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ABSTRACT
Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the
sensitivity and this will require accurate cosmological simulations to quantify possible systematic uncertainties and to make
predictions for non-linear scales, where much information resides. However, shot noise arising from neutrino thermal motions
limits the accuracy of simulations. In this paper, we introduce a new method for simulating large-scale structure formation with
neutrinos that accurately resolves the neutrinos down to small scales and significantly reduces the shot noise. The method works
by tracking perturbations to the neutrino phase-space distribution with particles and reduces shot noise in the power spectrum
by a factor of O

(
102

)
at z = 0 for minimal neutrino masses and significantly more at higher redshifts, without neglecting the

back-reaction caused by neutrino clustering. We prove that the method is part of a family of optimal methods that minimize
shot noise subject to a maximum deviation from the non-linear solution. Compared to other methods, we find per mille level
agreement in the matter power spectrum and per cent level agreement in the large-scale neutrino bias, but large differences in
the neutrino component on small scales. A basic version of the method can easily be implemented in existing N-body codes
and allows neutrino simulations with significantly reduced particle load. Further gains are possible by constructing background
models based on perturbation theory. A major advantage of this technique is that it works well for all masses, enabling a
consistent exploration of the full neutrino parameter space.
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1 IN T RO D U C T I O N

The discovery of neutrino masses (Fukuda et al. 1998; Ahmad
et al. 2002; Eguchi et al. 2003) calls for extensions of the standard
model of particle physics and provides the only known form of dark
matter. Measuring the masses is crucial for understanding their origin
and for constraining cosmological parameters. While the neutrino
mass squared differences are known to a few per cent, the absolute
masses are unknown and there remain two possible mass orderings:
normal and inverted. A rich experimental programme is aimed at
determining the mass ordering, measuring the mass scale set by
the lightest neutrino, and completing the overall picture of neutrino
properties. Cosmology plays a vital role in this programme due to
its ability to provide an independent and complementary constraint
on the sum of neutrino masses,

∑
mν (Bond, Efstathiou & Silk

1980; Hu, Eisenstein & Tegmark 1998) with a potential sensitivity
below 0.02 eV (Font-Ribera et al. 2014; Chudaykin & Ivanov 2019;
Sprenger et al. 2019).

Ongoing and planned neutrino experiments will establish the
mass ordering with a discovery expected by the end of the decade.
Although oscillation data have shown persistent hints of normal
ordering, this preference has decreased to 1.6σ over the past
year (Esteban et al. 2020). The mass ordering can be established
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by exploiting matter effects in long baseline neutrino oscillation
experiments, as in the Deep Underground Neutrino Experiment
(Acciarri et al. 2015), and in the Earth for atmospheric neutrinos,
as in the Oscillation Research with Cosmics in the Abyss (Adrian-
Martinez et al. 2016) and Hyper-Kamiokande (Abe et al. 2011)
experiments, as well as vacuum oscillations in medium baseline
reactor neutrino experiments, specifically the Jiangmen Underground
Neutrino Observatory (An et al. 2016). Each approach is challenging,
so information from multiple sources is essential. Single β-decay is
the experimental strategy of choice for direct mass searches and
provides a model-independent determination of neutrino masses,
in particular the effective electron–neutrino mass. The Karlsruhe
Tritium Neutrino (KATRIN) experiment is ongoing and has put
a bound of red mβ < 0.8 eV, assuming quasi-degenerate neutrino
masses, with the aim of reaching mβ < 0.2 eV in the near future
(Aker et al. 2021). Project 8 will have the potential to set a limit
of mβ < 0.04 eV (Esfahani et al. 2017). Neutrinoless double β-
decay can also provide information on neutrino masses (Bilenky,
Pascoli & Petcov 2001; Nunokawa, Teves & Zukanovich Funchal
2002; Pascoli & Petcov 2002), albeit entangled with the value of
the Majorana CP-violating phases and affected by uncertainty in the
nuclear matrix elements (Vergados, Ejiri & Šimkovic 2016). For a
recent review, see e.g. Giuliani et al. (2019).

The complementarity between these different strategies is of great
interest. A cosmological measurement of

∑
mν would provide a

target for direct mass searches (Drexlin et al. 2013; Mertens 2016).
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An incompatibility between the two would indicate a non-standard
cosmological evolution or new neutrino properties. A cosmological
bound of

∑
mν < 100 meV would suggest a normal mass ordering,

which should be confronted with evidence from neutrino experi-
ments. Finally, there is a strong synergy with neutrinoless double
β-decay. Knowing the mass ordering and the sum of neutrino masses
would narrow down the range of values for the effective Majorana
mass parameter, providing a clear target for future experiments.

Measuring the mass scale, and potentially ruling out the inverted
mass ordering, is therefore a major target of near-term cosmological
surveys, including the Dark Energy Spectroscopic Instrument (Levi
et al. 2013), Euclid (Laureijs et al. 2011), and Vera Rubin Observatory
(Ivezic et al. 2009). In order to analyse these surveys and to extract
a mass measurement, there has been a substantial effort to model
precisely the effects of massive neutrinos on structure formation.
From the analytical side, a swathe of new techniques such as
time RG perturbation theory (Upadhye 2019) and effective field
theories (Senatore & Zaldarriaga 2017; Colas et al. 2020) promise
to push the validity of perturbation theory into the quasi-linear
régime. In the non-linear régime, N-body simulations offer the most
accurate picture of structure formation. Yet incorporating neutrinos
into N-body simulations has proved to be a challenge and some
doubts remain about the validity of neutrino simulations on small
scales.

The main obstacle to simulating neutrinos is that, in contrast to
cold dark matter and baryons, neutrinos have a significant velocity
dispersion. This effectively turns the 3D problem of structure
formation, for which N-body simulations are well suited, into a 6D
phase-space problem. If no provisions are made, a far greater number
of simulation particles are needed to sample properly the phase-space
manifold. A further complication arises from the fact that neutrinos
are relativistic at high redshifts, such that simulations need to handle
both the régime where neutrinos are best described as radiation
and the régime where neutrinos are better described as massive
particles.

The first 3D cosmological neutrino simulations were carried out
by Klypin & Shandarin (1983) and Frenk, White & Davis (1983),
when neutrinos were thought to be much more massive and the
velocity dispersion not as problematic. Modern simulations with sub-
electronvolt neutrinos were pioneered by Brandbyge et al. (2008) and
Viel, Haehnelt & Springel (2010). Neutrinos are most commonly
included in simulations as particles whose initial velocity is the
sum of a peculiar gravitational component and a random component
sampled from a Fermi–Dirac distribution (Ma & Bertschinger 1994a,
b; Brandbyge et al. 2008; Viel et al. 2010; Bird, Viel & Haehnelt
2012; Villaescusa-Navarro et al. 2014, 2020; Castorina et al. 2015;
Inman et al. 2015; Villaescusa-Navarro, Bull & Viel 2015; Adamek,
Durrer & Kunz 2017; Emberson et al. 2017; Banerjee et al. 2018).
The main difficulty with particle simulations is shot noise caused by
the velocity dispersion. This problem is more severe for the smallest
neutrino masses, which are observationally most relevant. Because
neutrinos are a subdominant component, the error in the total matter
distribution is relatively small. However, shot noise obscures the
small-scale behaviour of the neutrinos and is clearly undesirable if
one is interested in the neutrino component and its effect on structure
formation.

To overcome the problems with particle simulations, grid sim-
ulations evolve the neutrino distribution using a system of fluid
equations, which requires a scheme to close the moment hierarchy
at some low order (Brandbyge & Hannestad 2009; Viel et al. 2010;
Hannestad, Haugbølle & Schultz 2012; Archidiacono & Hannestad
2016; Banerjee & Dalal 2016; Dakin et al. 2019; Tram et al. 2019;

Inman & Yu 2020; Chen, Upadhye & Wong 2021a), or as a linear
response to the non-relativistic matter density (Ali-Haı̈moud & Bird
2012; Liu et al. 2018; McCarthy et al. 2018; Chen, Upadhye &
Wong 2021b). Even more efficiently, but in the same spirit of
treating neutrinos perturbatively, the total effect of neutrinos has
been included as a post-processing step in the form of a gauge
transformation (Partmann et al. 2020). While these approaches do not
suffer from shot noise, they are not able to capture the full non-linear
evolution of the neutrinos at late times. This problem becomes more
severe for more massive neutrinos, but is present even for minimal
neutrino masses. A number of hybrid simulations have therefore
combined grid and particle methods (Brandbyge & Hannestad 2010;
Banerjee & Dalal 2016; Bird et al. 2018), typically transitioning
from a fluid method to a particle method at some redshift when
the neutrinos become non-linear. Another interesting alternative is
to integrate the Poisson–Boltzmann equations directly on the grid
(Yoshikawa et al. 2020).

The method proposed in this paper can be considered as a type
of hybrid method that integrates neutrino particles but only uses the
information contained in the particles to the extent that is necessary.
This is accomplished by dynamically transitioning from a smooth
background model to a non-linear model at the individual particle
level. It relies on the noiseless (but approximate) background model
as much as possible, thereby producing the smallest amount of
shot noise possible while solving the full non-linear system. The
main idea is to decompose the phase-space distribution function
f(x, p, t) into a background model f̄ (x, p, t) that can be solved
without noise and a perturbation that is carried by the simulation
particles:

f (x, p, t) = f̄ (x, p, t) + δf (x, p, t).

The choice of background model is arbitrary, but the method
performs best whenever f̄ (x, p, t) is strongly correlated with f(x,
p, t), in a way that will be made precise below. If the choice of
background model is poor, the method performs no worse than an
ordinary N-body simulation, except for the small amount of overhead
associated with evaluating f̄ (x, p, t). Note that the background
model is just an approximation of f and can itself be a perturbed
Fermi–Dirac distribution.

This type of method has a long history in other fields and is variably
known as the method of ‘perturbation particles’ or more commonly
as the ‘δf method’, which is the name we shall adopt. Merritt (1987)
and Leeuwin, Combes & Binney (1993) discussed the method of
perturbation particles in stellar dynamics. Around the same time, the
δf method arose in plasma physics (Tajima & Perkins 1983; Dimits &
Lee 1993; Parker & Lee 1993; Aydemir 1994). While the method of
perturbation particles is not widely known today in astronomy, the
δf method is standard fare in plasma physics. A major difficulty in
astronomical applications is the absence of a background model that
captures enough of the dynamics to be useful. In contrast, plasma
physicists are often interested in turbulent phenomena arising in an
otherwise stable system, with a natural candidate for a background
model f̄ at hand. Our work is motivated by the fact that there is
also a natural background model for cosmic neutrinos, namely the
phase-space density predicted by perturbation theory. There is a
major synergy between δf N -body simulations proposed here and
work on improved perturbation theory methods. A better background
model means a smaller dependence on the particles and therefore
further reduced shot noise. We will show, however, that even the
zeroth-order approximation, which is just a homogeneous redshifted
Fermi–Dirac distribution, provides a significant improvement over
ordinary N-body methods.
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The remainder of the paper is structured as follows. In Section 2,
we derive the δf method and describe its use as a variance reduction
method for N-body simulations. We also show that the method is part
of a family of optimal hybrid methods. In Section 3, we illustrate
the method with a 1D test problem. In Section 4, we discuss how
the method can be embedded in relativistic simulations. Our suite of
simulations is then described in Section 5. The method is compared
with commonly used alternatives in Section 6. We consider higher
order background models based on perturbation theory in Section 7.
Finally, we conclude in Section 8.

2 D ERIVATION

The phase-space evolution of self-gravitating collisionless particles is
described by the Poisson–Boltzmann equations, which in the single-
fluid case read

Lf ≡
[

∂

∂t
+ p · ∇ − ∇� · ∇p

]
f = 0,

∇2� = 4πGρ = 4πG

∫
d3p

√
m2 + p2f (x, p, t).

Here, � is the gravitational potential, ρ is the energy density, and
f is the phase-space density. In general, the Liouville operator, L,
acts on each fluid separately and the potential should be summed
over all fluid components. In relativistic perturbation theory, this
system can be written as a hierarchy of moment equations for the
neutrinos, which is solved to first order with Boltzmann codes such
as CLASS (Lesgourgues 2011) or CAMB (Lewis & Challinor 2011). To
extend our predictions to the non-linear régime, we can use N-body
codes, which solve the Poisson–Boltzmann system by the method of
characteristics. Characteristic curves satisfy

dx

dt
= p and

dp

dt
= −∇�.

By construction, one finds that df/dt = Lf = 0 along these curves. To
infer statistics of the phase-space distribution, we simulate N of these
trajectories using marker particles. We can freely choose the phase-
space distribution, g, of our simulation particles at the initial time.
For instance, assuming an initially homogeneous spatial distribution
and momenta from the Fermi–Dirac distribution, we would have
g ∝ (exp {p/Tν} + 1)−1. Typically, one chooses g(x, p, t0) = f(x, p,
t0). Since Lg = 0, this equality then holds for all t ≥ t0. In general, a
phase-space statistic is given by

A(x, t) = 〈A〉p =
∫

d3p f (x, p, t)A(x, p, t)

∼= 1

N

N∑
i=1

f (xi, pi, t)

g(xi, pi, t)
A(xi, pi, t). (1)

Following the usual choice of setting g(x, p, t0) = f(x, p, t0), the
sum reduces to a simple average over marker particles. The error in
our estimate of A is then σA/

√
N . Hence, if the distribution, f(x, p,

t), has a large intrinsic scatter, we need a large N to beat down the
noise. Alternatively, we might construct an estimator with a smaller
error. Let us therefore write the phase-space distribution function,
f, as a background model, f̄ , together with some perturbation,
δf:

f (x, p, t) = f̄ (x, p, t) + δf (x, p, t).

We can reduce the error by only using the particles to estimate the
perturbed distribution, δf. We replace (1) with

A(x, t) =
∫

d3p
[
f̄ (x, p, t) + δf (x, p, t)

]
A(x, p, t)

∼= Ā(x, t) + 1

N

N∑
i=1

δf (xi, pi, t)

g(xi, pi, t)
A(xi, pi, t).

This is useful if

Ā(x, t) =
∫

d3p f̄ (x, p, t)A(x, p, t)

can be computed efficiently and if f and f̄ are strongly correlated,
so that the second term is small. The simplest choice of background
model is a homogeneous Fermi–Dirac distribution

f̄ (x, p, t) = gs

(2π)3

1

eap/(kbTν ) + 1
, (2)

with gs internal degrees of freedom. Here, a = a(t) is the scale
factor, Tν = 1.95 K is the present-day neutrino temperature, and ap
is the present-day momentum. Since the noise reduction scales with
the correlation between f̄ and f, we can achieve further gains by
adding more information to the background model. The obvious
next step is to use perturbation theory to improve on (2). This option
is considered in Section 7.

2.1 Implementation

In Appendix E, we outline the practical steps needed to implement the
method in cosmological N-body simulations. In essence, whenever
we sum over neutrino particles, such as when calculating the
gravitational force on a test particle, we replace the particle mass
with a statistically weighted mass:

m → mwi = m

[
δf (xi, pi, t)

g(xi, pi, t)

]
= m

[
f (xi, pi, t) − f̄ (xi, pi, t)

g(xi, pi, t)

]
.

The weights are computed by comparing the true phase-space
density with the background model. We know the background model
density, because we can evaluate (2) at any time. We also know
the true density for each particle, because Lf = Lg = 0 along
characteristic curves. It is therefore sufficient to record the two
numbers f and g at the initial sampled location of each particle
in phase space. We note that any sampling distribution g is valid
provided that g �= 0 almost everywhere f �= 0. We will continue to use
the common choice, g = f, where f is the Fermi–Dirac distribution.
In general, the optimal choice of g will depend on the phase-space
statistic of interest. Choosing a distribution, g, that oversamples
slower particles can provide an additional reduction in shot noise.

Given the homogeneous Fermi–Dirac background model (2), the
neutrino density becomes

ρν(x, t) = ρ̄ν(t) + ∑N

i=1 mwi δ(3)(x − xi).

Cosmological N-body simulations only compute the perturbed po-
tential, since the background density ρ̄ is accounted for in the back-
ground equations. The only change affecting the force calculation is
therefore the weighting of the particles.

The mean squared weight, I = 1
2 〈w2〉, is a convenient statistic

to quantify the importance of including the neutrino particles. We
show the evolution of I for a

∑
mν = 100 meV simulation with

the homogeneous background model (2) in Fig. 1. At early times,
particles deviate very little from their initial trajectory and the weights
are negligible. We find that I = 4 × 10−7 at z = 20, I = 3 × 10−6 at z =
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Figure 1. Evolution of particle weights for a
∑

mν = 100 meV cosmology,
starting at different redshifts zi. The mean squared particle weight 〈w2〉
represents the effective reduction in shot noise.

10, and I = 2 × 10−5 at z = 5. This early reduction is important as shot
noise at high redshifts inhibits the growth of physical structure and
can seed additional fluctuations that grow by gravitational instability.
At late times, when non-linear effects become important, the weights
increase to I = 2 × 10−4 at z = 2, I = 1 × 10−3 at z = 1, and
I = 6.7 × 10−3 at z = 0, independently of the starting redshift of
the simulation. This translates to a reduction in shot noise, σ =
2VI/N, or an effective increase in particle number at z = 0 by a
factor (2I)−1 = 75. Finally, we note that one can save computational
resources by integrating only a fraction of the neutrino particles as
long as I remains small. We do not consider this possibility here.

2.2 Variance reduction

The δf method is an application of the much more general control
variates method (Aydemir 1994; Ross 2012). This is a variance
reduction technique commonly used in Monte Carlo simulations. See
Chartier et al. (2021) for another recent application in cosmology.
We briefly review the method here. Let A be a random variable
with an unknown expectation E[A] = A. Given independent random
samples Ai, the standard estimator is given by

Â = 1

N

N∑
i=1

Ai.

The error in Â is

σ 2
Â = E

[
(A − Â)2

] = σ 2
A

N
.

Let B be another random variable for which the expected value
E[B] = B is known. By adding and subtracting, we can construct a
control variate estimator for A:

Âcv = 1

N

N∑
i=1

[Ai − αBi] + αB,

for any constant α. Like Â, this is an unbiased estimator of E[A].
However, the error in Âcv is given by

σ 2
Âcv

= 1
N

(
σ 2

A + α2σ 2
B − 2α cov(A, B)

)
.

Therefore, the error can be reduced if A and B are correlated.
Differentiating, we see that the optimal value of α is given by

α∗ = cov(A, B)

σ 2
B

. (3)

For the Fermi–Dirac model considered above, α∗ is very close to
unity and we simply set α = 1 at all times. In general, the value
of α∗ could be estimated at runtime. This is useful if we add more
information about the unknown variable and extend the method to
a linear combination of multiple control variates (see Section 7).
Furthermore, the method can still be useful when a control variate is
not exactly known but can be estimated more efficiently than A.

2.3 Optimality

Let us consider how the δf method compares to other methods. To
allow for the broadest possible comparison, we will write down
an arbitrary hybrid method that involves some background model,
f̄ (x, p, t), such as a fluid description or linear response, and a discrete
sampling of the distribution with arbitrary particle weights, wi(t):

fhyb(x, p, t) = α(t)f̄ (x, p, t)

+
∑

i

wi(t)δ
(3)(x − xi)δ

(3)(p − pi), (4)

where α(t) is a weight function for the background. This parametriza-
tion captures virtually all existing methods. The ordinary N-body
particle method corresponds to (α, wi) = (0, 1) at all times. Pure
grid-based methods have (α, wi) = (1, 0). Existing hybrid methods
switch over from a grid method to a particle method after some time
ts, which corresponds to (α, wi) = (1 − q, q) with q(t) = I[t ≥ ts] a step
function. For simplicity, we consider only the case where all particles
are switched on at the same time, but the argument extends readily to
the more practical case where only some particles are switched on.
Given a choice of weight function, α(t), for the background, what
choice of particle weights is optimal?

Let f(x, p, t) be the non-linear distribution and g(x, p, t) the sampling
distribution of the markers. In the continuous limit, the expected error
in the number density is given by

〈ε〉 =
∫

d3p fhyb(x, p, t) −
∫

d3p f (x, p, t)

=
∫

d3p
(
w(x, p, t)g(x, p, t) + α(t)f̄ (x, p, t) − f (x, p, t)

)
.

Meanwhile, the shot noise term in the power spectrum grows as the
square of the particle weights, so we want to minimize

1
2

〈
w2

〉 =
∫

d3p 1
2 w(x, p, t)2g(x, p, t),

subject to the constraint 〈ε〉 ≤ η for some maximum error η. Assume
that the bound is saturated. First, let us look for solutions that
extremize the integral constraint. We find the unique solution

w = δf

g
with δf = f − αf̄ . (5)

This is the δf method introduced above, with optimal α given by (3).
Any further solution should extremize the Lagrangian,

L = 1
2 w(x, p, t)2g(x, p, t)

+λ
(
w(x, p, t)g(x, p, t) + α(t)f̄ (x, p, t) − f (x, p, t)

)
.

Writing down the Euler–Lagrange equations

[w + λ] g∇pw + 1
2 w2∇pg + λw∇pg = λ∇pf − αλ∇pf̄ ,
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one finds a family of quadratic solutions

w = −λ ±
√

λ2 + 2λ
δf

g
with δf = f − αf̄ .

The case λ = 0 corresponds to the trivial solution w = 0. For λ �= 0,
we obtain the minima

w = δf

g
− 1

2λ

(
δf

g

)2

+ O
(

1

λ2/3

δf

g

)3

. (6)

These solutions correspond to small perturbations around the δf
method that trade some accuracy for a possible reduction in shot
noise. However, since the leading correction is ∝ (δf)2, this is
only possible if the background model is skewed with respect to
the non-linear solution. Typically, the skewness and the additional
reduction in shot noise are negligible. In fact, since the next-to-
leading correction is positive, shot noise increases if the skewness is
small.

We have shown that within the broad class of hybrid methods
described by equation (4), δf-type methods of the form (6) minimize
the amount of shot noise, subject to the constraint that the error in
the number density remains below a certain bound. The δf method
given by (5), recovered from (6) in the limit λ → ∞, is the unique
solution for which the expected error 〈ε〉 = 0. The optimal value of
α is given by (3), but will be close to 1 if f̄ ≈ f . This is the method
we will use exclusively, with the choice α = 1.

3 1 D EXAMPLE

We now illustrate the method by applying it to a 1D test problem with
a known solution. Readers that are satisfied with the mathematical
derivation may skip ahead to Section 4.

3.1 The elliptical sine wave

Consider the 1D collisionless Boltzmann equation

∂f

∂t
+ p

∂f

∂x
− ∂�

∂x

∂f

∂p
= 0,

where the particles move under a conservative force F(x) = −�
′
(x).

Let us assume a periodic potential given by

�(x) = sin2(x/2).

The steady-state solution can be found to be:

f (x, p) = ρ̄√
2πσ 2

exp

(
− p2

2σ 2
+ cos(x)

2σ 2

)
,

in terms of the background density ρ̄ and velocity dispersion σ . The
corresponding density profile ρ(x) is given by

ρ(x) =
∫ ∞

−∞
f (x, p)dp = ρ̄ exp

(
cos(x)

2σ 2

)
.

To find the general time-dependent solution, we use the method of
characteristics. The characteristic equations are

dx

dt
= p,

dp

dt
= −1

2
sin(x).

These equations of motion can be solved in terms of the energy
E = 1

2 p2 + sin2(x/2), which gives

sin(x/2) = sn
(
±
√

E/2(t − τ )
)

,

where τ is an integration constant and sn(x) is the Jacobi elliptic
sine function with elliptic modulus k = 1/

√
E (Weisstein 2002).1

Assuming a homogeneous Gaussian distribution with mean p̄ for the
initial momenta p at time t = 0,

f (x, p, 0) = ρ̄√
2πσ 2

exp

(
− (p − p̄)2

2σ 2

)
, (7)

the general solution, f(x, p, t), at later times is a complicated
expression involving elliptic sines and arcsines. The details are given
in Appendix A. We replicate the problem using N-body methods. A
large number of particles are initialized on the interval x ∈ [0, 4π ]
with momenta drawn from the initial distribution (7). The particles
are then integrated using

�x = p�t, �p = −1

2
sin(x)�t.

In addition to the ordinary N-body method, we use a δf method,
where the background model is given by

f̄ (x, p, t) = ρ̄√
2πσ 2

exp

(
− (p − p̄)2

2σ 2

)
,

and the weights are updated during each step via w = δf/f. The
corresponding density profiles are shown in Fig. 2. The plots were
created using N = 106 particles and the model parameters are ρ̄ =
σ = 1 and p̄ = 10. The results show that both the ordinary N-body
simulation and the simulation with a δf step can reproduce the exact
solution. However, the ordinary method is very noisy, whereas the δf
method reproduces the expected profiles with remarkable accuracy.
The reason for this is that while the distribution itself has a large
dispersion, resulting in noisy results for the ordinary method, the
perturbations from the steady solution are small, which allows the
δf method to work. This is exactly analogous to the cosmic neutrino
background.

4 R ELATIVISTIC EFFECTS

Neutrinos constitute a relativistic fluid at early times, which intro-
duces some subtleties when evolving such a fluid with a Newtonian
code. Including relativistic effects is not necessary for the δf method,
but we include them in our simulations to allow for a consistent
comparison with recent works (Adamek et al. 2017; Tram et al. 2019;
Partmann et al. 2020). Furthermore, the higher order δf methods
discussed in Section 7 provide a natural setting for including these
effects without neglecting the non-linear evolution of the neutrinos.
We will work in the Newtonian motion framework of Fidler et al.
(2017a) and make modifications to the initial conditions, long-
range force calculation, and particle equations of motion as outlined
below.

4.1 Initial conditions

To generate initial conditions for massive neutrinos and to set-up the
higher order background models (Section 7), accurate calculation of
the linear theory neutrino distribution function is indispensable. This
can be done with the Boltzmann codes CAMB (Lewis & Challinor
2011) and CLASS (Lesgourgues 2011). At their default settings, these
codes produce accurate total matter and radiation power spectra

1For E → ∞, we have sn x → sin x, meaning that x ∝ t. The particle
‘ignores’ the potential. For E = k = 1, sn x = tanh x, meaning the particle
asymptotically approaches a potential peak. For E < 1, the particle is bounded
and oscillates between peaks.
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An optimal non-linear neutrino method 2619

Figure 2. Density profiles for the 1D elliptical sine wave test problem. We counted particles in 100 bins of width �θ = 4π /100 to create the empirical density
profiles. On the left, an ordinary N-body simulation with N = 106 particles was used. On the right, the N-body simulation was extended with a δf step.

(their intended purpose), but the neutrino related transfer functions
(e.g. density and velocity) are not converged and can be very
inaccurate (Dakin et al. 2019). To obtain converged results, we
post-process perturbation vectors from CLASS by integrating source
functions up to multipole �max = 2000. This prevents the artificial
reflection that can happen for low �max. See Appendix B for more
details.

Initial conditions are then created using the post-processed transfer
functions from CLASS in N-body gauge at z = 100. We do not
follow the usual approach of back-scaling the present-day power
spectrum, but use the so-called forward Newtonian motion approach
(Fidler et al. 2015, 2017a). To our knowledge, forward Newtonian
motion initial conditions have always been set-up with the Zel’dovich
approximation. However, this approximation is known to be inad-
equate for precision simulations (Crocce, Pueblas & Scoccimarro
2006). To go beyond Zel’dovich initial conditions, we determine the
Lagrangian displacement vectors ψ = x − q by solving the Monge–
Ampère equation

ρ(x) = ρ̄(1 + δ(x)) = det

[
1 + ∂ψi(x)

∂qj

]−1

.

This equation is solved numerically with a fixed-point iterative
algorithm that exploits the fact that the density perturbation δ is
small. We note that this approach is not equivalent to Lagrangian
perturbation theory, but merely provides a more accurate map from
the Eulerian initial density field to a Lagrangian displacement field
compared to the Zel’dovich approximation. A detailed analysis of
this method will be presented elsewhere. Velocities were determined
independently using the transfer function for the velocity dispersion
θ = ik · v.

We used two methods for setting up the neutrino particles. In
the first method, neutrino particles are displaced randomly in phase
space according to the perturbed phase-space density function, fPT(x,
p, t), including terms up to � = 5. This method was used for our
(256 Mpc)3 simulations. In the second method, which accounts also
for higher multipoles, neutrino particles are integrated in linear theory
from z = 109 to z = 102 (Ma & Bertschinger 1994a; Adamek et al.
2017). Both methods produce the same result on small scales, but
the latter method was found to be more accurate on large scales,
k < 10−2 Mpc−1. For this reason, we used the second method for
our (1 Gpc)3 simulations.

4.2 Long-range forces

In a relativistic setting, the gravitational evolution is governed by
the Einstein–Boltzmann equations. We will approximate this system
using a hybrid approach (Brandbyge et al. 2017), in which dark
matter and massive neutrinos are evolved using a Newtonian N-
body code complemented with relativistic corrections to the fluid
equations that are pre-solved in linear theory. We will work in N-
body gauge, which allows the fluid equations for dark matter to be
written in a particularly convenient form resembling the Newtonian
equations solved by conventional N-body codes. The continuity and
Euler equations can then be written as (Fidler et al. 2015, 2017b)

δ̇ + ∇ · v = 0,

v̇ + aHv = −∇φ + ∇γ Nb,

where overdots denote conformal time derivatives, δ is the density
contrast, v the peculiar velocity, and H = ȧ/a2. All relativistic cor-
rections are captured by the N-body gauge term, ∇γ Nb, which arises
from the anisotropic stress of relativistic species. In addition, the
scalar potential φ receives contributions from all fluid components:

∇2φ = 4πGa2
∑

i

δρi,

where the sum runs over cold dark matter, baryons, neutrinos, and
photons. Density perturbations are actively calculated for all species.
In the case of massive neutrinos and the cold dark matter and baryon
fluid, this is done with particles in the usual way. For photons and
massless neutrinos (and for some runs, the massive neutrinos2),
this is done by realizing the corresponding transfer functions from
CLASS on a grid as part of the long-range force calculation in our
N-body code SWIFT.

In the absence of relativistic species, the N-body gauge term,
∇γ Nb, vanishes and the continuity and Euler equations agree with
the Newtonian equations solved in conventional N-body codes. This
makes N-body gauge useful as it allows one to set up initial conditions
in N-body gauge, evolve them in a Newtonian simulation, and give
the results a relativistic interpretation. The relativistic corrections
become relevant at the 0.5 per cent level on the largest scales in

2Specifically, the linear theory runs and the runs with higher order δf methods,
as discussed in Sections 6 and 7, respectively.
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2620 W. Elbers et al.

our Gpc simulations. Ordinarily, these corrections are accounted
for in the initial conditions by backscaling the present-day linear
power spectrum, ensuring that the linear power spectrum is recovered
on large scales at z = 0. Here, instead, we actively include these
contributions with the aim of recovering the linear power spectrum
at earlier times as well.

4.3 Particle content

When simulating light neutrinos from high redshifts, we are evolving
relativistic particles in a Newtonian simulation. Such particles
can reach superluminal speeds when evolved using the ordinary
equations of motion. Following Adamek et al. (2016), we initially
addressed this issue by replacing the equations of motion with special
relativistic equations that are valid to all orders in u:

u̇ = − 2u2 + a2

√
u2 + a2

∇ (
φ − γ Nb

)
, (8)

ẋ = u√
u2 + a2

. (9)

Here, a is the scale factor and u the comoving 3-velocity. However,
we encountered two problems with our original approach. The first
is that a direct leapfrog implementation of these equations is not
symplectic due to the fact that the right-hand side of (8) depends on
u. As a consequence, phase-space density is not exactly conserved
by the discrete Hamiltonian, as assumed by the δf method. We
investigate this issue further in Appendix D, where we offer an
alternative solution and conclude that this is not an issue in practice.
The second problem is that using these equations, we did not exactly
reproduce linear theory on large scales. We found that this was due to
a breakdown of (8) in the ultra-relativistic limit. While it is possible
to include relativistic corrections to the acceleration in a manner
that is consistent with linear theory3, a simple alternative is to use
the special relativistic equation (9) together with the non-relativistic
version of (8):

u̇ = −a∇ (
φ − γ Nb

)
. (10)

This choice not only ensures that the neutrinos move the correct
subluminal distance and that the integrator is symplectic, but also
avoids the problem on large scales. We used this second approach
for our Gigaparsec simulations. On small scales, the evolution of the
neutrinos at late times is insensitive to their early evolution, making
the difference between (8) and (10) immaterial. For this reason, we
present the original results for our 256 Mpc simulations, which used
the first approach with (8) and (9).

A separate matter from the equations of motion is that the neutrinos
have a relativistic energy at early times. Using only the mass–energy,
as is done for non-relativistic matter, leads to underestimation of
the matter power spectrum on large scales. To rectify this, we
replace the weighted mass of the particles with a weighted energy
ε = m

√
a2 + u2. Here, again the issue of the symplectic integrator

plays a role. To ensure that u̇ does not depend on current particle
velocities, we used the alternative form ε = m

√
a2 + u2

0 for our
Gigaparsec simulations. Here, u0 is the initial particle velocity at
z = 100. This approximation is extremely accurate, as substantial
deviations from u0 only occur for slow particles at late times in
which case the mass term dominates (see Appendix D). For the 256
Mpc simulations, we used the original form ε = m

√
a2 + u2.

3This is important at early times and therefore relevant for generating neutrino
initial conditions (Elbers, Frenk, Jenkins, Li and Pascoli, in preparation).

Table 1. Description of the simulations. The listed particle mass, mp, refers
to the combined cold dark matter and baryon particles. The neutrino fraction
is listed as fν = �ν /(�cb + �ν ).

Side Length Nc mp
[

M�
]

Nν

∑
mν fν

1024 Mpc 10243 3.96 × 1010 0 0 meV 0
1024 Mpc 10243 3.93 × 1010 10243 100 meV 0.0073
1024 Mpc 10243 3.81 × 1010 10243 500 meV 0.0376
256 Mpc 5123 4.95 × 109 0 0 meV 0
256 Mpc 5123 4.92 × 109 10243 100 meV 0.0073
256 Mpc 5123 4.77 × 109 10243 500 meV 0.0376

5 SI M U L AT I O N S

We now describe our neutrino simulations, which were run on the
COSMA6 computing facility in Durham. We have implemented the
δf method in the cosmological hydrodynamics code SWIFT (Schaller
et al. 2016, 2018). SWIFT uses a combination of the Fast Multipole
Method for short-range gravitational forces and the Particle Mesh
method for long-range forces. It uses a 5th degree polynomial kernel
for the force softening with a single time-dependent softening length.
The code uses a task-based parallelization paradigm to achieve strong
scaling on large clusters and obtain significant speed-ups over com-
peting N-body codes. The main simulations presented in this paper
use the basic version of the δf method with a homogeneous Fermi–
Dirac distribution as background model. Our choice of cosmological
parameters, based on Planck 2018 (Planck Collaboration VI 2020),
is (h, �c + �ν , �b, As, ns) = (0.6737, 0.265, 0.0492, 2.097 × 10−9,
0.9652). We run two sets of simulations at different resolution to test
the large-scale and small-scale behaviour of various methods. The
cube sizes and particle numbers are listed in Table 1.

5.1 Choice of neutrino masses

Neutrino oscillations indicate that there are three neutrino mass
eigenstates with unknown masses mi. The mass splittings have been
measured with good precision to be

�m2
21 ≡ m2

2 − m2
1 = 7.42+0.21

−0.20 × 10−5 eV2,

�m2
3� ≡ m2

3 − m2
� =

{
+2.514+0.028

−0.027 × 10−3 eV2 (NO),

−2.497+0.028
−0.028 × 10−3 eV2 (IO).

The sign of �m2
21 is known to be positive, which leaves two possible

mass orderings: m1 < m2 < m3 with � = 1 (normal) or m3 < m1 <

m2 with � = 2 (inverted). Current oscillation data slightly favour the
normal ordering at 1.6σ (Esteban et al. 2020).

The best terrestrial constraint on the absolute mass scale comes
from the KATRIN detector, which places a bound of mβ < 0.8 eV
at the 90 per cent C.L. on the effective neutrino mass (Aker et al.
2021). Assuming a quasi-degenerate mass spectrum, this corresponds
to a neutrino mass sum of

∑
mν < 2.4 eV. Recent cosmological

limits are much stronger and are quoted below at the 95 per cent
C.L. Assuming a degenerate mass spectrum, the Planck temperature,
polarization, and lensing likelihoods give a constraint of

∑
mν <

0.24 eV or
∑

mν < 0.26 eV, depending on the details of the high-
� polarization analysis (Planck Collaboration VI 2020). Adding
BAO data from BOSS DR12, MGS, and 6dFGS, Choudhury &
Hannestad (2020) found

∑
mν < 0.12 eV (degenerate),

∑
mν <

0.15 eV (normal), and
∑

mν < 0.17 eV (inverted). An analysis of the
shape of the BOSS DR11 redshift-space power spectrum, combined
with CMB data and Type 1a supernovae leads to

∑
mν < 0.18 eV
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(Upadhye 2019). Adding instead the latest SDSS DR14 BOSS and
eBOSS Lyman-α forest data to the Planck and BAO data leads to the
strongest constraint:

∑
mν < 0.09 eV (Palanque-Delabrouille et al.

2020).
Given these limits, we consider three values for

∑
mν , keeping

the present-day value �m, 0 = �cb, 0 + �ν, 0 fixed. Scenario one
contains three massless neutrinos, scenario two corresponds to the
inverted mass ordering with

∑
mν = 100 meV,4 and scenario three to

a degenerate spectrum with
∑

mν = 500 meV. The first two models
bracket the most interesting range of values 0 <

∑
mν < 100 meV.

The last model has surely been ruled out, but is included for several
reasons. First of all, the δf method reduces to the ordinary particle
method in the large mass limit at late times. Hence, the

∑
mν =

500 meV case provides a useful consistency check. Secondly, when
simulations are used to emulate statistics for parameter extraction, we
should allow for unlikely excursions in MCMC analyses without our
simulation methods breaking down (Partmann et al. 2020). Finally,
in the extended parameter space around �CDM, for example with
a non-standard lensing amplitude, AL, or curvature, or when varying
the dark energy equation of state, the possibility of larger neutrino
masses remains very relevant (McCarthy et al. 2018; Upadhye 2019;
Choudhury & Hannestad 2020; Di Valentino, Melchiorri & Silk
2020).

The two massive scenarios considered in this paper have degen-
erate neutrino masses (2 × 50 meV and 3 × 167 meV). However,
the δf method can easily be extended to account for mass splittings.
In that case, particles would be labelled with a given mass state,
i, and each state would have its own background model, f̄i . The
reduction in shot noise is largest for the smallest neutrino masses,
placing different masses on a level footing. This allows for better
load balancing between different neutrino masses.

6 R ESULTS

We compare our neutrino δf method with three commonly used alter-
natives. The most common alternative is the ordinary N-body particle
method, which is the same in every respect as our method, but with
the weighting step disabled. Next, we consider a linear theory method
based on Tram et al. (2019) that does not evolve neutrino particles
but instead realizes the linear theory neutrino perturbation in N-body
gauge on a grid. The neutrinos are then fully accounted for in the
long-range forces. Finally, we consider the linear response method
of Ali-Haı̈moud & Bird (2012) in which the neutrino perturbation
is calculated by applying the linear theory transfer function ratio,
δlin
ν (k)/δlin

cdm+b(k), to the simulated cdm+baryon phases.
A visual inspection of the neutrino density plots shown in Figs 3

and 4 reveals the strengths and weaknesses of the four methods.
Broadly, we see that the linear theory method does not suffer from
shot noise, but fails to reproduce the small-scale behaviour resolved
by the particle and δf methods. At the same time, shot noise is clearly
visible in the particle simulation with

∑
mν = 100 meV, despite

using Nν = 10243 particles in a 256 Mpc cube. This is evidently
cured in the δf plot. We also see that shot noise is much less of a
problem for

∑
mν = 500 meV, but the δf plot is still less grainy

than the corresponding particle plot. Finally, Fig. 4 shows that the
linear response method greatly improves on the pure linear theory
prediction, but still produces neutrino haloes that are too diffuse
compared to the particle and δf simulations.

4Specifically, two 0.0486 eV neutrinos and one massless neutrino.

6.1 Neutrino component

We start with an analysis of the probability density function of the
neutrino density field, computed on a 10243 grid from the 256 Mpc
simulations. Refer to the plots in Fig. 5, which bear out the basic
picture sketched above. For the

∑
mν = 100 meV neutrinos, the

particle method is plagued by shot noise, but agrees with the δf
method in the high-density tail where the particle number is sufficient
to obtain a good signal-to-noise ratio. The linear prediction fails in the
high and low-density tails. Finally, the linear response method, which
applies the linear theory ratio δν(k)/δcdm+b(k) to the cdm+baryon
phases, is an intermediate case between the linear theory and δf
methods. For the more massive scenario, the situation is much the
same, except that shot noise is much less of a problem for the particle
method on these scales.

Next, we consider two-point statistics and show the neutrino
power spectrum at z = 0 in Fig. 6, combining the large and
small simulations to show a wide range of scales. We use the Gpc
simulations for k < 0.1 Mpc−1 and the 256 Mpc simulations for
k ≥ 0.1 Mpc−1. As expected, all methods agree on scales greater
than k = 0.1 Mpc−1 for both neutrino masses. On smaller scales,
linear theory significantly underpredicts the amount of neutrino
clustering. The linear response method also underpredicts the neu-
trino power spectrum, but not by as much. The relative difference
between the non-linear power spectrum and linear power spectrum
is greater for neutrinos than for cdm and baryons. To account for
this effect, we fit a non-linear correction to the linear response
power spectrum using the measured δf power spectrum up to
k = 1 Mpc−1:

P fit
ν (k) = Pcdm+b(k)

[
δlin
ν (k)

δlin
cdm+b(k)

]2

eα+βk, (11)

and find α = 0.006 ± 0.004 and β = 0.90 ± 0.01 (
∑

mν = 100 meV)
and α = −0.06 ± 0.03 and β = 0.34 ± 0.09 (

∑
mν = 500 meV).

These are shown as the red curves in Fig. 6.
The particle simulations are clearly affected by shot noise, at the

level of V/N = 1/64, obscuring the neutrino signal on scales smaller
than k = 0.2 Mpc−1 for the lightest scenario and on scales smaller
than k = 1 Mpc−1 for the more massive scenario. Using the δf method,
shot noise is significantly reduced in the former case (factor of 87)
and slightly reduced in the latter case (factor of 3.5), revealing a
signal down to k = 1–2 Mpc−1. Hence, δf simulations can achieve
a similar resolution independently of mass without adjusting the
particle number.

We also show the cross-spectral coefficient

rν,cb(k) = Pν,cb(k)√
Pν(k)Pcb(k)

,

which captures phase differences between the dark matter and
neutrinos. By definition, rν,cb = 1 according to the linear response
method. However, this does not hold on small scales as can be seen
in the bottom panels. Up to the point where shot noise becomes a
problem, the particle and δf methods agree, demonstrating that rν,cb

< 1. This is particularly clear for
∑

mν = 500 meV.
Next, we consider how well the simulations can resolve the ex-

tended neutrino haloes surrounding galaxies and clusters (Brandbyge
et al. 2010; Villaescusa-Navarro et al. 2011). In Fig. 7, we show
stacked neutrino profiles for haloes with virial mass Mcdm+b in the
range (5, 12) × 1014 M�. The particle and δf methods agree almost
perfectly, once again because of the high signal-to-noise ratio in
the largest overdensities. In linear theory, the neutrino haloes are
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2622 W. Elbers et al.

Figure 3. Neutrino density plots of (256 Mpc)3 cubes at z = 0, simulated with two commonly used methods and with the δf method. The particle and δf
simulations used Nν = 10243 particles. Shot noise is clearly visible for the particle method, although noticeably less so for

∑
mν = 500 meV. The linear theory

model fails to reproduce the small-scale behaviour. The δf method solves both problems. The inset zooms in on a neutrino halo and should also be compared
with the linear response prediction in Fig. 4, which uses the same colour scale. The neutrino fraction fν = �ν /(�cb + �ν ) = 0.0073 for the top row and fν =
0.0376 for the bottom row.

completely absent as is evident also from the cross-sections in Fig. 3.
Finally, the linear response method predicts neutrino haloes that are
too diffuse compared to the non-linear simulations, and with too little
dispersion from the mean profile. The larger dispersion found in the
non-linear simulations is not due to errors in individual profiles, but
due to a stronger correlation between Mcdm+b and the local neutrino
density.

6.2 Neutrino bias

On larger scales, the neutrino density field can be reconstructed from
the density of haloes for a given neutrino mass spectrum (Inman et al.
2015). We therefore construct the halo overdensity field,

δh(x) = nh(x) − n̄h

n̄h
,

by calculating the number density, nh(x), of haloes and the mean
density, n̄h, at z = 0 in our Gpc simulations identified using the halo
finder VELOCIRAPTOR (Elahi et al. 2019). We restrict attention to
haloes with virial mass, Mcdm+b > 1012 M�, and smooth δh and δν

with a tophat filter of comoving radius R = 30 h−1 Mpc. Following
Yoshikawa et al. (2020), we study the mean neutrino density at
constant halo density δ̄ν(δh), defined in terms of the joint probability
density function P(δν , δh) as

δ̄ν(δh) =
∫

dδνδνP (δν, δh).

This relationship is close to linear with slope equal to the neutrino
bias, given by

b = 〈δνδh〉
〈δ2

h〉
.

The degree of non-linearity is captured by

ε2
nl =

〈
δ2

h

〉 〈
δ̄2
ν

〉
〈
δ̄νδh

〉2 − 1,

which satisfies εnl = 0 if and only if the slope of δ̄ν(δh) is independent
of δh. The scatter around the biasing relationship is characterized by
the stochasticity,

ε2
stoch =

〈
δ2

h

〉 〈
(δν − δ̄ν)2

〉
〈
δ̄νδh

〉2 .

The non-linearity and stochasticity are related to the correlation
coefficient,

rν,h = 〈δνδh〉√
〈δ2

ν 〉〈δ2
h〉

,

via rν,h � (1 + ε2
nl + ε2

stoch)−1/2. This model is analogous to the non-
linear stochastic galaxy biasing model of Taruya & Suto (2000)
and Yoshikawa et al. (2001). We compute the four quantities
(b, ε2

nl, ε
2
stoch, rν,h) for each of the methods under consideration. The

results are listed in Table 2 and the biasing relationship is shown in
Fig. 8. As expected on these large scales, we find good agreement
with differences of a few per cent in the bias. The greater the level of
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An optimal non-linear neutrino method 2623

Figure 4. Density plots of (256 Mpc)3 cubes at z = 0. The linear response method applies the linear theory ratio δlin
ν (k)/δlin

cb (k) to the simulated cdm+baryon
phases (Ali-Haı̈moud & Bird 2012). Compared to the linear theory prediction, it performs remarkably well, but the neutrino haloes around clusters are
significantly more diffuse compared to the particle and δf simulations (compare the zoomed in halo with the δf prediction in Fig. 3). The resulting potential
difference is shown in the last column, with flowlines indicating the forces that are not present in the linear response model.

Figure 5. Neutrino probability density functions (pdf) at z = 0, computed on a 10243 grid from the 256 Mpc simulations, and smoothed with a Gaussian filter
with radius R = 256 kpc. We compare the δf method with three commonly used alternatives. The particle and δf methods agree in the high density tail, because
the largest overdensities have enough particles to achieve a high signal-to-noise ratio. Shot noise plagues the particle method, particularly in underdense regions.
The linear methods fail in the high density tail.

neutrino clustering resolved by a given method, the greater the bias
b and correlation rν,h. The stochasticity follows the opposite pattern.
The non-linearity follows no such pattern, but is very small in each
case except (amusingly) for the linear theory runs. This is because
linear theory does not resolve neutrino haloes, causing the δ̄ν(δh)
relation to level off in the high-density tail.

The bias b = 0.103 for the 100 meV scenario is in excellent
agreement with the bias b = 0.071 found by Yoshikawa et al.
(2020), when the difference in mass ordering is factored in using
the approximately linear relationship between neutrino mass and
bias in their results. Yoshikawa et al. (2020) do not consider neutrino
masses beyond 400 meV, but our finding of b = 0.256 for 500
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2624 W. Elbers et al.

Figure 6. Neutrino power spectra at z = 0. We compare the δf method with three commonly used alternatives. Shot noise enters the power spectrum at the
constant level V/N = 1/64 for the particle method. We also show a fit to the δf power spectrum (red curves), given by equation (11). The bottom panels show the
cross-spectral coefficient rν,cb = Pν,cb/

√
PνPcb.

Figure 7. Stacked neutrino density profiles at z = 0 for haloes with virial mass Mcdm+b in the range (5, 14) × 1014 M�, computed with four different methods
from the 256 Mpc simulations. The particle and δf curves overlap almost perfectly. The shaded area indicates the 1σ dispersion around the mean profile.

meV is slightly lower than expected when extrapolating from their
results. We also find a larger stochasticity and smaller correlation than
might be expected, although the small non-linearities agree. Given
the mutual agreement between the different runs in Table 2, these
differences are unlikely to be due to our choice of neutrino method.
Differences in the N-body code or the identification of haloes could
also affect this comparison.

6.3 Matter power spectrum

The suppression of the total matter power spectrum at z = 0, relative
to a massless neutrino cosmology, is shown in Fig. 9. We see that

all methods are in excellent agreement and reproduce the famous
spoon-like feature, which has recently been explained in terms of the
halo model (Hannestad, Upadhye & Wong 2020). The differences
between the methods are most pronounced around k = 0.6 Mpc−1,
where the suppression is largest. The inset graphs zoom in on these
scales. For both neutrino masses, the δf method predicts a smaller
suppression than the particle and linear methods. This is in line with
expectation, as the additional small-scale neutrino clustering, which
is obscured by shot noise in the particle method and absent in linear
theory, slightly offsets the suppression. Accordingly, the pure linear
theory method predicts the least neutrino clustering and the largest
suppression. It is interesting to see that the particle and δf methods
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Table 2. Neutrino bias relative to dark matter haloes on scales R = 30 h−1

Mpc. Listed are the bias, b; non-linearity, ε2
nl; stochasticity, ε2

stoch; and the
correlation coefficient, rν,h.

Method b ε2
nl ε2

stoch rν,h

100 meV δf method 0.1032 0.0022 0.4883 0.8195
Particle method 0.1028 0.0021 0.4955 0.8176
Linear response 0.1015 0.0022 0.5065 0.8146
Linear theory 0.0987 0.0206 0.5878 0.7889

500 meV δf method 0.2556 0.0014 0.1969 0.9137
Particle method 0.2546 0.0017 0.1927 0.9152
Linear response 0.2502 0.0019 0.2031 0.9112
Linear theory 0.2404 0.0257 0.2902 0.8719

do not agree for �mν = 500 meV, despite having similar neutrino
power spectra at z = 0. This is most likely due to shot noise at
high redshift in the particle simulation. Compared to the cold dark
matter and baryon fluctuations, the shot noise itself is negligible
at z = 0, but it has two possible effects on structure formation at
earlier times. It could seed non-physical density fluctuations or the
random motions of neutrinos could obscure their real contribution
to the growth of physical structure. Our results suggest that the
latter effect dominates. In either case, these effects highlight the
importance of using a hybrid method that eliminates shot noise at
high redshift. The differences between the methods are at the per
mille level, corresponding to a shift in neutrino mass of several meV.
In absolute terms, the differences are larger for

∑
mν = 500 meV,

but less important overall.
The horizontal line corresponds to the empirical fitting formula,

�P/P = −9.8fν (Brandbyge et al. 2008). Compared to this formula,
we find a slightly greater suppression in each case, regardless of the
method used to model the neutrinos. For the 100 meV simulations,
this can be attributed to our use of the inverted mass ordering. The∑

mν = 500 meV case is perhaps more surprising, but seems to be
in line with recent works. For example, Partmann et al. (2020) find
increasingly larger differences with the fitting formula for increasing
masses, although they do not consider models with

∑
mν > 300

meV.
Globally, the agreement between these very different methods

is an encouraging sign and suggests that we have a good handle
on the effects of massive neutrinos on the matter power spectrum.
The differences, at most a few per mille, may perhaps be relevant
when trying to distinguish the effects of individual neutrino masses
(Wagner, Verde & Jimenez 2012).

7 H I G H E R O R D E R δf M E T H O D S

The performance of the δf method scales with the correlation between
the non-linear solution f(x, p, t) and the background model f̄ (x, p, t),
so it is worth investigating other background models. We can go
beyond the zeroth-order Fermi–Dirac model by including the linear
theory prediction. In that case, the distribution function can be written
as

f̄ (x, p, t) = fFD(x, p, t) [1 + �(x, p, t)] , (12)

where the perturbation is decomposed into multipole moments (Ma &
Bertschinger 1995),

�(k, p, t) =
∞∑

�=0

(−1)�(2� + 1)��(t, k, q)P�(k̂ · n̂).

Here, P�(·) are Legendre polynomials and the coefficients �� satisfy
an infinite hierarchy of moment equations. The Legendre represen-
tation yields simple expressions for the first few fluid moments, but
is cumbersome for evaluating the distribution function itself. For
our purposes, it is more convenient to use the following monomial
representation:

�(k, n̂, q, τ ) = ∑∞
�=0 i���(k, q, τ )(k · n̂)�,

where for a given �max, the odd (even) ��(x, q, t) can be expressed in
terms of all the odd (even) �m(x, q, t) with m ≤ �. See Appendix C for
details. With this choice of background model, the density integral
becomes

ρ(x) = ρ̄ [1 + δν(x)] + ∑N

i=1

√
m2 + p2

i wi δ(3)(x − xi),

with particles weights wi = δf/f and f̄ given by (12). Here, δν(x) is
the linear neutrino overdensity, which is calculated using CLASS. The
effect of the δν perturbation should now be included in the long-range
force calculation.

As shown in Fig. 10, adding the multipoles �0 and �1 significantly
improves the correlation and therefore reduces the shot noise by
almost 50 per cent. It is likely that higher order terms could contribute
meaningfully too, as the multipole expansion converges only slowly.
However, most of the gain is due to the zeroth-order term, which on
its own is much easier to implement.

8 D I SCUSSI ON AND C ONCLUSI ONS

Shot noise in N-body simulations is a major obstacle to modelling
the non-linear evolution of light relic neutrinos. In this paper, we
demonstrate that the δf method, which decomposes the neutrino
distribution into an analytically tractable background component, f̄ ,
and a non-linear perturbation, δf, carried by the simulation particles,
is an effective variance reduction technique. The reduction in shot
noise scales with the dynamic particle weights, parametrized by
I = 1

2

〈
w2

〉
. Because the weights are negligible until very late times,

the simulation is mostly immunized against the effects of shot noise.
Furthermore, shot noise is greatly reduced even at z = 0, which
makes it possible to resolve neutrino clustering down to much smaller
scales than is possible with conventional methods. Using higher order
versions of the δf method, which incorporate additional information
from perturbation theory, shot noise can be reduced by another factor
ofO(2), and possibly more if moments �> 2 are included. Additional
reduction in shot noise is possible by carefully tuning the sampling
distribution of the marker particles.

The reduction in shot noise is more significant for smaller
neutrino masses, because faster particles deviate less from their initial
trajectory, resulting in smaller weights. This is fortunate as shot noise
is most problematic for the fastest neutrinos. More generally, particles
whose trajectories are not perturbed have negligible weights, whereas
particles that are captured by haloes have appreciable weights. This is
again fortunate, because particles are needed in the vicinity of haloes
where grid methods tend to fail, while the unperturbed particles
contain no information and contribute only noise. In between these
extremes, particles will have intermediate weights. In this way, the δf
method ensures an optimal combination of particles and background.

The method can in principle be combined with any grid or
fluid background model to obtain an optimal hybrid method. Any
simulation that evolves neutrino particles can be extended with a
weighting step to minimize the shot noise as outlined in Section 2.3.
It is not necessary, as was done here, to evolve the neutrino particles
from the beginning. The I-statistic from a reference simulation can
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Figure 8. Neutrino bias relative to dark matter haloes with virial mass, Mcdm+b > 1012 M�, on scales, R = 30 h−1 Mpc, computed with four different methods
from the Gpc simulations at z = 0. The δ̄ν (δh) relationship is approximately linear with slope equal to the neutrino bias b.

Figure 9. Total matter power spectra at z = 0, relative to a massless neutrino cosmology. The plots are based on (1024 Mpc)3 simulations with Ncb = 10243

and (for the particle and δf methods) Nν = 10243 simulation particles. The horizontal line is the empirical fitting formula, �P/P = −9.8fν .

be used to gauge when the neutrinos become non-linear and at what
point they can safely be introduced (see Fig. 1).

We know from neutrino oscillations that at least one neutrino has
a mass mν � 0.05 eV. Our results indicate that even for masses close
to that bound, neutrinos are not particularly well modelled by linear
approximations. For instance, the linear response neutrino power
spectrum is off by 10 per cent (60 per cent) at k = 0.1 Mpc−1 (k =
1 Mpc−1) at z = 0, and the pure linear theory prediction is off
by 14 per cent (96 per cent). Because the neutrinos make up only
a small fraction of the total mass, the effect on the matter power
spectrum is at most a few per mille. This is the level at which the
mass splittings are important (Wagner et al. 2012). Other statistics
may be affected at a greater level, particularly if they are more
sensitive to neutrino effects. For example, we have shown that the
neutrino bias relative to dark matter haloes is affected at the per cent
level on 30 h−1 Mpc scales. In addition, some novel probes may

require accurate modelling of the neutrino dynamics around haloes,
such as the neutrino-induced dynamical friction (Okoli et al. 2017)
and torque (Yu, Pen & Wang 2019) on haloes. By reducing shot noise
without neglecting non-linear terms, the δf method makes it feasible
to calculate these effects even for the lightest neutrinos.
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Villaescusa-Navarro F., Miralda-Escudé J., Peña-Garay C., Quilis V., 2011,

J. Cosmol. Astropart. Phys., 2011, 027
Villaescusa-Navarro F. et al., 2020, ApJS, 250, 2
Wagner C., Verde L., Jimenez R., 2012, ApJ, 752, L31
Weisstein E. W., 2002, From MathWorld–A Wolfram Web Resource. Avail-

able at: https://mathworld.wolfram.com/JacobiEllipticFunctions.html
Yoshikawa K., Taruya A., Jing Y., Suto Y., 2001, ApJ, 558, 520
Yoshikawa K., Tanaka S., Yoshida N., Saito S., 2020, ApJ, 904, 159
Yu H.-R., Pen U.-L., Wang X., 2019, Phys. Rev. D, 99, 123532

APPENDI X A : ELLI PTI CAL SI NE WAVE
SOLUTI ON

We define an integral of motion

E(x, p, t) = 1
2 p2 + sin2(x/2),

which is interpreted as the energy of the particle. Hence,

p = ±
√

2E − 2 sin2(x/2).

We have reduced the characteristic equations to

dx

dt
= ±

√
2E − 2 sin2(x/2).

This equation is separable,∫
dx√

2E − 2 sin2(x/2)
= ± ∫

dt .

Let τ be the time when x(τ ) = 0. Putting in the integration limits,
setting u = x/2, and factoring out 2E, we obtain

F (u) ≡
∫ u

0

du′√
1 − sin2(u′)/E

= ±√
E/2

∫ t

τ
dt ′ ≡ φ.

The elliptic sine function is defined such that sn(φ) = sin (u), where
u = F−1(φ). Hence,

sn
(
±
√

E/2(t − τ )
)

= sin u. (A1)

There exist the following trigonometric identities (Weisstein 2002):

sn(φ)2 + cn(φ)2 = 1 and
d

dφ
sn(φ) = cn(φ)dn(φ),

where cn(φ) = cos (u) and dn(φ) =
√

1 − sin2(u)/E are the elliptic
cosine and delta amplitude functions. Using these identities, one can
confirm the solution (A1). To find the phase-space distribution at
time t, we use the fact that f(x, p, t) is constant along its characteristic
curves. At t = 0, let x0 = x(0) and p0 = p(0). Using the initial
Gaussian distribution (7), we find

f (x, p, t) = f (x0, p0, 0)

= ρ̄√
2πσ 2

exp

(
− (p0 − p̄)2

2σ 2

)
.

We need to express p0 in terms of x, p, and t. First, we use conservation
of energy to note that

p2
0 = p2 + 2 sin2(x/2) − 2 sin2(x0/2).
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What remains to show is how to express sin 2(x0/2) in terms of x, p,
and t. But this is simply,

sin2(x0/2) = sn2

(
∓
√

1
4 p2 + 1

2 sin2(x/2)τ

)
,

where the time, τ , is given by

τ = ∓
√

2/E arcsn (sin(x/2)) + t .

Here, we used the inverse of the elliptic sine function, arcsn(x) = φ,
with x = sn(φ). It follows that

sin2(x0/2) = sn2

(
arcsn (sin(x/2)) ∓

√
1
4 p2 + 1

2 sin2(x/2)t

)
.

Therefore, the distribution function is

f (x, p, t) = ρ̄√
2πσ 2

exp

(
− 1

2σ 2

[
h(x, p, t) − 2p̄

√
h(x, p, t) + p̄2

])
,

h(x, p, t) = k(x, p, 1) − m(x, p, t)

k(x, p, t) = p2 + 2 sin2(x/2)t

m(x, p, t) = 2sn2

(
arcsn (sin(x/2)) ∓

√
1
4 k(x, p, t)

)
.

To find the density profile, ρ(x, t), we integrate

ρ(x, t) = ∫ ∞
−∞ f (x, p, t)dp,

which can be done numerically. This gives the solution curves in
Fig. 2.

A P P E N D I X B: AC C U R AT E C A L C U L AT I O N O F
N E U T R I N O M O M E N T S

For completeness, we outline the linear theory calculation of the
neutrino distribution function following Ma & Bertschinger (1995).
The neutrino phase-space distribution function can be written as

f (x, q, τ ) = f̄ (q) [1 + �(x, q, n̂, τ )] , (B1)

where f̄ (q) is the homogeneous Fermi–Dirac distribution and the
momentum q has been decomposed into a magnitude q and a unit vec-
tor n̂. We will express the momentum q and energy ε =

√
q2 + a2m2

in units of kbT. In synchronous gauge, the perturbation � evolves as

�̇ + i
qc

ε
(k · n̂)� + 1

c2

d ln f̄

d ln q

[
η̇ − ḣ + 6η̇

2
(k̂ · n̂)2

]
= 0,

where we switched to momentum space and where overdots denote
conformal time derivatives. Here, h and η are the scalar metric
perturbations in synchronous gauge. To solve this equation, � is
decomposed into a Legendre series

�(k, n̂, q, τ ) =
∞∑

�=0

(−i)�(2� + 1)��(k, q, τ )P�(k̂ · n̂). (B2)

The Boltzmann equation then becomes an infinite tower of equations:

�̇0 = −qkc

ε
�1 + ḣ

6

1

c2

d ln f̄

d ln q
, (B3)

�̇1 = qkc

3ε
(�0 − 2�2), (B4)

�̇2 = qkc

5ε
(2�1 − 3�3) −

(
ḣ

15
+ 2η̇

5

)
1

c2

d ln f̄

d ln q
, (B5)

�̇� = qkc

(2� + 1)ε
[���−1 − (� + 1)��+1] , for � ≥ 3. (B6)

The hierarchy can be truncated at � = �max + 1 using the ansatz

��max+1 = (2�max + 1)ε

qkcτ
��max − ��max−1.

The precision of this calculation is set by two parameters: the
maximum multipole �max and the number of momentum bins Nq.
By default, CLASS partly relies on a set of fluid equations and
partly on integrating the hierarchy, using �max = 50 and Nq = 28
at the pre-set high precision settings (Lesgourgues & Tram 2011).
The differences in the CMB anisotropies are at the per mille level.
However, the neutrino transfer functions have still not converged. To
obtain converged results, Dakin et al. (2019) ran calculations with
Nq = 2000 bins and �max = 2000, which each required hundreds of
CPU hours. This is to be contrasted with a default CLASS run, which
completes in seconds. To circumvent this computational cost, we use
a different approach, which involves a post-processing step of CLASS

tables.
To quickly integrate the Boltzmann hierarchy for high Nq and

�max, we note that the source terms in the evolution equations
depend on the matter content only through the scalar potential
derivatives ḣ and η̇, which can be calculated accurately with
much lower settings.5 Therefore, we make the assumption that
we can decouple the potential terms from most of the neutrino
moments ��. We first evolve all source functions in CLASS at a
reasonable precision setting. This gives the metric perturbations
ḣ(k, τ ) and η̇(k, τ ), which we then take as given and use to
integrate the multipole moments �� at high precision where they
are needed.

A P P E N D I X C : MO N O M I A L BA S I S F O R TH E
DI STRI BU TI ON FUNCTI ON

Boltzmann codes can solve for the functions ��(k, q, τ ). But
evaluating the distribution function, f (x, q, τ ), requires substituting
these back into the definitions (B1) and (B2). This presents a
challenge as the �� are large discretely sampled arrays of amplitudes
that need to be convolved with the random phases. It would be
prohibitively expensive to do this repeatedly for each term in the
Legendre expansion. We therefore adopt the following scheme. First,
we use the following representation of the �th Legendre polynomial,

P�(x) = 2�

�∑
n=0

xn

(
�

n

)( n+�−1
2

�

)
,

where the last factor is a generalized binomial coefficient. This allows
us to expand � and collect monomial terms in k̂ · n̂. We write

�(k, n̂, q, τ ) = ∑∞
�=0 i���(k, q, τ )(k · n̂)�,

where the functions �� are defined by

��(k, q, τ ) = 1

k�

∞∑
n=0

(−2)n
(

n

�

)( n+�−1
2

n

)
(2n + 1)�n(k, q, τ ).

Note that we factored out the magnitude of k = kk̂ and write the
expansion in terms of (k · n̂)� and not (k̂ · n̂)�. This is to facilitate
taking derivatives, as shown below. The Fourier transform of � is

�(x, n̂, q, τ ) =
∫

d3k

(2π )3
�(k, n̂, q, τ )eix·k,

and similarly for the �� and ��. We write the directional derivative
along the unit vector n̂ as Dn̂ = ni∂xi

. In other words,

F {Dn̂��(x, n̂, q, τ )} ⇐⇒ i(k · n̂)��(k, q, τ ).

5In the reference model with Nq = 28 and �max = 50, relative errors in ḣ

and (ḣ/3 + 2η̇) are of the order of 10−4. Although η̇ still fluctuates at the
several per cent level, this term is much smaller than ḣ.
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Figure D1. Evolution of particle weights for a
∑

mν = 150 meV cosmology,
using special relativistic equations of motion, evolved with symplectic and
non-symplectic leapfrog integrators.

Hence, we obtain

i���(k, q, τ )(k · n̂)� ⇐⇒ F
{
D�

n̂��(x, q, τ )
}

.

And so, the overall perturbation, �, is

�(x, n̂, q, τ ) =
∞∑

�=0

D�
n̂��(x, q, τ ).

A convenient numerical scheme is to store the Fourier transformed
grids ��(x, q, τ ), in which case we can evaluate the distribution
function efficiently by taking finite differences.

APPENDIX D : SYMPLECTIC INTEGRATO R

A point of concern is that the special relativistic equation of motion
(8) may not be suited for the usual leapfrog integration in cosmo-
logical N-body simulations (Quinn et al. 1997). A straightforward
substitution for the non-relativistic equation (10) produces a leapfrog
integrator that is not symplectic and may therefore not explicitly
conserve phase-space volume. The problem is that the equation
for u̇ depends on u. Here, we assess the impact of this error and
provide a workaround. Fortunately, it is easy to construct a symplectic
integrator that closely approximates the relativistic form. We simply
replace equation (8) with

u̇ = − 2u2
0 + a2√
u2

0 + a2
∇ (

φ − γ Nb
)
, (D1)

where u0 is the magnitude of u at the starting redshift of the
simulation. Moreover, we use ε = m

√
u2

0 + a2 when computing the
energy density. As confirmed below, this is a good approximation
due to the fact that u0 � a whenever u deviates much from u0, i.e.
for slow particles at late times. Equation (9) is unchanged. A leapfrog
discretization of these equations is

xk+1/2 = xk + 1

2
�t

uk√
u2

k + a2
,

uk+1 = uk − �t
2u2

0 + a2√
u2

0 + a2
∇ (

φ(xk+1/2) − γ Nb(xk+1/2)
)
,

xk+1 = xk+1/2 + 1

2
�t

uk+1√
u2

k+1 + a2
.

To determine whether this is symplectic, one considers the Jacobian,
J, of the transformation ψ : zk �→ zk+1, where zk = (xk, uk). One can
confirm that

J T�J = � ≡
(

0 I3

−I3 0

)

to show that ψ is a symplectomorphism. It follows that det(J ) = 1,
which ensures that the leapfrog integrator is volume-preserving.

Since the validity of the δf algorithm depends on conserva-
tion of phase-space density along particle trajectories, we need
to determine to what extent this is violated when using a non-
symplectic discretization of (8). Deviations will be of the or-
der of O

(
u2
)
, which is small for any non-trivial neutrino orbit.

Therefore, the difference should be negligible when the weights
are large. To test this assertion, we evolve 2563 neutrino and
dark matter particles in a volume with sidelength 256 Mpc and
assuming

∑
mν = 3 × 50 meV, using both the special relativistic

equations (8) and the alternative equation (D1). First, we confirm
that (D1) is a good approximation of (8), by checking that the
ratios

r =
√

u2
0 + a2

u2 + a2
, and s = 1

r

2u2
0 + a2

2u2 + a2

are close to unity. We find that |r − 1| < 0.02 per cent
and |s − 1| < 0.03 per cent for 99 per cent of particles at all
times.

The evolution of the weights is shown in Fig. D1. At very high red-
shifts, when I = 1

2

〈
w2

〉
< 10−6, the mean squared weight is about

60 per cent larger for the non-symplectic integrator. We interpret this
as being due to small perturbations to neutrino trajectories that are
absent in the symplectic case. The results converge after z = 20,
when density perturbations approach non-linearity, driving up the
weights. The difference in I is 7 per cent at z = 10, decreasing to
0.2 per cent at z = 2, and 0.03 per cent at z = 0. The difference
in weights |wns − ws| < 0.025 for 99 per cent of particles at
all times. The difference will be even smaller for larger neutrino
masses.

As a result, we find that the use of the non-symplectic integrator
has a negligible effect on observables at late times. In particular, there
is < 0.1 per cent difference in the total matter and neutrino power
spectra at z = 0. The difference in Pν(k) grows to 0.3 per cent at
z = 2, and 2 per cent at z = 10. For the total matter power spectrum,
the difference is always below 0.1 per cent. For future simulations,
we recommend using a leapfrog discretization based on the modified
expression (D1) or using the non-relativistic version of (8) together
with (9), as discussed in Section 4.3.

APPENDI X E: PRACTI CAL I MPLEMENTATIO N

We briefly outline how to implement the δf method in a typical N-
body code. First, a choice needs to be made for the background model.
The simplest choice is the homogeneous Fermi–Dirac distribution,
which we repeat here without pre-factor:

f̄ (x, p, t) = f̄ (p, a) =
[

exp

(
ap

kbTν

)
+ 1

]−1

, (E1)

where Tν = 1.95 K is the present-day neutrino temperature, a is
the scale factor, and p is the 3-momentum. The method can be
implemented as follows:

(i) Implement a function f̄ (x, p, t) that returns the phase-space
density at a particle’s location according to the background model.
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(ii) Generate initial conditions with neutrino particles having a
random initial momentum sampled from the background model.
Perturbations can be applied afterwards.

(iii) For each particle, record the value of f̄ (x, p, t) = f0 at the
initial sampled position in phase space.6 The numerical value of f0

does not change if perturbations are applied to the initial conditions.
(iv) During subsequent time-steps, for each particle:

(a) Compute f̄ (x, p, t) using the new position and momen-
tum.

(b) Compute the weight w = (f0 − f̄ )/f0.
(c) For the purposes of the gravity force calculation, use the

weighted mass mw.

The weights should be used when calculating statistics of the
neutrino ensemble, such as the neutrino density, ρν(x), that enters
into the gravity force calculation. We emphasize that the weights
should not be used in relationships such as p = mu.

6Because the background model was used for sampling the initial momenta,
we initially have f̄ = f = g. Conservation of phase-space density then
ensures that f = g = f0 for all particles at all times.

For tree codes that perform a multipole expansion around the
centre of mass, like SWIFT, there is a final point of consideration.
Since neutrino particles can have negative weights, it is possible in
rare circumstances that groups of particles have a nearly vanishing
total mass. In that case, the centre of mass can be far removed from
the particles and the multipole expansion breaks down. There is a
simple solution in such cases, which is to expand around any other
point such as the geometric centre of the particles or the centre of
absolute mass:

xCoAM =
∑

i |miwi |xi∑
i |miwi | ,

which has the advantage that it is very close to the ordinary centre
of mass in most cases. When the background model agrees with the
non-linear solution, the weights are exactly zero. In that case, they
can be set to a small value w � 1. This ensures that the centre of
absolute mass is always well defined.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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