplicity, we assume

that mu ¼ md, then we obtain the potential

V ¼ B0f2π
2

tr½UM† þMU†� ¼ m2
πf2π cos

π0

fπ
cos

a
f
: ð4Þ

If we are interested in the low-energy axion physics, then
we can completely neglect the pions since fπ ≪ f, which
leads to the axion potential

V ¼ m2
πf2π cos

a
f
: ð5Þ

This potential, apart from a cosmological constant, is
identical4 to (1). Now, let us understand what goes wrong
with this potential as the field a makes large excursions.
The potential (1) has a unique vacuum at a ¼ 0.

Then, one may expand the cosine near the vacuum,
VðaÞ ≅ Λ4ðafÞ2 þ…, which is a good approximation for

small perturbations jaj ≪ f, e.g., like when we study
scattering problems. In other words, small perturbations
near the minimum guarantee that jVðaÞj=Λ4≪1 for jaj≪f
and the low-energy effective field theory (1), which is valid
for energies E ≪ Λ, is robust. Now, one can immediately
read the axion mass ma ≅ Λ2

f , which is much lighter than
the strong scale Λ. In this case, we are justified to ignore the
pion field, which is much heavier than the axion. The
problem, however, appears once the axion makes a large
excursion a ∼ f, as required in models of axion inflation.
In this case, we find VðaÞ ≅ Λ4 exposing the scale Λ,
and the single cosine approximation (1) is no longer
trusted. In fact, as the axion makes a large excursion,
we expect both the light (axion) and heavy (hadrons)
scales to be intertwined. Hence, one needs to restore to
the original potential (4) in order to account for the
intertwining phenomenon.5 This complex behavior, and
hence the rearrangement of the hadronic degrees of
freedom, was also anticipated to happen, for example,
at the core of axion domain walls [24–28] (where the
large-field excursion takes place), based on lessons from
the chiral Lagrangian, the large-Nc limit, D-branes, and
supersymmetry.
It was not until recently that this scales intertwining

phenomenon was put on firmer ground by invoking a new
type of ’t Hooft anomaly [17]. We discuss the essence of
this anomaly and its implications in the next sections. To do
that, we first embed the axion and hadrons in a UV gauge
theory that entertains a plethora of global symmetries and
examine the fate of the partition function as we turn on
background gauge fields of these symmetries. However, we
must emphasize here that, whether there is an anomaly or
not, the breakdown of (1) is expected whenever the rules of
effective field theory are violated. What the anomaly buys
for us is a nonperturbative statement of why the breakdown
happens.

B. Embedding in a UV-complete gauge theory

In this section, we embed the axion as well as the
hadrons in a UV-complete gauge theory.
We consider an asymptotically free vectorlike SUðNcÞ

gauge theory with Nf flavors of fermions in a representa-
tion R of the color group. We take the fermions to be left-
handed Weyl fermions ðψ ; ψ̃Þ such that ψ transforms under
R and ψ̃ transforms under the complex conjugate repre-
sentation R̄, which, in turn, guarantees the absence of

3In this paper, we use the term QCD for any QCD-like theory
with strong dynamics in the IR.

4We can also be sloppy and set mπ ≈ fπ ≈ Λ.

5See Refs. [20,21] for an attempt to study the effect of the
heavy degrees of freedom on natural inflation. We also point out
that in this work we consider QCD at zero temperature, in
contrast with little inflation discussed in Ref. [22], which occurs
near the QCD phase transition. In Ref. [23], it was proposed that
the inflaton in QCD-like models is achieved by an auxiliary
nonpropagating field. This is different from the models we
discuss here.
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gauge anomalies.6 We combine ψ and ψ̃ into a single Dirac
spinor Ψ. The UV Lagrangian reads

L0
UV ¼ ffiffiffi

g
p �

1

4g2s
ðFc

μνÞ2 þ iΨ̄=DΨ
�
; ð6Þ

where the flavor and color indices are implicitly contracted,
gs is the coupling constant, g is the metric, and =D is the
Dirac operator, which contains both the gauge and spin
connections.
It is essential to work out the faithful global symmetries

of the theory, since they play a pivotal role in the
generalized ’t Hooft anomalies, as we will discuss soon.
The classical global symmetry of the theory at hand is
Gglobal ¼ SUðNfÞL × SUðNfÞR ×Uð1ÞB ×Uð1ÞA=½ZNc=p×
ZNf

×Z2�. The fermions ψ (ψ̃) transform under the global

flavor symmetry SUðNfÞL × SUðNfÞR as ð□; 1Þ [ð1; □̄Þ],
their charges under the baryon symmetry Uð1ÞB is þ1
(−1), and their charges under the Uð1ÞA axial symmetry
is þ1 (þ1). We also mod out by various discrete
symmetries in order to avoid redundancy. These discrete
symmetries can be absorbed in combinations that
involve SUðNcÞ as well as global transformations of
Uð1ÞB and SUðNfÞL × SUðNfÞR. The ZNf

symmetry is
the center of SUðNfÞL;R, while Z2 is the fermion
number. The discrete symmetry ZNc=p, on the other
hand, needs more elaboration. The N-ality nc of a
representation R is the number of the boxes in
Young tableau modulo Nc. Thus, the part of the gauge
group that acts faithfully on fermions7 is SUðNcÞ=Zp,
where p ¼ gcdðNc; ncÞ. This means that the fermions
are charged under ZNc=p ⊆ ZNc

, and hence we mod it
out since it is part of the gauge group.
The quantum corrections break8 Uð1ÞA down to the

nonanomalous discrete chiral symmetry Zdχ
2NfTR

, where TR

is the Dynkin index. We normalize TR such that the trace in

the fundamental representation is T□ ¼ 1 and the simple
roots α of SUðNcÞ have length square α2 ¼ 2. Thus, the
good global symmetry of our theory is reduced to

Gglobal ¼
SUðNfÞL × SUðNfÞR ×Uð1ÞB × Zdχ

2NfTR

ZNc
p
× ZNf

× Z2

: ð7Þ

We further couple the fermions to a complex Higgs
field Φ ¼ ϕ1 þ iϕ2 by introducing the Yukawa term
yΨ̄ðϕ1þiϕ2γ

5ÞΨ and the Higgs potential VðΦÞ¼λðjΦj2−
f2Þ2. The full Lagrangian reads

LUV ¼ L0
UV þ ffiffiffi

g
p ½j∂μΦj2 þ VðΦÞ þ yΨ̄ðϕ1 þ iϕ2γ

5ÞΨ�:
ð8Þ

The axion constant f is taken to be much larger than the
strong-coupling scale Λ, i.e., we demand f ≫ Λ, and the
dimensionless couplings λ and y are Oð1Þ constants. We
will also assume that Λ ≪ MP, while we comment on the
relation between f and MP below. The Higgs field is inert
under all symmetries except Zdχ

2NfTR
, and the Yukawa term

is invariant under SUðNcÞ ×Gglobal. The fermions and

Higgs fields transform as ψ → e
−i 2π

2NfTRψ , ψ̃ → e
−i 2π

2NfTR ψ̃ ,

Φ → e
4i 2π

2NfTRΦ under Zdχ
2NfTR

.

At energy scale Λ ≪ E ≪ f, the Higgs field acquires
a vacuum expectation value. We write Φ≡ ρeia and set
ρ ¼ f, where a is the axion field. Then, the fermions
acquire a mass OðfÞ and decouple. The effective
Lagrangian becomes

LΛ≪E≪f ¼ ffiffiffi
g

p �
1

4
ðFc

μνÞ2 þ f2ð∂μaÞ2
�

þ aNfTRtr□

�
Fc ∧ Fc

8π2

�
; ð9Þ

where tr□ðFc∧Fc

8π2
Þ is the topological charge density of the

color field and the precoefficient NfTR is obtained by
integrating out the fermions running inside the triangle
diagrams that contribute to the Uð1ÞA½SUðNcÞ�2 anomaly;
see Footnote 8. The Lagrangian (9) describes N2

c − 1
gluonic degrees of freedom coupled to an axion. Since
the axion constant is much larger than the strong scale,
the axion field does not experience a large variation over
length scales approximately Λ, and we can think of a as a
constant θ angle over such length scales. Notice also that
the term aNfTRtr□ðFc∧Fc

8π2
Þ breaks the axion shift sym-

metry down to ZNfTR
. This is an exact symmetry of the

system, which remains a good one deep in the IR (but it
can break spontaneously; e.g., we can have axion
domain walls).

6The formalism requires a minor modification for fermions in
self-conjugate representations, i.e., when R ¼ R̄, e.g., adjoint
fermions. We assume throughout this paper that the representa-
tion is not self-conjugate.

7One way to identify the faithful discrete symmetry ⊆ ZNc
that

acts on fermions is to consider the transition functions Φij of the
SUðNcÞ gauge bundle on the overlap between two patches Ui ∩
Uj that cover the manifold. Then, fermions of N-ality nc
transform as ψ i → ei2π

nc
Ncψ j. Hence, the fermions are blind to a

Zp transformation, where p ¼ gcdðNc; ncÞ.
8One can see this breaking by studying the triangle diagrams

of the Uð1ÞA½SUðNcÞ�2 anomaly. The anomaly contributes a

phase ei2αNfTR

R
tr□ðFc∧Fc

8π2
Þ to the Euclidean partition function,

where α is the phase of the Uð1ÞA global transformation. Thus,
Uð1ÞA is anomalous in the background of the color field, and only
those values of α that satisfy α ¼ 2πk

2NfTR
, k ∈ Z, leave the partition

function invariant.
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Further, going down to energies E ≪ Λ, the theory
generates a mass gap and confines.9 The only relevant
degree of freedom, then, is the axion field. Integrating out
the strong field fluctuations generates a potential10 VðaÞ,

LE≪Λ ¼ ffiffiffi
g

p �
1

2
ð∂μaÞ2 þ VðaÞ

�
;

VðaÞ ¼ Λ4

�
1 − cos

�
aNfTR

f

��
þ � � � ; ð10Þ

where we scaled a → a=f. The dots in (10) refer to higher
harmonics,11 which need to respect the discrete shift
symmetry a → aþ 2π

NfTR
. As we pointed out above, the

potential (10) cannot be trusted when the axion makes
large-field excursions; the effective field theory breaks
down. We will also show that this potential is inconsistent
with a new ’t Hooft anomaly that we will discuss
momentarily. Before doing that, we digress to discuss
one technical aspect that has to do with the value of the
axion constant.

C. N-flation

The potential in (10) is typical in studying models of
axion inflation. To satisfy the Planck satellite constraints on
the CMB power spectrum [15], however, one needs to take
f > MP, which is in tension with theories of quantum
gravity.12 The tension can be alleviated, for example, by
invoking the idea of N-flation [4], where we postulate the

existence of N axion fields.13 Each field has an axion
constant f < MP. Interestingly, one finds that the collective
motion of the axions results in an effective axion constant
feff ≅

ffiffiffiffi
N

p
f > MP, and hence we can respect the

CMB constraints without going against the general lore
we learn from theories of quantum gravity. To illustrate
this mechanism, we briefly repeat the above steps, but
now we couple the fermions to N complex Higgs fields,P

N
j¼1 Ψ̄ðϕj

1 þ iϕj
2γ

5ÞΨ, and introduce the Higgs potential
V ¼ P

j¼1 λðjΦjj2 − f2Þ. We immediately find that each
axion aj respects the discrete shift symmetry aj → aj þ
2π

NfTR
. Integrating out the fermions generates the termP

N
j¼1 ajtr□ðF

c∧Fc

8π2
Þ, while summing over the instantons14

yields the low-energy effective Lagrangian

LE≪Λ¼
ffiffiffi
g

p �
1

2

XN
j¼1

ð∂μajÞ2þ
XN
j¼1

Λ4

�
1−cos

�
ajNfTR

f

���
:

ð11Þ

To simplify the analysis, we assume that the N distinct
axions have the same initial conditions as they start to roll
down the potential, i.e., aj ≅ πf=ðNfTRÞ. Thus, we take
aj ¼ a for every j ¼ 1; 2;…; N and define ae ≡

ffiffiffiffi
N

p
a to

obtain

Leff
E≪Λ ¼ ffiffiffi

g
p �

1

2
ð∂μaeÞ2 þ NΛ4

�
1 − cos

�
aeNfTRffiffiffiffi

N
p

f

���
;

ð12Þ

and the collective degree of freedom ae has an effective
axion constant

ffiffiffiffi
N

p
f > MP for large enough values of N.

What we have achieved is that each axion has a large-field
excursion less than the Planck scale, yet the effective axion
ae yields scalar and tensor perturbations that are compatible
with the CMB power spectrum.15

From now on, we work with the Lagrangian (10),
keeping in mind that the axion field and the axion constant
that appear there are the effective ones. Now, we return
back to the original problem and address the fact that the
Lagrangian (10) breaks down as a makes large excursions.
To remedy the problem, we need to introduce the strongly
coupled degrees of freedom into the effective potential, as
we discussed above in the case of the chiral Lagrangian.

9Strictly speaking, true confinement will only take place if the
system has an unbroken Z1

Nc
1-form center symmetry. This

symmetry acts on the Polyakov loop and guarantees that the
vacuum expectation value of the loop is zero in the confining
regime; i.e., we have an infinitely long flux tube between two
fundamental probe charges. A theory with dynamical fundamen-
tal fermions, for example, does not have a Z1

Nc
symmetry, and

thus there is no true notion of confinement. However, since
f ≫ Λ, the flux tubes break at a length scale approximately f

Λ2,
which is parametrically much larger thanΛ−1. In this case, we can
talk about an emergent Z1

Nc
1-form symmetry.

10The potential is generated after summing over a dilute gas of
Belavin-Polyakov-Schwarz-Tyupkin (BPST) instantons. Every
(anti)instanton carries a minimum topological charge ofR
tr□ðFc∧Fc

8π2
Þ ¼ �1. Thus, the ’t Hooft vertex in the background

of the BPST instanton takes the form e
−8π2

g2s e�iaNfTR , where 8π2

g2s
is

the instanton action. The ’t Hooft vertex is invariant under the
discrete shift symmetry a → aþ 2π

NfTR
. Inserting the vertex into

the path integral generates the potential VðaÞ. However, one has
to keep in mind that the dilute gas approximation is not under
control since the scale modulus grows indefinitely, thanks to
the strong-coupling behavior in the IR.

11The higher harmonics can be thought of summing over
BPST instantons with higher topological charges.

12For example, if one takes f > MP, then gravitational
instantons can induce higher harmonics that spoil inflation;
see, e.g., Ref. [29].

13Another mechanism that can be used to circumvent the
tension is the aligned natural inflation [30,31].

14There will be N distinct ’t Hooft vertices approximately

e
−8π2

g2s e�iajNfTR for j ¼ 1; 2;…; N. Notice that ’t Hooft vertices are
invariant under the discrete shift symmetry aj → aj þ 2π

NfTR
.

15It can also be shown that the effect of gravitational instantons
is suppressed in models of N-flation and that these models are not
in conflict with the weak gravity conjecture; see Ref. [29].
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Here, unfortunately, one cannot use the power of chiral
perturbation theory since the fermions are heavy and
decouple long before the theory enters its strongly coupled
regime. In the next sections, we discuss how to address this
problem and introduce the reader to a recently discovered
’t Hooft anomaly that enables us to make nontrivial
statements about the IR physics.

D. Generalized ’t Hooft anomalies: The BCF anomaly

A ’t Hooft anomaly is an obstruction to gauging a global
symmetry [3]. The anomaly is a renormalization group
invariant, and hence it has to be matched between the UV
and IR.16 This makes ’t Hooft anomalies an indispensable
tool to study asymptotically free theories since one can
calculate the anomaly coefficient in the UV and, irrespec-
tive of the details of dynamics, this coefficient has to be
exactly reproduced by the IR strongly coupled degrees of
freedom. These anomalies have been known since the
1980s and have played an important role in model building
of composites [33] and Seiberg dualities [34]. Recently, this
topic gained momentum due to the discovery of new
anomalies that go under the name generalized ’t Hooft
anomalies; see, e.g., Refs. [9–12] and references therein.
Because of the limited space, we only give a glimpse of

the essence of these new anomalies. The interested reader is
referred to the cited literature for more details.
The traditional ’t Hooft anomalies, as have been known

since the 1980s, involve only integer topological charges of
the background gauge field of a given global symmetry.
The new realization, that was first made in Ref. [9], is that
one can also turn on fractional topological charges known
as ’t Hooft fluxes [35]. This new technology was applied in
Ref. [10] to gauging the center symmetry of the color
group. Recently, this method was generalized by turning on
fractional fluxes in the color, flavor, and baryon number
directions, compatible with the faithful action of the global
symmetry of a given theory [11,12]. The new anomaly was
dubbed the BCF anomaly.
In fact, by closely examining the microscopic theory

discussed in Sec. II, one reveals that it exhibits a BCF
anomaly. This is a mixed anomaly between the global
discrete chiral symmetry Zdχ

2NfTR
and the color-baryon-

flavor background fluxes. These are the most general fluxes
that are compatible with the faithful global symmetry of the
theory as given in (7). Again, we spare the reader the details

and refer to Ref. [11] for a comprehensive explanation of
all the steps. Succinctly, we compactify the Euclidean
theory on a large 4-torus.17 Then, the BCF anomaly shows
up in the UV as an irremovable phase18 in the Euclidean
partition function Z as we perform a Zdχ

2NfTR
global trans-

formation in the color-baryon-flavor background fluxes,

Z → Ze
i 2π
NfTR

½NfTRQcþdRðQfþQBÞ�
; ð13Þ

where dR is the dimension of the representation R and
Qc;B;f are the fractional topological charges in the color,
baryon, and flavor directions. These charges are given by

Qc ¼ mm0
�
1 −

1

Nc

�
; Qf ¼ kk0

�
1 −

1

Nf

�
;

QB ¼
�
nc

m
Nc

þ k
Nf

��
nc

m0

Nc
þ k0

Nf

�
; ð14Þ

where m;m0; k; k0 ∈ Z. At energy scale Λ ≪ E ≪ f, the
BCF anomaly can be reproduced by coupling the axion to
the topological charge densities of the color, flavor, and
baryon number. Thus, we need to add the term

Lanom ¼ aðNfTRqc þ dRqf þ dRqbÞ ð15Þ

to the infrared Lagrangian in order to match the
BCF anomaly. Here, qc;B;f are the topological charge
densities of the color, flavor, and baryon number,
qc;B;f ¼ tr□ðFc;B;f∧Fc;B;f

8π2
Þ, whose integrals on a closed 4D

manifold give Qc;B;f in (14). Now, we see that under a
discrete shift symmetry a → aþ 2π

NfTR
the IR partition

function acquires the exact same UV phase that appears
in Eq. (13).
The Lagrangian (15) does not immediately dictate the

mathematical form of the deep IR effective field theory at
energy scale ≪Λ. The dynamics in the IR, however, has to
conspire in order to respect the BCF anomaly; this anomaly
involves the color direction, and hence the IR effective field
theory has to contain information about the color degrees of
freedom.19 Thus, the single-field Lagrangian (10), that is
used in models of axion inflation, is missing important

16As a word of caution, the reader should not confuse this kind
of anomalies with gauge or axial anomalies. If a theory has a
gauge anomaly, then it is either sick in the UVor can make sense
only as an effective field theory with a cutoff; see Ref. [32]. An
example of the axial anomaly is the one we discussed in Sec. II,
where Uð1ÞA is broken down to a discrete subgroup in the
background of the dynamical color field. ’T Hooft anomaly, on
the other hand, neither signals anything wrong with the theory nor
reduces the global symmetry. It is just a way to probe the theory
by gauging its global symmetries.

17The compactification on a 4-torus is a slick way to see the
anomaly. However, we must emphasize that the anomaly itself is
insensitive to the details of the geometry.

18This means that we cannot introduce a counterterm that
removes the phase.

19The BCF anomaly is unlike other ordinary (associated
to integer fluxes) ’t Hooft anomalies. For example, the theory
we are discussing enjoys two ordinary ’t Hooft anomalies:
Zdχ

2NfTR
½Uð1ÞB�2 and Zdχ

2NfTR
½SUðNfÞ�2. These anomalies, how-

ever, do not involve the color field, and thus they do not tell us
about any kind of intertwining between the axion and strongly
coupled theory in the IR.
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information about this anomaly, and it cannot be the
whole story. The very interesting point, though, is that
this information is related to a very high-energy scale of
approximately Λ compared to the scale of axion physics of
approximately Λ2=f; this information needs to lurk deep in
the IR in order to match the BCF anomaly. This is the
nonperturbative reason of the scale-intertwining phenome-
non that was anticipated long ago [24–26]. However, we
must be clear that, whether the anomaly is present or not,
one still expects the strong dynamics to play a major role
as the axion makes a large-field excursion.20 As we argued
above, the effective potential (10) breaks down in this
case since the hadronic degrees of freedom get excited.
What the anomaly buys for us, though, is a nonperturbative
statement why the interplay between hadrons and axion
should take place.
The question then is how we account for the strong

dynamics in the IR. Given the poor handle we have on the
strongly coupled phenomena, this sounds like a daunting
task, and there is not much one can say about the effects of
the strong dynamics on axion inflation. Nevertheless, over
the past decade, we have learned a good deal of technology
that enables us to understand the physics of the strong
dynamics, e.g., confinement and discrete chiral symmetry
breaking, by means of weakly coupled physics. We review
the progress in this direction in the next section and set the
stage to investigate axion inflation in a more realistic setup
compared to what has been achieved in the literature.

E. Deformed QCD

To have control over the IR dynamics, we deform the
original theory given by the Lagrangian (8) such that we
leave the global symmetry (7) intact. This method of
deforming a strongly coupled gauge theory has been
invoked for more than a decade with a huge body of
literature. We refer the reader to the review [14], while
we try to keep our discussion succinct and relevant to the
cosmological context. At the end of this section, we remove
the deformation andmotivate amodel that takes into account
the effects of the strong dynamics on axion inflation.
To this end, we compactify the theory21 on a spatial circle

S1
L of circumference L, and at the beginning, we take L to

be much larger than any length scale in the problem22 and
add the double-trace deformation

LDTD ¼
X
n¼1

cnTr□jΩnj2: ð16Þ

We say that the theory lives on R2;1 × S1
L, where R2;1

denotes two space and one time directions.23 However,
given that the length of the circle is very large, the dynamics
does not distinguish between this theory and the theory that
lives on R4; it is still in the confining regime in the IR.

Ω≡ e
i
H
S1
L
Ac

is the Polyakov loop (or holonomy) of the
color field over S1

L (the color field obeys periodic boundary
conditions over S1

L), and cn are positive coefficients
approximately Oð1Þ, as we explain below. We also give
the fermions and Higgs field periodic boundary condi-
tions24 along S1

L.
Next, we lowerL below 1=ΛNc; we takeΛ ≪ 1

NcL
≪ f. In

this case,25 the gauge field fluctuations generate a potential
for the holonomy Ω. This potential favors a center-broken
phase, Tr□Ω ≠ 0; this is the celebrated thermal phase
transition (deconfinement) that happens at L ∼ Λ−1. To
suppress the gauge field fluctuations, avoid the transition,
stay in a center-symmetric confining phase (Tr□Ω ¼ 0), and
allow for a smooth behavior across L ∼ Λ−1, we choose
the coefficients cn in (16) to be large and positive. In
summary, adding the double-trace deformation to the theory
allows for an adiabatic continuity between large and small
values of L and guarantees that the theory stays in its
confining regime. Next, we study the dynamics of the theory
in the small circle limit, which is totally under analytical
control, and show how confinement happens. This task is not
possible on R4 or in the limit Λ ≫ 1

NcL
.

Definitely, a small value of L is not realistic for the
cosmological context. What we are trying to do here is
motivate a model that can capture the physics of the strong
dynamics as we take L → ∞. We argue below that such a
model is consistent with what is expected in a confining
theory.
Let us for now continue our investigation of the

deformed theory on the circle. If we take L to be small
enough, LΛNc ≪ 1, then the theory enters its weakly
coupling regime, gs ≪ 1, and becomes amenable to the
semiclassical techniques.26 Because the theory is at a
center-symmetric point, the gauge field component in

20In fact, a theory with a single fundamental quark does not
have a genuine discrete chiral symmetry. Hence, in this case,
there is no BCF anomaly. Yet, one expects the strong dynamics to
play a role as the axion makes a large-field excursion.

21Remember that the IR theory is in a confining regime.
22This is not a thermal circle, and hence deformed QCD is not a

finite temperature theory.

23Here, we slightly deviate from the promise that was made
throughout this section that we are working in a Euclidean
version of the theory in order to emphasize that S1

L is not a
thermal circle.

24Actually, whether we give them periodic or antiperiodic
boundary conditions will not affect our analysis since they
decouple at scales much higher than the strong scale.

25Since 1
L ≪ f, the fermions and radial component of the Higgs

are already decoupled.
26Upon the breakdown of SUðNcÞ down to Uð1ÞNc−1, see the

few lines that follow, we obtain a tower of Kaluza-Klein W
bosons. The lightest W boson mass is 2π

NcL
. Thus, when we take

ΛNc ≪ 1, the W boson mass works as an IR cutoff that stops the
running of the coupling constant gs at energy approximately 1

NcL
,

which is much higher than the strong scale, and hence the theory
is weakly coupled at this scale.
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the compact direction, which behaves as a scalar, gets a
nonzero vacuum expectation value. Then, the gauge group
SUðNcÞ spontaneously breaks into the maximal Abelian
subgroup Uð1ÞNc−1. Effectively, the theory lives in three
dimensions, and each of the Uð1ÞNc−1 photons can be
dualized to a scalar. The photon fields can be taken along
the directions of the Cartan subalgebra. Let the boldface
symbol F denote the photon fields along the Cartan
subalgebra directions: F ¼ ðF1; F2;…; FNc−1Þ. Then, the
duality relation in three dimensions reads Fμν ∼ ϵμνα∂ασ,
where σ is the dual photon. At this stage, the reader might
conclude that the theory has Nc − 1 massless degrees of
freedom, and thus it is dramatically different from the
mother theory before compactification.27 This conclusion,
however, is premature since the theory also admits monop-
ole instantons.28 The ’t Hooft vertices of these instantons
and anti-instantons are

Mk ¼ e
−8π2

Ng2s eiαk·σþi
NfTR
Nc

a;

M̄k ¼ e
−8π2

Ng2s e−iαk·σ−i
NfTR
Nc

a; ð17Þ

for the simple and affine roots αk, k ¼ 1; 2;…; Nc. In the
weak-coupling regime, the monopoles are a dilute gas,
and their effect can be taken into account by summing
over an ensemble of them in the partition function. The
final expression of the three-dimensional (3D) effective
Lagrangian reads

L3D
eff ¼

ffiffiffi
g

p �
g2s

8π2L
ð∂μσÞ þ

f2L
2

ð∂μaÞ2 þ Vðσ; aÞ
�
; ð18Þ

where

Vðσ;aÞ¼ 1

L3
e
− 8π2

Ncg2
XNc

k¼1

�
1−cos

�
αk ·σþ

NfTR

Nc
a

��
: ð19Þ

Therefore, we see that the monopole instantons generate a
mass gap for the photons, as can be easily seen by
expanding the cosine term to quadratic order, which leads
to the confinement of the fundamental quarks. It is crucial
to note that the potential (19) is valid for both small- and
large-field excursions of a and σ, and its validity is
guaranteed as long as we are in the semiclassical
regime LNcΛ ≪ 1.
It can also be shown that the BCF anomaly of the UV

theory carries over in the deformed QCD version of the

theory, as was explained in details in Ref. [11], and we
do not repeat this discussion here. It suffices to say that
the fractional nature of the background topological
charges (14) plays a pivotal role when compactifying
the theory on a small manifold. A more technical way of
thinking about the fractional charges is to turn on higher-
form background fields and couple our theory to a
topological quantum field theory [36]. Upon compactify-
ing a theory on a circle, such background fields persist
in the small circle limit, leading to the same BCF
anomaly of the original theory [11]. Interestingly, integral
topological charges do not necessary survive the small
circle compactification,29 and hence the fractional charges
are crucial to preserve the information about the UV
theory.
The Lagrangian (19) describes the interesting intertwin-

ing phenomenon between the axion and the massive
photons. It is easy to see that the ratio between the
photon and axion masses is mσ

ma
∼ fL ≫ 1, and one might

be tempted to integrate out the photon field. This,
however, overlooks the importance of the photon field
in the case of a large axion excursion. For example, it was
shown in Ref. [11] that the fundamental quarks are
deconfined on axion domain walls, thanks to the inter-
twining between the photon and axion fields at the core of
the walls. This phenomenon is also expected to persist in
the large circle limit, since the BCF anomaly is insensitive
to the size of the manifold. However, the naive potential
(10) cannot account for it because of the absence of any
strong-dynamics information. Now, in the light of the BCF
anomaly, we see what goes wrong with (10): this potential
does not match the BCF anomaly and hence cannot be the
whole story in the IR.

F. Decompactification limit and cosmological model

Strictly speaking, the Lagrangian (18) is trusted only in
the semiclassical regime NcΛL ≪ 1. Upon decompactifi-
cation, higher-order Kaluza-Klein monopole instantons
become important, and therefore one loses control over
the semiclassical analysis. Nonetheless, the double-trace
deformation suppresses any potential phase transition as we
vary the circle size. Over the past decade, there has been a
large body of evidence that the theories on the small and
large circles are continuously connected; see Ref. [14] for a
review. One of the latest tests is the lattice study in
Ref. [37], in which it was shown that the topological
susceptibility of pure Yang-Mills theory with double-trace
deformation is independent of the circle size.
At this stage, and in the absence of a more realistic

way to take into account the effects of the strong
dynamics on the axion field, we postulate the following

27Remember that we are supposed to be in a confining regime
(this is the essence of the adiabatic continuity) and the number of
effective degrees of freedom should scale as ðNcÞ0.

28The monopole instantons are the constituents of a BPST
instantons, and they are reliable saddle points of the path integral
in the semiclassical limit.

29To be more precise, whether the anomalies that correspond to
integer topological charges survive the compactification or not is
an open question.
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phenomenological model30 in the L → ∞ limit, which is
based on (18) and (19):

Lmodel ¼
ffiffiffi
g

p �
1

2
ð∂μaÞ2 þ

1

2
ð∂μσÞ2 þ Vða; σÞ

�
;

Vða; σÞ ¼ Λ4
XNc

k¼1

�
1 − cos

�
αk · σ
Λ

þ NfTR

Ncf
a

��
: ð20Þ

If we neglect the dynamics of the axion and treat it as a
constant vacuum angle, a → θ, then the vacuum energy
density is given by

V0 ¼ −2NcΛ4maxk

�
cos

�
2πkþ NfTRθ

Nc

��
; ð21Þ

where the max function selects the branch k that minimizes
the cosine. This functional dependence of the vacuum
energy on θ exactly resembles what one would expect
based on arguments from supersymmetric gluodynamics,
D-branes, and the large-Nc limit [26].
The fact that the phenomenological Lagrangian (20)

gives the correct functional dependence on θ makes it a
viable playground that we can use in order to study the
effects of the hadronic physics on the inflaton and
cosmological perturbations in models of natural inflation.
This is exactly our task in the next section. Since we
will mostly consider SUðNc ¼ 2Þ, we give the explicit
form of the potential in this case. The potential (20)
reduces to31

Vða; σÞ ¼ 2Λ4

�
1 − cos

σ

Λ
cos

NfTR

2f
a

�
: ð22Þ

Interestingly, this potential is identical in form to Eq. (4)
that was based on the chiral Lagrangian. Yet, we do not
expect the two Lagrangians to be related since they are
based on different physics. While the Lagrangian (4) is
the low-energy description of a strongly coupled theory
with light quarks, Eq. (22) is descendant from a theory
with heavy fermions and compactified on a circle.
Moreover, the σ field in (22) models a strongly coupled
degree of freedom that is different in nature from the
pion field π. In addition, in an SUðNcÞ theory our

phenomenological model describes Nc − 1 degrees of
freedom in the IR, which cannot be justified in a true
strongly coupled theory. Nonetheless, in the next section,
we show that the number of colors does not play a major
role in axion inflation, at least for small enough values of
Nc, as we conclude from comparing the dynamics of
SUð2Þ and SUð3Þ.

III. DYNAMICS OF AXION INFLATION

In this section, we study inflation in the Friedmann-
Robertson-Walker spacetime ds2¼−dt2þb2ðtÞdx2, where
bðtÞ is the scale factor and t is the cosmic time. We also
study the curvature and tensor perturbations and assume
that the inflaton is solely responsible for the generation
of the curvature perturbations; i.e., we do not invoke
curvatons.

A. Axion inflation: The traditional path

Before studying the model (20), we pause here in order
to review the dynamics of axion inflation that is based on
the traditional potential (10). Inflation happens as the axion
starts anywhere near the hilltop a

f ≅ π and rolls down to the
bottom a ≅ 0 (we can always restrict the motion of a

f in the
interval ½0; π� without loss of generality). Then, it is a
straightforward exercise to calculate the number of e-folds,
Ne ¼

R tf
ti dtH, where H is the Hubble parameter, t is the

cosmic time, and the integration spans the time period from
the beginning, ti, to end, tf, of inflation.

32 Then, writingR tf
ti dtH as

R af
ai da

H
_a , using the approximate equation of

motion 3H _aþ Λ4

f sin a
f ¼ 0, where we have neglected

the second derivative ä (assuming that the axion slowly
rolls down its potential), and Friedmann’s equation

3M2
PH

2 ≅ VðaÞ, we find Ne ¼ 2f2

M2
P
log

cos
af
2f

cos
ai
2f
. We also use

the same approximation to calculate the slow-roll param-

eters ϵ≡ − _H
H2 and η≡ ∂2V=∂a2

3H2 to find ϵ ¼ M2
P

2f2 cotan
2 a
2f and

η ¼ M2
P

f2
cosaf

1−cosaf
. Inflation ends when either ϵ ∼ 1 or jηj ∼ 1. It

is easy to have many e-folds of inflation if we take33

f > MP. Interestingly, even for values of f < MP, one
can also achieve a very large number of e-folds by starting
inflation very close34 to π. Nevertheless, recent constraints
from Planck satellite put severe constraints on the

30One interesting aspect of this model is the appearance
of Nc multiplying the axion constant f. Therefore, for a large
number of colors, one can have an effective axion constant
fe ¼ Ncf ≫ MP. This observation seconds the fact that the
model (20) has the correct functional dependence of the vacuum
energy on the θ angle. Here, we do not use this observation to
enhance the value of f, as was done in Refs. [38,39]. Instead, we
invoke N-flation as we did above.

31The roots of SUð2Þ are α ¼ � ffiffiffi
2

p
. We also make the

substitution Λ →
ffiffiffi
2

p
Λ, which introduces Oð1Þ nonessential

number in front of the potential that we neglect.

32Remember that we need Ne ∼ 50–60 in order to solve the
problems of the standard big bang cosmology.

33Remember that theories of quantum gravity are in tension
with taking f > MP. Here, we assume that we are working within
the N-flation model, as we discussed before.

34Strictly speaking, we cannot start inflating arbitrarily close to
a ¼ πf in order to avoid the quantum kicks, which change the
vacuum expectation value of a by H every Hubble time. Instead,
we should start at least a distance H from a ¼ πf. We would like
to thank Lorenzo Sorbo for emphasizing this point.
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spectral tilt35 ns − 1 of the power spectrum and the scalar to
tensor ratio r. Bounds on ns from Planck plus WMAP are
0.9457 < ns < 0.9749 at 95% C.L. [15,40]. One finds that
we need f > 10MP in order to respect this constraint. Let us
also mention that the constraints on the amplitude of the
CMB power spectrum can be met by taking Λ ∼ 10−3MP.
Taking f > MP, one can safely assume that inflation

ends at a ∼ 0. In this case, the analysis simplifies, and we
express both ϵ and η as functions of the e-folds remaining
before the end of inflation N⋆

e
36:

ϵðN⋆
e Þ ¼

M2
P

2f2
1

e
M2
P
N⋆
e

f2 − 1

;

ηðN⋆
e Þ ¼

M2
P

2f2
2 − e

M2
P
N⋆
e

f2

e
M2
P
N⋆
e

f2 − 1

: ð23Þ

Recalling that the scalar perturbations and tensor to scalar
ratios are ns ¼ 1–6ϵþ 2η and r ¼ 16ϵ, respectively, one
writes both ns and r as functions of N⋆

e :

ns − 1 ¼ −
M2

P

f2
e
M2
P
N⋆
e

f2 þ 1

e
M2
P
N⋆
e

f2 − 1

;

r ¼ 8M2
P

f2
1

e
M2
P
N⋆
e

f2 − 1

: ð24Þ

These are the values of the spectral tilt and tensor to scalar
ratio at the time when a pivot scale, probed by the CMB,
excited the horizon N⋆

e e-folds before the end of inflation.

B. Axion inflation: The QCD effects

In this section, we study the dynamics of inflation using
the model (20). We limit our investigation to the two cases
SUðNc ¼ 2Þ and SUðNc ¼ 3Þ. We shall find that the
details of the gauge group have a little effect on the
qualitative behavior of inflation. We simplify the analysis37

by using the replacement f → 2f=ðNfTRÞ in Eq. (22):

LSUð2Þ ¼ ffiffiffiffiffiffi
−g

p �
1

2
ð∂μaÞ2 þ

1

2
ð∂μσÞ2 þ Vða; σÞ

�
;

Vða; σÞ ¼ 2Λ4

�
1 − cos

σ

Λ
cos

a
f

�
: ð25Þ

The equations of motion and Friedmann’s equation read

äþ 3H _aþ ∂Vða; σÞ
∂a ¼ 0; σ̈ þ 3H _σ þ ∂Vða; σÞ

∂σ ¼ 0;

3M2
PH

2 ¼ 1

2
_aþ 1

2
_σ þ Vða; σÞ; ð26Þ

and the dot denotes the derivative with respect to the cosmic
time t.
Inspection of Eq. (25) reveals that slow-roll inflation

cannot be sustained at values of jaj ∼ πf since in this
case one finds Vða; σÞ ≅ 2Λ4ð1þ cos σ

ΛÞ. The latter form
of the potential does not satisfy the slow-roll condi-
tion ϵ≡ − _H

H2 ≪ 1, given that Λ ≪ MP, a very sensible
assumption in any reliable effective field theory. This
behavior was confirmed numerically and is depicted in
Fig. 1. The dynamics here is drastically different compared
to models of axion inflation, Eq. (10), where one starts near
the hilltop at jaj ∼ πf. This should not come as a surprise,
given our lengthy discussion in Sec. II; near the hilltop,
both the axion and hadronic degrees of freedom become

FIG. 1. A typical plot of the QCD-axion potential Vða; σÞ in the
SUðNc ¼ 2Þ case (but not to scale). Since f ≫ Λ, the potential is
very steep in the σ direction. Thus, any small fluctuations near the
black dot, which indicates the initial value of a ≈ πf, will cause
the inflation to proceed very quickly in the σ direction (as
indicated by the arrows), and thus inflation ends abruptly.
However, the axion can slowly roll down the potential, provided
that we start inflating near a ≈ π

2
f, irrespective of the initial value

of σ, which is indicated by the thick green line.

35We remind the reader that the power spectrum of the
curvature perturbations is given by PðkÞ ¼ Asð kk⋆Þns−1, where
As ¼ 2.196 × 10−9 and the pivot scale k⋆ ¼ 0.05 Mpc−1 for
Planck satellite.

36To derive Eq. (23), we use Ne ¼ 2f2

M2
P
log

cos
af
2f

cos
ai
2f

and set
af ¼ 0 when Ne ¼ 0; thus, the number of remaining e-folds

just before the end of inflation is 0. From this, we find

N⋆
e ¼ − 16π2f2

M2
P

log cos ai
2f, which gives the number of the remaining

e-folds before the end of inflation, at the time when a is equal to
ai. Then, solving for ai as a function of N⋆

e and substituting into

ϵ ¼ M2
p

2f2 cot
2 ai
2f, we arrive at Eq. (23).

37The existence of a Zdχ
2NfTR

discrete chiral symmetry can lead
to cosmological problems at the end of inflation [41]. We ignore
this problem in our analysis.
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intertwined, which is ultimately tied to the BCF anomaly,
leading to a fast roll down.
This, however, does not mean that slow-roll inflation is

spoiled after taking the QCD effects into account. In fact,
the potential (25) can lead to a successful inflation, i.e., we
can achieve Ne ∼ 50–60, provided that we start inflating
near jaj ∼ π

2
f, i.e., when the axion starts at the transition

from the hill-like to valleylike regions of the potential, and
take f > MP. This initial condition will restrict the motion
of σ between the high potential hills on either side, while
the initial kick will cause a to roll down from jaj ∼ π

2
f

toward either jaj ∼ π
f or a ∼ 0. Basically, avoiding the

region where the QCD effects are important is mandatory
in order to satisfy the slow-roll conditions. What is striking
is that the QCD effects extend well beyond the QCD scale
Λ influencing the axion dynamics up to halfway through
the axion field span, i.e., deep in the IR. This fascinating
dynamics is a manifestation of the fact that ’t Hooft
anomalies cannot just disappear; they dictate the dynamics
at all length scales. The numerical investigation of this
behavior is shown in Fig. 2. Unlike the case of traditional

axion inflation, given by (10), here we find that there is no
way one can obtain 50–60 e-folds of inflation for values of
f < MP. We conclude that the strong dynamics greatly
influence the axion motion.
We can also obtain analytical expressions of the slow-roll

dynamics. Without loss of generality, and according to our
numerical investigation, we can always restrict the axion
motion in the interval a

f ∈ ½π
2
; π�, such that the axion starts

rolling down near π=2. Also, we can assume that σ starts
near σi

Λ ¼ π
2
. We dub the interval near a

f ≅
π
2
as the safe zone.

We numerically checked that the initial value of σ does not
affect the dynamics or any of the conclusions. Neglecting
the second derivative terms in the equations of motion (26)
and integrating, we obtain

cos
σ

Λ
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
sin

a
f

�2f2

Λ2

s
; ð27Þ

and since f ≫ Λ, we find that cos σ
Λ ≈ −1 is a very good

approximation, which we use in the rest of analysis. This
behavior is checked numerically and depicted in Fig. 3. As
before, we can obtain the number of e-folds by performing
the integral

R af
ai da

H
_a and using the Friedman’s equation

after neglecting _a and _σ. Assuming that the inflation ends at
af ≅ πf, which is a very good approximation as we will see
from the values of ϵ and η, we find

FIG. 2. The phase space of a and σ. We take Λ ¼ 10−3
ffiffiffiffiffi
8π

p
MP

and f ¼ 6
ffiffiffiffiffi
8π

p
MP and start inflation at a ≈ π

2
f and σ ≈ π

2
Λ. We

find, however, that the dynamics of inflation is insensitive to the
initial values of σ. One can easily see that the axion velocity stays
small throughout the inflation life span.

FIG. 3. The parametric relation between σ and a. We take Λ ¼
10−3

ffiffiffiffiffi
8π

p
MP and f ¼ 6

ffiffiffiffiffi
8π

p
MP. While the axion is rolling down

from π
2
f to πf, the field σ is almost instantaneously frozen (after

six e-folds in this example) at πΛ, which is consistent with the
analytical finding Eq. (27).
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sin
ai
2f

¼ e
−
M2
P
Ne

2f2 ; ð28Þ

and the maximum number of e-folds is obtained by starting
the inflation at a ¼ π

2
f:

Nmax
e ¼ −

�
2f2

M2
P
log

�
sin

ai
2f

��
ai¼π

2
f
: ð29Þ

For example, taking f ¼ 6
ffiffiffiffiffiffi
8π

p
MP, we find Nmax

e ≅ 627,
which is in an excellent agreement with the numerical
solution; see Fig. 4. We also used our numerical scheme in
order to check that starting the inflation at values of a
slightly larger or smaller than π

2
f results in a smaller

number of e-folds. Using Eq. (29) or our numerical code,
we find that f ≲MP gives Ne ≲ 0.7, and thus one cannot
achieve inflation once QCD backreaction is taken into
account, in contradistinction with the single-field inflation.
We also find that the minimum value of f that yields
60 e-folds is f ∼ 9.4MP.
If we assume that a is randomly distributed between 0

and 2πf from one horizon volume to another in a multi-
verse, then the probability of being in a region where
inflation proceeds successfully, i.e., gives Ne ∼ 50–60, is

given by P ¼ 4
R amax

f
π
2f

da
2πf, where amax is the maximum value

of ai in Eq. (28) that gives the minimum number of the
required e-folds. Thus, we find

P ¼ 2

π

�
2sin−1ðe−

M2
P
Ne

2f2 Þ − π

2

�
: ð30Þ

For example, using f ¼ 6
ffiffiffiffiffiffi
8π

p
MP and f ¼ 50

ffiffiffiffiffiffi
8π

p
MP

gives P ¼ 67% and P ¼ 96%, respectively, for Ne ¼ 60.

We can proceed to calculate the slow-roll parameters:
using the equations of motion (after neglecting the second
derivatives), the Friedmann’s equation (after neglecting the
first derivatives), and the approximation cos σ

Λ ≈ −1, we
find38

ϵ ¼ M2
P

2f2
tan2

a
2f

; η ¼ −
M2

P

f2
cos af

1þ cos af
: ð31Þ

It can be easily checked that these parameters stay small
during inflation, provided that f > 9MP. We can also
express ϵ and η in terms of N⋆

e , the number of e-folds
remaining before the end of inflation:

FIG. 4. The dependence of the number of e-folds on the initial
value of a. The scattered black points are the numerical values,
we take Λ ¼ 10−3

ffiffiffiffiffi
8π

p
MP and f ¼ 6

ffiffiffiffiffi
8π

p
MP, while the con-

tinuous green line is the analytical expression (29). The maxi-
mum number is achieved by starting the inflation at að0Þ ≈ π

2
f.

We also checked that the number of e-folds is very insensitive to
the value of Λ. It changes by less than 5% as Λ changes between
10−2MP and 10−5MP.

FIG. 5. The numerical values of ϵ and η (the solid lines) against
the analytical expressions (dotted lines) given in Eq. (32) as
functions of N⋆

e , the number of e-folds remaining before the end
of inflation. We take Λ ¼ 10−3

ffiffiffiffiffi
8π

p
MP and f ¼ 6

ffiffiffiffiffi
8π

p
MP. The

discrepancy between the analytical and numerical solutions is
less than 2%. We also find that changing the value of Λ has a little
effect on both ϵ and η, in agreement with Eq. (32) that does not
depend explicitly on Λ.

38We would like to emphasize that there is no heterogeneity
between the tan formula that appears here and cotan formula that
appears near the discussion of the traditional axion inflation. The
formula in Eq. (31) is derived assuming that we start inflating
near a=f ¼ π=2, while the cotan formula is derived assuming that
we start inflating near a=f ¼ π. Notice that this is the main
difference between the traditional axion inflation (where we
assume that we start inflating near the hilltop at a=f ¼ π) and the
inflation model we are studying in this paper, which takes the
QCD effects into account. As we emphasize, in the latter case,
one cannot inflate near a=f ¼ π since this initial condition spoils
the slow-roll parameters. So, in summary, the tan versus cotan
formula reflects the fact that we start inflating at different points
in the field space that are shifted by π=2.
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ϵðN⋆
e Þ ¼

M2
P

2f2
1

e
M2
P
N⋆
e

f2 − 1

;

ηðN⋆
e Þ ¼

M2
P

2f2
2 − e

M2
P
N⋆
e

f2

e
M2
P
N⋆
e

f2 − 1

: ð32Þ

Interestingly, these are the exact same expressions we
obtained above before taking the strong dynamics effects
into account. This result is not unexpected since the σ field
becomes frozen near πΛ, and effectively the dynamics is
governed by a single field a. The caveat, however, is that
this is true only for values of a=f in the safe zone near π

2
.

Otherwise, the QCD effects become vicious and completely
spoil inflation. As we shall show below, this observation
will play a pivotal role in conclusions about the power
spectrum and tensor perturbations. In Fig. 5, we compare
the analytical results (32) with numerical calculations to
find an excellent agreement, with difference less than 2%.
Before we conclude this section, we also present the

numerical solution of theSUðNc ¼ 3Þ case; see Fig. 6. To be
able to comparewith SUðNc ¼ 2Þ, wemake the substitution
f → 3f=NfTR in Eq. (20). The maximum number of e-
foldswill be achieved if we start inflating at a ≈ 2πk

3
f, k ¼ 1,

2, while the initial values of σ have almost no effect on the
dynamics, exactly as in SUð2Þ. We also compute the slow-
roll parameters ϵ and η atN⋆

e ∼ 50–60 e-folds before the end
of inflation to find almost an exact match with the SUð2Þ
case. This behavior indicates that the rank of the gaugegroup
has a minor effect on the axion (at least for small values of
Nc) and that strong dynamics will cease to affect inflation
once the axion is rolling down in the safe zone.

C. Quantum fluctuations: The QCD effects

Now, it is time to ask about the effect of QCD on
the quantum fluctuations during inflation, and hence on
the CMB power spectrum. We limit our treatment to the
SUðNc ¼ 2Þ case. To this end, we proceed as usual by
writing both a and σ fields as classical backgrounds and
small perturbations: a ¼ ac þ δa, σ ¼ σc þ δσ. Then, we
substitute in the equations of motion (after restoring the
dependence on the spatial coordinates ∇2a and ∇2σ) to
obtain

δäþ 3Hδ _aþ ∂2V
∂a2 δaþ ∂2V

∂a∂σ δσ þ k2

b2
δa ¼ 0;

δσ̈ þ 3Hδ _σ þ ∂2V
∂a∂σ δaþ ∂2V

∂σ2 δσ þ k2

b2
δσ ¼ 0; ð33Þ

where b is the scale factor and k is the comoving wave
number. Further, we define δχ1 ≡ bδa, δχ2 ≡ bδσ, make
the change of variables from the cosmic time t to con-
formal time τ via dτ ¼ dt=b, and use the approximation
bðτÞ ¼ − 1

Hτð1−ϵÞ. In this approximation, we assume that the

Hubble parameter stays constant over the course of inflation,
which is a very good approximation in the case of a single-
field inflation. As we discussed above, one can completely
forget about the classical dynamics of σ during the full span
of inflation (when the axion is in the safe zone) since σ
spends most of its life near σ ≈ πΛ. Effectively,
we have a single-field inflation, and the approximation
bðτÞ ¼ − 1

Hτð1−ϵÞ is justified. The purpose of the present

analysis is to check whether the fluctuations, rather than the
classical dynamics, of σ become important during any stage
of inflation.
After a straightforward calculation, we obtain

�
d2

dτ2
þ k2 þ −2 − 3ϵþ 3ηaa

τ2

�
δχ1 þ

3ηaσ
τ2

δχ2 ¼ 0;

�
d2

dτ2
þ k2 þ −2 − 3ϵþ 3ησσ

τ2

�
δχ2 þ

3ηaσ
τ2

δχ1 ¼ 0; ð34Þ

FIG. 6. The numerical data for the SUðNc ¼ 3Þ case. The roots
are α1 ¼ ð ffiffiffi

2
p

; 0Þ, α2 ¼ ð− 1ffiffi
2

p ;
ffiffi
3
2

q
Þ, and α3 ¼ ð− 1ffiffi

2
p ;−

ffiffi
3
2

q
Þ; see

Ref. [42]. We take f ¼ 6
ffiffiffiffiffi
8π

p
MP and Λ ¼ 10−3

ffiffiffiffiffi
8π

p
MP. The top

template shows the total number of e-folds as a function of the
initial position of the axion. An initial position at π

3
f yields the

largest value of the number of e-folds. The bottom template
shows the values of ϵ and η as functions of the number of e-folds
remaining before the end of inflation. We can see that these values
are almost identical to the ones in the SUðNc ¼ 2Þ case and that
the color group has a little effect on axion inflation once the axion
is in the safe zone.
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where we defined

η ¼ ηaa ≡
∂2V
∂a2
3H2

; ησσ ≡
∂2V
∂σ2
3H2

; ηaσ ≡
∂2V
∂a∂σ
3H2

: ð35Þ

At this stage, we use the results of the previous section to
write ηaa, ησσ , and ηaσ as functions of N⋆

e :

ηðN⋆
eÞ ¼ ηaaðN⋆

e Þ ¼
M2

P

2f2
2 − e

M2
P
N⋆
e

f2

e
M2
P
N⋆
e

f2 − 1

;

ησσðN⋆
eÞ ¼

M2
P

2Λ2

2 − e
M2
P
N⋆
e

f2

e
M2
P
N⋆
e

f2 − 1

; ηaσðN⋆
eÞ ≈ 0: ð36Þ

Since ηaσðN⋆
eÞ ≈ 0, the fluctuations δχ1 and δχ2 decouple.

Moreover, since jηðN⋆
eÞj ≪ jησσðN⋆

eÞj, the fluctuations of
the σ field stay in the vacuum as the a fluctuations exit the
horizon.39 This is expected since σ is orders of magnitude
heavier than a; remember that Λ ≪ f. Thus, the CMB
power spectrum and tensor perturbations are solely gov-
erned by the dynamics and fluctuations of the axion and
that the strong dynamics has a negligible effect on both
quantities. The caveat, however, is that this is only true as
long as we start inflation in the safe zone near a ≅ π

2
f.

We conclude that the spectral tilt and the tensor to scalar
ratio are given by the single-field expressions (24), and thus
strong dynamics does not alter these quantities as long as
the axion rolls down in the safe zone.

IV. CONCLUSIONS

In this paper, we investigated the role played by the
strong dynamics in models of natural inflation. We argued
that the single-field effective potential breaks down as the
axion makes large-field excursions and that it overlooks the
effects of the strong dynamics at the hilltop. We also argued

that the intertwining between the axion and hadrons near
the hilltop is ultimately tied to a ’t Hooft anomaly.
Since Λ ≫ ma ∼ Λ2

f , one would naively expect that
hadrons have a negligible effect on the axion dynamics,
unless we start extremely close to the hilltop within a
narrow strip of width approximately ma

Λ ∼ 10−4 around π.
Interestingly, the influence of the hadrons on axions occurs
not only in a small region, but it actually extends farther
away, changing the conclusions in a dramatic way. For
example, we found that using f < MP does not yield the e-
folds required to solve the problems of the standard big
bang cosmology. Yet, taking f > 9MP, we were also able
to identify a safe zone where the hadrons decouple. We
found that, as the axion rolls down the safe zone, the power
spectrum and tensor to scalar ratios are identical to the
values obtained from the single-field potential. Such con-
clusions are independent of the number of colors, and we
also expect them to be generic in other QCD-axion infla-
tionary models.
Finally, we point out that our analysis raises a question

about the axion misalignment mechanism [43]. In this
scenario, the misalignment can produce the observed dark
matter abundance if a=f is taken sufficiently close to π. The
idea is that, in order to generate the observed dark matter
abundance, the axion should be frozen at the hilltop until
the era of QCD phase transition. As the Hubble parameter
becomes comparable to the strong scale, the axion starts
oscillating and produce dark matter. One expects, however,
the effects of strong dynamics to be enhanced near
a=f ≅ π, which can affect the DM abundance. Since we
are considering QCD at temperatures comparable to Λ, it is
not yet clear how one can take the strong dynamics into
account and whether the BCF anomaly survives at finite
temperatures. A detailed study of this problem is left for
the future.

ACKNOWLEDGMENTS

We would like to thank Erich Poppitz for raising the
question about axion inflation in the light of the BCF
anomaly, for several discussions, and comments on the
manuscript. Also, we would like to thank Lorenzo Sorbo
for comments on the manuscript. This work is supported by
NSF Grant No. PHY-2013827.

[1] K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. Lett.
65, 3233 (1990).

[2] F. C. Adams, J. Bond, K. Freese, J. A. Frieman, and A. V.
Olinto, Phys. Rev. D 47, 426 (1993).

[3] G. ’t Hooft, NATO Sci. Ser. B 59, 135 (1980).

[4] S. Dimopoulos, S. Kachru, J. McGreevy, and J. G. Wacker,
J. Cosmol. Astropart. Phys. 08 (2008) 003.

[5] M.M. Anber and L. Sorbo, J. Cosmol. Astropart. Phys. 10
(2006) 018.

[6] M.M. Anber and L. Sorbo, Phys. Rev. D 81, 043534 (2010).

39Notice that η is the ratio of the fluctuation mass to the Hubble
parameter. Therefore, having jηj ≫ 1 means that the amplifica-
tion of the fluctuations is highly suppressed.

MOHAMED M. ANBER and STEPHEN BAKER PHYS. REV. D 102, 103515 (2020)

103515-14

https://doi.org/10.1103/PhysRevLett.65.3233
https://doi.org/10.1103/PhysRevLett.65.3233
https://doi.org/10.1103/PhysRevD.47.426
https://doi.org/10.1007/978-1-4684-7571-5_9
https://doi.org/10.1088/1475-7516/2008/08/003
https://doi.org/10.1088/1475-7516/2006/10/018
https://doi.org/10.1088/1475-7516/2006/10/018
https://doi.org/10.1103/PhysRevD.81.043534


[7] P. Adshead and M. Wyman, Phys. Rev. Lett. 108, 261302
(2012).

[8] G. N. Remmen and S. M. Carroll, Phys. Rev. D 90, 063517
(2014).

[9] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, J. High
Energy Phys. 02 (2015) 172.

[10] D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg,
J. High Energy Phys. 05 (2017) 091.

[11] M.M. Anber and E. Poppitz, J. High Energy Phys. 11
(2019) 063.

[12] M.M. Anber and E. Poppitz, J. High Energy Phys. 04
(2020) 097.

[13] M. Unsal and L. G. Yaffe, Phys. Rev. D 78, 065035 (2008).
[14] G. V. Dunne and M. Unsal, Annu. Rev. Nucl. Part. Sci. 66,

245 (2016).
[15] Y. Akrami et al. (Planck Collaboration), Astrophys. Space

Sci. 364, 69 (2019).
[16] M. A. Shifman, A. Vainshtein, and V. I. Zakharov, Nucl.

Phys. B166, 493 (1980).
[17] M.M. Anber and E. Poppitz, J. High Energy Phys. 03

(2020) 124.
[18] J. E. Kim, Phys. Rep. 150, 1 (1987).
[19] G. G. di Cortona, E. Hardy, J. Pardo Vega, and G. Villadoro,

J. High Energy Phys. 01 (2016) 034.
[20] G. Shiu and W. Staessens, J. High Energy Phys. 10 (2018)

085.
[21] G. Shiu and W. Staessens, Phys. Rev. D 98, 083504

(2018).
[22] T. Boeckel and J. Schaffner-Bielich, Phys. Rev. Lett. 105,

041301 (2010); 106, 069901(E) (2011).
[23] A. R. Zhitnitsky, Phys. Rev. D 90, 043504 (2014).
[24] T. Fugleberg, I. E. Halperin, and A. Zhitnitsky, Phys. Rev. D

59, 074023 (1999).

[25] I. E. Halperin and A. Zhitnitsky, Phys. Lett. B 440, 77
(1998).

[26] G. Gabadadze and M. Shifman, Int. J. Mod. Phys. A 17,
3689 (2002).

[27] M. Huang and P. Sikivie, Phys. Rev. D 32, 1560 (1985).
[28] M.M. Forbes and A. R. Zhitnitsky, J. High Energy Phys. 10

(2001) 013.
[29] M. Montero, A. M. Uranga, and I. Valenzuela, J. High

Energy Phys. 08 (2015) 032.
[30] J. E. Kim, H. P. Nilles, and M. Peloso, J. Cosmol. Astropart.

Phys. 01 (2005) 005.
[31] M. Peloso and C. Unal, J. Cosmol. Astropart. Phys. 06

(2015) 040.
[32] J. Preskill, Ann. Phys. (N.Y.) 210, 323 (1991).
[33] J. L. Rosner, Comments Mod. Phys. A 1, 11 (1999).
[34] N. Seiberg, Nucl. Phys. B435, 129 (1995).
[35] G. ’t Hooft, Nucl. Phys. B153, 141 (1979).
[36] A. Kapustin and N. Seiberg, J. High Energy Phys. 04 (2014)

001.
[37] C. Bonati, M. Cardinali, M. D’Elia, and F. Mazziotti, in

37th International Symposium on Lattice Field Theory
(PUBLISHER, LOCATION, 2019); Proc. Sci., LAT-
TICE2019 (2019) 084 [arXiv:1912.12028].

[38] K. Yonekura, J. Cosmol. Astropart. Phys. 10 (2014) 054.
[39] M. Dine, P. Draper, and A. Monteux, J. High Energy Phys.

07 (2014) 146.
[40] E. Pajer and M. Peloso, Classical Quantum Gravity 30,

214002 (2013).
[41] Y. Zeldovich, I. Kobzarev, and L. Okun, Zh. Eksp. Teor. Fiz.

67, 3 (1974).
[42] H. Georgi, Lie Algebras in Particle Physics, 2nd ed., Vol. 54

(Perseus Books, Reading, MA, 1999).
[43] M. S. Turner, Phys. Rev. D 33, 889 (1986).

NATURAL INFLATION, STRONG DYNAMICS, AND THE ROLE … PHYS. REV. D 102, 103515 (2020)

103515-15

https://doi.org/10.1103/PhysRevLett.108.261302
https://doi.org/10.1103/PhysRevLett.108.261302
https://doi.org/10.1103/PhysRevD.90.063517
https://doi.org/10.1103/PhysRevD.90.063517
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1007/JHEP11(2019)063
https://doi.org/10.1007/JHEP11(2019)063
https://doi.org/10.1007/JHEP04(2020)097
https://doi.org/10.1007/JHEP04(2020)097
https://doi.org/10.1103/PhysRevD.78.065035
https://doi.org/10.1146/annurev-nucl-102115-044755
https://doi.org/10.1146/annurev-nucl-102115-044755
https://doi.org/10.1007/s10509-019-3558-4
https://doi.org/10.1007/s10509-019-3558-4
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1007/JHEP03(2020)124
https://doi.org/10.1007/JHEP03(2020)124
https://doi.org/10.1016/0370-1573(87)90017-2
https://doi.org/10.1007/JHEP01(2016)034
https://doi.org/10.1007/JHEP10(2018)085
https://doi.org/10.1007/JHEP10(2018)085
https://doi.org/10.1103/PhysRevD.98.083504
https://doi.org/10.1103/PhysRevD.98.083504
https://doi.org/10.1103/PhysRevLett.105.041301
https://doi.org/10.1103/PhysRevLett.105.041301
https://doi.org/10.1103/PhysRevLett.106.069901
https://doi.org/10.1103/PhysRevD.90.043504
https://doi.org/10.1103/PhysRevD.59.074023
https://doi.org/10.1103/PhysRevD.59.074023
https://doi.org/10.1016/S0370-2693(98)01085-5
https://doi.org/10.1016/S0370-2693(98)01085-5
https://doi.org/10.1142/S0217751X02011357
https://doi.org/10.1142/S0217751X02011357
https://doi.org/10.1103/PhysRevD.32.1560
https://doi.org/10.1088/1126-6708/2001/10/013
https://doi.org/10.1088/1126-6708/2001/10/013
https://doi.org/10.1007/JHEP08(2015)032
https://doi.org/10.1007/JHEP08(2015)032
https://doi.org/10.1088/1475-7516/2005/01/005
https://doi.org/10.1088/1475-7516/2005/01/005
https://doi.org/10.1088/1475-7516/2015/06/040
https://doi.org/10.1088/1475-7516/2015/06/040
https://doi.org/10.1016/0003-4916(91)90046-B
https://doi.org/10.1016/0550-3213(94)00023-8
https://doi.org/10.1016/0550-3213(79)90595-9
https://doi.org/10.1007/JHEP04(2014)001
https://doi.org/10.1007/JHEP04(2014)001
https://arXiv.org/abs/1912.12028
https://doi.org/10.1088/1475-7516/2014/10/054
https://doi.org/10.1007/JHEP07(2014)146
https://doi.org/10.1007/JHEP07(2014)146
https://doi.org/10.1088/0264-9381/30/21/214002
https://doi.org/10.1088/0264-9381/30/21/214002
https://doi.org/10.1103/PhysRevD.33.889

