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Three-phase suspensions, of liquid that suspends
dispersed solid particles and gas bubbles, are
common in both natural and industrial settings.
Their rheology is poorly constrained, particularly
for high total suspended fractions (�0.5). We use a
dam-break consistometer to characterize the rheology
of suspensions of (Newtonian) corn syrup, plastic
particles and CO2 bubbles. The study is motivated
by a desire to understand the rheology of magma
and lava. Our experiments are scaled to the volcanic
system: they are conducted in the non-Brownian, non-
inertial regime; bubble capillary number is varied
across unity; and bubble and particle fractions
are 0 ≤φgas ≤ 0.82 and 0 ≤ φsolid ≤ 0.37, respectively.
We measure flow-front velocity and invert for a
Herschel–Bulkley rheology model as a function of
φgas, φsolid, and the capillary number. We find a
stronger increase in relative viscosity with increasing
φgas in the low to intermediate capillary number
regime than predicted by existing theory, and find
both shear-thinning and shear-thickening effects,
depending on the capillary number. We apply
our model to the existing community code for
lava flow emplacement, PyFLOWGO, and predict
increased viscosity and decreased velocity compared
with current rheological models, suggesting existing
models may not adequately account for the role of
bubbles in stiffening lavas.

1. Introduction
Two-phase liquid–solid (particle) and liquid–gas (bubble)
suspensions are important across nature and industry.

2021 The Author(s) Published by the Royal Society. All rights reserved.
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Consequently, their behaviour has been well characterized: see Mader et al. [1] for a thorough
review. Numerous studies show that the apparent viscosity of particle suspensions increases with
particle volume fraction, and intermediate and concentrated suspensions show non-Newtonian
behaviour with finite yield stresses and strain-rate dependence [2–4]. Bubble suspensions exhibit
an increase or decrease in apparent viscosity relative to the liquid phase. Concentrated bubble
suspensions also show non-Newtonian behaviour, including non-zero yield stresses and shear-
thinning or shear-thickening behaviour [5–15]. A key parameter determining the rheology of
bubble suspensions is the capillary number

Ca = μaγ̇
Γ

, (1.1)

where μ is the liquid viscosity, a is the undeformed bubble radius, γ̇ is the shear strain rate and
Γ is the surface tension. The capillary number reflects the ratio of viscous stresses that deform
bubbles and capillary stresses that restore them [7,13,14]. When Ca � 1, viscous stress dominates,
bubbles deform easily and decrease relative viscosity; when Ca � 1, the surface tension resisting
bubble deformation dominates, bubbles remain nearly spherical and increase relative viscosity.

The rheology of three-phase suspensions (liquid suspending particles and bubbles) has
received much less detailed investigation, but is known to be a complex function of the suspended
phase fractions, micro-textural properties such as the size and shape distributions of particles and
bubbles, and the conditions of shear [10,16,17]. The only systematic experimental study, which
was limited to φsolid � 0.5, φgas � 0.3 and low capillary number [17], found that the rheology was
well described by a simple convolution of existing two-phase rheology models in which the liquid
and bubbles were treated as an effective medium that suspended the particles. We expect that
interactions between bubbles and particles will become increasingly important at higher bubble
and particle fractions such that a simple convolution of two-phase models is insufficient.

Magma (and lava, which is its subaerial counterpart) is a natural three-phase suspension,
composed of a molten silicate liquid (melt) that suspends a variable fraction of solid particles
(crystals) and gas bubbles. The suspending melt is Newtonian over a wide range of strain
rates, and has a viscosity that can vary over orders of magnitude [18,19]. Bubble and crystal
volume fractions can both range from 0 to 1, and typically change, along with melt viscosity,
during transport through the Earth’s crust and over its surface. The rheology of magma exerts
a first-order control on the dynamics of its eruption, and the emplacement of subsequent lava
flows [20,21]. Whilst the rheology of natural magmas has been measured directly [22–25], such
measurements are challenging to perform and interpret, and are not well suited to systematic
investigation of parameter space. As a result, it has been common for the rheology of magmatic
suspensions to be investigated via analogue experiments [4,6,13,17,26]. Even with the use of
analogues, it has proven challenging to perform rheometry on samples with φgas � 0.5. This
is because samples with a high bubble fraction are difficult to prepare, particularly when the
sample also contains particles, and because they are prone to breakdown when loaded into
a conventional rheometer. We conduct experiments in which bubbles are grown in situ via a
chemical reaction, and analysed using a dam-break consistometer. This approach circumvents
both problems, allowing us to investigate samples with bubble fractions (0 ≤ φgas ≤ 0.8) and
particle fractions (0 ≤ φsolid ≤ 0.37) that span the most relevant ranges for natural magma and
lava.

2. Theoretical background

(a) Scaling
We scale our analogue suspensions to basaltic magma, which typically has a pure-melt viscosity
in the range 102 to 104 Pas (103 − 105 Poise) at eruption temperature [19], and surface tension
between 0.05 and 0.3 N m−1 [27–29]. Bubbles that nucleate deep within the volcanic plumbing
system are likely to be small (radius ∼ 10−5 to 10−3 m) and experience very low shear rates
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(∼ 10−10 to 10−5 s−1), resulting in capillary numbers Ca � 1 [30,31]. As magmas decompress on
their way to the surface, bubbles grow and coalesce to radii ∼ 10−5 − 10−2 m or larger [32–34].
However, decimeter-sized bubbles often segregate from the flow, making a suspension rheology
approach no longer appropriate. Magma in basaltic dikes experiences strain rates up to ∼ 101 to
102 s−1 [35] and the capillary number therefore spans from Ca � 1 to Ca � 1. At the surface, lava
flows, particularly fast-moving flows (velocities ∼ 1 m s−1) may experience strain rates of 10−3 to
102 s−1, and both high and low capillary numbers [8]. The viscosity of silicate melts is sufficiently
high that viscous stresses at the particle scale dominate over inertial and Brownian stresses [4].
We therefore conduct experiments that span from low to high capillary number, while remaining
in the non-inertial, non-Brownian regimes.

(b) Theoretical framework for rheology of three-phase suspensions
To our knowledge, the only theoretically grounded model for the rheology of three-phase
suspensions is that of Phan-Thien & Pham [16]. They present a model for the effective Newtonian
viscosity, η, of a three-phase suspension of the form

ηr,s = η

μ
= ηr,p ηr,b, (2.1)

where ηr,s is the relative viscosity of the three-phase suspension (i.e. suspension viscosity
normalized by the liquid viscosity), and ηr,p and ηr,b are the relative viscosities of the two-
phase components (particle-liquid, and bubble-liquid suspensions, respectively). Importantly,
this relation treats one two-phase system as an effective viscous medium in which the third phase
is suspended. Truby et al. [17] validated this theoretical form against experimental data, using
existing models for the viscosity of the two-phase suspensions

ηr,p =
(

1 − φsolid

φm

)−Bsolid

and ηr,b = (1 − φgas)−Bgas , (2.2)

following, respectively, Mueller et al. [4] and Llewellin & Manga [7], where Einstein exponents
Bsolid = 2 and Bgas = 1, and φm is a maximum packing fraction of solid particles. Both Phan-
Thien & Pham [16] and Truby et al. [17] note that the definition of φgas and φsolid depends on which
two-phase suspension is chosen as the effective medium; in this study we choose the particle
suspension such that φsolid = Vsolid/(Vsolid + Vliquid) and φgas = Vgas/(Vgas + Vsolid + Vliquid),
where V denotes the volume of the subscript phase.

Truby et al. [17] extend the model of Phan-Thien & Pham [16] to allow for non-Newtonian
effects by equating the suspension viscosity, η, with the consistency, K, in the Herschel–Bulkley
model [36]:

τ = τy + Kγ̇ n, (2.3)

where τ is the shear stress, τy is the yield stress and n is the flow index (n > 1 implies shear-
thickening, n < 1 shear-thinning). We adopt this approach in the analysis below.

3. Methods

(a) Experimental set-up
Our experiments use a Bostwick (dam-break) consistometer, in which fluid is released from a
reservoir into a confined rectangular channel (figure 1). The reservoir measures 20 cm along the
length of the channel, and the channel extends another 1 m; the reservoir and channel have a
constant width of 15 cm. The reservoir can be filled to a maximum depth of 15 cm, and in our
experiments the initial reservoir depth ranges from 4 to 13 cm. The walls of the consistometer are
transparent to allow observation and imaging of the flow. We use 42DE corn syrup diluted to a
77% sugar concentration, measured using a Brix refractometer. Corn syrup is a Newtonian fluid
with a viscosity that depends on water-content (dilution) and temperature. Our experiments are
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(b) 0% solid, 0% gas

(e) 16% solid, 70% gas(d) 15% solid, 0% gas

(c) 0% solid, 72% gas

(a)

20 cm

100 cm

10 cm

t = 10 s

15 cm

15 cm

Figure 1. (a) Dam-break set-up showing fluid release into a confined channel. (b–e) Top views contrasting the slower flow-
front progressionwith the addition of particles and bubbles, with starting position (dashed) and position 10 s after dam removal
(solid). All photos have the same scale. (Online version in colour.)

conducted at room temperature (isothermal for a given experiment), which varied between 18.1
and 30.5◦C, corresponding to syrup viscosities in the range 13.3 ≥ μ ≥ 3.73 Pa s, measured using
a Brookfield rotational viscometer. The surface tension of corn syrup is Γ = 0.08 N m−1 [37]; the
surface tension of sugar solutions is only weakly dependent on concentration [38].

To the syrup, we add rigid plastic particles sieved to a mesh size of 60–80 (sourced from Precise
Finishing Inc Stock No. GP-PP60/80, Polyplus / Type II). Particles have near-neutral buoyancy
(ρsyrup = 1395 kg m−3, ρplastic = 1370 kg m−3), are angular and slightly elongate (aspect ratio 1.5
to 2), and have a dominantly unimodal size distribution (long axis ≈ 200 to 400 µm). Particles
are stirred into the suspension by hand, which leads to minimal air entrapment, as shown in
the microphotograph in the electronic supplementary material, figure S2. The volume fraction
of solids in the suspension is determined prior to the introduction of gas by mass of syrup
and particles (uncertainty of 1–2 volume %). When multiple experiments with the same particle
content were performed, a large volume of syrup and particles was prepared, but gas was
introduced to each sample individually.

Gas is introduced via a chemical reaction between baking soda (NaHCO3) and citric acid
(C6H8O7), which produces water vapour and CO2 gas. Reactants are added with a ∼ 3 : 4 ratio
by mass, yielding an empirical relation of roughly 0.5 g baking soda and 0.7 g citric acid per 100 g
syrup, per 10% desired gas volume fraction. The reaction begins immediately and the sample is
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allowed to rise for approximately 20 min prior to its release into the confined channel. Samples
with φgas < 0.6 are risen in a separate container, then transferred to the consistometer reservoir;
samples with φgas > 0.6 are more delicate, and are risen in the reservoir to avoid foam disruption
during transfer. Final gas volume fraction is calculated from the final mixture density. Mass of
the suspension is measured when transferring to the channel and the volume is calculated using
the internal channel dimensions and the height of the mixture within the reservoir as measured
through the channel walls. This method leads to ∼ 3 to 5% relative uncertainty on the volume and
resultant approximately 3 to 5% relative uncertainty on the density and an absolute uncertainty
of approximately 0.02 to 0.04 on φgas.

The water vapour that forms during the reaction is insufficient to lower the syrup viscosity
appreciably. In the experiments with the highest concentration of reactants (9 g total per 100 g of
syrup), water could, in principle, result in a dilution from 77% to 76.6% sugar if all the water
dissolved, which would change the viscosity from 7.6 Pas (76 Poise) to 6.5 Pas (65 Poise) at 23◦C.
However, a test suspension, from which the evolved gas was allowed to escape overnight showed
no additional dissolved water when analysed using the Brix refractometer.

The flow begins with the removal of the dam, which takes less than 1 s. The dam is typically
coated with approximately 2 to 3 mm of syrup, when removed, effectively shortening the length
of the fluid in the reservoir. However, in this geometry, propagation is insensitive to the length
of the reservoir and this is below the spatial resolution of our forward model. Flow progression
along the channel is recorded by time-lapse photographs from the side at a rate of 1 frame-per-
second (FPS), and from above using a video camera (30 FPS). Experiments last between 15 and
180 s, with most 30 to 90 s in duration. We process the top-view videos to extract the flow front
position over time. In the tracking algorithm, the video, rotated to align the flow direction left
to right, is processed by manually identifying the starting position, scale and centre line in each
video, and setting an appropriate threshold on the brightness of the red, blue or green channel of
the image to distinguish syrup from the background. In some cases, the time-distance profile of
the flow front was smoothed to remove artefacts caused by the flash from the side-view camera.
The flow front position is compared with a forward model of dam-break flow to invert for the
rheological parameters.

(b) Extracting rheological parameters from experiments
We follow the derivations of Liu & Mei [39] and Balmforth et al. [40] for time evolution of flow
thickness, h, of a Herschel–Bulkley fluid flowing down a slope:

∂h
∂t

= ∂

∂x

[(ρg
K

)1/n n| sin θ − (∂h/∂x) cos θ |1/n−1Y1/n+1

(n + 1)(2n + 1)
((2n + 1)h − nY)

(
sin θ − ∂h

∂x
cos θ

)]

(3.1a)

and
Y = h − τy

ρg| sin θ − (∂h/∂x) cos θ | , (3.1b)

where x is the along-channel distance, ρ is the fluid density, g is the acceleration due to gravity
and θ is the channel slope.

This forward model is valid for non-inertial laminar flow of a gravitationally settling fluid
experiencing no-slip conditions at the base of the flow and no-stress at the free surface.
In the inertial regime, propagation of the flow front would be expected to scale with the
shallow water speed

√
gH. Based on the short-time similarity solution of the flow front position

given by Balmforth et al. [40] for a Newtonian fluid, X ∼ 0.2845t̂1/2, for t = (L/H)(KL/ρgH2)1/nt̂
and x = Lx̂, where L is the reservoir length and H the reservoir depth, we expect inertia
would be dominant for t � 10−5 − 10−2 s, which is much shorter than the duration of our
experiments. We confirm that all experiments are in the laminar regime by verifying that
the Reynolds number, Re, is below the cutoff for the onset of turbulence at Re ∼ 1000. We
calculate Re for a free surface flow of a Herschel–Bulkley fluid in a rectangular channel as Re =
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ρū2−nDn/((τy/8)(D/ū)n + K((3m + 1)/(4m))n8n−1), m = nK(8ū/D)n/(τy + K(8ū/D)n) [41], where ū
is the mean velocity, D is the hydrodynamic radius, D = 4HW/(2H + W), for channel width
W = 15 cm and channel depth H ∼ h. We find Reynolds numbers � 10, well below the cutoff. We
confirm no-slip conditions via imaging through the base of the channel, which shows that bubbles
are well coupled to the base (electronic supplementary material, figure S3). We neglect the effect
of surface tension between the syrup and air, which becomes important for h < 2

√
Γ/ρg ≈ 0.5 cm

[42]. Accordingly, we restrict our experiments to have a starting reservoir volume H > 4 cm.
Finally, we require that the suspension be able to deform under its own weight, which requires
that the Bingham number, B < 1, where B ≡ τyL/ρgH2 [40]. We prepared a suspension of φsolid =
0.46, and find that for a flow height of 2.5 cm, it does not deform under its own weight, suggesting
that yield stress must exceed 42 Pa.

We solve equation (3.1a) numerically using a finite-difference scheme on a centred three-point
stencil that is second-order accurate in space and we use two-step Runge–Kutte for second-order
accuracy in time. Initial conditions are fluid height h = H, where x ≤ L (within the reservoir) and
h = 0 elsewhere. Boundary conditions are no-slip on the bottom, no-stress at the free surface,
∂h/∂x|x=xL = 0 (no inflow on low slope) and h|x=xR = 0, where xR is chosen to be sufficiently far
from the final position of the flow front such that flow does not reach the far boundary (domain
length is 20% longer than the final experimental flow length). The domain is discretized in space
evenly with 52 grid points and with a constant time step of 
t = 6.67 × 10−4 s. The forward model
assumes that temperature, rheology and density of the fluid are constant in time and space. We
allow slope to be non-zero in the model solution to account for sensitivity of flow advance rate to
slope angles below our uncertainty for direct measurement (≤ 0.5◦). We extract the position of the
flow front over time from the model by identifying where h ≈ 0, below a threshold of 1 × 10−4 to
account for numerical diffusion, smoothed linearly between grid points in x.

We use the evolution of the flow front over time in the experiments as a constraining
observation in our inversion for rheological parameters. We invert for rheological parameters
(K, τy, n) and the slope (θ ) using an Ensemble Kalman Filter (EnKF) approach [43,44]. This is
a probabilistic approach in which the forward model is instantiated many times with varying
parameters that are modified iteratively to minimize the misfit between the model and data
(typically approx. 2000 data points). All samples are propagated together between iterations,
which allows faster convergence than a random walk. We use Gaussian priors centred about
a visually determined close fit for the rheological parameters, and about zero for the slope.
Standard deviations were 10%, 10%, 5% and 1◦ for the initial distributions of K, τy, n and
θ , respectively. EnKF simulations are initialized with 300 samples and run for five iterations;
convergence is typically achieved within four iterations, insensitive to small changes in the initial
parameters (electronic supplementary material, figure S5). In other Earth-science applications,
EnKF is often used to update probabilities by assimilating more information through time, for
example in volcano monitoring [43,44]. We do not use this capability of EnKF; all information
about the flow progression is included from the beginning. We use the Python implementation
of the EnKF algorithm provided on GitHub by geoyanzhan31 [43,44]. We report the numerically
determined maximum-likelihood value, and uncertainty given by the 5% and 95% quantiles. We
find uncertainty values of � 20% in K, � 20% in τy and � 10% in n.

4. Results
We present results from 35 dam-break experiments spanning 0 ≤ φsolid ≤ 0.37 and 0 ≤ φgas ≤ 0.82
(figure 2; electronic supplementary material, table 1). We find that, with increasing volume
fraction of solids, relative consistency (Kr = K/μ) increases, yield stress increases, and flow index
decreases (more shear-thinning), consistent with previous studies [1]. Increasing gas fraction
in all cases increases relative consistency and yield stress. Gas-bearing experiments show both

1See https://github.com/geoyanzhan3/EnKF_tutorial
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Figure 2. Experimental rheologymeasurements plotted against solid (x-axis) and gas (y-axis) volume fractions, and the value
of (a) relative consistency, K , and (b) yield stress, τy shown in colour. Contours represent the best-fitting empirical models on
the same colour scale. In panel (c), colour represents themaximum capillary number, Ca, and flow index, n, indicated bymarker
shape. The dashed black line indicates the critical volume fraction for the onset of shear-rate dependent behaviour belowwhich
flow is shear-rate-independent, and above which shear-thinning behaviour is expected at intermediate and low Ca and shear-
thickening behaviour is predicted for high Ca. Data are reported in electronic supplementary material, table 1. (Online version
in colour.)

shear-thinning (n < 1) and shear-thickening (n > 1) behaviour, with increasing n correlated with
increasing Ca.

We use our measurements to parameterize the model framework presented in §2b, and
find empirical expressions for Kr, τy and n as functions of phase volume fractions and (where
relevant) the maximum capillary number. We calculate the maximum capillary number using
equation (1.1) with the maximum observed bubble size from each experiment (0.5 to 8.2 mm)
and estimate the maximum strain rate from experiment videos. Best fitting parameter values for
these empirical models are determined using the L-BFGS-B algorithm for limited-memory, quasi-
Newton, bound-constrained optimization [45] implemented in Python; uncertainty is estimated
from the approximated Hessian matrix.

We find the following empirical relationships:

Kr =
(

1 − φsolid

φm

)−Bsolid

(1 − φgas)−Bgas , (4.1a)

τy = 10C1(φsolid−φc,τy ) + 10C2(φsolid+φgas−φc,τy ) (4.1b)

and n =
{

1, φsolid(1 − φgas) + φgas ≤ φc,n

1 + (C3 − C4Ca)(φc,n − φsolid(1 − φgas) − φgas), φsolid(1 − φgas) + φgas > φc,n
(4.1c)

where φm = 0.56 ± 0.20, Bsolid = 2.74 ± 1.56 and Bgas = 1.98 ± 0.09, C1 = 80.0 ± 10.9, C2 = 1.98 ±
0.23, the critical volume fraction for the onset of appreciable yield stress φc,τy = 0.35 ± 0.01,
C3 = 0.70 ± 0.25, C4 = 0.55 ± 0.31, and the critical volume fraction for the onset of shear rate
dependence φc,n = 0.39 ± 0.12. Results from each experiment are plotted in figure 2 and compared
with contours for the best-fitting model plotted on the same colour scale. Misfits between the
experiments and model are given in electronic supplementary material, table 1.

5. Discussion

(a) Comparison with previous studies
(i) Relative consistency, Kr
Our expression for consistency (equation (4.1a)) has the functional form presented in equation
(2.1), such that it can be decomposed into separate functions for the two-phase components,
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Taylor [15], Llewellin & Manga [7], Princen & Kiss [11], Stein & Spera [14], Castruccio et al. [26], Mueller et al. [4], Hoover et al.
[49], Rouyer et al. [12], Truby et al. [17] (electronic supplementary material, table 1). Dotted lines indicate extrapolations outside
the calibration region for experimental studies. Greymarkers are our two-phase experiments. Note that themodel is constrained
on the three-phase dataset so does not necessarily pass through this subset of the experiments. (Online version in colour.)

facilitating comparison with previous studies (figure 3a,d, equations and parameters in electronic
supplementary material, table 1). For particle suspensions (φgas = 0), we find a Kr(φsolid)
dependence that has the same functional form as that of Krieger & Dougherty [3] and Roscoe [46].
We do not have experiments for φsolid > 0.37, where relative consistency rapidly increases and a
transition to another functional form, such as that in Costa et al. [48], may be appropriate. For
bubble suspensions (φsolid = 0), we find a Kr(φgas) dependence that is stronger than most previous
studies, with bubbles having a stronger stiffening effect on the suspensions. Furthermore, we find
that in our experiments, bubbles always increase the relative consistency, regardless of capillary
number, in contrast to previous studies [6,13].

We note that our consistency model (equation (4.1a)) is optimized against the full three-phase
dataset, hence three-phase interactions are likely to play a role in these discrepancies with models
that are fitted against two-phase data. For instance, breakup of bubbles between interacting
particles, and the formation of liquid-film bridges between particles may both amplify the effect
of the bubble fraction on suspension rheology, and cause the rheology to be controlled by the
smallest bubbles, which are in the low Ca regime, despite observations of deformation in the
largest bubbles (electronic supplementary material, figure S2), which imply Ca � 1 locally.

(ii) Yield stress, τy
We select an empirical exponential-type relationship for yield stress (equation (4.1b)), which
overlaps with previous two-phase studies (figure 3b and 3e). We observe a much stronger effect
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of particles compared to gas, but onset at around the same volume fraction. Yield stresses we
observe in three-phase suspensions are higher than would be predicted by a linear superposition
of the two-phase components, indicating again that interactions among the phases are important.
At intermediate volume fractions, we find moderately good agreement with Hoover et al. [49]
and Mueller et al. [4]. The gas–liquid suspension experiments compare favourably with results by
Princen & Kiss [11] and Rouyer et al. [12], although there is limited overlap between regions of
calibration.

(iii) Flow index, n

We fit flow index data using a piecewise continuous linear relationship after Castruccio et al.
[26] and Truby et al. [17]. For particle suspensions, and for bubble suspensions at low Ca, this
formulation yields a shear-thinning behaviour, which is consistent with previous relationships
(figure 3c,f ). With increasing Ca and gas fraction, it transitions to shear-thickening, a behaviour
reported in previous studies [10].

(b) Data limitations
We use the dam-break consistometer set-up to measure the rheology of three-phase suspensions
in order to avoid bubble breakdown, which is common in conventional rheometers. This set-
up allows us to attain high bubble volume fractions, but requires numerical inversion and
additional considerations for direct comparison with rheometry data collected via other methods.
The behaviour of Herschel–Bulkley fluids in confined channels and on unconfined slopes has
been investigated theoretically and experimentally [50], primarily using kaolin clay suspensions
and Carbopol, which show variable agreement with measurements collected in conventional
rheometers. Most studies that use channel flow to investigate rheology use the approach to a final
runout state [51], the height profile [52–54], the internal velocity [55–58], or the runout distance
with time [40,52,59,60]. The internal velocity and height profiles observed in experiments using
kaolin clay typically compare favourably with theory, except during the initial slumping stage,
in which inertia is dominant, and near the flow front where significant curvature requires more
sophisticated modelling [53,58]. By contrast, experiments using Carbopol show systematic offsets
compared with conventional rheometers, possibly a result of basal slip, three-dimensional effects
such as levee formation [55,56], or a scale effect introduced in the narrow gap of conventional
rheometers compared with a relatively large microstructural length scale in Carbopol [58]. Our
results use the runout distance with time to measure rheology, which shows good agreement with
conventional rheometry for experiments on corn syrup, xanthan gum and kaolin suspensions
[40]. We expect our suspensions to behave similarly to two-phase kaolin particle suspensions,
and further verify that basal slip and levee formation do not occur in our experiments. Given
findings in previous work on two-phase suspensions in dam-break experiments and the good
agreement between our experiments and existing particle-bearing suspensions, we do not expect
systematic offsets in the rheometric parameters determined in our study compared with what
would be measured in a conventional rheometer.

Our forward model is one-dimensional (depth-integrated) and cannot capture any effects
perpendicular to the channel direction. Visual inspection of the experiments suggests that there is
not pronounced cross-channel flow. Our channel width, at 15 cm, is larger that used by Balmforth
et al. [40], who find a 10 cm channel outperforms a 5 cm channel. We estimate the boundary
layer width for a Herschel–Bulkley fluid, δ = ((1 + 1/n)nKUnH/τy)n/(n+1) [61] at high Bingham
number (Bi = τy/K(U/δ)−n), where U is the maximum velocity along the channel, and scales
with the height of the flow at low Bingham number. Our experiments fall in the intermediate
Bingham number range, and we expect boundary layer thicknesses between less than 1 and
17.5 cm. Experiments with boundary layers larger than half the channel width (8.5 cm) are noted
in electronic supplementary material, table 1. The misfits between these experiments and the
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model do not show systematic differences, nor are the misfits different in magnitude compared
with experiments with low predicted boundary layer thicknesses.

The uncertainties on the values for Kr, τy and n we derive from inversion of the experimental
data are 25%, 31% and 14%, respectively, and the mismatch with models for those parameters
(equations (4.1a)–(4.1c)) are 35%, 106% and 10%. Our experiments show good repeatability at
φgas ≤ 0.6. If we compare experiments for which φsolid and φgas are within ±5%, and de-trended
Kr, τy and n values using their respective models, we find ranges of 38%, 149% and 20% in those
parameters, which are of the same order as uncertainties and mismatch. For φgas > 0.6, the data
show greater variability with ranges of 68%, 154% and 73%, respectively. Data variability may be
related to experimental sources of uncertainty, such as small errors in flow density or height of
fluid in the reservoir to which the forward model is very sensitive, or microstructural differences
in the particle and bubble populations. Yield stress measurements at all bubble fractions show
scatter between experiments and misfit to the model higher than the uncertainty predicted by
EnKF model fitting, which may come from real variation among samples rather than trade-offs
between fitting parameters.

We see consistent deviations between the experimental data and the rheology model in the
range of φgas > 0.6, where the model consistently over-predicts both the relative consistency
and flow index, perhaps due to trade-offs in the inversion of the experimental data. To test
the importance of trade-offs in fitting parameters, we find the Pearson correlation coefficients
between the EnKF instances after the final propagation (best fit for the fitting parameters) for each
experiment. A value of 1 indicates a perfect positive correlation, −1 a perfect negative correlation,
and 0 no correlation.The EnKF analyses reveal a moderate correlation between the slope angle and
consistency, with an average correlation coefficient between EnKF samples for each experiment
of C = 0.63. We also find weak correlations between slope angle and yield stress (C = 0.25) and
slope angle and flow index (C=−0.44); a weak positive correlation between consistency and flow
index in experiments with φgas > 0.6 (C = 0.27); a moderate negative correlation when φgas < 0.2
(C=−0.40); and no apparent correlation at intermediate gas volume fractions 0.2 < φgas < 0.6
(C = −0.01). We do not observe correlations in the parameter inversions between yield stress and
consistency (C = −0.06) or yield stress and flow index (C = 0.11). For an example of the EnKF
inversion results and match to experimental data see electronic supplementary material, figure S5.

Our results consider strain rates up to 101 s−1 and maximum Ca between ≈ 10−2 and 101.
We find that bubbles lead to a higher effective viscosity than predicted by the Cross model
[1], but our experiments do not cover a large-enough range of Ca to comment on asymptotic
behaviour that may occur at much higher or lower Ca. Given the strong strain-rate dependence
of the Herschel–Bulkley formulation, this model may not be appropriate for fluids experiencing
strain rates far outside the calibration region (� 10 s−1) as may occur in natural settings, including
during conduit ascent in explosive eruptions or in fast-moving lava flows.

Additional uncertainty exists for the estimate of Ca, which is difficult to define for a
polydisperse bubble population whose exact bubble sizes and deformation cannot be directly
observed. Estimates for the bubble size distribution are available in the supplementary material.
Bubble deformation is observed for some of the largest bubbles experiencing the strongest shear,
and thus experiencing the highest Ca conditions, imaged through the side walls of the channel
(electronic supplementary material, figure S2). Such observations are limited to the exterior of the
flow, which is necessarily dominated by edge effects. Better characterization of bubble sizes and
deformations in the flow interior is an avenue for future work.

(c) Application to lava dynamics
We demonstrate the implications of our new three-phase suspension rheology model with
realistic parameters for lava flows through implementation to the channelized lava flow model
PyFLOWGO [62,63]. PyFLOWGO is a one-dimensional lava flow advance model for the velocity
and final runout distance of a cooling and crystallizing lava. The physical model uses a Bingham-
plastic rheology of the form τ = τy + ηeffγ̇ . We add our experimentally constrained rheology
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Figure 4. Implications of the experimentally determined three-phase rheology on predictions of lava flows. Our model results
in a higher relative effective viscosity (a), a sharper increase in yield stress as particle-bubble interactions become important (b),
and lower mean velocity (c) compared to the models of Roscoe [46] (two-phase) or Phan-Thien & Pham [16] (three-phase). We
also highlight the contrast between assuming n=1 (Bingham-plastic rheology) and the Herschel–Bulkley rheology (n≈0.8)
that results in a decrease in effective viscosity by a factor of 2 at low crystal fractions. (Online version in colour.)

model to several built-in parameterizations for the yield stress and effective viscosity. We calculate
τy using equation (4.1b) and the effective viscosity term ηeff = Krμγ̇ n−1 using equations (4.1a)
and (4.1c). We compare our model with the commonly used two-phase modified Einstein–Roscoe
relationship [46], and three-phase model of Phan-Thien & Pham [16].
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We take the flow simulation parameters from the well-documented LSF1 lava flow from
Mount Etna, Italy, in 2001. We initiate the simulated lava with a low solid volume fraction of
solid = 0.1. Solid fraction then increases, with further crystallization during emplacement, to
φsolid = 0.15 when using our rheological relations, and φsolid = 0.3 for the modified Einstein–
Roscoe and Phan-Thien & Pham [16] relationships. Gas fraction begins and remains at φgas = 0.65.
The simulated flow follows the path of steepest descent in the pre-eruptive topography. The
initial flux is 20 m3 s−1. We use a temperature-dependent melt viscosity using the VFT equation
(a = −4.827, b = 5997, c = −330.3) [64–66]. We tune the model parameters of initial channel width
(set to 40 m) and temperature (set to 1223.15 K) to obtain the observed flow height (10 m) and
mean velocity (10−3 to 4 × 10−2 m s−1) when using our new rheology model. The width and
initial temperature are held constant across all simulations. To predict the effective viscosity,
we use a reference strain rate of 10−3 s−1 for this lava flow, estimated from observed velocities
and flow thickness. We approximate the shear rate dependence using the capillary number
calculated for a 1 cm radius bubble and a surface tension of air in basalt of 0.37 N m−1 [29].
As the flow cools, the melt viscosity, crystal content and effective bulk viscosity are updated
every step.

Our model predicts a higher effective viscosity compared with that of Phan-Thien & Pham
[16] or Roscoe [46] by more than an order of magnitude, and yields a mean velocity that is
approximately three times slower (figure 4). Additionally, our yield strength model diverges from
that based on Dragoni [67] approximately 80 m down flow, when the crystal fraction increases
enough to support significant bubble-crystal interactions. Although shear-thinning behaviour is
not included in PyFLOWGO, we compare effective viscosities predicted by our model assuming a
Bingham-plastic rheology (n = 1) and with a dynamic value for n in response to changing crystal
fraction (while maintaining a constant shear rate). We highlight that for the large bubble volume
fraction of some natural lavas, n deviates from one (initially n ≈ 0.82) and can result in a factor of
two difference in effective viscosity, and a 15% difference in runout distance. This effect may be
more pronounced in modelling that includes a physical model for shear-rate dependence in the
flow.

6. Conclusion
We use a dam-break set-up to measure the rheology of three-phase suspensions, scaled to apply
to magma and lava. Through the use of a chemical reaction between baking soda and citric acid,
we are able to create corn syrup suspensions with bubble volume fractions up to 0.82 and particle
volume fractions up to 0.37. Strain rates in our experiments range up to 10 s−1 and maximum Ca
between ≈ 10−2 and 10, relevant to basaltic lava flows. We invert for a Herschel–Bulkley rheology
using a depth-integrated one-dimensional forward model [39] and the probabilistic ensemble
Kalman filter approach.

Based on our results, we develop a suite of models for the Herschel–Bulkeley parameters,
calibrated across the whole dataset, which are presented in equations (4.1a)–(4.1c). Combined
with equation (2.3), this constitutes a rheological model for three-phase suspensions. Our results
show good agreement with existing literature for particle-bearing suspensions with a strongly
nonlinear increase in viscosity with increasing particle fraction, development of yield stresses at
particle fractions φsolid � 0.35, and development of shear-thinning behaviour at particle fractions
φsolid � 0.39. Our findings indicate that suspended gas leads to a nonlinear increase in viscosity
with increasing bubble fraction, larger than predicted by previous work, and development of
yield stresses and shear rate-dependent behaviour at bubble fractions, or combined bubble
and particle fractions, similar to those observed for particle-only suspensions. We find that
shear-rate dependence of bubble-bearing two- and three-phase suspensions are shear thinning
in the low capillary number regime and become shear thickening with increasing capillary
number. This study contributes an explicit incorporation of three-phase interactions into a novel
model for yield stress, and a parameterization for the inclusion of capillary number in flow
index.
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We highlight the implications of our model for magma/lava dynamics through application to
the lava flow emplacement model PyFLOWGO, and show higher viscosities and lower predicted
velocities for surface lava flows as a result of the stiffening behaviour of concentrated bubble
suspensions at low and intermediate capillary numbers. Our findings underscore the need
to incorporate three-phase rheology into simulations of magma or lava flow used to address
fundamental science questions as well as hazard assessment and mitigation.
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phase-flow.
Authors’ contributions. J.B. carried out the experiments and data analysis. E.L. conceived of and supervised the
experiments and data analysis. E.W.L. contributed to the interpretation of the results. J.B. took the lead in
writing the manuscript. All authors provided critical feedback and helped shape the research, analysis and
manuscript.
Competing interests. The authors have no competing interests to declare.
Funding. This work was supported by NSF under awards NSF EAR-1654588 and NSF EAR-1929008, and by
NERC under award NE/T009594/1.
Acknowledgements. We thank J. Hammer and A. Whittington for their constructive comments, and Lamont-
Doherty’s Secondary School Field Research Program participants R. Burgos, M. Diakite and L. Lyons for their
assistance in conducting experiments. We thank two anonymous reviewers for their constructive suggestions
which helped improve and clarify the manuscript.

References
1. Mader HM, Llewellin EW, Mueller SP. 2013 The rheology of two-phase magmas: a review

and analysis. J. Volcanol. Geotherm. Res. 257, 135–158. (doi:10.1016/j.jvolgeores.2013.02.014)
2. Einstein A. 1911 Berichtigung zu meiner Arbeit: Eine neue Bestimmung der

Moleküldimensionen. Annalen der Physik 339, 591–592. (doi:10.1002/andp.19113390313)
3. Krieger IM, Dougherty TJ. 1959 A mechanism for non–Newtonian flow in suspensions of rigid

spheres. Trans. Soc. Rheol. 3, 137–152. (doi:10.1122/1.548848)
4. Mueller S, Llewellin EW, Mader HM. 2010 The rheology of suspensions of solid particles. Proc.

R. Soc. A 466, 1201–1228. (doi:10.1007/BF01432034)
5. Chesterton AKS, De Abreu DAP, Moggridge GD, Sadd PA, Wilson DI. 2013 Evolution of cake

batter bubble structure and rheology during planetary mixing. Food Bioprod. Process. 91, 192–
206. (doi:10.1016/j.fbp.2012.09.005)

6. Llewellin EW, Mader HM, Wilson SDR. 2002 The constitutive equation and flow dynamics of
bubbly magmas. Geophys. Res. Lett. 29, 1–4. (doi:10.1029/2002gl015697)

7. Llewellin EW, Manga M. 2005 Bubble suspension rheology and implications for conduit flow.
J. Volcanol. Geotherm. Res. 143, 205–217. (doi:10.1016/j.jvolgeores.2004.09.018)

8. Manga M, Castro J, Cashman KV, Loewenberg M. 1998 Rheology of bubble-bearing magmas.
J. Volcanol. Geotherm. Res. 87, 15–28. (doi:10.1016/S0012-821X(98)00278-7)

9. Pal R. 2003 Rheological behavior of bubble-bearing magmas. Earth Planet. Sci. Lett. 207, 165–
179. (doi:10.1016/S0012-821X(02)01104-4)

10. Pistone M, Caricchi L, Ulmer P, Burlini L, Ardia P, Reusser E, Marone F, Arbaret L.
2012 Deformation experiments of bubble- and crystal-bearing magmas: Rheological and
microstructural analysis. J. Geophys. Res. 117, 1–39. (doi:10.1029/2011JB008986)

11. Princen HM, Kiss AD. 1989 Rheology of foams and highly concentrated emulsions: IV. An
experimental study of the shear viscosity and yield stress of concentrated emulsions. J. Colloid
Interface Sci. 128, 176–187. (doi:10.1016/j.cocis.2014.11.003)

12. Rouyer F, Cohen-Addad S, Höhler R. 2005 Is the yield stress of aqueous foam a well-defined
quantity? Colloids Surf. A 263, 111–116. (doi:10.1016/j.colsurfa.2005.01.025)

13. Rust AC, Manga Michael. 2002 Effects of bubble deformation on the viscosity of dilute
suspensions. J. Non-Newtonian Fluid Mech. 104, 53–63. (doi:10.1016/S0377-0257(02)00013-7)

14. Stein DJ, Spera FJ. 1992 Rheology and microstructure of magmatic emulsions: theory and
experiments. J. Volcanol. Geotherm. Res. 49, 157–174. (doi:10.1016/0377-0273(92)90011-2)

15. Taylor GI. 1932 The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc.
Lond. A 138, 41–48. (doi:10.1098/rspa.1932.0169)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 O

ct
ob

er
 2

02
1 

https://doi.org/10.5281/zenodo.4685257
https://doi.org/10.5281/zenodo.4707969
https://github.com/JanineBirnbaum18/3-phase-flow
https://github.com/JanineBirnbaum18/3-phase-flow
http://dx.doi.org/10.1016/j.jvolgeores.2013.02.014
http://dx.doi.org/10.1002/andp.19113390313
http://dx.doi.org/10.1122/1.548848
http://dx.doi.org/10.1007/BF01432034
http://dx.doi.org/10.1016/j.fbp.2012.09.005
http://dx.doi.org/10.1029/2002gl015697
http://dx.doi.org/10.1016/j.jvolgeores.2004.09.018
http://dx.doi.org/10.1016/S0012-821X(98)00278-7
http://dx.doi.org/10.1016/S0012-821X(02)01104-4
http://dx.doi.org/10.1029/2011JB008986
http://dx.doi.org/10.1016/j.cocis.2014.11.003
http://dx.doi.org/10.1016/j.colsurfa.2005.01.025
http://dx.doi.org/10.1016/S0377-0257(02)00013-7
http://dx.doi.org/10.1016/0377-0273(92)90011-2
http://dx.doi.org/10.1098/rspa.1932.0169


14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210394

..........................................................

16. Phan-Thien N, Pham DC. 1997 Differential multiphase models for polydispersed suspensions
and particulate solids. J. Non-Newtonian Fluid Mech. 72, 305–318. (doi:10.1016/S0377-0257
(97)90002-1)

17. Truby JM, Mueller SP, Llewellin EW, Mader HM. 2015 The rheology of three-phase
suspensions at low bubble capillary number. Proc. R. Soc. A 471, 1–18. (doi:10.1098/rspa.
2014.0557)

18. Dingwell DB, Webb SL. 1989 Structural relaxation in silicate melts and non-Newtonian melt
rheology in geologic processes. Phys. Chem. Miner. 16, 508–516. (doi:10.1007/BF00197020)

19. Giordano D, Russell JK, Dingwell DB. 2008 Viscosity of magmatic liquids: a model. Earth
Planet. Sci. Lett. 271, 123–134. (doi:10.1016/j.epsl.2008.03.038)

20. Gonnermann HM, Manga M. 2007 The fluid mechanics inside a volcano. Annu. Rev. Fluid
Mech. 39, 321–356. (doi:10.1146/annurev.fluid.39.050905.110207)

21. Cashman KV, Stephen R, Sparks J. 2013 How volcanoes work: a 25 year perspective. Bull. Geol.
Soc. Am. 125, 664–690. (doi:10.1130/B30720.1)

22. Ryerson FJ, Weed HC, Piwinskii AJ. 1988 Rheology of subliquidus magmas. 1. Picritic
compositions. J. Geophys. Res. 93, 3421–3436. (doi:10.1029/JB093iB04p03421)

23. Pinkerton H, Norton G. 1995 Rheological properties of basaltic lavas at sub-liquidus
temperatures: laboratory and field measurements on lavas from Mount Etna. J. Volcanol.
Geotherm. Res. 68, 307–323. (doi:10.1016/0377-0273(95)00018-7)

24. Ishibashi H. 2009 Non-Newtonian behavior of plagioclase-bearing basaltic magma:
subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan. J. Volcanol.
Geotherm. Res. 181, 78–88. (doi:10.1016/j.jvolgeores.2009.01.004)

25. Soldati A, Sehlke A, Chigna G, Whittington A. 2016 Field and experimental constraints on the
rheology of arc basaltic lavas: the January 2014 Eruption of Pacaya (Guatemala). Bull. Volcanol.
78, 1–19. (doi:10.1007/s00445-016-1031-6)

26. Castruccio A, Rust AC, Sparks RSJ. 2010 Rheology and flow of crystal-bearing lavas:
insights from analogue gravity currents. Earth Planet. Sci. Lett. 297, 471–480. (doi:10.1016/j.
epsl.2010.06.051)

27. Bagdassarov N, Dorfman A, Dingwell DB. 2000 Effect of alkalis, phosphorus, and water on
the surface tension of haplogranite melt. Am. Mineral. 85, 33–40. (doi:10.2138/am-2000-0105)

28. Mangan M, Sisson T. 2005 Evolution of melt-vapor surface tension in silicic volcanic
systems: experiments with hydrous melts. J. Geophys. Res.: Solid Earth 110, 1–9.
(doi:10.1029/2004JB003215)

29. Walker D, Mullins O. 1981 Surface tension of natural silicate melts from 1200◦ − 1500◦C and
implications for melt structure. Contrib. Mineral. Petrol. 76, 455–462. (doi:10.1007/BF00371487)

30. Petford N, Koenders MA, Clemens JD. 2020 Igneous differentiation by deformation. Contrib.
Mineral. Petrol. 175, 1–21. (doi:10.1007/s00410-020-1674-3)

31. Vergniolle S. 1996 Bubble size distribution in magma chambers and dynamics of basaltic
eruptions. Earth Planet. Sci. Lett. 140, 269–279. (doi:10.1016/0012-821X(96)00042-8)

32. Galindo I, Gudmundsson A. 2012 Basaltic feeder dykes in rift zones: geometry, emplacement,
and effusion rates. Nat. Hazards Earth Syst. Sci. 12, 3683–3700. (doi:10.5194/nhess-12-
3683-2012)

33. Gaonac’h H, Lovejoy S, Schertzer D. 2005 Scaling vesicle distributions and volcanic eruptions.
Bull. Volcanol. 67, 350–357. (doi:10.1007/s00445-004-0376-4)

34. Thivet S, Gurioli L, Di Muro A. 2020 Basaltic dyke eruptions at Piton de La
Fournaise: characterization of the eruptive products with implications for reservoir
conditions, conduit processes and eruptive dynamics. Contrib. Mineral. Petrol. 175, 1–24.
(doi:10.1007/s00410-020-1664-5)

35. Petcovic HL, Dufek JD. 2005 Modeling magma flow and cooling in dikes: implications
for emplacement of Columbia River flood basalts. J. Geophys. Res.: Solid Earth 110, 1–15.
(doi:10.1029/2004JB003432)

36. Herschel WH, Bulkley R. 1926 Konsistenzmessungen von Gummi-Benzollösungen. Kolloid
Zeitschrift 39, 291. (doi:10.1007/BF01432034)

37. Rust AC, Manga M. 2002 Bubble shapes and orientations in low Re simple shear flow. J. Colloid
Interface Sci. 249, 476–480. (doi:10.1006/jcis.2002.8292)

38. Sinat-Radchenko DE. 1982 Surface tension of sugar solutions. Sakharnaia Promyshlennost 3,
28–31.

39. Liu KF, Mei CC. 1989 Slow spreading of a sheet of Bingham fluid on an inclined plane. J. Fluid
Mech. 207, 505–529. (doi:10.1017/S0022112089002685)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 O

ct
ob

er
 2

02
1 

http://dx.doi.org/10.1016/S0377-0257(97)90002-1
http://dx.doi.org/10.1016/S0377-0257(97)90002-1
http://dx.doi.org/10.1098/rspa.2014.0557
http://dx.doi.org/10.1098/rspa.2014.0557
http://dx.doi.org/10.1007/BF00197020
http://dx.doi.org/10.1016/j.epsl.2008.03.038
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110207
http://dx.doi.org/10.1130/B30720.1
http://dx.doi.org/10.1029/JB093iB04p03421
http://dx.doi.org/10.1016/0377-0273(95)00018-7
http://dx.doi.org/10.1016/j.jvolgeores.2009.01.004
http://dx.doi.org/10.1007/s00445-016-1031-6
http://dx.doi.org/10.1016/j.epsl.2010.06.051
http://dx.doi.org/10.1016/j.epsl.2010.06.051
http://dx.doi.org/10.2138/am-2000-0105
http://dx.doi.org/10.1029/2004JB003215
http://dx.doi.org/10.1007/BF00371487
http://dx.doi.org/10.1007/s00410-020-1674-3
http://dx.doi.org/10.1016/0012-821X(96)00042-8
http://dx.doi.org/10.5194/nhess-12-3683-2012
http://dx.doi.org/10.5194/nhess-12-3683-2012
http://dx.doi.org/10.1007/s00445-004-0376-4
http://dx.doi.org/10.1007/s00410-020-1664-5
http://dx.doi.org/10.1029/2004JB003432
http://dx.doi.org/10.1007/BF01432034
http://dx.doi.org/10.1006/jcis.2002.8292
http://dx.doi.org/10.1017/S0022112089002685


15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210394

..........................................................

40. Balmforth NJ, Craster RV, Perona P, Rust AC, Sassi R. 2007 Viscoplastic dam breaks and
the Bostwick consistometer. J. Non-Newtonian Fluid Mech. 142, 63–78. (doi:10.1016/j.jnnfm.
2006.06.005)

41. Madlener K, Frey B, Ciezki HK. 2009 Generalized Reynolds number for non-Newtonian
fluids. Progress Propulsion Phys. 1, 237–250. (doi:10.1051/eucass/200901237)

42. de Gennes P-G, Brochard-Wyart F, Quéré D. 2004 Capillarity and wetting phenomena. New York,
NY: Springer.

43. Gregg PM, Pettijohn JC. 2016 A multi-data stream assimilation framework for the assessment
of volcanic unrest. J. Volcanol. Geotherm. Res. 309, 63–77. (doi:10.1016/j.jvolgeores.2015.11.008)

44. Zhan Y, Gregg PM. 2017 Data assimilation strategies for volcano geodesy. J. Volcanol.
Geotherm. Res. 344, 13–25. (doi:10.1016/j.jvolgeores.2017.02.015)

45. Byrd RH, Lu P, Nocedal J. 1995 A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Stat. Comput. 16, 1190–1208. (doi:10.1137/0916069)

46. Roscoe R. 1952 The viscosity of suspensions of rigid spheres. Br. J. Appl. Phys. 3, 267–269.
(doi:10.1088/0508-3443/3/8/306)

47. Mooney M. 1951 The viscosity of a concentrated suspension of spherical particles. J. Colloid
Sci. 6, 162–170. (doi:10.1016/0095-8522(51)90036-0)

48. Costa A, Caricchi L, Bagdassarov N. 2009 A model for the rheology of particle-bearing
suspensions and partially molten rocks. Geochem. Geophys. Geosyst. 10, 1–13. (doi:10.1029/
2008GC002138)

49. Hoover SR, Cashman KV, Manga M. 2001 The yield strength of subliquidus basalts -
experimental results. J. Volcanol. Geotherm. Res. 107, 1–18. (doi:10.1016/S0377-0273(00)00317-6)

50. Coussot P. 2014 Yield stress fluid flows: a review of experimental data. J. Non-Newtonian Fluid
Mech. 211, 31–49. (doi:10.1016/j.jnnfm.2014.05.006)

51. Hogg AJ, Matson GP. 2009 Slumps of viscoplastic fluids on slopes. J. Non-Newtonian Fluid
Mech. 158, 101–112. (doi:10.1016/j.jnnfm.2008.07.003)

52. Ancey C, Cochard S. 2009 The dam-break problem for Herschel-Bulkley viscoplastic fluids
down steep flumes. J. Non-Newtonian Fluid Mech. 158, 18–35. (doi:10.1016/j.jnnfm.2008.08.008)

53. Huang X, García MH. 1998 A Herschel-Bulkley model for mud flow down a slope. J. Fluid
Mech. 374, 305–333. (doi:10.1017/S0022112098002845)

54. Vola D, Babik F, Latché JC. 2004 On a numerical strategy to compute gravity currents of non-
Newtonian fluids. J. Comput. Phys. 201, 397–420. (doi:10.1016/j.jcp.2004.05.019)

55. Ancey C, Andreini N, Epely-Chauvin G. 2012 Viscoplastic dambreak waves: review of simple
computational approaches and comparison with experiments. Adv. Water Res. 48, 79–91.
(doi:10.1016/j.advwatres.2012.03.015)

56. Andreini N, Epely-Chauvin G, Ancey C. 2012 Internal dynamics of Newtonian and
viscoplastic fluid avalanches down a sloping bed. Phys. Fluids 24, 1–20. (doi:10.1063/1.
4718018)

57. Cantelli A. 2009 Uniform flow of modified Bingham fluids in narrow cross sections. J.
Hydraulic Eng. 135, 640–650. (doi:10.1061/(asce)hy.1943-7900.0000092)

58. Chambon G, Ghemmour A, Naaim M. 2014 Experimental investigation of viscoplastic free-
surface flows in a steady uniform regime. J. Fluid Mech. 754, 332–364. (doi:10.1017/jfm.
2014.378)

59. Cochard S, Ancey C. 2009 Experimental investigation of the spreading of viscoplastic fluids
on inclined planes. J. Non-Newtonian Fluid Mech. 158, 73–84. (doi:10.1016/j.jnnfm.2008.08.007)

60. Longo S, Chiapponi L, Di Federico V. 2016 On the propagation of viscous gravity currents
of non-Newtonian fluids in channels with varying cross section and inclination. J. Non-
Newtonian Fluid Mech. 235, 95–108. (doi:10.1016/j.jnnfm.2016.07.007)

61. Boujlel J, Maillard M, Lindner A, Ovarlez G, Chateau X, Coussot P. 2012 Boundary layer
in pastes–displacement of a long object through a yield stress fluid. J. Rheol. 56, 1083–1108.
(doi:10.1122/1.4720387)

62. Harris AJL, Rowland Scott K. 2001 FLOWGO: a kinematic thermo-rheological model for lava
cooling in a channel.

63. Chevrel MO, Labroquère J, Harris AJL, Rowland SK. 2018 PyFLOWGO: an open-source
platform for simulation of channelized lava thermo-rheological properties. Comput. Geosci.
111, 167–180. (doi:10.1016/j.cageo.2017.11.009)

64. Cordonnier B, Lev E, Garel F. 2016 Benchmarking lava-flow models. Geol. Soc. Lond. 426, 425–
445. (doi:10.1144/SP426.7)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 O

ct
ob

er
 2

02
1 

http://dx.doi.org/10.1016/j.jnnfm.2006.06.005
http://dx.doi.org/10.1016/j.jnnfm.2006.06.005
http://dx.doi.org/10.1051/eucass/200901237
http://dx.doi.org/10.1016/j.jvolgeores.2015.11.008
http://dx.doi.org/10.1016/j.jvolgeores.2017.02.015
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1088/0508-3443/3/8/306
http://dx.doi.org/10.1016/0095-8522(51)90036-0
http://dx.doi.org/10.1029/2008GC002138
http://dx.doi.org/10.1029/2008GC002138
http://dx.doi.org/10.1016/S0377-0273(00)00317-6
http://dx.doi.org/10.1016/j.jnnfm.2014.05.006
http://dx.doi.org/10.1016/j.jnnfm.2008.07.003
http://dx.doi.org/10.1016/j.jnnfm.2008.08.008
http://dx.doi.org/10.1017/S0022112098002845
http://dx.doi.org/10.1016/j.jcp.2004.05.019
http://dx.doi.org/10.1016/j.advwatres.2012.03.015
http://dx.doi.org/10.1063/1.4718018
http://dx.doi.org/10.1063/1.4718018
http://dx.doi.org/10.1061/(asce)hy.1943-7900.0000092
http://dx.doi.org/10.1017/jfm.2014.378
http://dx.doi.org/10.1017/jfm.2014.378
http://dx.doi.org/10.1016/j.jnnfm.2008.08.007
http://dx.doi.org/10.1016/j.jnnfm.2016.07.007
http://dx.doi.org/10.1122/1.4720387
http://dx.doi.org/10.1016/j.cageo.2017.11.009
http://dx.doi.org/10.1144/SP426.7


16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210394

..........................................................

65. Coltelli M, Proietti C, Branca S, Marsella Maria, Andronico D, Lodato L. 2007 Analysis of the
2001 lava flow eruption of Mt. Etna from three-dimensional mapping. J. Geophys. Res.: Earth
Surface 112, 1–18. (doi:10.1029/2006JF000598)

66. Lombardo V, Buongiorno MF. 2006 Lava flow thermal analysis using three infrared bands of
remote-sensing imagery: a study case from Mount Etna 2001 eruption. Remote Sens. Environ.
101, 141–149. (doi:10.1016/j.rse.2005.12.008)

67. Dragoni M. 1989 A dynamical model of lava flows cooling by radiation. Bull. Volcanol. 51,
88–95. (doi:10.1007/BF01081978)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 O

ct
ob

er
 2

02
1 

http://dx.doi.org/10.1029/2006JF000598
http://dx.doi.org/10.1016/j.rse.2005.12.008
http://dx.doi.org/10.1007/BF01081978

	Introduction
	Theoretical background
	Scaling
	Theoretical framework for rheology of three-phase suspensions

	Methods
	Experimental set-up
	Extracting rheological parameters from experiments

	Results
	Discussion
	Comparison with previous studies
	Data limitations
	Application to lava dynamics

	Conclusion
	References

