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The relationship between network structure and dynamics is one of the most
extensively investigated problems in the theory of complex systems of recent
years. Understanding this relationship is of relevance to a range
of disciplines—from neuroscience to geomorphology. A major strategy of
investigating this relationship is the quantitative comparison of a represen-
tation of network architecture (structural connectivity, SC) with a
(network) representation of the dynamics (functional connectivity, FC).
Here, we show that one can distinguish two classes of functional connec-
tivity—one based on simultaneous activity (co-activity) of nodes, the other
based on sequential activity of nodes. We delineate these two classes in
different categories of dynamical processes—excitations, regular and chaotic
oscillators—and provide examples for SC/FC correlations of both classes in
each of these models. We expand the theoretical view of the SC/FC relation-
ships, with conceptual instances of the SC and the two classes of FC for
various application scenarios in geomorphology, ecology, systems biology,
neuroscience and socio-ecological systems. Seeing the organisation of
dynamical processes in a network either as governed by co-activity or by
sequential activity allows us to bring some order in the myriad of
observations relating structure and function of complex networks.
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1. Introduction
The relationship between network structure and dynamics
has been at the forefront of investigation in the field of complex
systems during the past decades, with networks serving as
powerful abstract representations of real-world systems. How-
ever, a solid theoretical understanding of the generic features
relating network structure and dynamics is still missing. Here,
our strategyof investigating these features is via the quantitative
comparison of network architecture (structural connectivity,
SC) with a network (or matrix) representation of the dynamics
(functional connectivity, FC). We establish key relationships
using simple model representations of dynamics: excitable
dynamics represented by a stochastic cellular automaton,
coupled phase oscillators, chaotic oscillators represented by
coupled logistic maps. We validate these relationships in
coupled FitzHugh-Nagumo oscillators, in the excitable and
the oscillatory regimes. Furthermore, we give examples of
how the two classes of FC can be applied to various application
domains, in which networks play a prominent role.

The simplest way of representing time series of dynamical
elements as a network is to compute pairwise correlations.
Often, one also knows about the ‘true’ or ‘static’ connectivity
of these dynamical elements beforehand. The statistical ques-
tion then arises in a natural way, whether the known
network (SC) and the network derived from the dynamical
observations (FC) are similar. As we will see in the appli-
cations, functional connectivity can either be thought of as
dynamical similarities of nodes or flows (of material, activity,
information, etc.) connecting two nodes.

The simplicity of the dynamics included in our investigation
allows us towork with this correlation-based approach. In case
of a large heterogeneity of dynamical elements, very noisy
dynamics, poor statistics (temporal sampling) or incomplete
information, more sophisticated representations of dynamical
relationships among nodes are required [1–5].

Originating in neuroscience [6], research into SC/FC
correlations has become a promisingmarker for changes in sys-
temic function and a means for exploring the principles
underlying the relationship between network architecture
and dynamics—in systems biology [7,8], social sciences
[9–11], geomorphology [12–14] and technology [15–17], just
to name a few of the application areas.

Such SC/FC relationships are at the same time markers
for certain forms of systemic behaviour (e.g. a loss of SC/FC
correlation may indicate pathological brain activity patterns
[18]) and highly informative starting points for a mechanistic
understanding of the system (e.g. revealing highly connected
elements—hubs—as centres of self-organized excitation
waves in scale-free graphs [19,20]).

While the systemic implications and the key results have
been reviewed elsewhere [21], here we would like to show
that across a range of dynamical processes and network
architectures some fundamental common principles exist.
We argue that one needs to distinguish between two types
of functional connectivity, one related to synchronous activity
(or co-activation), the other related to chains of events
(or sequential activation). A system, like phase oscillators
[22–24], favouring one type of functional connectivity (for
this example, synchronization) can also display the other
type of SC/FC correlations under certain conditions.

A condition here is characterized by the network type, the
strength of the coupling of the dynamical elements and the
choice of further (intrinsic) parameters of each of the dynami-
cal elements. Here, we show many examples of transitions
from one type of SC/FC correlations to another type under
changes of these conditions.

Stylizedmodels of dynamics often offer a deepmechanistic
understanding of the dynamical processes and phenomena
and, in particular, help discern how network architecture
shapes the dynamical behaviour. This point is illustrated by
the intense research over the past decades on networks of
coupled phase oscillators as a stylized model of oscillatory
dynamics. Two prominent examples of this line of investi-
gation are the topological determinants of synchronizability
[23,25], the lifetimes of intermediate synchronization patterns
in a time course towards full synchronization and their
relationships to the network’s modular organization [22].

Remarkably, it is precisely this formal distinction between
functional connectivity based on co-activation and sequential
activation that is often hard to discriminate in more detailed
(e.g. continuous) models [26] and experimental data [27].

In the case of SC/FC correlations, the best-investigated
stylized model is the—three-state cellular automaton—SER
model of excitable dynamics [19,28,29]. Key results include
that the topological overlap [30] is highly associated with func-
tional connectivity based on simultaneous activity, FCsim, and
that via this mechanism—a clustering of high topological over-
lap values within modules—modular graphs display high SC/
FC correlations, while scale-free graphs tend to display low, or
even systematically negative SC/FC correlations with this defi-
nition of FC [28,30]. Furthermore, a large asymmetry of the
sequential activation matrix (which is the foundation of func-
tional connectivity based on sequential activation, FCseq) can
be associated with self-organized waves around hubs [20].
Additionally the role of cycles for organizing SC/FC corre-
lations has been investigated [31] and in the deterministic
limit of the model, a theoretical framework for predicting SC/
FC correlations has been established [30].

As a first illustration of the tremendous power of probing
networks with various types of dynamics, in order to under-
stand how network architecture determines some of the
dynamical features, in figure 1, we show snapshots of dyna-
mical states for three real-life networks coming from different
domains—Neuroscience (the macaque cortical area network
from [32]), systems biology (the core metabolic system of
the gut bacterium Escherichia coli from [33]) and social
sciences (intra-organizational network of skills awareness in
a company from [34])—under the action of three types of
dynamics—excitable dynamics, phase oscillators, the logistic
map as an example of a chaotic oscillator.

The real-life networks shown in figure 1 can all be con-
sidered examples of structural connectivity. The detailed
description of the structure of these networks is given in
the electronic supplementary material.

An important question around figure 1 is whether the
three types of dynamics are plausible for the networks at
hand. First, we would like to emphasize that the strategy of
our investigation is to probe network architectures by
simple prototypes (or very stylized forms) of dynamics,
rather than devising realistic models of the most plausible
form of dynamics for each of these networks.

In the case of the cortical area network, the excitable
dynamics as well as the oscillatory dynamics can be seen as
stylized but plausible dynamical probes and, in fact, those
have been previously employed to explore such network
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Figure 1. An illustrative example of applying different categories of dynamical processes to real networks with different structures. Neural network: macaque cortical
area network from [32]. Metabolic network: core metabolic system of the gut bacterium Escherichia coli from [33]. Social network: skills awareness network from
[34]. SER: The mean activity of each node after 1000 timesteps, with a rate of spontaneous activity f = 0.001 and a recovery probability p = 0.1. Phase oscillators:
The average effective frequency of each node for ten simulations of length T = 200 initialized with a uniform distribution of eigenfrequencies. Logistic map: The
average standard deviation of the time series of each node for 10 simulations of 500 timesteps with the parameter R for each node randomly selected from a
uniform distribution with Rmin = 3.7 and Rmax = 3.9.
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structures [20,35–37]. But also chaotic dynamics, as in the
third row of figure 1, have been used to study neuronal con-
nectivity patterns [38,39].

In the case of metabolic networks, synchronous activity
patterns, and hence coupled phase oscillators, are a plausible
form of dynamics (see, for example, the arguments in [40],
where enzymes are described as cyclically operating devices,
as well as the prominent usage of correlation networks in
metabolomics [41–43]). A more pathway-oriented view of
metabolism might emphasize the propagation of activity
and, hence, would be closer to the excitable dynamics
shown in the first row of figure 1. Chaotic oscillators are
clearly less relevant for this application domain.

Interaction dynamics, contact dynamics and information
flow in a corporate setting unite aspects of excitable
dynamics (as in the case of rumour spreading, [44]) or
synchronization [45,46]. But also chaotic dynamics have
been employed to model decision dynamics and activity in
corporate settings [47–49].

The three main messages of the illustration of dynamics on
real-life networks shown in figure 1 are: (1) The representation
of complex systems as networks enables the probing of such
complex structures with dynamics. (2) Different networks
react differently to one type of dynamics. This general point
can be seen for example in figure 1 by following one type of
dynamics (e.g.excitable dynamics; first row in figure 1) across
the three networks and observing that groups of nodes
acting together (similar colour, representing similar dynamical
states) can be either in the periphery or in the centre of these
network representations. (3) A given network reacts differently
to different dynamical probes. This general feature can be seen
by following a single network across different types of
dynamics (columns in figure 1). Regions in the graph with a
similar dynamical state (same colours) for one dynamics look
heterogeneous (different colours) for another dynamics. Also,
similarities occur. The periphery and the centre of the networks
tend to behave differently in all the examples of dynamics
shown in figure 1.

It is obvious that such an illustration can only provide a
single snapshot of the diverse dynamics possible on such
networks, even for a single type of dynamics, as the internal
parameters at each node, as well as the coupling type and
strength among them can have different values. In the follow-
ing, we want to further explore the systematic changes of these
dynamical patterns as a function of network architecture,
coupling and internal dynamical parameters and how this
theoretical framework can be applied to various disciplines.
2. Results and discussion
We create different instances that indicate the behaviour of the
two classes of FC using various numerical schemes. The
means of enhancing or destroying SC/FC correlations can be
structural (i.e. driven by network architecture) or dynamical
(induced by changing the parameters of the dynamical
model). The investigation is organized around the form of
change: §2.1 topological changes, §2.2 changes in the coupling
strength, §2.3 changes of the intrinsic parameters of the individ-
ual elements. In §2.4, we illustrate these principles in a case
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Figure 2. (a) SC=FCsim and SC=FCseq correlations across the randomization of a modular network. (b) Illustration of the SC and the FCsim, FCseq matrices for three
network cases, pointed out by the dashed vertical black lines on the left figure (original modular network, 30% randomized network and completely randomized
network). The dynamical model used for the FC is the SER model ( parameters: tmax = 10, NR = 10000, p = 0.1, f = 0.001.)
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study on a network of coupled FitzHugh–Nagumo oscillators
in the excitable and oscillatory regimes. Using the three
examples from figure 1, in §2.5, we show the behaviour of
SC/FC correlations on these real-world networks.
2.1. Topological changes
The first part of our investigation is related to the effect of top-
ology in the SC/FC correlations.We startedwith networkswith
a distinct structure (modular graph, hierarchical graph, regular
graph), whichwe gradually destroyed either by randomizing or
by rewiring the initial network (see Methods, §5).

Figure 2 introduces the comparison of structural connec-
tivity and functional connectivity on the matrix level, by
depicting the adjacency matrices of two networks, together
with examples of the corresponding functional connectivity
matrices derived from dynamics (here: the co-activation and
sequential activation matrices obtained from simulations of
the SER model; see Methods, §5). This matrix view on SC/
FC relationships is similar to fig. 1 in [26] and fig. 1 in [28]
and allows us to visually discern the strong positive corre-
lation between the adjacency matrix and the co-activation
matrix in the case of the modular graph (first row) and the
apparent lack thereof in the more random graph (second
row), for which we, however, can visually perceive an agree-
ment between the adjacency matrix and the sequential
activation matrix. So, here a change in network topology
goes along with a change from one type of SC/FC corre-
lations (co-activation to sequential activation). This is the
phenomenon we set out to explore further in the following.

In the electronic supplementary material, figures S2 and
S3 show the same matrix view, but for coupled phase oscil-
lators and logistic maps, respectively. In figure S2 (phase
oscillators) in the electronic supplementary material, a
visual inspection clearly shows that the SC/FC correlations
based on sequential activation are much weaker than the
ones based on co-activation. Also, SC=FCsim remains visibly
high during randomization. In figure S3 in the electronic sup-
plementary material (logistic maps), the lack of correlation
between co-activation and the modular structure is clearly
seen, as is the (faint, but discernible) agreement of this mod-
ular structure with sequential activation. Careful visual
inspection also reveals the persisting positive SC=FCseq cor-
relations, as well as the negative SC=FCsim correlations,
under randomization of the modular network. In figure S4
in the electronic supplementary material examples of
space–time plots for single runs of the chaotic dynamics are
shown and this thus provides a microscopic view of the
results summarized in figure 2.

In figure 3, we go from rather structured network topolo-
gies to rather unstructured random network topologies.
Figure 3 supports the visual impression from the matrix
examples shown in figure 2 by showing the two types of
SC/FC correlations as a function of network randomization
procedures, for the SER model (which was also used in
figure 2), as well as two other types of dynamics, namely
coupled phase oscillators and coupled logistic maps in the
chaotic regime (see Methods, §5). It should be noted that
each of these dynamical models has been instrumental in
the past in advancing our understanding of fundamental
relationships between network architecture and dynamics
(see, e.g. [19,30,50] for the SER model, [22,24] for coupled
phase oscillators, and [51,52] for the logistic maps).

For the SER model, we see a trend that structured topolo-
gies favour high SC/FC correlations of both types, whereas
unstructured random networks favour high SC=FCseq corre-
lations. We can also see that SC=FCsim is very sensitive to
topological changes, in contrast to SC=FCseq, which, in this
case, shows a more stable behaviour. The networks of coupled
phase oscillators behave in almost the opposite way, where
co-activation (rather than sequential activation) is favoured
by random network structures and shows a more stable
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SC/FCsim
SC/FCseq

0 0.2 0.4 0.6 0.8 1.0

regular to Erdős-Rényi
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behaviour under topological changes. In the case of chaotic
oscillators, the details about the network architecture and the
selection of the type of coupling matter. For this case, the
transition from structured to unstructured networks does not
affect the SC=FCseq, but leads to strong negative correlations
of the SC=FCsim. The hierarchical network is the only one,
though, in which the destruction of the modularity is not
revealed from the dynamics. For this graph, all the dynamical
models show that the randomization does not essentially affect
the value of SC/FC correlations, instead constant, low positive
correlations of SC=FCseq and constant, low negative corre-
lations of SC=FCsim are maintained during the
randomization process.
2.2. Changes in coupling strength
The second set of our numerical experiments pertains to
changes in the coupling strength among nodes. For this type
of change, only the models of the phase and chaotic oscillators
can be used, as the SERmodel—in the form used here—has no
coupling parameter (which could, however, be introduced via
a relative excitation threshold, as in [29,53]).

Figure 4 shows that in the case of coupled phase oscillators,
all the network architectures stabilize SC=FCsim against
changes of coupling strength. Large values of coupling
strength lead to rapid synchronization (co-activity of the
nodes) and therefore to inadequate amount of information
for the sequential activation. As a result, seeing the structure
of the network through the dynamics using the sequential acti-
vation is, in this case, not possible. For the chaotic oscillators,
we observe general trends of increasing SC=FCseq with
increasing coupling, reaching a maximum, and gradually
decreasing for further increase of the coupling, essentially
across all network architectures (figure 4).
2.3. Changes in intrinsic parameters
Each dynamical model is characterized by specific intrinsic
parameters that determine the behaviour of the individual
elements and of the system, too. Changes in the values of
the intrinsic parameters may result in drastic changes to the
functional connectivity. In this part of the investigation, the
two types of functional connectivity are studied as a function
of such intrinsic parameters. We are here attempting to
address the following question: is there at least one class of
the functional connectivity that can survive under the
changes of a dynamical parameter of the model? Or relatedly,
is it possible to observe the structure of the network through
the dynamics even if we are consistently changing an
intrinsic parameter?

The stochastic SER model is characterized by the recovery
probability, p, that determines if a node in the refractory state
will return to the susceptible state. For the phase oscillators,
we use the range of natural frequencies as the intrinsic par-
ameter. The logistic map has only one intrinsic parameter, R,
which defines the dynamical behaviour of the uncoupled
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oscillator. We here vary the average R such that the uncoupled
oscillator would reside in the chaotic regime (3.7, 3.9).

Figure 5 shows the results of this part of the investigation.
For the SER model, we see that network effects are consistent
across the whole parameter range. We can see that SC=FCsim
is consistently high for the modular graph and very close
to zero for all the other graphs, where, in contrast, the
SC=FCseq has positive correlation values. For the phase
oscillators, the width of the frequency distribution
matters: increasing width leads to a consistent decrease of
SC=FCsim, but leaves SC=FCseq intact in all graphs, except
for the modular, in which the behaviour of SC=FCseq is simi-
lar to SC=FCsim. The logistic map does not show any
parameter sensitivity of SC/FC correlations in the different
network architectures.
2.4. Additional case study
The FitzHugh–Nagumo model can be used as a case study
verifying whether our previous results translate to this
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more detailed, more realistic model. To this end, we study the
behaviour of SC/FC correlations as a function of randomiz-
ing a modular graph in the oscillatory regime (a = 0) and in
the excitable regime (a = 0.8). The results of this more
complicated model shown in figure 6 confirm the general
observations derived from the two corresponding minimal
models: the excitable dynamics enhance the SC=FCseq
across the transition of a modular to an Erdős–Rényi graph,
whereas oscillations favour the SC=FCsim across the
randomization process.
2.5. SC/FC correlations in real networks
We can now return to the real-life networks from figure 1 and
study the two types of SC/FC correlations in these networks
as a function of the intrinsic parameters of the dynamical
models, as done in figure 5 for the abstract network archi-
tectures. The results are summarized in figure 7. Regarding
the SER model, we see high SC=FCseq correlations for the
neural system and, in contrast, high SC=FCsim correlations
for the social system, under the increase of the recovery
probability, while in the case of the metabolic system, the
type of SC/FC correlation that is higher depends strongly
on the parameter value. For the phase oscillators, we see
initially high correlations that approach zero value as we
increase the width of the eigenfrequencies distribution,
with the SC=FCsim to have constantly higher values. In the
metabolic network, dominant and relatively strong and
stable SC=FCsim appears under the same changes of the
ω distribution, whereas the zero values of SC=FCsim for the
narrow distributions give place to strong negative corre-
lations as we move to wider distributions. The behaviour of
the social network is similar to the neural one, but with
lower SC/FC correlation values. The results for the logistic
map are dominated by SC=FCseq correlations, independent
of network architecture and parameter value.
3. Applications
In this section, we briefly review some areas of application to
illustrate, (1) how structural connectivity can be defined in
these contexts, (2) which approaches for defining functional
connectivity exist in this domain and (3) how the two types
of functional connectivity appear in this setting.

Throughout this investigation, we have the following
scenario in mind: given a network (structural connectivity)
and dynamical processes for each of the nodes, we analyse
the time series observed at each node and derive relationships
among the nodes (functional connectivity) in order to under-
stand how network architecture determines or shapes the
dynamical relationships among nodes. This interplay of struc-
ture and dynamics is then illustrated by and quantified in
terms of SC/FC correlations. The topic of dynamics on
graphs is, of course, much broader than we describe it
here. The clear distinction between (static or slowly changing)
structural connectivity—which serves as ‘infrastructure’ for
dynamical processes—and (often rapidly changing) functional
connectivity is not plausible for all applications. As a conse-
quence, a debate about SC/FC correlations is not possible in
important areas of research. Often, in those disciplines, the
evolution of the network itself under the action of its agents
(nodes) is investigated, therefore we can only conceptualize
the FC in the context of the evolution of the structure of the net-
work. Social network analysis (SNA) is the methodology of
choice for such situations [54] (see electronic supplementary
material for more details).

When multiple relationships must be taken into account to
provide a more realistic and precise description of a complex
system or when interactions go beyond the pairwise level
(with examples from systems biology being protein complexes
or biochemical reactions), hypergraphs [55,56] can serve as a
useful framework for representing these systems. Furthermore,
if the structural network changes on a similar timescale to func-
tional connectivity or even under the influence of the functional
dynamics, we enter the rich field of adaptive networks [57–59].
In this case, inevitably, the topology influences the character of
the collective dynamics of the system, but dynamics affect top-
ology, too, leading to a continuing interplay between them. This
is of particular relevance in social–ecological systems (see §3.5).
3.1. Application to geomorphology
Within hydrology and geomorphology, the examples of struc-
turally connected pathways that we will discuss here are
those that direct the flow of water and sediment over the
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surface and within the near-surface zone. On steeper slopes,
these structurally connected pathways are predominantly
controlled by the topography and vegetation, whereas
on slopes (ca ,5�) other surface characteristics such as micro-
topography and soil hydraulic properties can become
relatively important. The dynamical processes occurring
over this structural template and subsequent functional con-
nectivity are then an emergent property of these structural
controls in combination with dynamical inputs (e.g. precipi-
tation). The presence of vegetation also (i) modifies soil
properties, (ii) often has an associated microtopography and
(iii) can impede/reduce flows due to friction and damming
effects, so that there are dynamic feedbacks between the
structural and functional connectivity [12,13,60].

There are various approaches to assessing structural
connectivity in hydrology and geomorphology. If we take a
river network, the structural connectivity of the network
can be defined based on the pathways connecting all links
through which water can potentially flow, resulting in a
graph structure most often in the form of a tree [61,62],
with the exception of braided streams [63], deltas [64,65] or,
for a more broad example, coastal sediment pathways [66].
Thus, the structural connectivity of river networks can be
quantified using, for example, the pairwise connectivity of
its underlying tree structure—an approach that has been
used both for natural and synthetic river networks [67].
These synthetic networks are useful as they inform our
mechanistic understanding of these complex systems. One
such example is optimal channel networks (OCNs), which
can be generated for varying values of the energy exponent
(a parameter that characterizes the mechanics of erosion pro-
cesses in channel formation) in order to reveal how such
topological factors lead to emergent network properties
[68]. OCNs replicate the major scaling features associated
with river networks around the world [69,70], and thus
bridge the gap between random graphs shown in figure 3
that go from structured to unstructured network topologies
and river networks observed in nature. Furthermore, river
networks have a directional structural template, with links
connecting high-elevation nodes to low-elevation nodes. On
hillslopes, structural connectivity has been measured based
on the upslope contributing area to a particular node (e.g.
[71]), and on the combination of topographically connected
flow paths (using flow routing algorithms) and the presence
of vegetation (measured using remote sensing techniques)
that intersects (and in certain environments disconnects)
these flow paths (e.g. [72]). Similarly, in hydrological analysis
of sub-surface flow, structural connectivity of a network of
wells may be determined from the downslope direction of
surface topography from any well (e.g. [73]).

In these examples from hydrology and geomorphology,
we are concerned with (1) areas that have a similar response
to a dynamical probe (e.g. rainfall event) and (2) connectivity
of fluxes, i.e. flows of water and/or sediment that are
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transported through the network to a downslope/stream
location. These two types of functional connectivity map
onto FCsim and FCseq, respectively. Approaches used to
measure FC in hydrology and geomorphology are varied.

In relation to (1), FCsim geostatistical analysis is often
used to assess how the scales of co-activation change in
response to a dynamical probe. For example, one can
measure the autocorrelation of soil-moisture content and
how this changes over time, both in response to a rainfall
event and then during a refractory period (see for example
[74]). In the case of sub-surface flows, FC between two
wells (nodes) a and b is deemed to exist if well b is down-
slope of well a and the wells are co-activated (i.e. water is
present in both) (e.g. [75,76]).

In relation to (2), FCseq is often assessed/inferred based
on gauges within a network being activated at a range of
lag times, thus indicating the flow of water or sediment
between the two locations [77]. Geostatistical analysis has
also been used to quantify how FCseq changes throughout
a flood event [67]. The FCseq of fluxes through a real or syn-
thetic river network has also been simulated and
incorporated into a dynamic tree approach by analysing
dye propagation models at successive snapshots [78]. Such
approaches could be particularly valuable for studying the
little understood impact of pulses of sediment [79], nutrients
[80] or other diffuse chemicals [81] transported by surface
waters. In the case of sub-surface flows, sequential activity
of the two wells may be inferred from time-series analysis
of water levels at a range of time lags (e.g. [73]).

Suitable empirical data for measuring these examples of
functional connectivity are relatively scarce, and therefore
researchers often turn to process-based modelling as a way to
quantify both types of functional connectivity. For example,
high spatio-temporal resolution modelling can be used to
measure times during a storm event when infiltration will be
locally satisfied and thus the onset of runoff generation
(excited) or not (susceptible/refractory) due to spatial variabil-
ity in infiltration capacity, rainfall intensity and antecedent
soil-moisture content. From this high spatio-temporal model-
ling, the degree of synchronized functional connectivity of all
locations within the model spatial domain can be derived.
The spatial pattern of these synchronized points in turn deter-
mines the sequential connectivity of runoff and sediment flux
[82,83]. For example, using high-resolution process-based
modelling [21] measured the length of connected flow paths
on grass and shrub hillslopes that had varying lengths of struc-
turally connected pathways. In this example, the longer the SC,
the higher the FCseq of discharge and sediment flux, which is
similar to that observed in the case of coupled phase oscillators
where FCseq is destroyed with an increase in the randomness
of the network.

Whereas some evidence exists for the impact of SC on
FCseq at a particular timescale [21], there remains scope to
examine patterns of FCseq both at increasing lag times and
in response to dynamical probes of different magnitudes for
their impact on landscape change (topological changes). Fur-
thermore, geomorphological assessment of the importance of
coupling strength among nodes remains unexplored. An
important point to highlight is that timescales of synchronized
versus sequential functional connectivity in hydrology and
geomorphology are often markedly different. The widespread
synchronization of activity over a spatial range is valid for
a small time period (mins/hours), while the sequential
propagation of fluxes through the network occurs over
longer time periods—hours to days to decades—depending
on the size/configuration/connectivity of the network/
system. Similarly, earthquake/storm-driven landslides tend
to be synchronized over timescales of hours–days, whereas
the resulting cascade of material through the network is
sequential over significantly longer timescales (e.g.[84–86]).

Likewise, the spatial scales associated with synchronized
and sequential connectivity tend to differ. For example,
nearby nodes often exhibit synchronization, whereas sequen-
tial flux propagation is observed at a larger spatial scale [87].
Flood events highlight the potential for sequential propa-
gation of processes over large spatial scales over time
periods of hours to days. In catastrophic flooding in the Lock-
yer valley in Queensland, Australia in 2011, the hydrological
and sedimentological connectivity between the channel and
the floodplain was spatially variable depending on the mor-
phology of the reach and whether it was expanding or
contracting [88]. Hence, in this example, the organization of
dynamical processes in the network was crucial to the
change in channel morphology, despite assumptions that in
such a large flooding event thresholds for connectivity
would have been exceeded.
3.2. Application to freshwater ecology
Over the decades, ecosystem ecology has developed a con-
siderable amount of methodologies for network analysis,
which contributed to the characterization of the evolution
and status of ecosystems [89]. The structural connectivity
(SC) is represented in these models by depicting standing
stocks (e.g. biomass, local communities or populations,
species, individuals, or habitat patches) as nodes, and the
interactions between them (e.g.feeding, the movement of ani-
mals or diseases) as links [89]. Within landscape connectivity,
the spatial structure of river networks (SC) plays a key role in
structuring ecological patterns [90]. Graph representations of
river networks are often modelled to resemble the hierarchi-
cal structuring of habitat patches (nodes) and the potential
dispersal corridors (links) [91–95].

Dynamical approaches have not explicitly used the terms
co-activation or sequential activation for describing func-
tional connectivity. However, some of the notions in this
paper can also be deduced from dynamical approaches of
habitat connectivity already applied in aquatic ecology. The
focus on animal movement and dispersal has been driving
the theoretical and empirical work in the past few decades
[62,93,96–100], especially in the light of fragmented land-
scapes. In models of organismal–environment interactions
based on landscape’s resistance to dispersal [101,102] and
in models that include the intrinsic dispersal abilities and
limitations of organisms (i.e. individual-based population or
metacommunity models [90,103,104]), the movement of
animals is represented as the dispersal of individuals from
node to node (analogous to the flow of vehicles in a
transport network [97].

Community ecologists have long seen individual popu-
lations and communities as oscillators [105]. They focused
on the dynamics of a modular network, inferred from the
synchrony between the rate of change of the population
density within nodes [105]. Another example is the ecohydro-
logical study of [103], where they proposed the concept of
‘fluvial synchrograms’ to explain patterns of the geography
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of metapopulations’ synchrony within a river network, using
the case of freshwater fishes of Europe. In their empirically
driven approach based on the geography of synchrony, they
developed theoretical synchrograms using simulated time-
series of species abundance from the spatially explicit
dynamic metacommunity model [103]. These fluvial synchro-
grams depicted the decay in synchrony over Euclidean,
watercourse, and flow-connected distances [103]. Synchrony
was higher in populations connected by direct water flow
and decreased faster with the Euclidean and watercourse
distances, highlighting the extent of spatial patterns of syn-
chrony that emerge from dispersal [103]. Other approaches
like the ones of [103,105–108] are examples of investigations
focused on the effect of the network topology (SC) on the
synchronous dynamics of nodes (FC) (SC/FC relationships).
Representations of synchronous functional connectivity go
beyond the movement-based approaches and can include
models using the input–output analysis described in the eco-
logical network analysis (ENA) section (§3.5.2) (i.e. species
interactions models quantifying predator–prey, mutualistic
or competitive relations [109]; species–resource interactions
models quantifying consumer–resources relations [110–112];
food webs models that trace energy movement [113–115];
and nutrient cycling models [116]). In competitive consu-
mer–resource systems, consumers can overlap their diet and
resources interact with one another, which makes it possible
to visualize them as coupled oscillators [110,117]. To explain
the dynamics of communities in these systems, Hajian-For-
ooshani & Vandermeer [110] applied the enduring Lotka and
Volterra equations [111,112] and the Kuramoto model [118] in
a simplified three-oscillator system. In this system composed
of three consumers and three resources, they measured two
distinct types of coupling: trophic-coupling (the strength of
cross-feeding) and resources-coupling (strength of competition
between resources) [110]. Given a persistent oscillator in the
Lotka–Volterra formulations, trophic-coupling implied event-
ual synchrony (all oscillators are in the same point in circle
space) and resource-coupling implied asynchrony [110]. The
simulations in both of the two models had similar results,
suggesting that coupled oscillators and the application of the
notions of the Kuramoto model can provide theoretical contri-
butions on ecosystem and community organization [110].

To illustrate the idea of sequential activation in freshwater
systems, we consider examples using random walks.
Random walk is the most common approach to simulate ani-
mals’ movement and can be considered as sequential FC,
since the sequential steps of their dispersal can provide valu-
able information about the network structure. For theoretical
studies that model the distribution of local species’ persist-
ence in time, random walk without drift is the simplest
baseline demographic model [119]. In originations and extinc-
tions models working with macroevolutionary timescales,
the abundance of a species in a node has the same probability
of increasing or decreasing by one individual in each time
step [119]. Then, the increase of one individual will represent
the colonization of a free site by an individual of a new
species in the system, or a randomly sampled individual
within the community [119]. An assumption of this model
to account for limited dispersal effects is that only offspring
of the nearest neighbours of the dying individual are allowed
to colonize the empty space [119]. Additionally, the local
extinction corresponds to a first passage of a random
walker equal to zero, leaving a persistence time distribution
following a power-law decay with exponent 3/2 [119]. A sim-
pler alternative model will be the stochastic patch occupancy
model (SPOM) that describes the presence/absence of a
focal species in a node (simulates only colonization and
not colonization–extinction dynamics) [120,121]. Here, in a
given structural river network with discrete habitat patches
as nodes, each node has a probability to be colonized by
species belonging to the regional species pool [120]. At the
starting point of each simulation, a sequential colonization
process starts. From initially occupied nodes, or initially
introduction sites of the new species, the empty patches
can become occupied in a sequential manner (successive
snapshots). The potential occupancy of a node will be depen-
dent on a chain of colonization events and the presence of
unoccupied nodes within a certain range (only empty
nodes could become colonized). The SC/FC relationships
implied by the aforementioned studies are different from
the ones described in this paper. The dispersal of animals
(which serves as sequential FC) finally determines the struc-
ture of the network and in the approaches of [115] and [114]
this one is built using time-ordered graphs (i.e. continuous-
time Markov chain for [115]). The main difference is that
this provides a time-resolved view of the dynamics, whereas
in the approach of the current paper, the time is eliminated by
suggesting the time-average view on dynamics. Bridging
over these two types of time views on dynamics requires
further investigation on how the FC that derived from the
temporal graphs contributes to the time average information
of dynamics. Ecological applications of dynamical
approaches, like the ones mentioned above, and the classifi-
cation of the two types of FC addressed in this paper bring
new perspectives to assess functional connectivity in fresh-
water ecology. Additionally, evaluating the SC/FC
relationships can highlight the importance of specific nodes
in facilitating the overall colonization processes, which can
help to estimate a number of effective reserves necessary to
achieve a particular conservation goal [103,122–126].
3.3. Application to systems biology
In systems biology, we find many instances where a
distinction between simultaneous and sequential events in
networks is made, even though the terminology of
‘functional connectivity’ is rarely used. On the level of gene
regulation, for example, temporal programmes structurally
implemented via single input modules [127], leading to a
‘just-in-time’ production of proteins for specific biological
functions in a bacterial cell [128] are an example of a contri-
bution to functional connectivity based on sequential
activation. Note that here the unweighted graph would
lead to a misleading relationship between structural and
functional connectivity, as structure in the unweighted graph
would suggest a co-activation, rather than a sequential
activation. The latter, in fact, is implemented via distinct
weights from the regulator to the target genes or operons.
As we see in all the case studies presented here, such details
matter, when bringing these abstract concepts to a specific
domain of application.

Another example is the sequence of events during the
yeast cell cycle, which is hard-wired into the corresponding
gene regulatory network [129] and can be understood using
simple, discrete cellular automata-type models [130,131],
namely Boolean network models [132].
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A more common approach in systems biology address-
ing the relationship of gene expression (or transcriptome)
data—simultaneous measurements of gene activity via high-
throughput technologies—and the underlying regulatory net-
work is network inference. This approach summarizes a
range of statistical methods to infer the regulatory network
from expression profiles [3,133]. It should be noted that this
approach already starts with assumptions about SC/FC
relationships, in particular, that indeed structural connectivity
can be reconstructed from observations of the dynamical
states [134].

In the case ofmetabolic networks—bipartite graphs ofmetab-
olites and biochemical reactions available in a cell, where
reactions can be represented either by enzymes or by the
genes encoding these enzymes [33,135,136]—the activity
levels of genes encoding enzymes can be thought of as a rep-
resentation of the metabolic state of a cell. These activity
levels are given by transcriptome data. Statistical analysis
of transcriptome data (either by repeated measurements—
replicates—or by contrasting the cellular condition with a
baseline or reference conditions (e.g. mutant gene expression
levels with wild-type gene expression levels)) leads to sets of
genes characterizing a cellular state, for example, the sets
of ‘upregulated’ and ‘downregulated’ genes or the sets of
genes with ‘high’ or ‘low’ expression levels within a large set
of samples. A possible definition of functional connectivity
then is the induced subgraph of a gene-centric projection of
the metabolic network spanned by such a gene set derived
from transcriptome data [137].

The connectivity of such a subgraph compared to ran-
domly drawn gene sets is a convenient and frequently
employed measure for SC/FC correlations in this context
[7,138–140], as it addresses the statistical question of how
clustered such a gene set (representing functional connec-
tivity) is within a given (metabolic) network (representing
structural connectivity).

The conceptual model of functional connectivity behind
such an investigation is that of synchronous activity. Dis-
tinguishing between the two types of functional connectivity
is challenging, given the current state of ‘omics’ data in systems
biology, due to the lack of suitable time-resolved data.

This observation is further underlined by the fact that pre-
dictive theories of genome-scale metabolic activity (e.g. flux-
balance analysis, [141,142]) are also based on a steady-state
assumption. In order to discriminate between co-activity
and sequential activity, one needs to resort to time-resolved
models, typically based on ordinary differential equations
(ODEs), which, however, due to their often huge number of
required parameters are restricted to single pathways or
other suitably defined cellular subsystems, rather than the
scale of a whole cell.

Beyond these two basic situations characterized by a gene
regulatory network and a metabolic network as structural
connectivity, respectively, there are many other examples of
sequential and synchronous usages of a given ‘hardware’ in
systems biology. Metabolic control analysis [143,144] relates
the distribution of control in biochemical networks to their
structure. Protein interaction networks [145] summarize
how selective binding patterns (structural) and protein
complexes (the dynamic assemblies to execute biological
function) are interlinked. Fermentation processes (e.g. in
cocoa fermentation) often rely on a sequential activation of
microbial populations [146].
Summarizing the SC/FC situation in systems biology in a
qualitative form, one can conclude that gene regulatory networks
lean towards sequential activation, while protein interaction
networks functionally lean towards co-activation (protein com-
plexes) and metabolic networks may display aspects of both
(steady-state activity versus metabolic pathways).
3.4. Application to Neuroscience
Neuroscience is one of the first disciplinary fields in which
the need to formalize notions of SC and FC was felt. Perhaps
this was due to the fact that network descriptions in neuro-
science go beyond a mathematical representation but
correspond to an actual, concrete reality: neural circuits are
networked systems, with their ‘reticular’ (from Latin for
‘little net’) nature debated since at least the turn of past cen-
tury [147]. Network nodes can be, depending on the scale of
observation, individual neuronal cells (at the micro-scale),
populations involving thousands of neurons (at the meso-
scale), up to entire brain regions (at the macro-scale). The
relations defining links are different depending on the con-
sidered type of connectivity and are defined both in terms
of anatomy of wiring and of information exchange.

It is natural to consider SC in Neuroscience as the descrip-
tion of anatomical connections physically existing between
network nodes: individual synaptic connections forming
electrochemical junctions between the outward axons and the
inward dendrites of different neurons (within volumes <
1 mm3, already containing approx. 104 � 105 neurons); or bun-
dles of long-range connection axons coupling together smaller
or larger groups of neurons, separated by varying distances
(approx. 1− 10 mm for mesoscale circuits up to approx. 10−
100 mm for macroscale, brain-wide networks). At all these
scales, one usually refers to the compilation of all structural
connections between probed network nodes as to a connec-
tome [148,149]. Different techniques must be used to extract
SC information at different scales, even if a systematic review
of them is not possible here. We can briefly mention, though,
that we dispose of whole matrices of SC for rodent, nonhuman
and human primate brains [32,146–151], as well as detailed
microcircuit reconstructions [152–154].

Studies of SC in Neuroscience often revolve around: the
search for general architectural [159] or wiring optimization
[160,161] principles in connectivity, or the identification of
characteristic motifs of connectivity that are over-represented
with respect to chance-level [162,163] and special structures
such as dense clusters at the micro-scale level [164], or cores
and ‘rich-clubs’ at the macro-scale level [151,165]. Recently,
attempts have also been made to use topological data ana-
lyses techniques [166,167] to characterize the ‘shape’ of
networks beyond the limitations of graph theoretical descrip-
tions, which greatly emphasize strictly local or strictly global
aspects but are deficient in capturing intermediate structures
at arbitrary meso-scales. Other lines of research aim at linking
specific structural motifs to specific functions, as in the case of
specific arrangements of positively weighed excitatory con-
nections and negatively weighed inhibitory connections
allowing modulations of perception [168] or of specific pat-
terns of interconnection between cortical layers at different
depths in the tissue thickness, allowing the regulation of sen-
sory and predictive information flows [169]. Finally, many
efforts have been devoted to identify SC alterations that
may be indicative of developing and progressing
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neurological or psychiatric pathologies, and thus serve as
diagnostic or predictive biomarkers [165,170]. However, a
comprehensive survey of all these applications largely trans-
cends the scope of this review.

Not only are neural network nodes (neurons or popu-
lations) wired together by living cables, but messages are
continually exchanged along these cables. All information pro-
cessing related to our perception, our cognition and our
behaviour is generally believed to arise from the exchange of
‘spikes’—propagating pulses of electric depolarization of the
cell membrane, able to elicit neurotransmitter release at synap-
tic terminals—between synaptically connected neurons. Such
spikes, individually or grouped in more complex spatio-
temporal patterns, represent ‘codewords’ encoding infor-
mation about external and internal worlds in still largely
unknown languages. Streams of spike-encoded information
are thus copied, transferred and merged between system’s
components linked by SC, assembling into emergent neural
algorithms that ultimately underlie functions and behaviours
[171]. These computations are highly distributed and the com-
munication between system’s units that they involve can also
be seen as giving rise to networks, but this time of functional
rather than structural nature. Two units are thus defined as
functionally connected if they ‘interact’. The problem is there-
fore to operationally define how an ‘interaction’ can be
pragmatically measured from observing how coordinated
neural activity unrolls through time.

Some measures of FC define ‘interaction’ as ‘synchrony’
between activity fluctuations and modulations. This is the
case for instances of so-called resting state FC [172], describ-
ing linear covariance between the fluctuations of different
brain regions during unconstrained mind-wandering, as
revealed by functional MRI (fMRI). Such metrics of connec-
tivity are akin to the first form of FC previously described.
Given the remarkable oscillatory components present in an
neural activity and simultaneously at different frequency
bands [173,174], analyses of synchronization-type FC in
neuroscience are often conducted in the spectral domain,
tracking coherence and phase-locking [175]. Individual neur-
ons are not necessarily oscillating and can keep firing in
irregular manner, nevertheless neuronal populations can col-
lectively oscillate because of the interplay between excitatory
and inhibitory currents within local recurrent microcircuits
[176]. Such collective oscillations produce periodic modu-
lations of the excitability of neurons within large
populations, so that efficient transmission between synapti-
cally coupled populations can occur only if their respective
local oscillations are suitably aligned in phase (‘communi-
cation-through-coherence’ hypothesis [177]). Thus, two
neuronal populations that are structurally connected may
become functionally disconnected if their oscillations are,
for example, in antiphase and spikes emitted in proximity
of the sender population’s oscillation peaks reach postsyn-
aptic neurons at the throughs of the target population’s
oscillations and hit thus against a wall of locally generated
inhibitory blockade, preventing information carried by
input spikes from being transduced into output activity.
Under this hypothesis, it is thus possible to flexibly ‘switch
on and off’ FC on top of a static SC link, just by adjusting
the relative phase of the sender’s and target’s oscillations. A
natural generalization of linear correlation from the time to
the spectral domain when dealing with oscillatory neural
activity is inter-regional coherence or phase synchronization
[175]. Coherence in the gamma band (40–100Hz) between
frontal/prefrontal and sensory regions is known, for instance,
to be boosted in sensorimotor coordination or attention
[178,179]. Furthermore, FC can also be established between
populations oscillating at different frequencies via nonlinear
cross-frequency coupling [180]. Not only cognition but also
pathology can perturb coordinated neural oscillations and
the associated FC [181], but once again a detailed coverage
of the use of oscillation analyses for biomarking goes
beyond the limits of the present work.

Other measures of FC go beyond mere synchrony or
correlation—beyond the first form of FC—and attempt
reflecting actual causal influence. Unlike correlation, which
is symmetric and thus gives rise to undirected graphs of
FC, measures of causal interdependence between time
series of neural activity give rise to directed networks. In
Neuroscience, ‘functional’ and ‘effective connectivity’ are
sometimes used as distinct terms, with the latter serving as
a FC measure that tracks causality. However, here, we keep
naming connectivity of functional type all connectivity
relations that do not express anatomical interconnection. A
very simple way to account for the direction of interaction
can be to assess the temporal precedence of the ‘causing’ on
the ‘caused’ fluctuation. This can be achieved for instance
by using lagged cross-correlation or mutual information
rather than zero-lag correlation (e.g. [183]), since the effect
cannot precede the cause. In this sense, these metrics are
related to the second form of FC, reflecting sequential acti-
vation, as previously discussed. However, the
correspondence is only partial, in this case and unlike for
neural FCs of the first form. If exact sequences of neural acti-
vation can be produced by neural architectures known as
‘synfire chains’ [184], they have been only rarely sought for
in actual recording and neuroimaging data [185,186] and
not been put in relation with notions of functional coupling.
Directed FC measures in neuroscience are defined operation-
ally in terms of time-series-based statistical metrics, rather
than in terms of explicitly dynamic considerations. Thus,
while in many cases the statistically-inferred directed FC
goes, for example, from the phase-leading to the phase-lagging
neuronal population [187,188], i.e. respects a sequentiality cri-
terion, in other cases the relation can be inverted, reflecting
nonlinear interactions between populations, as anticipatory
synchronization [189] or heterogeneities in internal synchrony
levels [190]. More explicitly, causality could be captured: by
the detection of remote effects on distant regions triggered
by interventions in local regions (as in dynamic causal model-
ling [182]); or by showing that consideration of the past activity
of a putative causal source region improves the prediction of
the future activity of a target region, as in Granger causality
analyses of neural time series [191–193]. Importantly, Granger
causality can also be spectrally decomposed [194], allowing the
detection of the contribution of different oscillatory com-
ponents of neural activity to inter-regional causal influences.
It has thus become possible to observe that causal influences
in different directions can be mediated by oscillations in differ-
ent frequency bands, e.g. in the gamma-band (approx. 40 Hz)
for bottom–up and in the beta-band (approx. 20 Hz) for top–
down information exchange between prefrontal and visual
regions [195,196].

More recently, emphasis has been put on the fact that FC
networks are not static but change in very flexibleways through
time, i.e. they are better described as temporal networks [197].
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The new term of ‘chronnectome’ has been introduced to stress
how, beyond analyses of the static functional connectome, expli-
cit consideration of the spontaneous reconfiguration dynamics
of FC over time may help to better discriminate cohorts of sub-
jects and patients, by disentangling temporal from inter-subject
variability [198]. At the macro-scale, different FC networks are
sequentially recruited along the unfolding of cognitive tasks,
potentially signaling different neurocomputational steps
[199,200]. Spontaneous resting state FC networks wax and
wane in a seemingly stochastic flow that is not randomly struc-
tured but displays characteristic long-term memory [59] and
whose rate of reconfiguration and degree of temporal structur-
ing predict cognitive performance at the single subject level
[201,202]. At the micro-scale as well, the emergence and dissol-
ution of transient synchronous assemblies of cells within
hippocampus and enthorinal cortex can be modelled with
temporal network descriptions [203]. Future studies will be
needed to understand whether this complex FC network
dynamics can be seen as a measurable fingerprint of ongoing
neural computations linked to functional behaviour [204].

The definitions of SC and FC given in the previous sub-
sections are in principle completely independent: one could
indeed assess the existence of FC based on the analyses of
multivariate neuronal activity time series without knowing
anything about the underlying anatomy and SC. This
scenario of a ‘perfect separation’ between SC and FC is
obviously unlikely. However, an equally naive scenario dom-
inates the discussion of many articles in the literature in which
a structural cause is necessarily sought for to explain any
change arising at the level of FC. In reality, the flexibility of
FC on very fast behavioural time-scales with respect to physio-
logical processes reshaping SC (at least at themeso- andmacro-
scales) already suggests that FC cannot just be a passive mirror
of the underlying SC. We have previously proposed that FC is
the measurable by-product of underlying collective dynamics
[187,205]. In this proposed theoretical view [206], alternative
modes of a system’s dynamics, or states within the ‘dynome’
[207]—or dynamical repertoire [208]—of a system would
give rise to alternative FC configurations on top of a same
underlying SC (functional multiplicity).

Analogously, circuits with very different SC but that give
rise nevertheless to equivalent dynamical modes—a property
known in systems neuroscience as functional homeostasis
[209]—would give rise to similar FC (structural degeneracy)
[210]. An example of degeneracy can be found in simulations
of neuronal cultures in vitro, in which high clustering of FC is
invariantly found because of collective network activity
bursting, independently from the simulated culture’s SC
being weakly or strongly clustered [211].

It is important to stress that, in our view, FC goes beyond
the level of the node‐specific dynamics and includes collec-
tive dynamical modes of the entire neural system. This is
made evident in studies that attempt to predict large-scale
FC in spontaneous resting-state activity conditions starting
from simulations of SC-connectome-based simulations. In
these cases, a good fit between simulated and empirical FC
is obtained only when the model is tuned to operate close
to a critical point of dynamic operation [212,213], indicating
that FC manifests a peculiar dynamical regime, certainly
shaped but not fully constrained by structure. For instance,
waves [19,20] or ‘connectome harmonics’ [214] shape large-
scale coordinated activity and, hence, FC. The importance
of being tuned into specific dynamical regimes to account
for the qualitative features of large-scale coordinated activity
has also been confirmed by minimal models, with reduced
realism but enhanced possibility to rigorously understand
mechanisms [27,28,215]. A predicted consequence of this
hypothesis is that local perturbation to individual nodes
within a neural network may induce a network-wide recon-
figuration of FC, including of remote nodes not directly
connected to the perturbed node [205]. In a nonlinear
system the exact same perturbation can lead to different
effects in different dynamical states and since the FC clearly
depends on the dynamical state of the system, the effects of
a local perturbation can be dependent on FC rather than on
SC. Once again, computational simulations of virtual brain
models informed by empirical SC information but augmen-
ted with nonlinear brain dynamics confirm the validity of
our prediction [216]. Virtual brain models tuned to regimes
maximizing the degeneracy of their ‘dynome’, sampled via
a noise-driven exploration, also succeed in qualitatively
reproducing the switching ‘chronnectome’ observed in rest-
ing state fMRI [217]. Computational modelling thus
provides strong evidence in favour of our hypothesis of flex-
ible FC being the by-product of a complex dynamical system,
whose behaviour is constrained but not fully determined by
the underlying SC. In other words, function follows
dynamics, not structure.

3.5. Application to social-ecological systems
Social-ecological systems (SES) are complex adaptive andmul-
tilevel (polycentric) systems attributed with interplays
between human and non-human entities (nodes) at spatial
and temporal scales [218], through the metabolic flows of
material and energy (links). The concept of ‘social metabolism’,
taken from cellular metabolism, is central in the study of SES
[219]. Network analysis has increasingly been used to study
coupled, or social-ecological systems [220–224]. Here, the SES
is often depicted as a multilevel social-ecological network
(SEN), where social/human actors comprise one network,
natural entities a separate network, and flows are captured
between and within each network level. Such multilevel net-
works are modelled via a stochastic environment, such as a
Multilevel ERGM [225]. Here, micro-configurations are speci-
fied, consisting of actors and/or entities from either or both
the two networks, such as the tendency for two social nodes
to share a coordination tie when both nodes are likewise
linked to the same natural resource. Thesemicroconfigurations
are thenmodelled, alongside other competing tendencies (such
as the general tendency of a network to exhibit transitive clo-
sure), to test hypotheses linking SEN patterns to sustainable
(or unsustainable) management practices.

3.5.1. Social networks
The standard SC/FC approaches are usually uncommon in
social networks because the distinction between the ‘hardware’
(structural connectivity) and the dynamics (functional connec-
tivity) is less clear than in other fields. However, measuring the
(often rapid) flows along the edges of a more stable (slowly
changing) network, as the example of the competence percep-
tions and the everyday information exchanges in a company
shows, could be an interesting perspective for future research
approaches, incorporating two theoretical frameworks: social
systems theory [226,227] and SNA [54,228,229], e.g. in the
context of relational events models [230].
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Both approaches are debating how the internal function (of
networks or systems) can produce emergent properties that
transform the structure and vice versa. However, in social
science, these debates are not without tensions (i.e. between
structure and agency) and criticisms (i.e. by more conflict-
oriented approaches). We argue that the overlap between
‘system’ and ‘network’ could be helpful for SC/FC in social
science, specifically to understand the connections between
actors embedded in different social subsystems and how
underlying network topologies among those actors impact
the subsystems (for example, economy and democracy), and
vice versa. Signed contracts between public institutions (PI)
and private companies (PC) can serve as an illustrative
example. The outcome of a relational analysis of public pro-
curement is a multilevel, multi-relational, two-mode network
of business–government connections, whose nodes and
relations are embedded in different social subsystems: the
economic system, the political system and the State. Here,
the main focus is the SC/FC relationships that emerge
from the analysis of the procurement network.

FCseq is the longitudinal and dynamic procurement pro-
cess, analysing the sequential configurations to understand
why a PI is issuing a contract, whether to one and not to
another PC. Some of these companies could be important
market leaders or potential corrupters. FCseq is especially
significant in the case of private actors, as we assume that
very outstanding degree-peaks of a few companies could
be evidence of a corrupted network dynamic. Companies
with an extraordinarily high number of contracts in a short
period may have extraordinary political influences (i.e. inter-
locks or bribes). Both the relational positions and the
dynamical peaks could correlate directly to structural
network transitions (collapse or even fragmentation) and also
to system-related implications, such as the resource distri-
bution in the economic system or the decision-making
process in the State. FCsim is the specific linkage-configuration
at each time step: nodes that have active links to the same
node(s) are co-active. The co-activation through shared links
is changing in each time step when a new link is created, and
an existing link is decaying. FCsim applies to PI and also to
PC, and can be seen as an indicator for strong relational
positions of other nodes (in the opposing type) in the network.
For example, many co-active institutions are a ‘pointer’ to
influential companies, whether important market leaders or
potential corrupters.
3.5.2. Ecological networks
Ecological network analysis (ENA) is a systems-orientedmeth-
odology developed by ecologists to understand whole-system
dynamics and properties [231,232]. This methodology is based
on network and information theory and derives itself from
input–output analysis, modelling ecosystems as a set of
nodes and ties (vertices, edges) [233,234]. Under this frame-
work, species, aggregation of species into functional groups,
or non-living resource pools are taken as nodes while the
exchange of material or energy between species is taken as
edges. In addition, ENA methodology has also been widely
applied to analyse direct and indirect exchange of energy
and carbon emissions between economic sectors at urban/
country level from a system perspective [235]. This method-
ology is useful to evaluate system properties such as cycling
index, total throughflow and relational interactions by pair-
wise components in the system through thermodynamically
conserved transactions of a chosen currency [236].

Although not explicitly using the language of structural
connectivity and functional connectivity, ENA internal
logics resemble those used in connectivity science [21].
Under the ENA framework, SC is defined by the number
and position of functional groups—species, aggregation of
species or economic sectors—forming the nodes and the
flows of material and energy between them (edges) [231].
This set of arrangements defines the network architecture
or network topography and, therefore, the ‘hardware’ on
which dynamic processes take place, normally represented
with an adjacency matrix [114,231]. Ecosystems are open,
thermodynamic, far-from equilibrium systems, which implies
that they require continual input flow of high-quality, low-
entropy energy [237]. Once energy enters the system, it is
the structural connectivity that defines the system’s overall
dynamic flow-storage patterns [236]. ENA is applied to
steady-state systems, therefore capturing, in a snapshot,
both the structural connectivity and the cumulative behav-
iour of a given highly dynamic network.

Now, we turn to the functional connectivity under the
ENA framework, employing a basic input-state-output
model frame. As open systems require continual input, an
ecosystem is sustained by the dynamic co-activation pulses
entering across the boundary. In nature, these pulses could
be seen as the solar energy received by the primary producers
(multiple individuals or multiple species, depending on
scale). In this manner, we interpret co-activation as nodes
sharing a functional similarity, such as trophic level, and
thus being charged simultaneously. This is different from
viewing co-activation as two or more attributes to align for
activation to occur. The latter may not have a direct analogy
in ENA. In this case, the input of energy is simultaneous to
several nodes due to their inner characteristics (e.g. they all
belong to the same trophic level). Once co-activation
occurs, the energy/material flows sequentially from node to
node. Although ecological networks have complex connec-
tion patterns including cycling, each individual sequential
pathway can be ‘decomposed’ and identified as a unique
carrier of energy matter from initial activation to final dissipa-
tion beyond the system border. These energy flows are the base
of all exchanges and form the model structure encompassing a
diversity of nodes and trophic levels. The sequential activation
is captured along these cascading indirect pathways from the
initial co-activation pulse. Therefore, the most straightforward
way to visualize functional connectivity based on the sequen-
tial activation of nodes is with a linear food chain. The initial
input of energy triggers the sequential activation of nodes
down the food chain, whereas each component is dependent
on the previous for its flow source [237]. Eventually, as the
initial pulse travels throughout themany networked pathways,
it is dissipated, its useful energy spent, coming to rest outside
the system boundary (as higher entropy) and completing the
input-state-output triumvirate. Ecological network analysis
can expose some of the interesting properties that emerge in
the state based on those input–output relations.

What is particular about ecological, and therefore also SES,
systems and networks is that one major element conditions
both their architecture and their functional connectivity over
the long run: net energy (as an indicator of low entropy)
[238–241]. As long as there are high levels of net energy, con-
nectivity (and therefore complexity in terms of nodes and
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functions) can increase, as new ‘agents’ or ‘elements’ are
attracted to the system or drawn into it by existing agents.

Nodes that happen to (or managed to) control large
amounts of net-energy flows can leverage their relative pos-
ition in the network and exert power over other network
members. This means that such agents then have substantial
power to adapt the network architecture to their own prefer-
ences, e.g. to increase their relative power [242]. It acts
collectively on major sets of nodes, thus it contributes to syn-
chronous FC, but it can also trigger cascading effects within
the network, contributing this way to sequential FC. Power
enables agents to exert a certain level of control over other
agents and even allows them to eliminate or add other
agents or nodes. In particular, they may control the distri-
bution of flows as they move through the system.
oc.Interface
18:20210486
3.5.3. Social-ecological networks
A rich body of literature on social-ecological system analysis
focuses on the structures and patterns of interdependent
social and ecological interactions (SC), which are further
associated with phenomena of interests like cooperation
and conflict [223,243–246]. More specifically, it investigates
the actor-to-actor relationship in the social system, the eco-
logical component-to-component interdependencies in the
ecological system, as well as the actor-to-component relation-
ship across the social and ecological system [247]. Altogether
it forms a multilevel network configuration made of nodes
and links between different system entities. In terms of SC/
FC relationships, one line of research is exploring how certain
social–ecological system configurations can facilitate suc-
cessful adaptation and transformation in SES to address
resource management challenges [243,248,249]. Both adaptiv-
ity and transformability are critical elements of resilience
study, describing the capacity of the interdependent social–
ecological systems dealing with unknown or unforeseen
shocks [250,251].

Although using different terms, other lines of research
have identified two types of cascading effects that connect
various regime shifts, the directional and bidirectional links
[252,253]. One is called the domino effect, which reveals a
one-way directional dependence [254]. We argue that it fits
more with sequential functional connectivity because the
feedback from one regime shift affects the drivers and out-
comes of another regime shift, while the other one is
termed hidden feedback, showing a self-amplifying/damp-
ing bidirectional cycle [246,255], which we argue is more of
a synchronous connectivity nature.

Various analytical frameworks have been applied to cap-
ture the process of co-evolution, such as the MuSIASEM
(multi-scale-integrated assessment of societal and ecosystems
metabolism) framework. From a MuSIASEM perspective,
flows of material and energy move through a system (or net-
work) in order to fulfil certain societal functions. We argue
that it departs from a set of known structural connections
(e.g. the mix of primary energy sources for a society and its
end uses) and then tries to describe functional connectivity
of a central element of a network structure by using ratios
that are composed of both a flow and a fund element. Flow
is the element that either disappears over the duration, such
as primary energy, or appears by the end of the duration
like the product, while fund can be seen as a converter that
transforms input flows into output flows during the enter–
exit duration, e.g. labour, land or machinery. Moreover,
funds are impermanent structures whose existence depends
on the availability of flows [239]. These ratios give (among
other things) information about the relative power of
nodes/agents in multi-level networks. High rates of metab-
olized energy provide increased power to (1) control and
both create and synchronously co-activate many nodes/
agents in a network (hierarchy–dependency effect) and (2)
influence sequential activation by controlling flows
(controlling-the-tap-effect). MuSIASEM tries to provide
measures and indicators for such relations, in order to
guide the transformation towards a Post-Carbon society.

Another concrete example of an SES here is the global
commodity trade system connecting resource extraction and
final demands. Here, nodes are the trading partners such
as cities/countries/regions (at various jurisdiction levels),
which can be linked through flows of products, material,
monetary value and environmental footprints. Altogether,
the established static trading structure with complex
interactions constitutes the network architecture (SC). For
instance, in the palm oil trading market, Indonesia and Malay-
sia have been the main producers, exporting products to
countries like the EU, China and India. The identified relational
structure between the countries is the SC. On the other hand,
network dynamics (FC) describe the dynamics of the flow
(i.e. the quantity of trade; the environmental footprint)
embedded in the relational patterns. Input–output analysis
[234,256] has been widely used to capture the input flows
among each sector of trade partners in the network. The flow
dynamic in the IO table is rather synchronous, in the sense
that it is the market interaction where price co-activates both
supply and demand sides. For instance, with the EU passing
a stricter sustainability regulation while importing palm oil,
big producers like Indonesia tend to export more of their pro-
ducts to less regulated markets like China. The network
structure remains the same, yet the flow dynamic changes
synchronously as driven by the market price (i.e. higher stan-
dards will increase the production costs, thus the price will
rise accordingly). Sequential activation cannot be modelled
using input–output analysis (IOA), as it is more like a snapshot
of an economic system in a given moment in time. In fact, this
static nature of IOA is often criticized as one of its major short-
comings that have only partially been overcome by the
development of dynamic models.

Although connectivity terminology is not explicitly used
here, the phenomenon of network evolution through actions
of its agents (nodes) is found quite evident. The theoretical fra-
mework developed in the paper regarding the distinction
between synchronous and sequential events has a great poten-
tial to provide a different network perspective to understand
the underlying mechanisms in social–ecological networks.
4. Conclusion
Here, we have attempted to unify the broad range of SC/FC
approacheswithin a common framework.We have reproduced
key findings from the literature and extended them towards
additional variations of network topology and dynamical
characteristics in order to see common properties and under-
lying principles and offer a deep mechanistic understanding
of the major contributors to SC/FC correlation.
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Minimal models (small toy model representations of
certain classes of dynamics) are helpful to explore these
generic features. Our challenge here was to describe how the
strengths of the two types of SC/FC correlations—based on
co-activation and sequential activation—depend on the class
of dynamics, the network architecture, the coupling and
the internal dynamical parameters. We used numerical simu-
lations to derive some universal behaviours of SC/FC
correlations under changes of these system properties and to
apply this knowledge to real-life systems or data.

The strength of SC/FC correlations can be shifted
between the two classes—functional connectivity based on
co-activation and sequential activation—in basically three
ways: (1) modification of network architecture (e.g. the gra-
dual randomization of a modular graph), (2) change in
parameters of the dynamics (e.g. increasing or decreasing
the noise or the coupling) and (3) a change in the temporal
resolution in which dynamical data are observed (e.g. by
temporally coarse-graining the observed time series).

The basic challenge of this type of investigation is that the
strength of each type of SC/FC correlation depends not only
on the class of dynamics, the network architecture, the coup-
ling strength and the dynamical parameters, but also on the
type of statistics that are applied. In some cases, the effect
of the different statistics is so strong that there is a noticeable
change in the properties that are preserved or not.

An important question is how to assess the reliability of
the results. In order to confirm that a numerically observed
behaviour of SC/FC correlations (under systemic changes)
is reliable, we performed the following tests: (1) We vary
the other system parameters slightly, in order to study the
robustness of the result. (2) We reproduce the behaviour
observed in a minimal model also in a richer representation
of the same class of dynamics.

Of course, the question is more involved on the technical
level than our brief introduction hints at. There are different
ways of assessing functional connectivity beyond pairwise
correlations. Across all disciplines, the reliability and complete-
ness of structural data are an important issue. In the case of
brain networks on the level of cortical areas (or connectomes),
one issue is whether or not to regard these networks as
weighted or unweighted graphs [32,257]. Furthermore, most
systems for which such correlations are of interest will have
some form of multiscale organization [258]. Hence, any analy-
sis on SC/FC relationships will require selecting suitable
spatial and temporal scales. On some level, we can furthermore
expect that the structural network (often thought of as ‘static’ in
the context of SC/FC correlations) will also change with time,
though often on a longer timescale than functional connec-
tivity. We can furthermore envision a coevolution of
structural and functional connectivity towards jointly ensuring
a reliable functioning of the system [50].

Even the small discussion of the plausibility of these
stylized forms of dynamics in the context of the application
domains shown in figure 1 illustrates how real-life complex
systems contain a range of dynamical usages (functional
activity patterns) of a given infrastructure (structural connec-
tivity). It is less clear, however, that even a form of dynamics,
which by definition seems to favour one type of functional
connectivity (sequential activation for excitable dynamics;
synchronous activity for coupled oscillators) can display
strong SC/FC signals for the other type of functional connec-
tivity, if the constellations of network architecture, coupling
and dynamical parameters are right. This point is illustrated
with the numerical simulations discussed here.

We believe that subsequent investigations might employ
the pattern of SC/FC correlations as a means of identifying
from a given network structure, which type of dynamics is
most plausible, i.e. which type of dynamics this network
was ‘built for’. Our current understanding of dynamics on
networks does not yet allow for such a detailed assessment.

Another direction of extending our investigation is to have
continuous chaotic systems. Here, the Lorenz system [259,260],
Rössler system [261,262] or Stuart-Landau system [263,264]
would be suitable candidates. The question is then, how the
results described above change when going from discrete to
continuous time and when going from a one-dimensional
system (at each node) to a higher-dimensional system. As we
have shown above, in the case of excitable dynamics, the step
from discrete to continuous time leaves the results qualitatively
intact, as does the step from a one-dimensional to a two-
dimensional system in the case of regular oscillations. For
chaotic systems, this needs to be investigated in detail.

Complex behaviour (patterns with long-range correlations,
in contrast to chaotic dynamics without order on a larger scale)
can emerge near critical points. Given our hypothesis that high
SC=FCseq is associatedwith large-scale patterns (e.g. excitation
waves [20]), the distinction between chaotic and complex be-
haviour may have a strong effect on SC/FC correlations. This
aspect requires further investigation and coupled electronic
chaotic oscillators may be an interesting test case for this, as
they provide a high level of realism, in particular for brain
dynamics, together with a detailed understanding of their col-
lective behaviours [265,266]. Electronic chaotic oscillators can
be used as a physicalmodel of brain dynamics [265,266] as simi-
lar dynamics to neuronal activity are observed in such networks
of diffusively coupled single-transistor oscillators.

Seeing sequential activation as a proxy of large-scale pat-
terns certainly has its limitations. In particular, we expect that
criticality—power-law distributions of activity and long-
range correlations that have been studied in great detail in
general networks [267,268] and in particular in brain
dynamics [27,269–271]—cannot be identified in this way.

On the technical level, various definitions of co-activation
and sequential activation are plausible, e.g. different normal-
izations, time delays and discretizations. We did not explore
these aspects in detail. A discussion of the impact of these
aspects can be found for example in [30,50].

As often with numerical investigations, some seemingly
small ‘design decisions’ affect the results. In the SER model,
for example, near the deterministic limit, longer runs do not
provide more information, as the system rapidly settles into a
(periodic) attractor. Then, only a large number of short runs
can reveal the underlying network architecture. The same is
true for phase oscillators, which provided the coupling is
high enough given a certain spread of eigenfrequencies,
rapidly settle into a fully synchronized state no longer informa-
tive about the architecture of the network. Here also, transients
from many runs need to be collected.

In the case of coupled phase oscillators, delayed coupling
[272,273] and phase shift coupling [274] can alter the synchro-
nization properties and the dynamical behaviour dramatically.
In the case of time delays, we can expect that strength is shifted
between co-activation and sequential activation. Time delays
are presumed to be a key ingredient in reproducing realistic
neural dynamics [187,275,276]. Phase shift coupling, on the
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other hand, can transform phase oscillators into excitable units
[274]. These points, togetherwith our observation that the exact
form of the coupling is relevant for the behaviour of SC/FC
correlations, underlines that even for the simple models dis-
cussed here more investigations are necessary.

With our investigations, we set out to understand
which network features and which class of dynamics rather
enhance SC=FCsim or rather enhance SC=FCseq. As a rule,
we find that modularity enhances SC=FCsim, while broad
degree distribution or randomness enhances SC=FCseq.
Increase in coupling favours high SC=FCsim, while high
parameter diversity tends to enhance SC=FCseq.

From the view of dynamics, excitation models tend to
favour FCseq, a trend we observe both with the minimal
(SER) model of the excitable dynamics and with the more rea-
listic FitzHugh–Nagumomodel. By contrast, regular oscillators
favour FCsim, as we see with the stylized (coupled phase
oscillator) model and, at a higher level of realism, with the
FitzHugh–Nagumo model in its oscillatory regime. In the
case of the chaotic oscillators, the choice of the coupling term
used here leads to a persistent dominance of high positive
SC=FCseq, but for a complete view about the SC/FC strengths
further investigation with other types of coupling is needed.

The conceptualization of the synchronous and sequential
activity in different application scenarios is more sophisti-
cated than in the case of minimal models, which indicates
that broader definitions of the two notions are needed. How-
ever, as we show in the second half of our investigation, the
systematics extracted from investigating minimal models help
us better organize the diverse findings in the application
domains and thus provides a fresh perspective on dynamical
processes in network-like systems in these fields. Specifically,
we argue that FCsim is associated with simultaneous
measurements either of the dynamical activity of nodes or
of links, where the concept of ‘simultaneous events’ intro-
duces a timescale, at which events are considered to be
‘synchronous’. Relatedly, in terms of a more general view
on FCseq, we argue that it can be seen as flow of information
or materials in the system, summarizing concepts such as
influence and diffusion.
5. Methods
5.1. Network topologies
The simulations were performed on a set of abstract graphs
(modular, Erdős-Rényi, Barabási-Albert, Newman–Watts–Stro-
gatz and hierarchical [277]) and three real-life networks (neural
[32], social [34], metabolic [33]). The description of the network
architectures of the graphs is given below:

Modular graph: includes 60 nodes and has density 0.23. Each
graph is constructed by starting from four cliques, in which every
node is linked with all the other nodes in the same clique. Then,
edges are randomly rewired with probability p = 0.23 to link
different cliques.

Watts–Strogatz graph: includes 60 nodes and every node
of the graph is linked with its 15 nearest neighbours in a ring
topology [278].

Erdős-Rényi (ER) graph: includes 60 nodes and the prob-
ability of edge creation for each node is 0.23 [279].

Barabási-Albert (BA) graph: Each BA graph consists of 60
nodes and it is grown by attaching new nodes, each with 8
edges that are preferentially attached to existing nodes with high
degree [280].
Hierarchical graph: includes 64 nodes, 174 edges and it
has a scale-free topology with modular structure. The detailed
construction process is described in [277].

Neural graph: includes 89 nodes (cortical areas) and 676
edges derived via thresholding and symmetrization from the
29 × 91 connectivity matrix (inter-areal connection strength
measurements) described in [32]. An edge between two nodes
is accepted if the decimal logarithm of the corresponding connec-
tion strength measurement is above the threshold value 10−3 (see
electronic supplementary material for more details).

Metabolic graph: includes 72 nodes (metabolites) and 486
edges [33]. We use the systems biology markup language
(SBML) model ‘e-coli-core’ from the BIGG database (bigg.ucs-
d.edu) and extract the stoichiometric matrix S. The adjacency
matrix of the metabolite-centric metabolic network shown in
figure 1 is then obtained by mapping all non-zero entries in
SST to 1, where ST is the transpose of S.

Social graph: includes 77 nodes (people) and 875 edges [34]. It
is an undirected graph and an edge between two nodes is created,
if one’s knowledge about the skills of others within the company
exceeds a threshold equal to 5.0 (see electronic supplementary
material for more details about the real-life networks).

5.2. Topological changes
In the first instance, three initial graphs that have distinct structure
were randomized or rewired in different proportions, such as the
ratio No Changes/No Edges≃ 0.11 corresponds to a percentage
of 10% of randomization/rewiring process. Thus, for the modular
and the regular graph every 10% of randomization/rewiring
process corresponds to 50 swaps/rewiring changes of edges. The
degree of the nodes is preserved and only the structure of the net-
work changes. For the hierarchical graph, 20 swaps of the edges for
every 10%of randomization are enough to end upwith a scale-free
graph, whose modularity is completely destroyed. As a conse-
quence, the randomized network retains its degree distribution
and the presence of hubs, but without the embedded modularity
that it initially had, similar to a scale-free topology as the preferen-
tial attachment model from [280]. The modular and the
hierarchical networks were randomized, according to the
Markov chain algorithm [281]: pairs of randomly selected edges
are swapped, providing no self-loop or multiple edges between
two nodes are created. The rewiring process was performed on
the Watts–Strogatz model according to the scheme from [278]: a
randomly selected link was destroyed and a new one was created
between one of the two nodes and a randomly selected one; the
requirement of self-loops and multiple edges between two nodes
must be, also, satisfied. During the rewiring process and before
we end up with an Erdős–Rényi graph, the network passes
through a ‘small world’ regime [278].

5.3. SER model
Themodels we used to highlight the two classes of functional con-
nectivity cover a range of different types of dynamical processes:
excitable dynamics, regular oscillations and chaotic oscillations.
The SER model, a simple cellular automaton model of excitable
dynamics, acts on discrete time and the update rules are simul-
taneously applied as follows to go from the state at time t to the
state at time t + 1: (1) A node in the susceptible state (S) changes
into a node in the state of the excited nodes (E) if one or more of
its neighbours are excited. Alternatively, a node can go from S to
E in a stochastic way with a given (usually small) rate of spon-
taneous excitation, f. (2) A node in the excited state (E) changes
into a node in the refractory state (R). (3) A node in the refractory
state (R) changes into a node in the susceptible state (S) in a
stochastic way with a given refractory probability p. This model
has been originally studied as a model of self-organized criticality
[282] and later been applied to address abstract questions of
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excitable dynamics on graphs [29,31,283], as well as topics in
neuroscience [19,50]. In the deterministic limit, p = 1, f = 0, the con-
tribution of the three cycles significantly affects the collective
dynamics [28,30]. Due to its discreteness in time and states, in
the SER model co-activity and sequential activity of the nodes
can be defined in a parameter-free way: each node can be found
in one of the three states xi(t)∈ {S, E, R}, however, in the analysis
of SC/FC relationships we only distinguish two states:

ciðtÞ ¼ 1 xiðtÞ ¼ E
0 xiðtÞ ¼ S or R:

�

Separating the nodes into the two categories (active or inactive)
is a convenient way to define the two classes of functional
connectivity. The co-activation matrix is

Cij ¼
X
t

ciðtÞc jðtÞ,

and the sequential activation matrix is

Sij ¼
X
t

ciðtÞc jðt� 1Þ:

It should be noted that different normalizations of these quantities
can be envisioned (see [28] for a detailed discussion).

For all the cases where the SERmodel was used, we simulated
NR = 10 000 runs of tmax = 10 (unit timestep) with randomly gener-
ated initial conditions, with 6% of the nodes to be in the E state
and the rest to be in S or R state with an equiprobability. The infor-
mation for the FCmatrices was accumulated by initially taking the
sum over the time of each matrix, and then by taking the sum over
the multiple runs. The SC/FC correlations were computed with
the Pearson correlation between the flattened adjacency and the
co-activation/sequential activation matrix. The final average
value was computed as the mean of the correlations from the 10
different initial graphs, and the errors as the standard deviation
of these correlation values. We obtain the main results using the
recovery probability p = 0.1 and transmission probability f = 0.001.
5.4. Phase oscillators
The second, also well studied, model studied here is the
Kuramoto model [118,284]. It describes the behaviour of a
large set of coupled phase oscillators and their transition to
synchronization. We use it here in a variant, where the oscillators
are coupled according to the architecture of a given network [24].
Each of the oscillators has an intrinsic natural frequency (or
‘eigenfrequency’) ωi and all of them are equally coupled with
their neighbours with coupling k. The evolution of the phase
of a node in a population of N oscillators is governed by the
following dynamics:

dui
dt

¼ vi þ k
N

XN
j¼1

Aij sinðu j � uiÞ, i ¼ 1, . . . , N:

This model has been instrumental in the past for understand-
ing how network topology determines synchronizability [23] and
how synchronization patterns emerge from architectural features
of networks [22].

Investigating the behaviour of the two classes of FC, in this
model, requires oscillators that have not reached the total synchro-
nization, which indicates the absolute ‘win’ of the co-activation.
Thus, Gaussian noise, scaled by amplitude σ, was added in
order to delay the synchronization process.

dui
dt

¼ vi þ k
N

XN
j¼1

Aij sinðu j � uiÞ þ su, i ¼ 1, . . . , N

The matrix of functional connectivity, in this case, is con-
structed from the correlation coefficient between the time series
of the effective frequency:

CijðdtÞ ¼ corrtðViðtÞ, V jðtþ dtÞÞ, ð5:1Þ

where

ViðtÞ ¼ hDuiðtÞit ¼
1
2Dt

XtþDt�1

t0¼t�Dt

uiðt0 þ 1Þ � uiðt0Þ

for some suitable choice of a time window Δt.
For a continuous model, such as the coupled phase oscillators,

the definition of the two classes of functional connectivity is not
possible in a parameter-free manner. In equation (5.1), for δt = 0,
we have strict co-activation and with increasing time lag δt a tran-
sition from correlations dominated by co-activation to correlations
dominated by sequential activation (before the two timeseries
of effective frequencies essentially de-couple). Particularly, the
decision of the appropriate selection of the time lag for the sequen-
tial activation was based on the results of SC/FC correlations as a
function of the coupling strength for different values of time lag. In
the electronic supplementary material, figure S5 shows the mul-
tiple curves of the different time delay values for a modular and
an ER graph.While the effect of the increasing timedelay in amod-
ular graph is the gradual decrease of the SC/FC correlation, in the
ER graph three groups of curves emerge. The first one corresponds
to the co-activity of the nodes (includes the zero and time lag equal
to 1), the second group includes the curve that corresponds to the
time-delay 2 and, in this case, is the appropriate selection for the
sequential activation, since larger values for the time delay,
which constitutes the third group of curves, have zero contribution
in the sequential activation.

For this case, we simulated NR = 100 runs over tmax = 50 using
the Eulermethod,with randomly generated initial conditions from
the uniform distribution (−π, π) on different graphs with non-iden-
tical oscillators. The integration timestep for the solution of the
system was equal to 0.1. The Gaussian noise was selected to
have zero mean, unit variance and it was scaled by amplitude
σ = 0.25. The eigenfrequencies were uniformly selected from the
interval (0, 1). The size of the time window we selected Δt for the
effective frequency was equal to 20 and the FC matrices were con-
structed from the Pearson correlation of the effective frequencies
between each pair of nodes. The diagonal elements are zero, by
default. As in the SER model, the SC/FC correlations were com-
puted with the Pearson correlation of the flattened adjacency and
FC matrices. For the latter one, the sum, over multiple runs, was
taken and the average correlation values derived from the SC/
FC correlations of 10 different initial networks; the corresponding
errors derived from the standard deviation of these 10 values. For
the main results, we selected a coupling strength equal to 10.
5.5. Logistic map
The third model that was used as a dynamical probe of network
architectures is the logistic map. Such dimensional maps (also
termed finite-difference equations or recursion relations) are used
to describe the evolution of one variable over discrete steps in
time, following a template of the form xt+1 = f(xt). The logistic map

xtþ1 ¼ Rxtð1� xtÞ

is the most well-known example of this class of dynamical models
[285]. Starting from a stable fixed point at low R, the system under-
goes a sequence of period-doubling bifurcations with increasing R
leading to a large regime of deterministic chaos, occasionally inter-
rupted by small periodic windows. Systems of coupled logistic
maps have been studied extensively as amodel for spatio-temporal
pattern formation [286] and on networks [51,52,287].
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The coupled system has the form

xiðtþ 1Þ ¼ RixiðtÞð1� xiðtÞÞ þ k
N

XN
j¼1

Aijðx jðtÞ � xiðtÞÞ,

i ¼ 1, . . . , N,

where k is the coupling strength and Aij is the network’s adja-
cency matrix (structural connectivity). Note that we impose
additional constraints on the system to force each xi(t) to be in
the interval x∈ [0, 1]. We define FC as the correlation between
the timeseries of the nodes for zero time lag (co-activation) and
a time lag of 1 (sequential activation):

Cij ¼ corrtðxiðtÞ, x jðtÞÞ, Sij ¼ corrtðxiðtÞ, x jðtþ 1ÞÞ:

We simulated NR ¼ 50 runs over tmax = 500 (unit timestep)
with randomly generated initial conditions from the uniform
distribution (0, 1). The parameter R was randomly selected by
each oscillator from the interval (3.7, 3.9). For the main results,
the coupling strength that was used was equal to 2. The FC
matrices were constructed from the Pearson correlation between
the time series of the x variable (diagonal elements are zero by
default). The SC/FC correlations derived from the comparison
of the flattened adjacency and FC matrices, by taking the
Pearson correlation, after each run. The average correlation
value derived from the mean correlation values over the multiple
runs and the errors from the standard deviation of the correlation
values over the multiple runs.

5.6. FitzHugh–Nagumo model
As a more sophisticated model of excitable dynamics and
regular oscillations, we use the FitzHugh–Nagumo model
[288,289], a two-dimensional model of ordinary differential
equations (ODEs).

The FitzHugh–Nagumo model is composed of two coupled
variables, where x represents the membrane potential and y is
the recovery variable:

tx
@xiðtÞ
@t

¼ gxiðtÞ � x3i ðtÞ
3

� yiðtÞ þ k
hdi

X
j

Aij½x jðtÞ � xiðtÞ� þ svx

and

ty
@yiðtÞ
@t

¼ xiðtÞ � byiðtÞ þ a,

where 〈d〉 is the average degree in the network, τx, τy are the time-
scale parameters for each variable, again k the coupling strength
among the connected nodes, vx, vy are random variables drawn
from a Gaussian distribution of zero mean and unit variance
and σ the amplitude of the noise. In the xy plane, we can dis-
tinguish three regions and the intersection of the nullclines of
the system (see electronic supplementary material, figure S1),
@xiðtÞ=@t ¼ 0 ^ @yiðtÞ=@t ¼ 0 defines the fixed point. Hence,
depending on the region that the fixed point is placed, the
system can be found either in the oscillatory or in the excitable
regime. By shifting the linear nullcline (changing the parameter
a), we can move from region 1 (excitable regime) to region 2
(oscillatory regime). Here, we plot the correlation values during
the randomization process of a modular graph in the excitable
and in the oscillatory regime.

As with the logistic map, coupled FitzHugh–Nagumo oscil-
lators have been employed in a range of investigations focusing
on spatio-temporal pattern formation [290] and collective
dynamics in networks [26].

We simulated 10 runs, using the Euler method to solve the
system. The total time of each simulated run was 180 s and the
integration step 0.1 ms. We downsampled the output at 1ms
and we used this to calculate the FC. The FCsim matrix derived
from the sum of the co-activation matrices over the time of each
run. The co-activation matrices were constructed as in the SER
model, after discretizing the time series (spike detection) with a
threshold equal to one and using a time window equal to
1 ms. For the FCseq matrices, various widths of time windows
were selected in order to discretize the time series and detect
the spikes. Larger time windows include both spikes that occur
simultaneously and sequentially, thus, from the whole activity
within the window, the co-activity (time window 1 ms) was sub-
tracted. The calculation of SC/FC correlations derived from the
flattened adjacency and functional connectivity matrices, after
excluding the diagonal elements. The final correlation values
came from the mean value of the 10 correlation values from
the different runs and the errors from the corresponding stan-
dard deviation. The co-activity of the nodes, as well as the
sequential activity of the nodes, using different window sizes,
were tested under different values for the coupling strength
and the noise amplitude for both the excitable (a = 0.8) and oscil-
latory regime (a = 0) (see electronic supplementary material, S6).
The selected parameter values for the system are β = 0.6, γ = 1,
τx = 0.001, τy = 0.1. The random numbers for the noise ux were
selected from a normal distribution with zero mean and unit
variance, whose amplitudes were scaled by σ and with an
additional scaling parameter

ffiffiffiffiffiffiffiffiffiffiffi
dt=tx

p
(dt is the size of the inte-

gration step). The scaling term for the uy is equal to zero. For
the main results, we selected the coupling strength (divided by
the average degree in the network) equal to 0.044, the amplitude
of the noise equal to σ = 0.15 and the time window of 12 ms for
the sequential activation.
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