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Abstract
We present a theoretical study of the potential of principal component (PC) analysis to analyse
magnetic diffuse neutron scattering data on quantum materials. To address this question, we
simulate the scattering function S (q) for a model describing a cluster magnet with anisotropic
spin–spin interactions under different conditions of applied field and temperature. We find
high dimensionality reduction and that the algorithm can be trained with surprisingly small
numbers of simulated observations. Subsequently, observations can be projected onto the
reduced-dimensionality space defined by the learnt PCs. Constant-field temperature scans
correspond to trajectories in this space which show characteristic bifurcations at the critical
fields corresponding to ground-state phase boundaries. Such plots allow the ground-state
phase diagram to be accurately determined from finite-temperature measurements.

Keywords: machine learning, neutron scattering, quantum magnets, quantum entanglement

(Some figures may appear in colour only in the online journal)

1. Introduction

The study of quantum matter has emerged in recent decades as
a major field of scientific endeavour. The behaviour of many-
body systems is quite well understood at relatively high tem-
peratures where it is dominated by classical forces and entropy
and where it can be simulated efficiently using classical
computers. However quantum effects including entanglement
and particle indistinguishability make the equivalent, low-
temperature problem much harder in principle. Even so, a good
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understanding has emerged for various ordered ground states,
including the Landau Fermi liquid and states showing mag-
netic, superconducting or topological order [1, 2]. Strongly-
correlated quantum matter [3], on the other hand, shows quan-
tum correlations persisting at intermediate energy scales and
is less well understood with many outstanding questions. For
example, the precise relationship between the intermediate-
temperature, ‘liquid’ states and the various ground states in its
phase diagrams remains unknown [4, 5].

In recent years the arsenal available to tackle such chal-
lenging problems has been enlarged by the application of
machine learning (ML). For instance, artificial neural networks
have been used to efficiently encode the wave function of a
many-body Hamiltonian, searching for the ground state by
reinforcement learning [6]; to predict the properties of one
material from those of other substances, without involving a
model Hamiltonian [7]; and to detect phase transitions from
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piezoelectric relaxation measurements [8] and spectroscopic
imaging scanning tunnelling microscopy [9].

Here we propose an application of ML to magnetic neutron
scattering (NS). The neutron’s intrinsic magnetic moment and
availability of neutron beams with wavelengths of the order
of an angstrom make NS one of the most powerful probes of
magnetism in materials [10]. NS has provided, for instance:
a thorough characterisation of the magnetic excitation spec-
trum of the cuprates [11–15]; strong evidence of magnetic
monopole excitations in ‘spin ice’ frustrated magnets [16, 17];
and a quantitative understanding of quantum phase transitions
in magnetic insulators [18–21].

Our approach to magnetic NS is based on principal compo-
nent analysis (PCA), a well-established technique for dimen-
sionality reduction [22, 23] that can be regarded as a form
of unsupervised ML. Formally, PCA is equivalent to a lin-
ear autoencoder [24] and is a suitable initial step for a wide
range of classification problems. In recent years PCA and auto-
encoders have been applied to data obtained through numer-
ical simulation of many-body systems [25, 26]. It has been
shown that, when provided with detailed information on large
representative samples of microstates of such systems, such
algorithms are capable of ‘discovering’ important features in
their phase diagrams, including order parameters and phase
transitions [25]. On the other hand experimentally-accessible
information is normally limited and does not provide access
to individual microstates, consisting instead of thermal aver-
ages. The question emerges: can PCA still identify important
features from such averages?

Recently an autoencoder-based approach to magnetic dif-
fuse NS data on the ‘spin-ice’ material Dy2Ti2O7 has been
demonstrated [26]. The autoencoder is trained on a set of
simulated neutron-scattering images. The simulations corre-
spond to a class of candidate model Hamiltonians. The trained
autoencoder is then used to describe real experimental data. It
was found that the autoencoder provides a compact description
of the experimental data, facilitating the identification of opti-
mal model Hamiltonians, and that it can also recognise distinct
physical regimes in the simulations. The latter suggests the
question highlighted above can be answered in the affirmative.

Here we ask whether PCA can be used to infer relevant fea-
tures from the data even in the absence of prior knowledge of a
class of applicable Hamiltonians (or in cases where the Hamil-
tonians might not be tractable). This would require training the
algorithm directly on the experimental data. Given the scarcity
of neutron flux, the training set would need to consist of a lim-
ited number of scattering images, each with limited resolution.
The trained algorithm would then be used to filter additional
(but similarly limited) data sets and it would have to produce
qualitative signatures of any relevant features. Of particular
interest is the ability to infer ground-state phase boundaries
from finite-temperature data.

We perform a theoretical study to address the above ques-
tions, focusing on a class of models describing spin-1/2,
anti-ferromagnetic, ring-shaped molecular magnets. The field-
dependent phase diagrams of all instances of our model fea-
ture one or more level crossings (LC) where the nature of the
ground state changes discontinuously. One of these LCs is a

Figure 1. Our simple model of a planar, ring-shaped cluster magnet
for the cases with N = 4 (left) and N = 6 (right) magnetic ions in
the cluster. Reproduced from reference [27].

so-called ‘entanglement transition’ (ET). At the ET the ground
state factorises exactly. These changes in the system’s ground
state have clear signatures in simulated low-temperature, high-
resolution diffuse magnetic NS cross-sections [27]. The main
question we tackle here is whether a PCA can detect these fea-
tures using a more limited number of lower-resolution images.
We will see that this is indeed possible. Moreover the ground-
state phase boundaries can be accurately determined from
finite-temperature data. In order to achieve all this we intro-
duce the notion of a ‘score bifurcation plot’ for principal com-
ponents (PCs). This tool is only a small variation of the usual
‘score plots’ in general use with PCA algorithms but it shows
in a particularly transparent way how the different quantum
ground states in the model emerge from the high-temperature
phase as the temperature is lowered. We argue that this can be
a useful tool for the identification of quantum ground states
from experimental data.

2. Model

For the purpose of our study we consider a spin-1/2,
anisotropic Heisenberg ring in an applied magnetic field per-
pendicular to the plane of the ring (for an illustration, see
figure 1). Assuming nearest-neighbour interactions only, the
system has the Hamiltonian

Ĥ =

N∑
j=1

{
−J

[
(1 + γ) Ŝx

j Ŝ
x
j+1 + (1 − γ) Ŝy

jŜ
y
j+1

+ΔŜz
jŜ

z
j+1

]
− hŜz

j

}
. (1)

Here N is the number of magnetic ions in the ring, which we
assume to be even, J and h are, respectively, the exchange
and field energies, and γ and Δ are two dimensionless param-
eters describing the anisotropy of the spin–spin interaction.
The operator Ŝα

j represents the αth component of the spin at
the jth magnetic site and the labels x, y, z refer to the local
magnetic axes at that site. The x and y axes rotate from site
to site so as to preserve the CN rotational symmetry of the
molecule around the z axis, which is fixed. Note that we have
assumed that the interaction is diagonal in this basis. An illus-
tration of the geometry of the model can be found in reference
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Figure 2. Fraction of the variance in a set of simulated diffuse
magnetic NS images that is captured by the first 10 PCs. Each curve
was obtained by PCA of 500 random observations. Each observation
is a 24 × 24 pixel image obtained by computing the scattering
function S (q) of our cluster-magnet model. A uniform mesh of
q-vectors with components qx , qy ranging from −9π/a to 9π/a,
where a is the distance between nearest neighbours within the
cluster, was used. Each curve corresponds to a particular number N
of magnetic ions in the cluster, as indicated. The insets show the
same data on a logarithmic scale. (a) System parameters γ,Δ, h, T
varied randomly within the ranges 0 < γ < 1, 0 < Δ < 1,
0 < h < 2J, and 0.01 < T < 2J (variation with respect to the
exchange energy scale J is not necessary as it merely sets the overall
energy scale). (b) h, T varied randomly within the same ranges as
before with fixed γ = 0.6 and Δ = 0.

[27, figure 1]. We take all three components of the interac-
tion to be anti-ferromagnetic, corresponding to J < 0, and
assume without loss of generality 0 � γ � 1 and Δ > 0.1 The
boundary conditions are enforced by setting N + 1 ≡ 1.

The behaviour of the model defined by equation (1) has
been studied extensively [27–32]. For fixed J, γ,Δ it has

1 Ignoring the spatial arrangement of the atoms, the Hamiltonian in equation
(1) can correspond to a number of distinct universality classes: Heisenberg for
Δ = γ = 0; XY for γ = 0 �= Δ; and Ising for Δ = 0 �= γ.

N/2 ground state degeneracies at h = h1, h2, . . . , hN/2 = hf ,
where the last degeneracy takes place at the N-independent
factorisation field hf = J

√
(1 +Δ)2 − γ2. The simulated dif-

fuse magnetic NS function S (q) for the geometry under con-
sideration and with the scattering vector q within the plane
of the molecule [27] shows qualitative changes from anti-
ferromagnetic correlations for h < hf to ferromagnetic ones
for h > hf . This is consistent with an ET from anti-parallel
bell states to parallel bell states, respectively, known to take
place at hf Amico et al [33]. Less striking, but well-defined
changes also occur at the other LC. Specifically, numerical evi-
dence for a jump of S (0) in the ground state taking place at all
N/2 LC has been obtained for N = 4, 6 [27], 8 and 10 [34].
At finite temperatures the jumps become crossovers which get
smoother as the temperature is raised further.

The codes we used for this study are freely available as open
source from reference [35] (NS simulations) and [36] (PCA).
They require only the Octave computer language [37]. Further
details are given in the appendix A.

3. Dimensionality reduction

For any given set of values of the parameters of our model, the
scattering function S (q) mentioned above can be interpreted
as an image2. Giving the parameters different values allows
us to generate different images which can be subject to PCA.
Quite generally, the result of a PCA of any set of images is
a complete, orthogonal basis set that can be used to recon-
struct exactly, through linear superposition, any of the images
in the original training set. The advantage of this new basis is
that the PCs are ordered, with the first basis element capturing
the largest amount of variance within the original data set, the
second capturing the second largest amount, and so forth. For
images comprising solely random pixel values this would offer
no advantage but if the images are strongly-correlated then a
very good approximation to all the images in the training set
can be obtained using just the first few PCs. PCA can thus
be regarded as a technique for dimensionality-reduction and
this forms the basis of its application to problems such as face
recognition [23]. Its effectiveness relies on correlations within
the training set: if correlation is high (e.g. all images repre-
sent human faces) then a small number M of PCs can capture
most of the variance in the data set. The details of our PCA
procedure are given in the appendix A.

In our problem we expect to achieve significant reduction
because all images have been derived from instances of the
same class of Hamiltonians. Let us fix the number of magnetic
moments in the molecule N and vary the parameters γ,Δ, h
and temperature T (all four energies are measured in units of
J). For each set of values we can use the method in references
[27, 34] to compute S (q) for a fixed set of wave vectors q.
This results in a set of images which can then be classified by
a standard PCA algorithm. Our expectation is borne out by the

2 Throughout this work we assume that any background terms have been sub-
tracted from our scattering functions: S (q) → S (q) − Ω−1

∫
dq S (q),where

Ω ≡
∫

dq.
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Figure 3. Dependence of the PCs on the choice of training set for fixed N = 4, γ = 0.6,Δ = 0. (a)–(c) Values of the magnetic field h and
temperature T used to generate each training set. (d)–(f) First PC for each of the respective training sets. (g)–(i) Second PCs.

Figure 4. Neutron scattering cross-section S (q) predicted by our model for γ = 0.6,Δ = 0, h = 0.72J, and T = 0.36J (a) and its
reconstruction using only two PCs (b)–(d). The training sets and their corresponding PCs are the ones shown in figure 3 consisting of 3
training images (b), 9 training images (c) and 500 training images (d).

scree plots in figure 2(a). Specifically, we find that M = 4 PCs
suffice to capture 99% of the variance in the data set for the
range of values of N shown in the graph.

In an experimental situation, we expect the parameters
defining the strength and anisotropy of magnetic interactions
to be fixed for a given material, while the strength of the
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Figure 5. Projections of the simulated scattering functions S (q) of our model for different values of the field h and temperature T onto the
first two PCs. The interaction parameters γ,Δ are fixed to the same values as in figures 3 and 4. The number of spins in the cluster is N = 2
(a) and (b) and N = 4 (c). Each scattering image is represented approximately by a single point (wPC1, wPC2) on the plane defined by the
two PCs. The training sets for panel (a) were obtained using the values of (h, T) shown in figure 3(c); for panels (b) and (c) the values shown
in figure 3(b) were used. Filled circles represent the scattering functions in the corresponding training set. Lines in panels (b) and (c)
correspond to additional values of (h, T) not present in the training set. These have been obtained by varying h from 0 to 2J in steps of
Δh = 0.05J and T from 2J to 0.01J in steps of ΔT = 0.01J. Each line corresponds to a fixed value of the field h. The isolines corresponding
to the lowest and highest field values are the ones reaching furthest to the right and furthest to the top of the graph, respectively. The curves
highlighted in cyan are those for which the field is within Δh/2 of the factorisation field hf = 4J/5 (b) and (c) or the additional ground-state
level-crossing field h1 = 0.35J (c). The inset to panel (c) shows in detail the low-temperature behaviour near h ≈ h1. The colour in all panels
encodes temperature, as indicated. Note that the axes limits differ in each case since (a) and (b) are plots obtained using PCs for the same
physical system but generated using 9 and 500 images respectively and (c) represents a different system altogether.

externally-applied magnetic field and temperature can vary.
Scree plots for a representative case (γ = 0.6,Δ = 0) are
shown in figure 2(b).3 We find that now M = 2 captures 99%
of the variance in the training set.

Our results indicate that the number M of PCs necessary
to reproduce to very high accuracy all the images in the
training set is bound by the number Mp of free parameters
used to generate the training images. This might suggest an
unbiased (model-independent) way to constrain experimen-
tally the number of independent parameters describing a class
of related materials—an important step in the derivation of
a model Hamiltonian. We note, however, that M is more
likely related to the number of distinct states in the phase
diagram which, although related to Mp, can potentially be
larger than it. Elucidating this will require the analysis of a
broader range of models and is beyond the scope of the present
work.

We highlight that unlike an autoencoder, where the num-
ber Mn of neurons in the hidden layer has to be fixed a priori,
our approach enables us to find out a posteriori the num-
ber M of PCs needed to describe the data accurately. One
would in principle expect Mn ∼ M and thus for our model
Mn ∼ Mp. In contrast, for the model of reference Samarakoon
et al [26] with Mp = 4 dimensionless parameters Mn = 30 was
found to strike a good balance between overfitting and under-
fitting. This would suggest that in our case we achieve greater
dimensionality reduction.

3 For our chosen value of the anisotropy parameters, γ = 3/5,Δ = 0, we
obtain the simple fraction hf = 4/5 exactly, which is convenient and moti-
vates that choice; more generally h is a real number but this choice does not
introduce any qualitative differences.

Although PCA is equivalent to an autoencoder in the lin-
ear limit, we must note that the two studies are rather dif-
ferent. In Samarakoon et al [26] the aim is to automatically
interpret structure factor data, from noisy measurements and to
disambiguate among many possible solutions of the inverse
scattering problem, whereas our approach is to achieve an
embedding of the data that is amenable to human interpreta-
tion. Our work does not explicitly address experimental noise.
However, we note that both autoencoder and PCA are known
to have noise suppressing properties and therefore we antici-
pate that our method would also be applicable to experimental
data.

4. Size of training set

Once the value of M has been set, other images not included in
the original training set can be accurately reconstructed using
the first M PCs. For this to be possible, the following two
conditions must be met: (i) the new images must be of the
same type as those in the training set; (ii) the training set must
be sufficiently representative. The latter criterion will only be
met if the number of images in the training set Mt is suffi-
ciently large. This limits the feasibility of obtaining training
sets experimentally.

Figure 3 shows three versions of the first 2 PCs for a par-
ticular instance of our model (N = 4, γ = 0.6, Δ = 0). Each
version has been obtained using a different training set, shown
graphically in the first row of panels: a large training set
obtained from 500 randomly-chosen values of (h, T); a much
smaller training set generated from 9 randomly-chosen values
of (h, T); and a minimal set formed by 3 values of (h, T), cho-
sen strategically (one with high T one with low T and low h,

5
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Figure 6. (a) Score bifurcation plot for the same parameters as in
figure 5(c) except that here all observations (both those used in
training as well as all subsequent observations) consist of much
lower-resolution, namely 8 × 8 pixel images. (b) An example of a
scattering function obtained by exact diagonalisation at that
resolution (the other parameters are as in figure 4).

and one with low T and high h).4 Appendix B gives further
details about the smaller of the two random sets, including a
display of the individual simulated NS images that compose it.
Our results indicate that Mt can indeed be very small. This is
consistent with the small number of PCs necessary to describe
the data accurately (see previous section) and is confirmed
by figure 4 which shows the reconstruction of a particular
instance of S (q) using the three sets of PCs. We note that
the reconstructed image is not present in any of the training
sets.

5. Score bifurcation plots

Figures 2–4, taken together, imply that a relatively small num-
ber of initial observations can be used to determine a few PCs

4 Our results are robust with respect to the choice of realisation of a random
data set of a given size.

Table 1. Numerical values of the combinations of magnetic field h
and temperature T represented graphically in figure 3(b). The values
are given in units of the exchange constant J, as indicated in the
table headings.

Index h/J T/J

a 0.471 279 1.076 508
b 1.851 049 1.753 089
c 0.528 793 1.995 304
d 0.246 644 0.097 010
e 1.872 774 1.958 153
f 1.147 418 1.732 766
g 1.750 644 0.895 347
h 1.885 494 0.472 279
i 0.343 302 0.710 108

in terms of which data obtained subsequently can be accu-
rately described—in other words, by projecting new observa-
tions onto the low-dimensional space spanned by the PCs, we
obtain a low-dimensional representation of the data in terms
of the PC scores. The dependencies of such scores on sys-
tem parameters such as magnetic field h or temperature T can
then be used to identify features in the phase diagram. Such
approach, when applied to microscopic data on classical states,
has been shown capable of detecting, for example, symmetry-
breaking phase transitions [38]. Here we ask whether the same
benefit can be obtained when working with observable aver-
ages such as S (q) for our quantum magnet model. We will
answer in the affirmative and moreover present a useful analyt-
ical tool based on this idea, which we call a ‘score bifurcation
plot’. Our simulations indicate that this technique may facil-
itate the detection of qualitative changes in the ground state
of a quantum system, even from data taken at relatively high
temperatures.

To illustrate our method we consider first the simplest case
of our model where N = 2. Such S = 1/2 dimer has two
possible ground states: a low-field anti-ferromagnetic state
| ↑↓〉 − | ↓↑〉 with anti-parallel entanglement and a high-field
ferromagnetic state | ↑↑〉+ δ| ↓↓〉 with parallel entanglement
(as h →∞ the amplitude δ → 0 resulting in the classical state
| ↑↑〉). The two states are degenerate at the factorisation field
hf . Panels (a) and (b) of figure 5 show the weights, or scores,
of the first two PCs, wPC1,wPC2, obtained by projecting the
PCs onto the simulated NS function S (q), for two different
training sets. In panel (a) the weights have been obtained for
the scattering functions in the original training set. We can
appreciate a marked difference between the high-temperature
data, concentrated in a small region of wPC1–wPC2 space,
and the low-temperature data which cover a much wider area.
This is reminiscent of results obtained for microstates of
Ising-type models—cf figure 3(b) in reference [38], where
we also see that, at high temperatures, the data are clustered
in a small, high-entropy region of PC space while, at lower
temperatures, the data fan out as distinct ground states are
selected by their energies. In our case, however, we are
examining the statistical average S (q) which is a function
of parameters h, T that can, in an experimental situation, be
controlled externally. It is therefore possible to explore the

6
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Figure 7. Training set generated using the values of magnetic field h and temperature T shown in figure 3(b) and table 1. The panel labels
(a)–(i) correspond to the index on the first column of table 1.

space of scattering functions systematically by varying h
and T and projecting the new measurements onto the PCs
deduced from the training set. A simulation of that approach
is presented in panel (b), which shows the evolution of wPC1
and wPC2 with temperature for different fixed values of the
magnetic field (fixed-field temperature scans). We observe a
marked difference between the curves corresponding to fields
lower than the factorisation field hf and those greater than that
field. Each constant-field temperature scan is represented by
a single curve in the space defined by the two PCs. As the
temperature is lowered, the curve starts to bend in a direction
that indicates the nature of the ground state (ferromagnetic
if h > hf and anti-ferromagnetic if h < hf). This manifests
as a marked bifurcation, with the curve corresponding to
h = hf (highlighted in cyan) marking the bifurcation where
the directions of this bending changes sign. At this field,
below some finite temperature T ∗ the system gets ‘stuck’
at a particular point (wPC1∗, wPC2∗) and does not evolve
further. This suggests that such ‘score bifurcation plots’ can

be used to elucidate systematically the ground-state phase
diagram from finite-temperature data, even in systems such
as the one we model where there are no finite-temperature
phase transitions. Appendix D describes a geometric
construction that can be used to determine hf accurately from
limited finite-temperature data.

Further evidence of the above hypothesis is provided in
figure 5(c) where similar data are presented for N = 4. As we
reviewed in section 2, two special values of the field h1, hf are
expected to emerge at low temperatures in this case. Indeed
we find two bifurcations occurring at those fields, within the
resolution given by our field increment Δh = 0.05J. We note
however that the bifurcation at hf , where the ground state fac-
torises leading to the vanishing of entanglement measures,
is detectable at a higher temperature than that at the level
crossing field, where entanglement is suppressed but does
not vanish [27]. We have verified that the factorisation field
is also seen in similar score bifurcation plots obtained for
N = 6.

7
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6. Experimental resolution

In section 3 we showed that PCA could achieve good dimen-
sionality reduction for NS data simulated using our model.
In section 4 we further showed that this could be achieved
using surprisingly small training sets, in the sense of contain-
ing very few observations. We will now address the question of
experimental resolution—specifically, how many pixels each
individual observation needs to have for the score bifurcation
plots introduced in the last section to yield accurate values of
the critical fields. We note that modern NS instruments allow
a trade off between neutron flux and resolution at the time
when the measurement is being made [39]. In addition, one
can always group pixels together, post-measurement, to form
a more coarse-grained, but less noisy image. We note that
the authors of reference [26] have addressed the question of
noise in a different way, namely by applying their methodol-
ogy directly to noisy images, and their conclusions are similar
to ours.

To address our question we have repeated some of our pre-
vious calculations using lower-resolution images both at the
training and analysis stages. Specifically, we replace our pre-
vious 24 × 24 pixel matrices with 8 × 8 matrices which cor-
responds to nearly an order of magnitude reduction in the
amount of data in each observation. The results, for the N = 4
case, are shown in figure 6. Clearly, the score bifurcation plot
obtained from these lower-resolution images is as useful as that
obtained before, and in particular it allows us to pinpoint the
critical fields h1 and hf to the same values, within our field-scan
accuracy Δh = ±0.025J.

7. Discussion and conclusions

In this work we have presented a method to obtain quantita-
tive information about the phase diagram of a quantum system
from experimentally observable data, namely the diffuse mag-
netic NS function S (q). Our method is based on a simple form
of unsupervised ML, PCA, and provides a visual represen-
tation of the data that facilitates a greater understanding of
the underlying physics. We addressed our research question
theoretically by analysing simulated scattering functions for a
simple model of a cluster quantum magnet.

Our method is based on using a small training set of obser-
vations to determine PCs describing the data. We then anal-
yse subsequent observations by projection onto those PCs.
We found that this procedure can achieve a large degree of
dimensionality reduction i.e. very few PCs suffice for an accu-
rate description of subsequent observations. Consequently, we
found that effective training requires only a small number of
observations. Moreover, each observation may be a very low-
resolution image, which should facilitate greatly the imple-
mentation of our methodology in a real experimental setting.
Finally, we devised a way to use the trained PCA algorithm to
characterise the system’s phase diagram.

Our method to investigate phase diagrams relies on temper-
ature scans at fixed values of another control parameter (in our
case, magnetic field h—however the method can be trivially
generalised to other control parameters such as pressure). By

plotting the evolution of the system in PC space we find paths
with bifurcations occurring at the values of the field that are
known to correspond to changes in the system’s ground state.

It is interesting to speculate why a linear technique, PCA,
can provide such a compact and enlightening description of
a system dominated by strong correlations. In this respect we
note that our calculation of the scattering function S(q) was
carried out in the linear-response regime [27, 35]. This is stan-
dard in the theory of magnetic NS and is justified by the fact
that the neutron acts as a weak perturbation [10]. Whether this
can be used as the starting point for a justification of the appli-
cability of PCA is an interesting question but lies outside the
scope of the present work.

We hasten to add that the linear dependence of S(q) on the
PCs does not imply that S(q) is a linear function of the model
parameters γ,Δ, T, h. The scattering function is given by

S(q) =
∑

n

wn(γ,Δ, h, T)Sn(q) (2)

where the score wn(γ,Δ, h, T) of the nth PC is in general
a highly non-linear function of γ,Δ, h and T. Thus in our
dimensionally-compressed representation of the data S(q) is a
linear function of just a few Sn(q)’s but the non-linearity of the
model is still reflected in the dependence on system parameters
of the expansion coefficients. It is nevertheless remarkable that
the non-linear features of the model can be accurately captured
in this way. An explicit example of such non-linear behaviour
of the PC scores is provided in appendix C.

Our method provides an efficient way to extrapolate the
ground-state phase diagram from finite-temperature data,
even in a system that is effectively of finite size and
therefore lacks well-defined, finite-temperature phase bound-
aries. One may speculate that applying such methodology to
poorly-understood real systems such as copper-based high-
temperature superconductors might offer a fresh perspective
on an old conundrum in the theory of strongly-correlated
electron systems: are the correlated quantum ‘liquid’ phases
found at finite temperature best thought of as manifestations of
the quantum critical points separating the different quantum-
ordered phases (as proposed by Laughlin and co-workers
[4])? Or are they best regarded, instead, as condensations of
the ‘gaseous’ phase existing at higher temperatures, which
become susceptible to different quantum ordering transitions
as the temperature is lowered further (as put forward by Ander-
son [5])? Addressing this question will require applying our
method to experimental data on real systems. For instance, a
score bifurcation plot of measurements taken in the ‘strange
metal’ phase of the cuprate phase diagram may provide evi-
dence for proposals that puzzling crossovers observed in that
region are due to a Widom line associated with a hidden,
low-temperature critical endpoint [40].
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Appendix A. PCA implementation

The PCA was implemented in the Octave (v3.4.3) pro-
gramming language [37] using the singular value decom-
position function which returns singular vectors normalized
to unit length. A is a matrix, in which each column is a
scattering function image represented in column-wise con-
catenated form. The data is centred by subtracting from
each column its mean pixel intensity value, thereby form-
ing matrix X. This is followed singular value decomposition
from which PCs, PC scores, and scree plots are straight-
forward to obtain. We reproduce the key part of our code
here:

(a) : % Data centering:
(b) : X = A-ones(size(A)(1), 1)∗mean(A)
(c) : % Singular value decomposition:
(d) : [V, lambda, junk] = svd(X’∗X);
(e) : % Principal components:
(f ) : U = X∗V∗lambdâ (−.5);
(g) : % Principal component scores:
(h) : S = U’∗X;
(i) : % Data for scree plot:
( j) : scree_data = diag(lambda);

Adapt the code for Matlab by replacing line 2 with X =
A-ones(size(A, 1), 1)’∗mean(A);

The complete code is available in reference [36] as a Github
repository. The codes used to generate the matrix A can be
found in reference [35].

We note that our re-centering procedure does not involve
subtracting an average over observations, as is common in
other PCA implementations. This essentially means that the
first PC describes that average, and the corresponding score
quantifies how much a specific observation deviates from it.
Our tests indicate that, for the type of data studied here,
this yields a clearer and more complete description of the
underlying correlations.

Appendix B. Details of training data set

Here we give details of one of the training data sets, namely
the nine-sample data set corresponding to N = 4, γ = 0.6,
Δ = 0 and the values of temperature T and magnetic field h
shown in figure 3(b). Table 1 shows the numerical values of
h and T for this set, along with an index a, b, c, . . . used to
identify each particular (h, T) combination. Figure 7 shows
the corresponding simulated NS functions. Each image con-
stitutes one element of the training set (an ‘observation’). This
nine-image training set was used to obtain the PCs shown in
figures 3(e) and (h). Projecting the 9 images shown in figure 7
onto those PCs we obtain the coordinates of the 9 filled circles

Figure 8. Temperature- and field-dependence of the individual PC
scores wPC1 (a) and wPC2 (b). The data shown are from the same
calculation as figure 5(b).

shown in figure 5(b). The lines shown in the latter figure are
obtained by projecting other images (not forming part of the
training set) onto the same PCs. A similar procedure was fol-
lowed when using the three-image training set corresponding
to the (h, T) values in figure 3(a) and the 500-image training
set corresponding to figure 3(c).

Appendix C. Temperature- and field-dependence
of individual principal component scores

Here we discuss briefly the field- and temperature-
dependences of the individual PC scores wPC1, wPC2.
These are shown in figure 8 for the same calculation used to
obtain figure 5(b). As we can see the temperature-dependence
of the PC scores changes qualitatively at the factorisation
field—for instance at low temperatures the derivative of
wPC1 with respect to T is positive for h > hf and negative for
h < hf . At exactly h = hf (highlighted in cyan) this derivative

9
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Figure 9. Here we reproduce the plot in figure 5(b) but with the
addition of green and blue circles marking the points along the
constant-field lines corresponding to temperatures T = 0.10 and
0.15, respectively.

vanishes in the limit T → 0. We note, however, that in a
general situation we will not have a constant-field scan taken
at exactly h = hf (see footnote 3 on page 4). Because of this,
in general locating the value of the field where the PC scores
become temperature-independent involves an extrapolation.
This must be contrasted with the score bifurcation plot
where wPC1 and wPC2 are shown in combination and the
factorisation field can be determined precisely from
finite-temperature data.

Appendix D. Geometric construction for
determining the factorisation field from
finite-temperature data

Here we describe a simple geometric construction for deter-
mining precisely the location of the factorisation field from
finite-temperature data. We illustrate this by focusing on the
N = 2 data in figure 5. The same data is reproduced in figure 9,
but with additional symbols showing the points along the
constant-field curves where the temperature reaches two par-
ticular values, namely T = 0.10 and T = 0.15. By inspection
of that plot it is quite clear that the two curves will cross at the
point where the bifurcation takes place, whose precise coinci-
dence with the factorisation field we have determined numeri-
cally. It is evident that this construction will work, and give the
same value, irrespective of which two temperatures we choose,
as long as they are low enough to show the inflection of the
curve to the right of the bifurcation. A similar construction can
be made for the N = 4 plots in figures 9(c) and 6.
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