CORRIGENDUM TO: A FAST ALGORITHM FOR CALCULATING S-INVARIANTS

DIRK SCHÜTZ

Table 1 in [Sch21] claims to list all knots K with up to 15 crossings for which one entry of $s^{\operatorname{Sq}^1}(K)$ differs from $s^{\mathbb{F}_2}(K)$. However, the table is incomplete. We list the missing knots in Table 1' below.

Knot	$s^{\mathrm{Sq}^{1}}$	$s^{\mathbb{F}_2}$	$s^{\mathbb{F}_3}$
15n154386	(2, 2, 0, 0)	0	2
15n165952	(2, 2, 0, 0)	0	2
15n165966	(2, 2, 0, 0)	0	2
15n166064	(2, 2, 0, 0)	0	2
15n166244	(0, 0, -2, -2)	0	-2

TABLE 1'. Prime knots with non-standard s^{Sq^1} missing from Table 1.

The original computation was done in batches of 10,000 knots. It appears that only the first 150,000 non-alternating 15-crossing knots were checked. A subsequent computation confirmed the results in Table 1, but also found the knots in Table 1' among the remaining 18,030 non-alternating 15-crossing knots.

References

[Sch21] Dirk Schütz, A fast algorithm for calculating S-invariants, Glasg. Math. J. 63 (2021), no. 2, 378–399. MR 4244204

1

DEPARTMENT OF MATHEMATICAL SCIENCES, DURHAM UNIVERSITY Email address: dirk.schuetz@durham.ac.uk