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A B S T R A C T 

We present an analytical description of the probability distribution function (PDF) of the smoothed 3D matter density field for 
modified gravity and dark energy. Our approach, based on the principles of Large Deviations Theory, is applicable to general 
extensions of the standard Lambda cold dark matter ( � CDM) cosmology. We show that late-time changes to the law of gravity 

and background expansion can be included through Einstein-de Sitter spherical collapse dynamics combined with linear theory 

calculations and a calibration measurement of the non-linear variance of the smoothed density field from a simple numerical 
simulation. In a comparison to N -body simulations for f ( R ), DGP, and evolving dark energy theories, we find per cent level 
accuracy around the peak of the distribution for predictions in the mildly non-linear regime. A Fisher forecast of an idealized 

experiment with a Euclid -like surv e y volume demonstrates the power of combining measurements of the 3D matter PDF with 

the 3D matter power spectrum. This combination is shown to halve the uncertainty on parameters for an evolving dark energy 

model, relative to a power spectrum analysis on its own. The PDF is also found to substantially increase the detection significance 
for small departures from General Relativity, with impro v ements of up to six times compared to the power spectrum alone. This 
analysis is therefore very promising for future studies including non-Gaussian statistics, as it has the potential to alleviate the 
reliance of these analyses on e xpensiv e high-resolution simulations and emulators. 

Key words: methods: analytical – large-scale structure of Universe – cosmology: theory. 
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 I N T RO D U C T I O N  

ver the past two decades an extraordinary and diverse array of
xperimental evidence has earned the Lambda cold dark matter 
 � CDM) paradigm the status of standard cosmological model (see 
.g. Aiola et al. 2020 ; Hamana et al. 2020 ; Planck Collaboration VI
020 ; Alam et al. 2021 ; DES Collaboration 2022 ; Dutcher et al. 2021 ;
eymans et al. 2021 , for recent analyses). Ho we ver, in recent years
ild to severe tensions between early- and late-time probes of the 

rowth of structure and background expansion have put a strain on the 
bility of � CDM to explain our universe (see e.g. Douspis, Salvati &
ghanim 2019 ; Di Valentino et al. 2021a , b ; Perivolaropoulos &
kara 2021 , for re vie ws). Furthermore, Einstein’s general relativity 
GR) – the theory of gravity at the foundation of � CDM – has
een thoroughly tested only on small astrophysical scales and in the 
trong field regime (Will 2014 ; Abbott et al. 2017 , 2019b ), leaving
mple room for modifications to the field equations on cosmological 
cales (Abbott et al. 2019a ; Ferreira 2019 ; Ishak 2019 ; Pogosian et al.
021 ; Raveri et al. 2021 ; Tr ̈oster et al. 2021 ). Together with the yet
nexplained nature of the observed accelerated cosmic expansion 
Riess et al. 1998 ; Perlmutter et al. 1999 ), these considerations
 E-mail: matteo@roe.ac.uk 
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oti v ate the exploration of alternatives to the cosmological constant
 � ) and standard gravity. In this paper, we focus on extensions of
 CDM that include modified gravity and (late-time) dark energy, 
hich we will concisely refer to as ‘extended models’. 
Two-point statistics are central to many of the leading cosmo- 

ogical analyses of the large-scale structure searching for deviations 
rom � CDM (Simpson et al. 2013 ; Song et al. 2015 ; Amon et al.
018 ; Abbott et al. 2019a ; Chudaykin, Dolgikh & Ivanov 2021 ; Lee
t al. 2022 ; Muir et al. 2021 ; Tr ̈oster et al. 2021 ; Vazsonyi et al.
021 ), and a great deal of effort has gone into accurately modelling
he non-linear matter power spectrum in modified gravity and dark 
nergy cosmologies – a theoretical ingredient essential to extract 
he cosmological information locked in small scales (e.g. Koyama, 
aruya & Hiramatsu 2009 ; Brax & Valageas 2012 ; Takahashi et al.
012 ; Heitmann et al. 2014 ; Zhao 2014 ; Casarini et al. 2016 ; Mead
t al. 2016 ; Cusin, Le wando wski & Vernizzi 2018 ; Cataneo et al.
019 ; Winther et al. 2019 ; Euclid Collaboration 2021 ; Ramachandra
t al. 2021 ). Ho we ver , non-linear gravitational clustering con verts the
early Gaussian initial density field (Planck Collaboration VI 2020 ) 
o a late-time density field with significant non-Gaussian features 
hat these standard analyses are unable to access (Bernardeau et al.
002 ). Non-Gaussian statistics, such as the bispectrum (Brax & 

alageas 2012 ; Munshi 2017 ; Yamauchi, Yok o yama & Tashiro 2017 ;
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risostomi, Le wando wski & Vernizzi 2020 ; Bose et al. 2020b ),
igher order weak lensing spectra (Munshi & McEwen 2020 ), the
alo mass function (Lam & Li 2012 ; Cataneo et al. 2016 ; Hagstotz
t al. 2019 ; McClintock et al. 2019 ; Bocquet et al. 2020 ), the void size
unction (Perico et al. 2019 ; Verza et al. 2019 ; Contarini et al. 2021 )
nd Minkowski functionals (Kratochvil et al. 2012 ; Fang, Li & Zhao
017 ), respond strongly to modified gravity and dark energy through
he induced changes in the higher moments of the cosmic density
eld, and their remarkable complementarity to traditional two-point
unctions leads to tighter joint constraints on the extra non-standard
arameters (Shirasaki et al. 2017 ; Peel et al. 2018 ; Sahl ́en 2019 ; Liu
t al. 2021 ). 

The probability distribution function (hereafter PDF) of the 3D
atter density field smoothed on a given scale is one of the

implest non-Gaussian statistics, and accurate predictions allow us
o extract additional cosmological information (Uhlemann et al.
020 ). Modified gravity and evolving dark energy leave distinctive
mprints on the skewness, kurtosis, and higher cumulants of the
DF, which have been observed in N -body simulations (Li, Zhao &
o yama 2012b ; Hell wing et al. 2013 , 2017 ; Shin et al. 2017 ). Thus

ar, theoretical predictions of the PDF for modified gravity have
equired either sophisticated and time-consuming approaches for the
pherical collapse (Brax & Valageas 2012 ) or computationally costly
imulations (Li et al. 2012b ; Hellwing et al. 2013 , 2017 ). Similarly,
or the PDF response to dark energy beyond a cosmological constant,
o far only ad hoc fitting functions obtained from simulations are
vailable (Shin et al. 2017 ; Mandal & Nadkarni-Ghosh 2020 ; Wen,
emball & Saslaw 2020 ). In this work, we apply the principles
f Large Deviation Theory (LDT) to the cosmic density field to
erive a general and analytical prescription for the 3D matter PDF
n modified gravity and dark energy cosmologies. We build on
he formalism developed in Bernardeau & Reimberg ( 2016 ) and
hlemann et al. ( 2016 ), and show that the Einstein-de Sitter (EdS)

pherical collapse dynamics together with linear theory calculations
an reproduce the 3D matter PDF measured from state-of-the-art
imulations to a few per cent accuracy in the mildly non-linear
egime. Remarkably, the matter PDF can be accurately predicted
equiring only linear information from extended cosmologies, which
ources the characteristic differences in the non-linear variance and
igher cumulants. Through Fisher forecasts we quantify, for the first
ime, the ability of the PDF to detect distinct departures from GR
nd to constrain the dark energy equation of state, especially when
ombined with the matter power spectrum. Our method implemented
n the public code pyLDT 1 delivers fast predictions for the cosmology
ependence of the PDF, and it paves the way for the modelling of
bservable statistics of the large-scale structure in general theories
f gravity and dark energy (see Frusciante & Perenon 2020 , for a
e vie w). Our frame work can be applied to predict the weak lensing
onvergence PDF (Barthelemy et al. 2020 ; Boyle et al. 2021 ), galaxy
ounts-in-cells (Uhlemann et al. 2018a ; Repp & Szapudi 2020 ;
riedrich et al. 2022 ), and density-split statistics (Friedrich et al.
018 ; Gruen et al. 2018 ). 
The paper is structured as follows: Section 2 reviews the LDT

ramework and provides a simple extension to include the effects
f modified gravitational couplings and background expansion on
he PDF. Section 3 describes the N -body simulations and PDF mea-
urements used to validate the theoretical predictions. In Section 4 ,
e demonstrate the accuracy of our methodology, as well as the

omplementarity of the matter PDF and the power spectrum for
NRAS 513, 1623–1641 (2022) 
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(

odified gravity and dark energy parameters using Fisher matrix
nalyses. We summarize our results and give an outlook on future
esearch in Section 5. 

 T H E  MATTER  DENSI TY  PDF  IN  L A R G E  

E V I AT I O N S  T H E O RY  

.1 Large deviations theory framework 

arge deviations theory (see Touchette 2012 , for a basic introduction)
rovides a means to predict the probability density function (PDF)
f non-linear matter densities in spheres (Bernardeau 1994 ; Valageas
002 ; Bernardeau, Pichon & Codis 2014 ; Bernardeau & Reimberg
016 ; Uhlemann et al. 2016 ). The formalism can be applied on mildly
on-linear scales quantified by the value of the non-linear variance
2 
NL at the redshift z and radius R of interest as long as σ 2 

NL ( R, z) < 1.
or Gaussian initial conditions, 2 the PDF, P ( δL ), of the linear matter
ensity contrast, δL , in a sphere of radius r is a Gaussian distribution
here the width is fully specified by the linear variance, σ 2 

L at that
cale r and redshift z 

 

lin 
r,z ( δL ) = 

√ 

1 
2 πσ 2 

L ( r,z) 
exp 

[ 
− δ2 

L 
2 σ 2 

L ( r,z) 

] 
. (1) 

he linear variance at scale r is obtained from an inte gral o v er the
inear power spectrum, P L , with a spherical top-hat filter in position
pace 

2 
L ( r, z) = 

∫ 

dk 

2 π2 
P L ( k , z) k 2 W 

2 
3D ( k r) , (2) 

here W 3D ( k ) is the Fourier transform of the 3D spherical top-hat
lter. 
To describe the impact of non-linear gravitational dynamics on the

hape of the initially Gaussian matter PDF, it is informative to look
t the exponential decay of the PDF with increasing density contrast.
o formalize this argument, one considers the exponential decay of

he PDF in equation ( 1 ) encoded in the decay-rate function 

 

lin 
r,z ( δL ) = 

δ2 
L 

2 σ 2 
L ( r, z) 

. (3) 

n general, the non-linear matter PDF can be written as a path
nte gral o v er all possible ways to realize a non-linear normalized
ensity ρ = 1 + δ from a given linear density contrast. But since
arge deviations are exponentially unlikely, there is only one path,
amely the least unlikely one, which dominates this complex integral.
he dominant contribution is a saddle point of the corresponding

unctional integral, which is given by the spherical collapse dynamics
hanks to the spherical symmetry of the cells and statistical isotropy
nsuring average density profiles to be spherical (Bernardeau 1994 ;
alageas 2002 ; Ivano v, Kauro v & Sibiryako v 2019 ). This idea leads

o the contraction principle of large deviation statistics (Bernardeau &
eimberg 2016 ), which states that the decay-rate function of the final

phere density ρ (at scale R and redshift z) can be obtained from the
nitial one by using the spherical collapse mapping ρ = ρSC ( δL ) to
btain the associated most likely linear density contrast δL ( ρ) and
ass conservation for the initial radius r = R ρ1/3 , such that 

 R,z ( ρ) = 

σ 2 
L ( R, z) 

σ 2 
NL ( R, z) 

δ2 
L ( ρ) 

2 σ 2 
L ( Rρ1 / 3 , z) 

. (4) 
 F or e xtensions that include primordial non-Gaussianity see Uhlemann et al. 
 2018b ) and Friedrich et al. ( 2020 ). 

https://github.com/mcataneo/pyLDT-cosmo
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Figure 1. Mapping between the normalized final density, ρ, and the initial 
linearly scaled density fluctuation, δL , for a spherical top-hat perturba- 
tion. Upper panel: the curves show the density evolution in different 
background/gravity models. For � CDM (blue) and EdS (dashed orange) 
cosmologies gravity is GR, while for DGP (green) the gravitational constant 
is modified as in equation ( 11 ) with r c H 0 = 0.5 (or 	rc = 0.25). Here, both 
� CDM and DGP are e v aluated at z = 0. The dashed black line represents 
the EdS mapping rescaled by the ratio of the � CDM-to-DGP linear growth 
ratio at z = 0. Lower panel : fractional difference of the EdS mapping from 

the � CDM prediction (dashed orange) and that of the rescaled EdS from the 
DGP evolution (dashed black). The rescaled δEdS 

L can reproduce the modified 
gravity phenomenology to better than 0.5 per cent, and it can be seen that 
most of the difference comes from the discrepancy between the EdS and the 
� CDM predictions. 
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he prefactor arises from performing calculations with a decay- 
ate function rescaled with σ 2 

L ( R, z), which renders it a proper
ate function described by large deviation statistics (Bernardeau & 

eimberg 2016 ; Uhlemann et al. 2016 ) and ensures a well-defined
→ 0 limit, and then restoring the desired final non-linear variance 

2 
NL . 

3 

From the decay-rate function in equation ( 4 ) one can reconstruct
he full PDF. This can be achieved by computing the cumulant 
enerating function via a Legendre transform, which in turn allows 
o compute the final PDF via an inverse Laplace transform. This
ntegral can be computed numerically (Bernardeau et al. 2014 ), but 
n excellent analytical approximation can be obtained from a saddle- 
oint approximation for the log-density μ = ln ρ (Uhlemann et al. 
016 ). To achieve this, the decay-rate function in equation ( 4 ) is
ewritten in terms of the logarithmic density μ and its non-linear 
ariance σ 2 

μ

 R,z ( μ) = 

σ 2 
L ( R, z) 

σ 2 
μ( R, z) 

δ2 
L ( ρ( μ)) 

2 σ 2 
L ( Rρ1 / 3 , z) 

. (5a) 

hen the matter density PDF, P R,z ( ρ), is obtained from 

˜ 
 R,z ( ̃  ρ) = 

√ 

� 

′′ 
R,z ( ̃  ρ) + � 

′ 
R,z ( ̃  ρ) / ̃  ρ

2 π
exp 

[−� R,z ( ̃  ρ) 
]

. (5b) 

he prefactor arises from a combination of the second deri v ati ve of
he decay-rate function with respect to the logarithmic density and 
he Jacobian of the non-linear transformation. 

Because of the use of the log-transform, one has to ensure the
orrect mean density 〈 ρ〉 = 

∫ 
dρ ρ P( ρ) = 1 by specifying the mean

f the log-density 〈 ln ρ〉 . This can be implemented by rescaling the
raw’ PDF, ˜ P R,z ( ̃  ρ), from equation ( 5b ) as 

 R,z ( ρ) = 

˜ P R,z 

(
ρ · 〈 ̃ ρ〉 

〈 1 〉 
)

· 〈 ̃ ρ〉 
〈 1 〉 2 , (5c) 

here 〈 f ( ̃  ρ) 〉 = 

∫ 
d ̃  ρ f ( ̃  ρ) ˜ P ( ̃  ρ) for any function f ( ̃  ρ), such as f =

 and f = ˜ ρ here. 
Remarkably, for a standard � CDM universe, there are only three 

ngredients that enter this theoretical model for the matter PDF, 

(i) the time- and scale-dependence of the linear variance, σ 2 
L ( r, z), 

(ii) the mapping from initial to final densities in spheres, ρSC ( δL ),
(iii) the non-linear variance of the log-density at the sphere radius 

nd redshift of interest, σ 2 
NL ( R, z) → σ 2 

μ( R, z) . 

The linear variance and its cosmology dependence can be readily 
btained from the linear power spectrum computed from Einstein–
oltzmann codes like CAMB (Lewis, Challinor & Lasenby 2000 ) or
LASS (Blas, Lesgourgues & Tram 2011 ). 
The spherical collapse mapping entering the matter PDF 

as shown to be very mildly cosmology-dependent and well- 
pproximated by the redshift-independent EdS result in Uhlemann 
t al. ( 2020 ). This can also be seen in Fig. 1 , where the fractional
ifference between the � CDM and the EdS solution remains within 
.25 per cent for all non-linear densities considered. We develop a 
 Physically speaking, this procedure amounts to asserting that the reduced 
umulants (discussed later), encoded in the large deviation statistics rate 
unction and predicted from spherical collapse in the limit σ 2 → 0, can 
eliably be extrapolated to small, non-zero variances (as demonstrated with 
imulated data in Uhlemann et al. 2016 ). The σ 2 

NL factor in the denominator 
hen plays the role of converting the reduced cumulants back to the cumulants 
sing the correct non-linear variance, which controls the width of the PDF. 

1  

h  

e

D

w  

d  
imple yet accurate EdS-based approximation for spherical collapse 
ithin modified gravity in the following section. 
The non-linear variance of the log-density at the sphere radius and

edshift of interest, σ 2 
μ( R, z), can be considered a free parameter

nd measured directly from simulations. Once measured from a 
ingle (or small set of) simulations at the fiducial cosmology, its
hanges with cosmology can be predicted using a phenomenological 
pproximation inspired from the lognormal model (see equation 21 ). 
lternatively, the non-linear variance of the log-density could also be 

hosen to reproduce a predicted non-linear variance of the density, 
2 
ρ ( R, z), obtained from matter power spectrum fitting functions such
s HALOFIT (Peacock & Smith 2014 ), HMCODE (Mead et al. 2021 ),
r RESPRESSO (Nishimichi, Bernardeau & Taruya 2017 ). 

.2 Large-deviations statistics in modified gravity and dark 

nergy 

or scalar–tensor theories within the Horndeski class (Horndeski 
974 ) the late-time growth of linear matter perturbations on sub-
orizon scales in a spatially flat universe is governed by (Gleyzes
t al. 2013 ; Bellini & Sawicki 2014 ) 

 

′′ + 

3 

2 a 
[ 1 − w eff ( a) 	eff ( a) ] D 

′ − 3 	m 

( a) 

2 a 2 
[1 + ε( k, a)] D = 0 , 

(6) 

here D is the linear growth function such that the final linear
ensity fluctuation ˆ δL ( k, z) = D( k, z) δini , primes denote deri v ati ves
MNRAS 513, 1623–1641 (2022) 
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ith respect to the scale factor, a , 	eff ( a ) and w eff ( a ) are the
nergy density and equation of state, respectively, of the ef fecti ve
ark energy fluid driving the background acceleration, and ε( k , a )
epresents the scale- and time-dependent fractional deviation from
he gravitational constant. We can reco v er the well-known result for
 CDM by setting w eff = −1 and ε = 0. In what follows we shall

onsider only late-time e xtensions (‘e xt’) to the standard cosmology,
hat is, D ext → D � 

at sufficiently early times such that the initial
onditions and the primary CMB anisotropies remain unchanged.
ence, the linear matter power spectrum in any of these extensions

an be obtained by rescaling the initial � CDM power spectrum as 

 

ext 
L ( k, z) = 

[
D ext ( k, z) 

D � 

( z i ) 

]2 

P 

� 

L ( k, z i ) , (7) 

here z i is taken deep in the matter-dominated era. This equation can
hen be used together with equation ( 2 ) to provide the linear variance
s a function of smoothing scale and redshift. 

The next ingredient required in equation ( 4 ) is the function
apping the final density, ρ, to the linearly forward-propagated initial

ensity, δL . A spherical top-hat density fluctuation, δ, evolves as (see
.g. Schmidt et al. 2009 ) 

¨ + 2 H ̇δ − 4 

3 

δ̇2 

(1 + δ) 
= 

3 

2 
H 

2 	m 

(1 + F )(1 + δ) δ , (8) 

here dots denote deri v ati ves with respect to cosmic time, H is
he Hubble parameter, and for simplicity we have omitted the time
ependence from all quantities. Here, F is a function describing
epartures from GR which also incorporates a generic screening
echanism to restore standard gravity in high-density environments

see e.g. Koyama 2018 ; Lombriser 2018 ). Note that in the limit
f small linear fluctuations F → ε, and equation ( 8 ) reduces to
quation ( 6 ). In the rest of this work we will ne glect an y non-linear
creening mechanism and, in fact, we will argue that in the mildly
on-linear regime ( R � 10 Mpc h 

−1 ) any modified gravity and dark
nergy effect on the spherical collapse/expansion can be accurately
aptured by the following approximation: 

ext 
L ( ρ, z) ≈ σ� 

L ( Rρ1 / 3 , z) 

σ ext 
L ( Rρ1 / 3 , z) 

δEdS 
L ( ρ) , (9) 

here δEdS 
L corresponds to the mapping between the final and the

nitial density fluctuations in an EdS universe, i.e. 	m 

( a ) = 1
nd F = 0 in equation ( 8 ). For reasons that will be discussed in
ection 2.2.1 , our definition of δext 

L in equation ( 9 ) does not match
he linear density contrast solution to equation ( 6 ), in that we use the
 CDM linear growth, D � 

, to extrapolate the initial density fluctua-
ion, δini,ext , to the final redshift rather than the modified growth, D ext .
or scale-independent late-time extensions (i.e. σ� 

L /σ
ext 
L = D � 

/D ext 

nd σ ext, ini 
L ≈ σ

�, ini 
L ), one can alternatively use the modified growth

or the extrapolation, i.e. ̃  δext 
L ≡ D ext δini , ext , and arrive at the following

pproximation ̃  δext 
L ( ρ, z) ≈ δEdS 

L ( ρ). 4 It is easy to show that these two
pproximations are equi v alent and provide the same rate function –
e opt for equation ( 9 ) simply because it explicitly accounts for

cale-dependent modifications as well. 
NRAS 513, 1623–1641 (2022) 

 At first glance this result seems at odds with the notion that dark energy 
nd modified gravity affect the growth of structure. However, here we are 
xing the final non-linear density, ρ, such that enhancements (suppressions) 
f the linear growth require lower (higher) initial density contrasts, δini , to 
atch that particular ρ. In other words, adjustments to the initial conditions 

ompensate for the linear growth modifications to a very good approximation. 

5

f
s
a
2
6

s
n

.2.1 Modified gravity 

ince Horndeski gravity encompasses a large number of extensions
o GR, here we focus on two well-studied models within this class
isplaying very different phenomenology: DGP braneworld gravity 5 

Dvali, Gabadadze & Porrati 2000 ) and f ( R ) gravity 6 (see e.g. De
elice & Tsujikawa 2010 , for a re vie w). In particular, we will
onsider the normal branch of DGP with an additional smooth dark
nergy component such that the background expansion is identical
o � CDM (Schmidt 2009 ), that is, (

H 

H 0 

)2 

= 	m 

a −3 + 	� 

, (10) 

ith 	� 

= 1 − 	m 

, and the subscript ‘0’ denotes present-day values
ere and throughout. For f ( R ) gravity we will use the functional form
f Hu & Sawicki ( 2007 ), which has an expansion history also well
escribed by equation ( 10 ) for viable parameter values. 
The linear growth of structure in DGP is modified by time-varying

hanges to the gravitational constant given by 

DGP ( a ) = 

1 

3 β( a ) 
, (11) 

here 

( a) ≡ 1 + 2 r c H 

(
1 + 

aH 

′ 

3 H 

)
, (12) 

ith r c being the crossover scale parameter. Deviations from GR
n this model can be parametrized in terms of the ef fecti ve energy
ensity contribution (see e.g. Lombriser et al. 2009 ) 

rc ≡ 1 

4( r c H 0 ) 2 
, (13) 

uch that for 	rc → 0 we reco v er the standard growth. 
In the non-linear regime, the evolution of spherical top-hat

 v erdensities in DGP is correctly described by equation ( 8 ). For
nderdensities, instead, the same function F incorporating the Vain-
htein screening (see e.g. Schmidt, Hu & Lima 2010 ) produces either
nphysical solutions or a strength of the fifth force exceeding the
xpected linear limit for voids (Falck, Koyama & Zhao 2015 ). Here,
e neglect the Vainshtein screening by linearizing the modification to
ravity and show in Section 4 that this approach accounts for most of
he difference between EdS and DGP spherical evolution. In practice,
o ensure the distribution of the matter density peaks/troughs, ν =
/ σ , defined at the initial time is preserved at later epochs even for
cale-dependent modifications (Kopp et al. 2013 ; Lombriser et al.
013 ), and to ef fecti vely separate the impact of new physics from
hanges to the standard cosmological parameters (Brax & Valageas
012 ), the mapping δDGP 

L ( ρ, z) is obtained by setting F = εDGP and
y extrapolating the initial density fluctuation, δi ( ρ), to an arbitrary
 Technically speaking, DGP is a higher dimensional theory of gravity that 
alls outside the Horndeski theory landscape. Ho we ver, the scales rele v ant for 
tructure formation are well within the regime in which DGP can be treated 
s a 4D scalar–tensor theory (Nicolis & Rattazzi 2004 ; Park, Zurek & Watson 
010 ). 
 Here, R denotes the Ricci scalar and it must not be confused with the 
moothing radius defined abo v e. In what follows we shall keep the same 
otation for both quantities as their meaning should be clear from context. 
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edshift z < z i as 7 

δi ( ρ, z) 

σ� 

L ( Rρ1 / 3 , z i ) 
= 

D � 

( z ) δi ( ρ, z ) 

D � 

( z) σ� 

L ( Rρ1 / 3 , z i ) 
= 

δDGP 
L ( ρ, z) 

σ� 

L ( Rρ1 / 3 , z) 
. (14) 

ig. 1 shows that we can further approximate δDGP 
L to better 

han 0.5 per cent accuracy with the EdS-based approximation from 

quation ( 9 ), thus removing entirely the necessity for solving the
pherical evolution dynamics beyond the EdS cosmology. 

In f ( R ) gravity the new scalar degree of freedom acquires a mass,
 f R , defining the ef fecti ve range of the fifth force interaction (i.e. the
ompton wavelength λC ), which for linearized fluctuations reads 

C ( a) ≡ m 

−1 
f R 

= 

√ 

3 c 2 ( n + 1) | f R0 | R̄ 

n + 1 ( a = 1) 

R̄ 

n + 2 ( a) 
, (15) 

here o v erbars represent background quantities, n and f R 0 are free
arameters of the theory, c is the speed of light and the Ricci scalar
s given by 

¯
 ( a) = 12 H 

2 + 6 aH H 

′ . (16) 

he dynamics of the linear growth modifications is controlled by 

f ( R) ( k , a) = 

( k λC /a) 2 

3 
[
1 + ( kλC /a) 2 

] , (17) 

ith εf ( R ) ≈ 0 for k λC / a � 1, and reaches a maximum of εf ( R ) ≈ 1/3
or k λC / a 	 1. GR is restored on all scales for | f R 0 | = 0. 

The non-linear evolution of top-hat density fluctuations in f ( R )
ravity is complicated by the violation of mass conservation and 
hell-crossing (Borisov, Jain & Zhang 2012 ; Brax & Valageas 2012 ;
i & Efstathiou 2012 ; Kopp et al. 2013 ; Lombriser et al. 2013 ).
herefore, equation ( 8 ) cannot be used to find the exact δf ( R) 

L ( ρ)
apping even when neglecting the chameleon screening. Ho we ver, 
e can gauge the accuracy of the approximation in equation ( 9 ) by

ooking at how well the reduced cumulants, S n = 〈 δ n 〉 c / σ 2( n − 1) ,
f the modified gravity PDF can be predicted in the assumption of
dS evolution. The next-to-leading order (NLO) predictions for the 
rst two non-trivial reduced cumulants can be derived as discussed 

n Uhlemann et al. ( 2016 ) 

 

NLO 
3 = S tree 

3 + σ 2 
ρ

[
3 
2 S 

tree 
4 − 4 S tree 

3 − 2( S tree 
3 ) 2 + 7 

]
, (18a) 

 

NLO 
4 = S tree 

4 + σ 2 
ρ

[
2 S tree 

5 − 17 

2 
S tree 

4 + 66 S tree 
3 − 12( S tree 

3 ) 2 

−3 S tree 
4 S tree 

3 − 45 
]

, (18b) 

here all quantities vary with smoothing scale and redshift, σ 2 
ρ is 

he non-linear variance of the density field, and the standard tree- 
evel (or leading order) expressions can be found in, e.g. Bernardeau 
t al. ( 2002 ). In Fig. 2 , we compare these predictions against the
educed cumulants measured from the f ( R ) and � CDM simulations
escribed in Section 3 (see also Hellwing et al. 2013 , for similar
easurements), with the non-linear variance entering equation (18) 

lso computed from the same simulations (values can be found in 
able B1 ). The striking similarity between the performance in f ( R )
ravity and that in � CDM suggests that the EdS prescription works
qually well for the two cosmologies on mildly non-linear scales. 
he tree level predictions for S N contain a constant ‘raw value’ 
long with smoothing corrections from logarithmic deri v ati ves of
 Note that the linearly extrapolated top-hat density fluctuation, δL , so defined 
see also equation 9 ) is just an ef fecti ve quantity, and in � CDM extensions 
ill in general differ from the linear theory ˆ δL defined below equation ( 6 ). 

8

H

(
r

he linear variance dlog σ L ( R , z)/dlog R . Departures from GR are
argely captured by changes to the linear variance entering the tree-
evel terms. Changes to the raw value of S 3 are negligible compared
o this, as was explicitly shown in Bernardeau & Brax ( 2011 ) for the
inder γ -model (Linder 2005 ). 
In summary, the matter PDF in modified gravity can be predicted

sing the LDT formalism discussed in Section 2.1 with the following
eplacements to the decay-rate function in equation ( 4 ) 

σL −→ σ ext 
L , (19a) 

σNL −→ σ ext 
ln ρ , (19b) 

δL ( ρ, z) −→ δEdS 
L ( ρ) , (19c) 

rom a practical perspective, by approximating δL ( ρ, z) with the EdS
apping we can substantially accelerate the calculations of the PDF 

n exchange for only a minor loss in accuracy – a welcomed feature
or applications requiring a large number of e v aluations. Note that
ur approach differs from the method developed in Brax & Valageas 
 2012 ), in that they solely focus on modifications to the spherical
ynamics by evolving a ‘typical’ density profile whose shape is 
pproximated by the linear power spectrum, while neglecting the 
ffect of the fifth force on the linear variance. 

.2.2 Evolving dark energy 

s evident from equation ( 6 ), although gravity in smooth dark energy
osmologies is still described by GR ( ε = 0), the growth of structure
an deviate from � CDM through changes in the expansion history
 w eff 
= −1). Here, we will consider equations of state parametrized
y (Che v allier & Polarski 2001 ; Linder 2003 ) 

 eff ( a) = w 0 + w a (1 − a) , (20) 

here { w 0 , w a } are phenomenological parameters. In particular, we
ill refer to models with vanishing w a as w 0 CDM cosmologies,
hile referring to models with an evolving equation of state as
 0 w a CDM cosmologies. 
The non-linear growth of spherical top-hat fluctuations is also af- 

ected by the evolving dark energy density via the Hubble parameter
n equation ( 8 ). Ho we ver, we follo w the approach proposed by Codis
t al. ( 2016 ) (i.e. keeping the spherical evolution fixed as in EdS) and
ompute the matter PDF by means of equation (19). We quantify a
osteriori the goodness of this choice by comparing our predictions 
gainst state-of-the-art cosmological simulations in Section 4 . 

.2.3 pyLDT 

e have implemented the large-deviation theory predictions de- 
cribed in Section 2.1 together with equations (19) in pyLDT , a
odularized and user-friendly PYTHON code that takes advantage of 

he PyJulia interface for computationally intensive tasks. The linear 
rowth for f ( R ) gravity and DGP is obtained by solving equation ( 6 ),
hile the linear power spectrum for the standard cosmology, as well

s for the evolving dark energy models, is computed with CAMB 

8 

Lewis et al. 2000 ). Extensions to other modified gravity theories
nly require either to add a specific function describing changes to
MNRAS 513, 1623–1641 (2022) 

 Note that the common approximation for the linear growth D( z) ∝ 

 ( a ) 
∫ a 

0 d a ′ ( a ′ H ( a ′ )) −3 [quoted in equation (6) of Codis et al. ( 2016 ) and 
A1) of Uhlemann et al. ( 2020 )] is not accurate enough to estimate the 
esponse of the PDF to changing w beyond a cosmological constant. 
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Figure 2. Reduced cumulants associated with skewness (top) and kurtosis (bottom) of the smoothed matter density PDF at z = 0 (left) and z = 1 (right) for 
� CDM (blue) and f ( R ) gravity with | f R 0 | = 10 −5 and n = 1 (orange). For each smoothing radius, R = 10, 15, 20 Mpc h −1 , the coloured bands represent the 
mean and error on the mean across 8 N -body realizations, and the lines correspond to the theoretical predictions. Solid lines are computed with the tree-level 
approximation and dashed lines use the next-to-leading order (NLO) correction equation (18), with all vertices derived from the EdS spherical collapse dynamics. 
The cosmology dependence and modified gravity effects are mostly sourced by the linear variance, while the non-linear variance contributes only to a minor 
extent. 
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Table 1. Baseline � CDM cosmological parameters for the three simulation 
suites used in this work. The first column refers to the extension investigated 
within that particular suite. 	m 

and 	b are, respectively, the present-day 
background total matter and baryon density in units of the critical density, 
h = H 0 /100 is the dimensionless Hubble constant, A s and n s are the amplitude 
and slope of the primordial power spectrum, and σ� 

8 is the amplitude of mass 
fluctuations for the baseline � CDM cosmology. 

	m 

	b h n s A s × 10 9 σ� 

8 

DGP 0 .3072 0 .0481 0 .68 0 .9645 2 .085 0 .821 
f ( R ) 0 .31315 0 .0492 0 .6737 0 .9652 2 .097 0 .822 
DE 0 .26 0 .044 0 .72 0 .96 2 .082 0 .79 
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he gravitational constant, ε( k , a ), or to couple the code to dedicated
instein–Boltzmann solvers such as hi class (Zumalac ́arregui
t al. 2017 ; Bellini, Sawicki & Zumalac ́arregui 2020 ) and EFTCAMB
Hu et al. 2014 ). 

By default, pyLDT uses an empirical parametrization of the log-
ensity field non-linear variance in terms of the corresponding linear
 ariance gi ven by (Uhlemann et al. 2020 ) 

2 
NL → σ 2 

ln ρ( R, z) � 

ln 
[
1 + σ 2 

L ( R, z) 
]

ln 
[
1 + σ 2 

L , fid ( R, z) 
]σ 2 

ln ρ, fid ( R, z) . (21) 

his relation allows us to predict the non-linear variance for arbitrary
osmologies given the measured non-linear variance at one fiducial
 CDM cosmology, σ 2 

L , with a typical accuracy of 0.2–1 per cent
or the extensions studied in this work. In terms of the matter PDF,
or densities | ln ρ − 〈 ln ρ〉| < 2 σ ln ρ the lognormal approximation
bo v e returns predictions that are within 2 per cent of those based
n the non-linear variance measured from the simulations. Unless
tated otherwise, direct comparisons to simulations performed in
ection 4 are the output of pyLDT with equation ( 21 ) replaced by

he actual non-linear variance extracted from the simulations. For
he Fisher forecasts presented in Section 4.3 , instead, we rely on the
arametrization in equation ( 21 ) to compute the response to changing
osmological parameters and MG scenarios. 

 SIMULATION S  

.1 f ( R ) gravity simulations 

he simulations in f ( R ) gravity used for the analysis in this work were
arried out with the AREPO cosmological simulation code (Springel
010 ; Weinberger, Springel & Pakmor 2020 ) employing the MG
xtension introduced in Arnold, Leo & Li ( 2019 ). The simulation
NRAS 513, 1623–1641 (2022) 
uite consists of eight independent realizations, each run for a
aseline � CDM cosmology (see Table 1 for the selected parameter
alues), and for f ( R ) Hu–Sawicki models with n = 1 and | f R 0 | = 10 −5 

F5), 10 −6 (F6). The suite is completed by two pseudo cosmology
uns per f ( R ) model, one for the final output redshift z f = 0 and
he other for z f = 1. In short, a pseudo cosmology is a � CDM
osmology with initial conditions adapted so that its linear matter
ower spectrum at a later epoch, z f , matches that of the real beyond-
 CDM cosmology of interest (Mead 2017 ; Cataneo et al. 2019 ), 

 

pseudo 
L ( k, z f ) = P 

real 
L ( k, z f ) . (22) 

ach simulation uses N p = 1024 3 dark matter particles in a L box =
00 Mpc h 

−1 side-length box. 
The initial conditions (ICs) of the independent realizations were

elected such that the large-scale sample, or cosmic, variance in
he 3D matter power spectrum is minimal when averaged over the
imulations. In order to implement this we created 100 independent
nitial conditions using 2LPTIC (Crocce, Pueblas & Scoccimarro
006 ) and measured their 3D matter power spectrum. We then

art/stac904_f2.eps
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9 https://astr o.kias.r e.kr /jhshin/
10 Because the linear theory normalization cancels out in equation ( 4 ), 
knowledge of σ 8 is irrelevant for the LDT predictions when measurements of 
the variance of the simulated density field are available. In fact, the non-linear 
variance carries information on σ 8 so that, ultimately, its impact on the theory 
PDF is properly accounted for. 
11 https:// github.com/MariusCautun/ DTFE 
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onsidered all possible pairs of these ICs and selected the four ‘best’
airs according to the following criteria (this follows the procedure 
utlined in Harnois-Deraps, Giblin & Joachimi 2019 to find ICs with 
pproximately opposite modes on large scale): 

(i) each individual power spectrum of a selected pair, as well as
heir average power spectrum, should deviate as little as possible from
he desired linear theory power spectrum for k < k Ny /2 = πN p /2 L box ;

(ii) and the relative difference of each individual power spectrum 

o the theory spectrum should fluctuate around zero on large scales 
ather than being positive or negative over large k -ranges to a v oid a
eakage of power from large to small scales. 

To simulate structure formation in f ( R ) gravity the simulation code
as to solve both the standard Newtonian forces and the fifth force.
REPO computes the standard gravity forces using a Tree Particle- 
esh algorithm in our simulations. The f ( R ) gravity forces are

omputed employing an iterativ e solv er on an adaptively refining 
esh which ensures increased resolution in high-density regions 

see Arnold et al. 2019 , for details). 
Due to the very non-linear behaviour of the scalar field in f ( R )

ravity, tracking its evolution is computationally v ery e xpensiv e. To
eep the computational cost of the simulations as small as possible,
REPO therefore employs an adaptive timestepping scheme which 
nly updates the MG forces when necessary (Arnold et al. 2019 ).
he standard gravity accelerations are largest (and change most 

requently) within large haloes, so that they have to be updated 
ith a very small time-step. Ho we ver, these very same regions in

 ( R ) gravity are largely screened for | f R 0 | � 10 −5 . Therefore, the
aximum MG acceleration will typically be much smaller than the 
aximum standard gravity acceleration, allowing a larger MG time- 

tep without compromising the accuracy of the simulations. 

.2 DGP simulations 

he DGP simulations used in this work were first presented in 
ataneo et al. ( 2019 ), and they were carried out using the ECOSMOG

ode (Li, Zhao & Koyama 2013 ; Li et al. 2012a ), which is based
n the publicly av ailable Ne wtonian cosmological N -body and 
ydrodynamical simulation code RAMSES (Teyssier 2002 ). This code 
olves the non-linear equation of motion of the scalar field in the
GP model using adaptively refined meshes, where a cell in the 
esh splits into 8 son cells when the ef fecti ve particle number of

imuation particles in it exceeds 8. We have run one realization with
ox size L box = 512 Mpc h −1 and particle number N p = 1024 3 for each
f the following: a baseline � CDM cosmology with cosmological 
arameters listed in Table 1 , two DGP models with 	rc = 0.25
DGPm) and 	rc = 0.0625 (DGPw), and the corresponding pseudo 
osmologies with final output redshifts z f = 0 and z f = 1. These runs
dopt a domain grid, i.e. a regular base grid with uniform resolution
hat co v ers the entire simulation domain, with 1024 3 cells. Although
t has been shown that, for many of the usual statistics of matter and
ark matter halo fields, very fine simulation meshes are not necessary 
or the DGP model (Barreira, Bose & Li 2015 ), in these runs we have
ot set an upper limit of the highest refinement le vel, gi ven that they
ere designed to be used to study no v el statistics. At late times,

he most refined regions in the simulation domain have a cell size
hat is 1/2 6 times the domain grid cell size; this corresponds to an
f fecti ve force resolution (twice the cell size) of � 15.3 kpc h −1 in
hose regions. 

The ICs of these simulations are again generated using 2 LPTIC ,
ith an initial redshift z ini = 49. This is lower than the initial redshift
sed for the f ( R ) runs described abo v e ( z ini = 127), but the second-
rder Lagrangian perturbation theory is still a good approximation 
t z = 49. Since the effect of modified gravity is negligible at z >
9, it is neglected in the ICs. 

.3 Evolving dark energy simulations 

or the evolving dark energy cosmologies we used the publicly 
vailable matter density PDFs 9 measured from a suite of single- 
ealization N -body simulations with N p = 2048 3 and L box = 1024

pc h 

−1 described in Shin et al. ( 2017 ). The baseline flat � CDM cos-
ology has the parameters listed in Table 1 , and for the w 0 w a CDM

osmologies we have the four pairs { w 0 , w a } = { − 1.5, 0 } , { − 0.5,
 } , { − 1, −1 } , and { − 1, + 1 } . The power spectrum normalization
t z = 0 is fixed to its baseline value for all dark energy extensions
xcept for { w 0 , w a } = { − 1, + 1 } , which we found to have a
omewhat smaller σ 8 . 10 

.4 PDF measurements from the simulations 

or our f ( R ) gravity, DGP and corresponding pseudo and � CDM
imulations we measured the PDFs of the smoothed matter density 
eld as follows. First, for each snapshot we reconstruct the contin-
ous density field using the Delaunay Tassellation Field Estimator 
ethod (Schaap & van de Weygaert 2000 ) and sample it over a

024 3 mesh, all of which is automatically performed by the public
ode DTFE 11 (Cautun & van de Weygaert 2011 ). Next, we convolve
he sampled density field with spherical top-hat filters of radii R = 10,
5, and 20 Mpc h 

−1 (an operation we do in Fourier space). Lastly, we
onstruct the PDF by collecting the normalized density values, ρR = 

 + δR , in 99 logarithmically spaced bins in the range [0.01,100]. In
ppendix A , we show that this method produces PDFs in excellent

greement with those obtained by applying the Cloud-in-Cell (CiC) 
ass assignment scheme. We report variances and means extracted 

rom the simulations for both the density and the log-density fields
n Appendix B . 

For the DE simulation suite, instead, the smoothed density field 
as obtained by summing o v er the mass of all the particles contained

n spheres centred at the 2048 3 nodes of a regular grid and dividing
y the volume of the spheres. In this work, we consider the PDFs
easured in spheres of radius R = 10 and 25 Mpc h 

−1 for the z = 0,
.5, and 1 snapshots. 

 RESULTS  

n the following, we first present our results for the modified gravity
nd dark energy cosmologies discussed in Section 2.2 , and then
xamine the detection potential of departures from � CDM for 
dealized statistical analyses combining the full shape of the PDF 

nd the matter power spectrum. 

.1 Modified gravity 

s discussed in Section 2.2 , on mildly non-linear scales the EdS dy-
amics approximates well the evolution of spherical top-hat density 
MNRAS 513, 1623–1641 (2022) 

https://astro.kias.re.kr/jhshin/
https://github.com/MariusCautun/DTFE
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Figure 3. Matter PDF in spheres of radius R = 10 Mpc h −1 at z = 0 (blue) and z = 1 (green) for � CDM (dashed) and modified gravity (solid). Left: Data points 
are the simulation measurements from a single realization (triangles for � CDM and squares for DGPm) and lines represent the theory predictions. For DGP 
the primary effect of the enhanced growth is that of increasing the variance of the distribution, which in turn results in heavier tails, i.e. more under/o v erdense 
structures compared to the standard cosmology. Right : data points and corresponding uncertainties are the mean and error on the mean measured from 8 
realizations (triangles for � CDM and squares for F5). Note that, contrary to the DGP cosmology, the modified growth in f ( R ) gravity substantially affects the 
skewness of the distribution, thus leading to an asymmetric enhancement o v er � CDM. 
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uctuations even in cosmologies where the law of gravity deviates
ubstantially from GR. Here, by using state-of-the-art simulations
e assess how such an approximation impacts the accuracy of the
DT predictions for the matter PDF in two specific modified gravity
cenarios, DGPm and F5 (see Section 3 for details). Equi v alent
esults for DGPw and F6 can be found in Appendix C . 

Fig. 3 shows how the global shape of the PDF responds to scale-
ndependent (left) or scale-dependent (right) modifications to the
inear growth. As expected, when sharing the same initial conditions
ith � CDM both PDFs approach the standard result at high redshifts

nd exhibit their largest deviations at low redshifts, and do so at a rate
pecific to the model under consideration. Ho we ver, there are clear
ifferences that reflect the infinite or finite range of the fifth force.
n DGP, structures on all scales are subject to the same modification,
nd changes to the higher moments of the distribution are mainly
riven by increases in the variance. This follows immediately from
he expressions for the reduced cumulants in equation (18) – where
he tree-level terms are identical for DGP and � CDM – and will
e explored in more detail below . In f ( R ) gravity , instead, density
uctuations evolve in different gravity conditions depending on

heir size. F or e xample, the present-day Compton wav elength in
ur F5 cosmology is approximately 8 Mpc h 

−1 (and smaller at
arlier times). Therefore, spherical o v erdensities reaching a final
adius R = 10 Mpc h 

−1 experience very little fifth force for most
f their collapse history. In contrast, spherical underdensities have
izes comparable to or smaller than the Compton wavelength (at the
ame epoch) and thus experience the fifth force in the later stages of
heir expansion (i.e. z � 2), with the emptiest re gions e xperiencing
 full 33 per cent enhancement of the gravitational force. It is this
symmetric behaviour that contributes to the increased skewness of
he PDF in f ( R ) gravity compared to � CDM (see also Hellwing et al.
013 ), our model equation (19) can capture it thanks to the linear
ariance term probing different scales, r = R ρ1/3 , depending on the
ensity of the sphere, ρ (see also equation 4 ). 
The central and right-hand panels of Fig. 4 present comparisons of

he modified gravity predictions to the simulation measurements for
ifferent smoothing radii and redshifts. In all cases, the prescription
escribed by equation (19) provides PDF predictions that are within
 few per cent from the simulations, which is consistent with the
NRAS 513, 1623–1641 (2022) 
esults for � CDM (left-hand panel). Note that the seemingly poorer
erformance for DGP is likely driven by sample variance, as we
nly have a single realization for this cosmology. We also note
hat despite differences in N -body codes ( AREPO vs GADGET-III ),

ass-assignment schemes (DTFE v CiC), mass resolution ( m p ≈
0 10 M 
 h 

−1 vs m p ≈ 8 × 10 10 M 
 h 

−1 ), and number of realizations
8 vs 100) the left-most panels of Fig. 4 illustrate that our measured
DFs are very much consistent with those of Uhlemann et al. ( 2020 )
see their fig. 7), irrespective of smoothing radius and redshift. 

Fig. 5 shows in detail how the PDFs in the two modified gravity
cenarios analysed in this work differ from their � CDM counterparts.

ith a lowering of the peak compensated by heavier tails, DGP
odifications (left-hand panel) resemble very closely changes in the

ower spectrum normalization (cf. fig. 8 in Uhlemann et al. 2020 ).
his can be explained by the near equi v alence between the boost of

he linear matter power spectrum amplitude induced by the fifth force
nd an increase in σ 8 . More complicated variations to the shape of the
DF in f ( R ) gravity (right-hand panel) follow from the combination
f two effects: suppression of the non-linear variance compared to
 DGP cosmology with a similar σ 8 , and scale-mixing regulated by
he redshift-dependent Compton wavelength. The former is a direct
onsequence of the chameleon screening mechanism acting on a
road range of scales, even in the mildly non-linear regime (see e.g.
ataneo et al. 2019 ); while the latter preferentially enhances the

ormation of density fluctuations with initial comoving size R ρ1/3 

 λC ( z)(1 + z). At high redshifts and for large smoothing radii,
his condition becomes increasingly difficult to satisfy for typical
alues of the density field (i.e. | ln ρ − 〈 ln ρ〉| < 3 σ ln ρ). As the
DF approaches the � CDM result, the small residual deviations can
e described by simple changes in the variance. The solid lines in
oth panels of Fig. 5 represent the theory predictions with the log-
ensity variances measured from the simulations, while the dashed
ines use the lognormal approximation equation ( 21 ) to compute
he modified gravity σ 2 

μ from that of the corresponding � CDM
osmology. The LDT prescription, even when ignoring the impact
f the fifth force on the evolution of spherical density fluctuations
an capture deviations from GR remarkably well. As we shall see
elow, a detailed comparison to standard cosmologies sharing the
ame linear theory predictions (the so-called pseudo-cosmologies)
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Figure 4. Residuals between the measured and predicted matter PDF normalized to the theory predictions for z = 0 (top) and z = 1 (bottom) in � CDM (left), 
f ( R ) gravity (centre), and DGP (right). When data points and error bars are both present they correspond to the mean and error on the mean across 8 realizations. 
Different colours indicate the radii of the spheres used for smoothing the density field, 10 Mpc h −1 (blue), 15 Mpc h −1 (orange), and 20 Mpc h −1 (green). The 
solid and dashed lines mark 1 and 2 per cent accurac y, respectiv ely. Despite significant changes to the growth of structure, the accuracy of the modified gravity 
predictions based on the EdS spherical dynamics is comparable to that of the standard cosmology. 

Figure 5. Simulated (data points) and predicted (lines) differences from � CDM of the modified gravity matter PDF at z = 0 (top) and z = 1 (bottom). The 
density field is averaged in spheres of radius R = 10 Mpc h −1 (blue), 15 Mpc h −1 (orange), and 20 Mpc h −1 (green). Solid lines are obtained from the measured 
non-linear variance, σ 2 

μ, while dashed lines use equation ( 21 ) in pyLDT . The close agreement between the two type of predictions supports the use of the 
lognormal approximation for the non-linear variance. Left : in DGP the shape of these changes is very similar to that induced by variations in σ 8 (cf. fig. 8 in 
Uhlemann et al. 2020 ). Right : f ( R ) gravity departures from the standard cosmology are more prominent for underdense regions and become less significant with 
increasing smoothing radii owing to the finite range of the fifth force. 
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an help isolate very small effects that are characteristic of the non-
tandard interaction. 

.1.1 Pseudo-cosmologies 

lthough, by definition, for the pseudo cosmologies we have 
pseudo 
L ( R, z f ) = σ real 

L ( R, z f ) (see equation 22 ), new late-time physics
ffects the growth of structure beyond the linear regime. Therefore, 
he non-linear power spectrum of the pseudo-cosmology differs from 

ts real non- � CDM counterpart and σ pseudo 
NL ( R, z f ) 
= σ real 

NL ( R, z f ). We
an use this to compute the PDFs of the pseudo-MG cosmologies and
ompare them to the predictions for DGP and f ( R ) gravity – given
he identity in equation ( 22 ), any significant difference not captured
y a simple change to the non-linear variance will then signal
odifications to the spherical dynamics due to the action of the fifth

orce. We recall that the linear power spectrum determines the scale
MNRAS 513, 1623–1641 (2022) 
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M

Figure 6. Simulated (data points) and predicted (lines) differences of the modified gravity matter PDFs from their pseudo-cosmology counterparts at z = 0 
(top) and z = 1 (bottom). The density field is averaged in spheres of radius R = 10 Mpc h −1 (blue) and 20 Mpc h −1 (green). Solid lines are obtained from the 
measured non-linear variance, σ 2 

μ, and the EdS mapping shown in Fig. 1 . Note that the amplitude of these differences is about ten times smaller than in Fig. 5 , 
confirming the remarkable similarities between the pseudo and real cosmology on mildly non-linear scales. Left : by replacing the EdS spherical evolution with 
that produced by the linearized DGP model (dashed lines) we can better predict some of the minute differences sourced by pure modifications to GR which are 
not captured by simple changes to σ 8 in a � CDM cosmology. Remaining differences are likely the result of modelling inaccuracies in LDT and unaccounted for 
Vainshtein screening phenomenology. Right : contrary to DGP, the violation of Birkhoff’s theorem in f ( R ) gravity precludes any attempt to find a simple solution 
to the evolution of spherical top-hat density perturbations even in the absence of screening mechanism (Borisov et al. 2012 ; Brax & Valageas 2012 ; Kopp et al. 
2013 ). Here we only show the predictions accounting for changes in the non-linear variance and note that both the finite range of the fifth force and chameleon 
screening slightly modify the spherical collapse dynamics, which in turn leads to small additional variations in the PDF. 
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ependence of the linear variance and hence the density dependence
f the exponent of the PDF given by equation ( 4 ), while the non-
inear power spectrum determines the non-linear variance and hence
he width of the PDF. To a lesser extent, the non-linear variance can
lso alter the scale dependence of the PDF through its impact on the
escaling step in the PDF construction (see equation 5c ). 

Fig. 6 shows the difference between the real and pseudo-
osmology PDFs for DGPm (left-hand panel) and F5 (right-hand
anel). First, let us note that these differences are about an order
f magnitude smaller than the departures of modified gravity from
 CDM shown in Fig. 5 . In general, the two PDFs agree to per cent

evel or better for | ln ρ − 〈 ln ρ〉| < 2 σ ln ρ . Thus, for densities not too
ar into the tails and in the mildly non-linear regime, the pseudo and
eal cosmology PDFs become indistinguishable for all intents and
urposes. This result confirms the findings of Cataneo et al. ( 2019 )
nd extends them to statistics describing non-Gaussian properties of
he density field. Our predictions using the EdS spherical collapse
or both the pseudo and the real MG cosmologies (solid lines) can
artially explain the observed minute differences as changes in the
ariance of the distribution, especially at high redshifts. To gauge
he contribution of the fifth force to the remaining unexplained
ifference, we also compute the PDFs for DGPm by including the
inearized modification to the gravitational interaction (equation 11 )
nto the dynamics of spherical top-hat density fluctuations (equa-
ion 8 ). These are shown as dashed lines in Fig. 6 . Although the
odified non-linear evolution can better account for the differences

etween the real and pseudo-cosmology, residuals associated with the
eglected screening mechanism and intrinsic inaccuracies of the LDT
ormalism persist. To fully disentangle these two contributions one
hould run linearized modified gravity simulations (akin to Schmidt
NRAS 513, 1623–1641 (2022) 
009 ; Koyama et al. 2009 ), which is, ho we v er, be yond the scope of
his work. For the case of f ( R ) gravity shown in the right-hand panel,
 change in the variance (solid line) can only partially explain their
bserved differences. Modifications to the spherical collapse in f ( R )
ravity due to non-linear couplings even in the absence of screening
such as modelled by Brax & Valageas 2012 ) are a potential source
f the remaining discrepancy. The shape of the differences hints at
n additional skewness with a slightly increased S 3 that cannot be
aptured by the EdS-based approximation in equation ( 9 ). The o v erall
ood agreement of the PDF in the real and pseudo-cosmologies
ogether with the successful prediction of their minute qualitative
if ferences v alidate our PDF modelling assumptions for modified
ravity. 

.2 Evolving dark energy 

nalogously to modified gravity, the fractional deviations of the
heory predictions from the simulation measurements shown in
ig. 7 confirm that, despite neglecting the impact of dark energy
n the spherical collapse, the LDT prescription in equation (19)
ields accuracies within a few per cent for densities | ln ρ − 〈 ln ρ〉| <
 σ ln ρ . Although the results presented here are only for density fields
veraged in spheres of radius R = 10 Mpc h 

−1 , we found similar
r better performance for larger smoothing radii. Fig. 8 illustrates
hat in most cases deviations from the cosmological constant can be
escribed very well by simple changes to the non-linear variance
lines). In fact, after fixing the standard cosmological parameters,
he w 0 w a CDM and � CDM cosmologies share the same shape
f the linear matter power spectrum, and when using the EdS
pproximation for the spherical dynamics the only degree of freedom

art/stac904_f6.eps


Matter density PDF for modified gravity and dark energy 1633 

Figure 7. Residuals between the measured and predicted matter PDF in 
spheres of radius 10 Mpc h −1 normalized to the theory predictions for various 
evolving dark energy cosmologies (from top to bottom). Different colours 
correspond to z = 0 (blue), z = 0.5 (orange), and z = 1 (green). The solid 
and dashed lines mark the 1 and 2 per cent accurac y, respectiv ely. Note that 
for these simulations only one realization is available, and the estimation of 
the smoothed density field differs from that used for the modified gravity 
simulations. Despite these differences the residuals are consistent with those 
for � CDM, f ( R ) gravity, and DGP in Fig. 4 . 

Figure 8. Measured (data points) and predicted (lines) differences from 

� CDM of the w 0 CDM (top) and the w 0 w a CDM (bottom) cosmologies 
at z = 0 and z = 1. The density field is averaged in spheres of radius 
R = 10 Mpc h −1 and the linear power spectra for all cosmologies (except 
{ w 0 , w a } = { −1, + 1 } ) are normalized such that σDE 

8 ( z = 0) = σ� 

8 ( z = 0). 
Predictions are obtained from the measured non-linear variance, σ 2 

μ, together 
with EdS spherical collapse. Except for w 0 = −0.5, knowledge of the non- 
linear variance is enough to accurately describe departures from the standard 
cosmology. 

Table 2. Detection significance for a fiducial f ( R ) gravity model with | f R 0 | = 

10 −6 , and a fiducial DGP model with 	rc = 0.0625. The constraints on 
f ( R ) gravity from the PDF are stronger than in DGP owing to the additional 
skewness produced by the scale-dependent fifth force, which is visible in 
the | f R 0 | deri v ati ves sho wn in Fig. 11 . Moreover, unlike DGP, where the 
approximate theory PDF matches the � CDM prediction at z = 0, in f ( R ) 
gravity the PDF differs from that of the standard cosmology at low redshifts, 
which allows even more non-linear information to be extracted. 

F6 detection DGPw detection 

PDF, 3 scales + prior 5 .15 σ 1.17 σ
P ( k ), k max = 0 . 2 h Mpc −1 

+ prior 
2 .01 σ 2.42 σ

PDF + P ( k ) + prior 13 .40 σ 5.19 σ

Table 3. Constraints from mildly non-linear scales on σ 8 , w 0 , and w a derived 
including a prior on { 	b , n s } , as well as dark energy Figure of Merit (FoM) 
for the matter PDF, power spectrum and their combination. 

σ [ σ8 ] 
σfid 

8 
σ [ w 0 ] σ [ w a ] FoM 

PDF, 3 scales + prior 0.18 per 
cent 

0.37 1.25 27 

P ( k) , k max = 0 . 2 h Mpc −1 + prior 0.45 per 
ent 

0.24 1.03 50 

PDF + P ( k ) + prior 0.17 per 
cent 

0.09 0.40 243 
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eft in equation ( 4 ) is the non-linear v ariance. Ho we ver, the small yet
isible discrepancies between theory and simulations for the w 0 = 

0.5 cosmology suggest that in this extreme scenario the background 
xpansion appreciably alters the spherical evolution and it should be 
aken into account to accurately predict the measured PDF deviations 
rom � CDM at both redshifts. 

.3 Fisher forecasts 

his section presents forecasts for DGP and f ( R ) gravity and
 0 w a CDM combining the matter PDF and the matter power spec-

rum on mildly non-linear scales. For the MG models we determine
he ability of future experiments to detect relatively small deviations 
rom GR (i.e. F6 and DGPw) at a statistical significance > 5 σ (see
able 2 ), while for evolving DE we will be interested in the FoM
sing � CDM as fiducial cosmology (see Table 3 ). 

.3.1 Fisher formalism 

o forecast the errors on a set of cosmological parameters, � θ , we
se the Fisher matrix formalism. The Fisher matrix given a (set of)
ummary statistics in the data vector � S is defined as 

 ij = 

∑ 

α,β

∂S α

∂θi 

C 

−1 
αβ

∂S β

∂θj 

, (23) 

here S α is the α-th element of the data vector � S and C 

−1 denotes the
atrix-inverse of the covariance matrix C , whose components are 

 αβ = 

〈(
S α − S̄ α

) (
S β − S̄ β

)〉
, S̄ α = 〈 S α〉 . (24) 

he parameter covariance matrix C ( � θ ) is then obtained as inverse of
he Fisher matrix. In the Fisher formalism, marginalization o v er a
ubset of parameters is achieved by simply selecting the appropriate 
ub-elements of the parameter covariance. 
MNRAS 513, 1623–1641 (2022) 
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M

Figur e 9. Mar ginalized Fisher forecast constraints on { 	m 

, σ 8 , h , 	rc } using 
external prior information on n s and 	b (as described in the text) for a DGPw 

fiducial cosmology. Contours correspond to the matter PDF at 3 scales and 
3 redshifts (green), the matter power spectrum up to k = 0.2 h Mpc −1 (blue), 
and their combination, which includes the covariance between the PDF and 
power spectrum (red dashed). 

Figur e 10. Mar ginalized Fisher forecast constraints on { 	m 

, σ 8 , | f R 0 | } using 
external prior information on n s and 	b (as described in the text) for an F6 
fiducial cosmology. Contours correspond to the matter PDF at 3 scales and 3 
redshifts (green), the matter power spectrum up to k = 0.2 h Mpc −1 (blue), 
and their combination, which includes the covariance between the PDF and 
the power spectrum (red dashed). 

 

t  

t  

v  

F  

Figure 11. Comparison of PDF differences divided by the error on the PDF 
as estimated from the QUIJOTE simulations. Line style indicates the redshift, 
while colour indicates parameter being deviated. The vertical lines represent 
the region used at each redshift to construct the PDF data vector. While 
the shape of the σ 8 and 	rc deri v ati ves are similar, their dif ferent redshift 
dependence allows the de generac y to be broken when combining redshifts. 
The f R 0 deri v ati ves, in addition to having different redshift dependence, 
exhibit a skewness not present in the σ 8 derivatives, allowing significant 
information to be e xtracted ev en at a single redshift, including z = 0. Note 
that the amplitudes between parameters should not be directly compared, as 
the f R 0 and 	rc lines have been scaled up to be visible on the same scale as 
σ 8 . 

Figure 12. Fisher forecast constraints on { 	m , σ 8 , w 0 , w a } (marginalized 
o v er { 	b , n s } using the external prior described in the text) for the w 0 CDM 

model around the fiducial QUIJOTE � CDM cosmology. Contours correspond 
to the matter PDF at 3 scales and 3 redshifts (green), the matter power 
spectrum up to k = 0.2 h Mpc −1 (blue), and their combination which includes 
the covariance between the PDF and power spectrum (red dashed). 
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We consider three data vectors for our forecasts, corresponding
o the three sets of constraints in Figs 9 , 10 , and 12 . These are
he PDF alone, the matter power spectrum alone, and a stacked data
ector which combines both the PDF and the matter power spectrum.
or the PDF data vector, we only use the central region of the
NRAS 513, 1623–1641 (2022) 
DF around the peak (located in underdense re gions), remo ving the
owest 3 per cent and highest 10 per cent of densities (as advocated
n Uhlemann et al. 2020 ). We choose this approach in order to
imit the impact of small-scale effects (like baryonic feedback,
on-linear galaxy bias, shot noise, and redshift-space distortions)
hat are more severe for rare events and would otherwise degrade
he constraining power when moving from the 3D matter PDF to
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n actual observable like the spectroscopic tracer PDF. For the 
atter power spectrum data vector, we limit ourselves to mildly 

on-linear scales up to k max = 0 . 2 h Mpc −1 to ensure the accuracy
f theoretical deri v ati ves from fitting functions, see Fig. C3 . We
ound the conserv ati ve scale cut for the po wer spectrum to be
rucial to facilitate an agreement between parameter constraints 
nd de generac y directions from predicted and simulated deri v ati ves,
specially when considering the full set of cosmological parameters. 
or all cosmological parameters, we compute partial deri v ati ves from

wo-point finite differences 

∂ � S 

∂θ
� 

� S ( θ + dθ ) − � S ( θ − dθ ) 

2 dθ
. (25) 

e rely on partial deri v ati ves determined from theoretical predictions 
or the matter PDF from pyLDT and the matter power spectrum 

rom ReACT (Bose et al. 2020a ) combined with HMCODE (Mead 
t al. 2021 ), which pro vides fle xibility to compute constraints or the
etection significance for extended models at the desired fiducial 
osmology. The step sizes have been chosen to ensure convergence 
f the deri v ati ves, and agree with the step sizes used in the QUIJOTE

imulation suite for the set of w 0 CDM parameters. The theory 
enerated deri v ati ves for w 0 CDM parameters are validated with
easurements from the QUIJOTE simulations in Appendix C . As 

iscussed in Appendix C , we adopt Gaussian priors for { 	b , n s }
o ensure compatibility of the matter power spectrum derivatives 
etween simulations and theoretical predictions. The prior widths 
orrespond to σ [ n s ] = 0.0041 (Planck Collaboration VI 2020 ) and
[100 	b h 2 ] = 0.052 (Cooke et al. 2016 ; Abbott et al. 2018 ). 
In this work, we use the covariance matrix obtained from a 

et of 15 000 simulations of the QUIJOTE N -body simulation suite
Villaescusa-Navarro et al. 2020 ) using the fiducial � CDM cosmol- 
gy ( 	m 

= 0.3175, 	b = 0.049, H 0 = 68 km s −1 Mpc −1 , n s =
.96, σ 8 = 0.834). The joint covariance matrix of the mildly non- 
inear matter PDF and the matter power spectrum is described in 
hlemann et al. ( 2020 ), see particularly their fig. 12. We make the

pproximation that the covariance matrix of the matter PDF and 
atter power spectrum in the mildly non-linear regime is independent 

f cosmology and theory of gravity and well-captured by the 15 000
imulations of the QUIJOTE simulation suite. To mitigate potential 
ffects of modified gravity on the covariance, we fix the standard 
osmological parameters to the values of the fiducial QUIJOTE 

osmology. In particular, we set A s = 2.13 × 10 −9 such that σ 8 

ncreases only slightly for the modified gravity cosmologies, that 
s, by 1.6 per cent for F6 and 3.8 per cent for DGPw. As those are
mall perturbations from the fiducial � CDM cosmology, they will 
nly induce a small error on the true covariances and hence only
arginally affect parameter constraints. As this error will affect 

oth the PDF and power spectrum covariance in a similar way, 
omparisons of their respective constraining power are expected to be 
obust. For future high precision cosmology, covariance estimation 
or PDF-based observables from galaxy clustering and weak lensing 
an rely on tuned lognormal mocks (Gruen et al. 2018 ; Boyle et al.
021 ), potentially complemented with predictions for effects induced 
y variations in the local mean density (Jamieson & Lo v erde 2020 ).
o correct for a potential bias depending on the size of the data
ector N S compared to the number of simulations N sim 

, we multiply
he inverse of the simulated covariance matrix by the Kaufman–
artlap factor (Kaufman 1967 ; Hartlap, Simon & Schneider 2006 ), 

 KH = ( N sim 

− 2 − N S )/( N sim 

− 1). Since in our case the number
f simulations for covariance estimation is very large (15 000) 
ompared to the maximal length of the data vector (218 for our three-
edshift analysis of the PDF at three scales and the mildly non-linear
ower spectrum), this factor will be close to one throughout, f KH ≥
.985. We mimic a Euclid-like ef fecti v e como ving surv e y volume
f V ≈ 20 ( Gpc h 

−1 ) 3 split across three redshift bins of equal width
z = 0.2 located at z = 0, 0.5, 1 by multiplying the covariance

t each redshift with the ratio of the comoving shell volume to the
imulation volume V sim 

= 1 ( Gpc h 

−1 ) 3 . 

.3.2 Modified gravity 

e now compare the constraining power of the matter PDF to that
f the matter power spectrum (with k max = 0 . 2 h Mpc −1 ) for DGP
nd f ( R ) gravity. In all cases, the forecasts shown are marginalized
 v er all remaining � CDM parameters. 
Figs 9 and 10 show the Fisher forecasts for DGP and f ( R ) cosmolo-

ies, respectively. Table 2 summarizes the detection significance for 
articular fla v ours of these modified gravity models expressed in
nits of standard deviation from GR. In a universe where the growth
f structure is go v erned by DGP gravity with 	rc = 0.0625, a 5 σ
etection of modified gravity can still be reached by combining the
atter PDF with the matter power spectrum. Combining the PDF 

nd power spectrum as complementary probes is beneficial in both 
G scenarios. In particular, for DGP the matter PDF is important for

onstraining σ 8 , while the power spectrum is important for obtaining 
he correct value of 	m 

. This is because while 	m 

has a distinctive
ignature in the power spectrum (see Fig. C3 ), the matter PDF is
ensitive to the total matter density only through its impact on the
kewness and the linear growth factor, D ( z). The anticorrelation
etween the Hubble parameter, h , and 	m 

visible in Fig. 9 can be
xplained by their similar impact on the skewness of the PDF (see
g. 9 in Uhlemann et al. 2020 ). Evolving dark energy also presents

his feature, although we do not show it in Fig. 12 as it does not
reate any unexpected degeneracy directions as in the DGP model. 

The partial de generac y in the PDF between σ 8 and the modified
ravity parameters, | f R 0 | or 	rc , seen in Figs 9 and 10 is understood
y noticing that the presence of modified gravity changes the width
f the matter PDF, as can be seen in Fig. 11 . Ho we ver, the responses
f the PDF to the presence of modified gravity or changes in σ 8 

ave different scale and time dependence, therefore by combining 
he information from different scales and redshifts we can break this
e generac y. Fig. 11 shows that σ 8 and 	rc have opposite effects
n the PDF, which would lead to a positive correlation between
hese parameters. Ho we ver, in Fig. 9 the σ 8 –	rc plane sho ws an
nticorrelation for the PDF, which is indirectly induced by the strong
ositive correlation between 	rc and h . We checked that when h is
xed to its fiducial value, rather than marginalized o v er, the PDF
ontours do indeed display a positive correlation between σ 8 and 
rc , as indicated by the deri v ati ves in Fig. 11 . 
In the case of f ( R ) gravity, the matter PDF is particularly useful,

eaching a 5 σ detection before combining with the matter power 
pectrum. This is due to an additional skewness in the | f R 0 | derivatives
ourced by the scale-dependent fifth force and the fact that the PDF
olds information about deviations from � CDM even at redshift 
, unlike in DGP. Ho we ver, Fig. C2 sho ws that using the non-linear
ariance predicted by equation ( 21 ) is a better approximation in DGP
han in f ( R ) gravity, and we thus expect the forecasted constraints to
e more reliable for the DGP model than for f ( R ) gravity. 

.3.3 Evolving dark energy 

n this section, we consider a dark energy fluid with an equation of
tate described by equation ( 20 ). Many of the features of the param-
MNRAS 513, 1623–1641 (2022) 
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ter constraints from the matter PDF and matter power spectrum are
imilar to the features seen for scale-independent modifications to
R. In particular, the matter PDF is much better at constraining σ 8 

han the power spectrum, while the power spectrum more directly
easures 	m 

, as can be seen in Fig. 12 . A summary of constraints on
8 , w 0 , and w a , along with the dark energy Figure of Merit (FoM)

s shown in Table 3 . The FoM is calculated from the inverse of the
rror ellipse area in the w 0 –w a plane as 

oM = 

1 √ 

det ( C ( w 0 , w a )) 
, (26) 

here C ( w 0 , w a ) is the parameter covariance matrix marginalized
 v er all parameters except w 0 and w a . The combined FoM for the
atter PDF and matter power spectrum is a factor of 9 larger than

he PDF alone, and 5 times better than the power spectrum when
nly information from the mildly non-linear regime is included. This
ombined FoM of 243 sits between the range of the pessimistic
nd optimistic predictions for combined galaxy clustering and weak
ensing from Euclid (see table 13 from Euclid Collaboration 2020 ).
he PDF is sufficient to measure σ 8 to sub-per cent accuracy, with

he inclusion of the power spectrum improving this constraint only
arginally. 
Increasing either w 0 or w a increases the growth rate and hence

he variances at z > 0 (with marginal changes at z = 0 due to fixed
8 ), which amounts to an anticorrelation between w 0 and w a . Most
f the other de generac y directions in the w 0 w a CDM case can be
nderstood by considerations of linear theory. Changing a single
arameter at fixed σ 8 (or similarly when σ 8 is allowed to vary)
nduces a change in the growth rate. Suitable pairs of parameters
an then produce growth rates close to the fiducial cosmology. For
 xample, the positiv e correlation between w 0 and 	m 

arises from the
uppression of the growth rate by increasing 	m 

while keeping σ 8 

xed. While one would expect w 0 and w a to vary in the same way
ith 	m 

and σ 8 , they in fact vary in opposing directions as shown in
ig. 12 . Ho we v er, when w 0 is fix ed to its fiducial value, rather than
arginalized o v er, the contours do indeed flip in sign to the direction

xpected, suggesting that the tight anticorrelation in the w 0 –w a plane
ominates the other degeneracies. 

 SUMMARY  A N D  DISCUSSION  

o harness the full statistical power of current and forthcoming
alaxy surv e ys we must push past 2-point correlation functions.
ravitationally driven non-Gaussianities are particularly sensitive

o the late-time growth of structure. As a result, the full shape
f the matter density PDF responds strongly to departures from
R and the cosmological constant making it a promising probe of
ew physics. In this work we built on the findings of Uhlemann
t al. ( 2016 ) with the aim of extending the large-deviation theory
ormalism for the 3D matter PDF to cosmologies with universally
oupled fifth forces and non-standard expansion histories. As for
 CDM, our analytical predictions are derived from linear theory

alculations and spherical collapse dynamics, with the fiducial
on-linear variance being a free parameter that can be measured
rom simulations. Ho we ver, contrary to pre vious approaches (cf.
rax & Valageas 2012 ), we approximate the collapse or expansion
f spherical top-hat fluctuations with a EdS evolution, and showed
hat in the mildly non-linear regime this choice produces PDFs

atching the simulations to better than a few per cent around the
eak of the distribution. Although in this work we analysed in great
etail specific modified gravity and dark energy cosmologies, our
ethod is readily applicable to more general models, as changes
NRAS 513, 1623–1641 (2022) 
o the standard cosmology only enter the PDF through the linear
atter power spectrum and the non-linear variance of the smoothed

ensity field. We also implemented the LDT equations in pyLDT ,
n easy-to-install and user-friendly PYTHON package that enables
ast calculations of the PDF of the spherically averaged matter
ensity field in � CDM, modified gravity and evolving dark energy
osmologies. We employed pyLDT in Fisher analyses of a Euclid -
ike surv e y to estimate the additional information brought in by the
atter PDF compared to 2-point statistics restricted to mildly non-

inear scales. In all cases investigated the constraints on new physics
be it G eff 
= G Newton or w 
= −1) from the combination of the matter
DF and power spectrum are substantially tighter than those obtained
eparately by the two statistics – a clear sign of complementarity
see also Uhlemann et al. 2020 , for massive neutrino cosmologies).
or modified gravity, adding the matter PDF to the power spectrum
an double the detection significance for the DGPw model to lift
t abo v e 5 σ and increase the F6 detection significance sixfold as
ummarized in Table 2 . For dark energy, combining the matter PDF
ith the power spectrum can also double our constraining power on

he clustering amplitude, σ 8 , and both of the dark energy equation of
tate parameters w 0 and w a as shown in Table 3 . 

In spite of the idealized experimental set-up focusing on the
tatistics of the 3D matter field, our results are also encouraging for
ore realistic scenarios. The formalism described in this paper can be

ranslated to galaxy surv e y observables accessible from weak lensing
Barthelemy et al. 2020 ; Boyle et al. 2021 ; Thiele, Hill & Smith
020 ), galaxy clustering (Repp & Szapudi 2020 ; Friedrich et al.
022 ) as well as their combination in density-split statistics (Friedrich
t al. 2018 ; Gruen et al. 2018 ), which have been shown to be
ble to simultaneously extract galaxy bias, galaxy stochasticity, and
osmological parameters. In particular, the LDT approach developed
or the � CDM lensing convergence PDF could be straightforwardly
pplied to the entire class of scalar–tensor theories with lensing
otential � 

MG 
lens ≈ � 

GR 
lens , which includes f ( R ) gravity and DGP. The

DF could also be useful for disentangling modified gravity and
assive neutrinos (Giocoli, Baldi & Moscardini 2018 ), but we leave

he combination of those two scenarios for future work. Including
he PDF of observable fields like cosmic shear or galaxy counts
ould help break degeneracies between astrophysical (e.g. baryonic
eedback, intrinsic alignment, and galaxy bias) and cosmological
arameters present in the analyses of two-point statistics (Patton
t al. 2017 ; Hadzhiyska et al. 2021 ). 
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PPENDI X  A :  T H E  I M PAC T  O F  

ASS-ASSIGNMENT  SCHEMES  O N  T H E  PDF  

he various methods designed to interpolate the simulated density
eld on a grid may lead to differences between the measured
DFs large enough to potentially bias the predictiv e accurac y of
 particular theoretical framework. In Fig. A1 , we compare two such
opular methods–the CiC algorithm and the Delaunay tassellation
eld estimator – using as summary statistic the PDF extracted
rom a single snapshot after applying top-hat filters with three
ifferent smoothing radii. Reassuringly, the distributions agree to
etter than 1 per cent for all densities but the rarest underdensities,
hus validating the performance of LDT discussed in Section 4 and
reviously presented in Uhlemann et al. ( 2020 ). 

igure A1. Relative deviation between the matter PDF constructed from the
iC mass-assignment scheme and that based on the Delaunay tassellation

DTFE). Data points represent measurements from a single z = 0 snapshot
f a � CDM simulation. The agreement between the two mass-assignment
chemes is excellent over the entire range of densities rele v ant for this work.

PPENDI X  B:  M E A N S  A N D  VA R I A N C E S  O F  

H E  SIMULATED  NON-LI NEAR  DENSI TY  

IELD  

able B1 lists variances and means extracted from the simulations
or various smoothing radii and redshifts, which we used to produce
he � CDM and modified gravity results presented in Section 4 . The
orresponding quantities for the dark energy cosmologies can be
equested to the authors of Shin et al. ( 2017 ). 
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Table B1. Measured variances and means of the smoothed density and log-density field for the standard cosmology, f ( R ) 
gravity with | f R 0 | = 10 −5 and DGP gravity with 	rc = 0.25. All values for � CDM and F5 are the av erage o v er eight 
realizations. 

� CDM F5 DGPm 

σ 2 
ρ σ 2 

μ 〈 μ〉 σ 2 
ρ σ 2 

μ 〈 μ〉 σ 2 
ρ σ 2 

μ 〈 μ〉 
R = 10 Mpc h −1 

z = 0 0 .567 0 .392 − 0 .205 0 .612 0 .428 − 0 .223 0 .716 0 .465 − 0 .246 
z = 1 0 .195 0 .167 − 0 .0836 0 .199 0 .171 − 0 .0857 0 .223 0 .188 − 0 .0953 

R = 15 Mpc h −1 

z = 0 0 .276 0 .233 − 0 .118 0 .291 0 .248 − 0 .126 0 .345 0 .282 − 0 .144 
z = 1 0 .0993 0 .093 − 0 .0468 0 .101 0 .0945 − 0 .0475 0 .114 0 .106 − 0 .0532 

R = 20 Mpc h −1 

z = 0 0 .163 0 .149 − 0 .0745 0 .17 0 .157 − 0 .078 0 .204 0 .184 − 0 .0922 
z = 1 0 .0598 0 .0579 − 0 .0285 0 .0603 0 .0586 − 0 .0288 0 .0684 0 .0661 − 0 .033 
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 U
PPEN D IX  C :  VA LIDATION  O F  L D T  

R E D I C T I O N S  F O R  SMALL  D E V I AT I O N S  

RO M  � C D M  F I D U C I A L  

1 Modified gravity 

ur theoretical prediction for the matter PDF have been validated 
ith numerical simulations in the main text for the two modified 
ravity models F5 and DGPm (see Fig. 5 ). Figs C1 and C2 illustrate
he accuracy of the theoretical predictions for F6 and DGPw in 
he form of residuals from the simulations and departures from 

 CDM, as well as the impact of using the lognormal approximation
equation 21 ) in pyLDT . 

2 Dark energy 

ur theoretical prediction for the matter PDF have been validated 
ith numerical simulations in the main text for large changes in 

he parametrized dark energy equation of state (see Fig. 8 ). A
imilar comparison for all � CDM parameters has been provided 
n Uhlemann et al. ( 2020 ), see figs 8 and 9 therein. Here, we
rovide complementary results for the full set of w CDM parameters 
0 
vailable from the QUIJOTE simulations (Villaescusa-Navarro et al. 
020 ). 
To further validate our joint matter PDF and matter power spectrum

onstraints, we compare theoretical power spectrum derivatives from 

MCODE to measured deri v ati ves from the QUIJOTE simulations
n Fig. C3 . When limiting ourselves to mildly non-linear scales
 < k max = 0 . 2 h Mpc −1 we find good agreement between the two.
e notice slight discrepancies for some parameters that turn out 

o be unimportant when constraining just a few parameters, but 
ampering agreement between theory and simulation matter power 
pectrum in a Fisher forecast simultaneously varying all w 0 CDM 

arameters. To mitigate this minor issue for the power spectrum, we
ecided to include an external prior on { 	b , n s } , as described in the
ain text. 
Using this prior, we successfully validated the constraints obtained 

sing our theoretical deri v ati ves against simulations by performing a
isher forecast with all six w 0 CDM parameters for which deri v ati ves
re available from the QUIJOTE simulation suite. In Fig. C4 , we
emonstrate that we obtain virtually identical results for both the 
e generac y directions and the individual parameter constraints when 
arginalized o v er all other parameters. 
MNRAS 513, 1623–1641 (2022) 
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Figure C1. Residuals between the measured and predicted matter PDF normalized to the theory predictions for z = 0 (top) and z = 1 (bottom) in f ( R ) gravity 
with | f R 0 | = 10 −6 (left) and DGP with 	rc = 0.0625 (right). Different colours indicate the radii of the spheres used for smoothing the density field, 10 (blue), 
15 (orange), and 20 Mpc h −1 (green). The solid and dashed lines mark the 1 and 2 per cent accuracy, respectively. 

Figure C2. Measured (data points) and predicted (lines) responses of the matter PDF to modified gravity at z = 0 (top) and z = 1 (bottom). The density field 
is averaged in spheres of radius R = 10 (blue), 15 (orange), and 20 Mpc h −1 (green). Solid lines are obtained from the measured non-linear variance, σ 2 

μ, while 
dashed lines from its approximation equation ( 21 ) used in pyLDT . Left : differences from � CDM for DGP gravity with 	rc = 0.0625. Right : same as left-hand 
panel for f ( R ) gravity with | f R 0 | = 10 −6 . 
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Figure C3. Validation of matter power spectrum derivatives up to k max = 

0.2 h Mpc −1 at z = 0.5 as obtained from HMCODE (dashed lines) compared to 
measurements in the QUIJOTE simulation suite (solid lines) for the full set of 
6 cosmological parameters for w 0 CDM. We show the results as a signal-to- 
noise like ratio of the differences in the matter power spectrum, � P ( k ), and 
the expected error on the fiducial power spectrum from the diagonal of the 
covariance matrix, σ ( P 0 ( k )). 

Figur e C4. Mar ginalized constraints on 	m 

, σ 8 , and w 0 from a w 0 CDM 

Fisher forecast obtained from using the theory deri v ati ves for the matter 
PDF and power spectrum (solid lines) or the simulated deri v ati ves from the 
QUIJOTE simulation suite (dashed lines), both when including a prior on { 	b , 
n s } . This validates the robustness of our theoretical predictions used for the 
forecasts in the main text. 
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