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A B S T R A C T 

The coming generation of galaxy surv e ys will provide measurements of galaxy clustering with unprecedented accuracy and data 
size, which will allow us to test cosmological models at much higher precision than achie v able pre viously. This means that we 
must have more accurate theoretical predictions to compare with future observational data. As a first step towards more accurate 
modelling of the redshift space distortions (RSD) of small-scale galaxy clustering in modified gravity (MG) cosmologies, we 
investigate the validity of the so-called Skew-T (ST) probability distribution function (PDF) of halo pairwise peculiar velocities 
in these models. We show that, combined with the streaming model of RSD, the ST PDF substantially impro v es the small-scale 
predictions by incorporating skewness and kurtosis, for both � cold dark matter ( � CDM) and two leading MG models: f ( R ) 
gravity and the DGP braneworld model. The ST model reproduces the velocity PDF and redshift-space halo clustering measured 

from MG N -body simulations very well down to ∼ 5 h 

−1 Mpc . In particular, we investigate the enhancements of halo pairwise 
velocity moments with respect to � CDM for a larger range of MG variants than previous works, and present simple explanations 
to the behaviours observed. By performing a simple Fisher analysis, we find a significant increase in constraining power to detect 
modifications of General Relativity by introducing small-scale information in the RSD analyses. 

Key words: cosmology: miscellaneous – cosmology: theory – dark energy – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

he standard � cold dark matter ( � CDM) cosmological model, in
hich gravity is described by Einstein’s theory of General Relativity

GR), provides an excellent fit to various cosmological observations,
uch as the cosmic microwave background anisotropies (e.g. Planck
ollaboration I 2016 ), weak and strong gravitational lensing (e.g.
ilbinger 2015 ; Suyu et al. 2017 ; Porredon et al. 2021 ), and the

arge-scale clustering of galaxies (e.g. Alam et al. 2017 , 2021a ).
o we ver, the nature of the cosmological constant ( � ) still lacks a

eliable physical explanation, as the vacuum energy density predicted
y the standard model of particle physics is many orders of magnitude
arger than the value of � inferred from cosmological observations
Carroll 2001 ). Instead of invoking a finely tuned � or other exotic
ark energy components, alternative approaches assume that GR
ight be inaccurate on cosmic scales, and that Modified Gravity

MG) scenarios are plaussible alternatives to the standard laws of
ravity (see e.g. Joyce et al. 2015 ; Koyama 2018 ; Ferreira 2019 , for
ecent re vie ws). Some leading examples of MG theories include
he Dvali–Gabadadze–Porrati (DGP) braneworld model (Dvali,
abadadze & Porrati 2000 ), the symmetron (Hinterbichler & Khoury
 E-mail: cheng-zong.ruan@durham.ac.uk 

p  

c  

t  

Pub
010 ; Hinterbichler et al. 2011 ), the k-mouflage model (Babichev,
effayet & Ziour 2009 ), and f ( R ) gravity (De Felice & Tsujikawa
010 ; Sotiriou & Faraoni 2010 ) which is a particular subclass of
he so-called chameleon models (Khoury & Weltman 2004a , b ;
rax et al. 2008 ). By considering different MG models we can

ee ho w alternati ves to GR might change measurable quantities,
nd therefore suggest which observables have the most potential to
onstrain deviations from GR. 

Modifications to GR typically manifest themselves as changes
o the cosmic expansion history and/or the evolution of structure,
.e. at the background and/or perturbation lev els. Man y viable MG

odels closely mimic the expansion history of � CDM, and therefore
re hard to distinguish from GR using background cosmology alone.
ven in the case of MG models where the expansion rate is modified,

here can be degeneracies which cannot be fully broken using
ackground observables. Hence, high hopes have been placed on the
se of cosmological observations that involve perturbation dynamics
o test gravity. The evolution of perturbations in linear theory in MG
odels has been well-studied both theoretically (e.g. Brax et al. 2011 ;
arreira et al. 2012 , 2015 ) and numerically (e.g. Hojjati, Pogosian &
hao 2011 ; Hu et al. 2014 ; Bellini et al. 2018 ), and the model
redictions have been confronted with observational data such as the
osmic microwave background (CMB) temperature fluctuations and
he matter power spectrum (Hu et al. 2013 ; Dossett, Hu & Parkinson
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014 ). Nevertheless, on small scales where tremendous amounts of 
bservational data are available, linear theory breaks down and a fully 
on-linear treatment is needed in order to more accurately predict 
he model behaviour. An impro v ed non-linear model is essential if,
or example, one wishes to make the best use of the current and
ext generations cosmological surveys to test models. This point 
ecomes even more acute in the context of MG cosmology, given that
uch models have intrinsically non-linear features, such as screening 
echanisms, which cannot be captured by linear theory (e.g. Li 

t al. 2013 ). For this reason, here we focus on non-linear structure
ormation in MG cosmologies, with the objective of improving model 
ests by including data from the non-linear regime of the large-scale 
tructure (LSS) of the Universe. 

One of the most commonly used probes of the LSS is galaxy
lustering, which records the angular positions and redshifts (as 
roxies for radial distance) of galaxies. The measured redshifts of 
alaxies are affected by their peculiar velocities, which cause an 
nisotropy in the estimated galaxy clustering (in redshift space) –
nown as redshift space distortions (RSD) – since the line-of-sight 
irection of the observer is singled out as being special, and the
eculiar motions cannot be separated from the Hubble expansion in 
his direction. RSD encode cosmological information about both the 
patial distribution and the velocity field of galaxies, which makes 
hem a useful probe of the laws of gravity (e.g. Kaiser 1987 ; Hamilton
992 ; Guzzo et al. 2008 ; Song et al. 2015 ; Barreira, S ́anchez &
chmidt 2016 ; He et al. 2018 ), because peculiar velocities are mainly

nduced by the gravity of the inhomogeneous matter distribution. 
Current best constraints on the growth rate of the LSS from the two-

oint correlation function (TPCF) in redshift-space are consistent 
ith GR (see e.g. Bautista et al. 2021 for an analysis using the

uminous red galaxy sample from eBOSS and Hou et al. 2021 for
nother using eBOSS quasars). Various perturbation theory-based 
ethods have been used to model RSD: these include the combined 
aussian Streaming Model (GSM) and Convolutional Lagrangian 
erturbation Theory (CLPT) formalism developed by Reid & White 
 2011 ), Carlson, Reid & White ( 2013 ), Wang, Reid & White ( 2014 ),
odels such as those described in Taruya, Nishimichi & Saito ( 2010 )

TNS) and S ́anchez et al. ( 2017 ), which derive from the perturbative
xpansion advocated in Scoccimarro ( 2004 ), as well as ef fecti ve
eld theory approaches (e.g. Senatore & Zaldarriaga 2014 ; Fonseca 
e la Bella et al. 2020 ). Ho we ver, the v alidity of these approaches
s typically limited to sufficiently large scales, where perturbations 
an be considered linear or quasi-linear. For example, for the eBOSS 

uminous red galaxy sample Bautista et al. ( 2021 ) found that, to
chieve unbiased constraints on the cosmological parameters with 
he CLPT model, the minimum scale to be used in the fitting
rocess is 20 h 

−1 Mpc . Current and upcoming spectroscopic redshift 
easurements, such as DESI (DESI Collaboration 2016 ) and Euclid 

Laureijs et al. 2011 ; Amendola et al. 2013 ), will provide galaxy
ower spectrum and correlation function measurements with much 
igher accuracy than currently available and down to smaller scales, 
hich places a much stronger demand on the accuracy of RSD
odelling, if we are to fully exploit these observational clustering 

stimates. 
Here, to tackle this challenge, we adopt the Streaming Model (SM), 

hich was introduced by Peebles ( 1980 ) and further investigated 
y Fisher ( 1995 ), Scoccimarro ( 2004 ), and which is widely used
owadays, to model the redshift-space TPCFs in MG models. The 
treaming model takes the real-space two-point correlation function 
nd the galaxy pairwise velocity Probability Distribution Function 
PDF) as ingredients (cf. equation 21 below). The former is related 
o the matter clustering in real space, and the latter encodes the
hysics underlying the evolution of peculiar velocities induced by 
ravitational instability. Instead of the usual GSM, we will follow 

uesta-Lazaro et al. ( 2020 ) who showed that a 1D skewed student-
 (ST) distribution can accurately describe the PDF of the line
f sight pairwise velocity for dark matter haloes down to small
cales. This model has been validated against simulations of the 
 CDM cosmology, in terms of both the velocity PDF itself and the

redictions of correlation function multipoles. 
We extend the e v aluation of the non-linear RSD model carried out

y Cuesta-Lazaro et al. ( 2020 ) to MG cosmologies. Given the ever
eclining sample variance errors expected from upcoming large- 
cale structure measurements, and the small differences expected 
etween the predictions of viable gravity models, it is imperative to
roduce accurate models of RSD in different cosmologies. Thanks 
o significant recent progress, modern MG N -body codes are now
apable of running large-volume and high-resolution simulations to 
eet the requirements of upcoming wide field galaxy surv e ys. We test

he validity of the ST distribution using N -body simulations, based
n the newly developed MG code MG-GLAM (Hern ́andez-Aguayo 
t al. 2022 ; Ruan et al. 2022 ), which enables the fast generation of
imulations in a wide range of MG models. 

Our aim is to investigate if the ST pairwise velocity PDF for dark
atter haloes, a generic phenomenological model that is applicable 

o a wide range of MG cosmologies, at a similar level of accuracy
s for the � CDM model (Cuesta-Lazaro et al. 2020 ). We find that
he streaming model of RSD combined with the ST velocity PDF
eproduces the halo clustering multipoles measured from N -body 
imulations down to � 5 h 

−1 Mpc for all gravity models considered.
e also explore the behaviour of halo pairwise velocity moments 

n two representative classes of MG models, f ( R ) gravity, and the
ormal branch of DGP gravity, along with their relative differences 
ith respect to � CDM. Finally, we show that including small-scale
SD can indeed lead to greatly impro v ed constraints on these models.
This paper is organized as follows. In Section 2 , we give a brief

escription of the MG models considered and the N -body simulations
sed in our analysis. In Section 3 , we re vie w the streaming model
f RSD, with a particular focus on one of its ingredients – the
airwise velocity PDF of dark matter haloes. In Section 4 , we study
he behaviour of the halo pairwise velocity PDFs in a wide range
f MG models, show that the streaming model with the ST PDF
ccurately reproduces redshift-space two-point correlation functions, 
nd perform a simple Fisher matrix analysis to assess the impact of
ncluding small-scale RSD on the model constraints. Finally, we 
ummarize and conclude in Section 5 . Throughout, our analysis is
ased on dark matter haloes, and we leave the extension of the RSD
odelling to galaxy clustering for future work. 

 MODI FI ED  G R AV I T Y  M O D E L S  A N D  N - B O DY  

I MULATI ONS  

.1 Theoretical models 

n this section, we briefly describe the two modified gravity mod-
ls analysed in this work, chameleon f ( R ) gravity and the DGP
raneworld models (Dvali et al. 2000 ). These are two of the most
idely studied MG models and, as we discuss below, are repre-

entativ e e xamples of two classes of screening mechanisms, which
ake them good test-beds for generic MG models. For more detailed

escriptions of these models, we refer the reader to Sotiriou & Faraoni 
 2010 ), De Felice & Tsujikawa ( 2010 ) for f ( R ) gravity, and Sahni &
htanov ( 2003 ), Maartens & Koyama ( 2010 ) for DGP models. 
MNRAS 514, 440–459 (2022) 
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(e.g. Desmond & Ferreira 2020 ), but they are in a different regime and have 
dif ferent systematic ef fects than cosmological constraints, and hence we shall 
not consider them here. 
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.1.1 f ( R ) gravity 

he f ( R ) gravity is a generalization of Einstein’s general relativity.
n f ( R ) gravity, the Einstein–Hilbert action in GR has an additional
erm, which is a function of the Ricci scalar R , 

 = 

∫ 
d 4 x 

√ −g 

{
M 

2 
Pl 

2 
[ R + f ( R) ] + L m 

}
, (1) 

here M Pl = (8 πG ) −1/2 is the reduced Planck mass, G is Newton’s
onstant, g is the determinant of the metric g μν and L m 

the Lagrangian
ensity for matter fields. Varying the action with respect to the metric
 μν gives the modified Einstein equation, 

 μν + f R R μν −
(

1 

2 
f − �f R 

)
g μν − ∇ μ∇ νf R = 8 πGT m 

μν , (2) 

n which 

 μν ≡ R μν − 1 

2 
g μνR, (3) 

s the Einstein tensor, f R ≡ d f ( R )/d R , ∇ μ is the covariant derivative
orresponding to the metric g μν , � ≡ ∇ 

α∇ α and T m 

μν is the energy
omentum tensor for matter. 
Equation ( 2 ) is a fourth-order partial differential equation in

 μν . This equation can also be considered as the standard Einstein
quation in GR with a new dynamical degree of freedom, f R , which is
ubbed the scalaron (e.g. Zhao, Li & Koyama 2011 ). The equation of
otion of f R can be obtained by taking the trace of equation ( 2 ): 

f R = 

1 

3 
( R − f R R + 2 f + 8 πGρm 

) , (4) 

here ρm 

is the matter density. 
For cosmological simulations in standard gravity, the Newtonian

imit is commonly adopted. This includes the approximations that the
ravitational and scalar fields are weak (such that their higher order
erms can be neglected) and quasi-static (so that the time deri v ati ves
f the fields can be neglected compared to their spatial deri v ati ves).
ost modified gravity simulations (including the ones used in this
ork) adopt this assumption. In the context of f ( R ) gravity and the
ewtonian limit, the modified Einstein equation ( 2 ) becomes 

 

2 � ≈ 16 πG 

3 
a 2 ( ρm 

− ρ̄m 

) + 

1 

6 
a 2 

[
R( f R ) − R̄ 

]
, (5) 

nd the equation of motion of the scalaron reduces to 

 

2 f R ≈ −1 

3 
a 2 

[
R( f R ) − R̄ + 8 πG ( ρm 

− ρ̄m 

) 
]

, (6) 

here � is the Newtonian potential, ∇ is the 3D gradient operator,
nd an o v erbar denotes the cosmic mean of a quantity. 

In order to simulate cosmic structure formation in f ( R ) gravity, one
as to choose a specific functional form for f ( R ). Here, we adopt the
ell-studied Hu–Sawicki model (Hu & Sawicki 2007 ), but generalize

t slightly. The original functional form of f ( R ) is 

 ( R) = −m 

2 c 1 ( −R/m 

2 ) n 

c 2 ( −R/m 

2 ) n + 1 
, (7) 

here m 

2 ≡ 	m 0 H 

2 
0 and c 1 , c 2 , and n are free model parameters.

he parameter n is a positive number, which is set to n = 1 in most
revious studies of this model (however see e.g. Li & Hu 2011 ;
amachandra et al. 2021 , for some examples of n �= 1). With this

unctional form, we have 

 R = − ∣∣f̄ R0 

∣∣ ( R̄ 0 

R 

)n + 1 

, (8) 
NRAS 514, 440–459 (2022) 
here R̄ 0 , f̄ R0 are, respecti vely, the present-day v alues of the
ackground Ricci scalar and f̄ R . Starting from this equation, we
re able to consider also the case of n = 0, which is not allowed by
quation ( 7 ). We will consider cases of n = 0, 1, 2; for each n we will
onsider a range of values of f R 0 , to increase the diversity of model
ehaviour. For brevity, we will adopt the following nomenclature to
abel models: the model with n = 1 and − log 10 

(| f̄ R0 | 
) = 5 will be

alled F5n1, and so on. 
The remaining free parameter of the theory is the background

alue of the scalar field f R at redshift z = 0, f̄ R0 . With a suitable
hoice of this parameter, f ( R ) gravity reco v ers GR in high-density
egions – this is necessary to be consistent with Solar system tests
hrough the associated chameleon mechanism (Khoury & Weltman
004a , b ). We show e xtensiv ely the results of the model with f̄ R0 =
10 −5 and n = 1, namely F5n1. We note that a larger value of | f̄ R0 |
eans a stronger deviation from standard gravity. The F5n1 model

ould be in slight tension with small-scale tests (see e.g. Lombriser
014 , for a recent re vie w of current cosmological 1 constraints on
 ̄R0 ). But since we aim to test gravity on much larger scales, it is
evertheless still a very valuable model to study: given its slightly
tronger deviation from GR compared to models such as | f̄ R0 | =
0 −6 (F6n1), it can lead to important insights into how the deviations
ffect large-scale cosmological observables such as weak lensing and
alaxy clustering statistics. In order to fully explore the GR testing
apacities of upcoming large-scale structure surv e y, it is critical to
ain a detailed understanding of how these measures are altered by
ossible modifications to gravity. 

.1.2 Dvali–Gabadadze–Porrati (DGP) model 

n the braneworld model proposed by Dvali, Gabadadze, and Porrati
Dvali et al. 2000 ), the Universe is a 4D brane embedded in a 5D
pace–time (called the b ulk). The gra vitational action in this model
s given by 

 = 

∫ 
brane 

d 4 x 
√ −g 

(
R 

16 πG 

)
+ 

∫ 
bulk 

d 5 x 
√ 

−g (5) 

(
R 

(5) 

16 πG 

(5) 

)
, (9) 

here a superscript (5) denotes the quantity in the 5D bulk. This
odel has a self-accelerating branch of solution (sDGP), which gives
 natural explanation for the cosmic acceleration (though with a
istinctly different expansion history from � CDM), but the sDGP
ranch suffers from pathological problems (Koyama 2007 ) and its
redictions have been found to be inconsistent with observations
uch as the CMB, supernovae and local measurements of H 0 (e.g.
ong, Sawicki & Hu 2007 ; Fang et al. 2008 ). 
The so-called normal branch DGP (nDGP) gravity (Koyama 2007 )

annot accelerate the Hubble expansion rate on its own and so to
xplain cosmological observations it is necessary to introduce an
dditional component of dark energy or a cosmological constant.
his model is nevertheless still of interest as a useful toy model that

eatures the Vainshtein screening mechanism (Vainshtein 1972 ). In
his paper, we assume that there is an additional non-clustering dark
nergy component in this model, with which its expansion history
s made identical to that of � CDM. The nDGP model provides an
xplanation why gravity is much weaker than the other fundamental
orces (Maartens & Koyama 2010 ): all matter species are assumed to
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Table 1. The summary of the specifications of the simulations used in this work. Note that the LIGHTCONE simulations (Arnold et al. 2019b ) are only used in 
Appendix B , but we nevertheless include them here for completeness. 

Simulation Cosmology Code Model Box size M particle N particle Force Halo Halo mass 

( × #realizations) ( h −1 Mpc) ( h −1 M 	) 
resolution 
( h −1 kpc) finder definition 

GLAM Planck15 GLAM GR ( × 72) 512.0 1.07 × 10 10 1024 3 250.0 BDM M vir 

MG-GLAM Planck15 MG-GLAM F5n0 ( × 10) 512.0 1.07 × 10 10 1024 3 250.0 BDM M vir 

F5n1 ( × 10) 
N1 ( × 10) 

MG-GLAM Planck15 MG-GLAM 28 f ( R ) models ( × 1) 512.0 1.07 × 10 10 1024 3 250.0 BDM M vir 

29 nDGP models ( × 1) 
LIGHTCONE Planck15 MG-GADGET GR ( × 1) 768.0 4 . 50 × 10 9 2048 3 10.0 SUBFIND M 200c 

F5n1 ( × 1) 
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e confined to the brane, while gravity could propagate through (leak 
nto) the extra spatial dimensions. There is one new free parameter 
n the nDGP model, which can be defined as the ratio of G 

(5) and G ,
nd it is known as the crosso v er scale, 

 c ≡ 1 

2 

G 

(5) 

G 

. (10) 

Taking the variation of the DGP action, equation ( 9 ), in a
omogeneous and isotropic universe yields the modified Friedmann 
quation 

H ( a) 

H 0 
= 

√ 

	m 0 a −3 + 	DE ( a) + 	rc −
√ 

	rc , (11) 

here 	rc ≡ 1 / (4 H 

2 
0 r 

2 
c ), and 	DE is the density parameter of the

dditional dark energy component. The dimensionless quantity H 0 r c 
an be used to quantify the departures from standard gravity. If H 0 r c 
 ∞ then equation ( 11 ) returns to the � CDM case. A larger value

f H 0 r c means a weaker deviation from GR, because it means that the
rossing scale r c , abo v e which gravity starts to have a non-standard
D behaviour, is larger. 
In the nDGP model, cosmological structure formation is go v erned 

y the modified Poisson and scalar field equations (Koyama & Silva 
007 ), 

 

2 � = 4 πGa 2 δρm 

+ 

1 

2 
∇ 

2 ϕ , (12) 

nd 

 

2 ϕ + 

r 2 c 

3 β a 2 c 2 

[
( ∇ 

2 ϕ ) 2 − ( ∇ i ∇ j ϕ ) 2 
] = 

8 π G a 2 

3 β
δρm 

, (13) 

here ϕ is a new scalar degree of freedom, δρm 

= ρm 

− ρ̄m 

and 

( a) ≡ 1 + 2 H r c 

(
1 + 

Ḣ 

3 H 

2 

)
= 1 

+ 

	m 

a −3 + 2 	� 

2 
√ 

	rc ( 	m 

a −3 + 	� 

) 
. (14) 

Here, we will study the nDGP model for various values of H 0 r c ,
nd for easy references we will adopt the following rule: a model
ith H 0 r c = 1 is called N1, and similarly for other values of H 0 r c . 

.2 N -body simulations 

n this section, we briefly introduce the N -body simulations we use
o assess the performance of the RSD models in the context of
odified gravity theories. Table 1 gives a summary of the simulation 

pecifications. We focus on ‘main’ or ‘distinct’ dark matter haloes, 
nd we leave a more detailed study for mock galaxies to a subsequent
ork. 
In the main body of this paper, the simulations are run with

LAM (Klypin & Prada 2018 ) (for � CDM) and its modified gravity
xtension, MG-GLAM (Hern ́andez-Aguayo et al. 2022 ; Ruan et al.
022 ) for all the MG models. GLAM is a parallel particle-mesh (PM)
ode for the massive production of N -body simulations and mock
alaxy catalogues in GR. It uses a regularly spaced 3D mesh of size
 

3 
g co v ering the cubic simulation box of (comoving) volume L 

3 
box .

he force and mass resolution are defined by the size of a cell, 
 x =
 box / N g , and the mass of each particle, 

 particle = 	m 

ρc , 0 
L 3 box 

N 3 particle 
, (15) 

espectively, where N 

3 
particle is the number of simulation particles and 

c , 0 ≡ 3 H 

2 
0 / (8 πG ) is the present value of the critical density (see

ppendix A of Klypin & Prada 2018 for details). GLAM solves the
oisson equation for the Newtonian potential in a cubic simulation 
ox using the Fast Fourier Transform (FFT) algorithm, and it uses
he Cloud-In-Cell (CIC) scheme to implement the matter density 
ssignment and force interpolation. 

MG-GLAM extends GLAM to a general class of modified gravity 
heories by adding extra modules for solving MG scalar field 
quations. In the code papers of MG-GLAM (Hern ́andez-Aguayo 
t al. 2022 ; Ruan et al. 2022 ), we describe the optimized multigrid
elaxation algorithm used to solve the non-linear MG equations, such 
s equations ( 6 ) and ( 13 ), and their numerical implementations. In
hese papers we also reported some of the most interesting and basic
osmological quantities, such as the matter power spectrum and halo 
ass function, for several classes of MG models, and compared these
ith the results from other high-precision MG N -body codes, such as

COSMOG (Li et al. 2012 ), MG-GADGET (Puchwein, Baldi & Springel
013 ), and the MG modules of AREPO (Springel 2010 ; Arnold, Leo &
i 2019a ; Hern ́andez-Aguayo et al. 2021 ), finding good agreement. 
In total, we have 72 independent realizations of GLAM simulations 

or GR, and we have simulated 30 f ( R ) gravity models (with 10 values
f log 10 | f̄ R0 | ranging between −6 and −4.5, respectively, for n = 0,
, 2) and 30 nDGP models (for 30 dif ferent v alues of H 0 r c , including
1) using MG-GLAM , with one realization for each model. Moreo v er,

or F5n0, F5n1, and N1, we have additional independent runs so that
ach of these models has 10 realizations. All these runs adopt the
 CDM cosmology with the Planck 2015 best-fitting cosmological 

arameters (Planck Collaboration XIII 2016b , hereafter Planck15 ). 
he simulations follow the evolution of 1024 3 dark matter particles in
 simulation box with a side L box = 512 h 

−1 Mpc , starting at an initial
edshift of z init = 100 with the initial conditions (ICs) generated using
MNRAS 514, 440–459 (2022) 
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M

Figure 1. Cumulative halo mass functions (left-hand panel) and halo real-space correlation functions (right-hand panel) at z = 0.5, from ( MG- ) GLAM simulations 
of the f ( R ) model with f R 0 = −10 −5 , n = 0 (F5n0, blue), and n = 1 (F5n1, red), the DGP model with H 0 r c = 1 (N1, orange) and � CDM (black). The � CDM halo 
catalogues hav e fix ed number density n h = 10 −3 ( h −1 Mpc ) −3 (indicated by the grey horizontal line in the upper left panel) by selecting haloes more massive 
than a threshold value M min . For MG halo catalogues, the mass cuts are tuned to match the � CDM halo correlation functions o v er a range of scales. The lower 
subpanels show the fractional difference between the MG and � CDM results, with the grey shaded region in the lower right panel indicating ±1 per cent . The 
error bars present the standard deviation o v er 10 realizations for each model (72 for � CDM results). Only the � CDM error bars are displayed in the upper left 
panel for clarity. 
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he Zel’dovich approximation. For further details of these simulations
ee Hern ́andez-Aguayo et al. ( 2022 ) and Ruan et al. ( 2022 ). 

Table 1 presents the specifications of our simulations: the box size,
article mass M particle , number of particles N particle , mesh numbers
 

3 
g , etc. The halo catalogues are produced using the bound density
axima (BDM) spherical o v erdensity halo finder (Klypin, Trujillo-
omez & Primack 2011 ). Only main haloes are studied in this work

ince the subhaloes are not well resolved due to the limited force
esolution. 2 For the halo mass definition, the BDM halo finder adopts
he virial mass M vir , which is the mass enclosed within a spherical
 v erdensity of radius R vir , such that the mean o v erdensity within this
phere is 
 vir ≈ 330 times the mean matter density of the Universe.
he virial o v erdensity is calculated according to Bryan & Norman
 1998 ). We saved halo catalogues at redshift z = 0.0, 0.5, and 1.0 for
nalysis, and show the results of z = 0.5 in the main text. The results
btained from the other snapshots are presented in Appendix C . 
In Fig. 1 , we show some of the basic cosmological quantities

redicted by the ( MG- ) GLAM simulations. The left-hand panel shows
he cumulative halo mass function (HMF) for the GR, F5n0, F5n1,
nd N1 models, each showing the mean of 10 independent realiza-
ions; the lower subpanel shows the enhancements of the MG models
ith respect to GR, which agree very well with earlier simulation

tudies (see Hern ́andez-Aguayo et al. 2022 ; Ruan et al. 2022 ). The
ight-hand panel of Fig. 1 compares the real-space halo TPCF of the
ame models; here we have tuned the number densities of the halo
atalogues 3 such that the TPCFs in all models agree with each other
NRAS 514, 440–459 (2022) 

 Ho we ver, in the code papers we found that the main haloes of these 
imulations are complete down to a halo mass of � 10 12 . 5 h −1 M 	. This 
hould allow us to construct mock galaxy catalogues based on the halo 
ccupation distribution (HOD) model (see e.g. Berlind et al. 2003 ; Zheng 
t al. 2005 ), though in this paper we will focus on haloes for simplicity, and 
eave a more detailed analysis using realistic mock galaxy catalogues to future 
ork. 
 Note that this tuning means that here we are not comparing halo catalogues 
n different models with exactly the same number density, but the latter is 

ξ

w  

i  

T  

v  

o  

n
t

ithin � 1 per cent between 5 and 30 h 

−1 Mpc (see the lower sub-
anel, which shows the relative difference from GR after the tuning).
In Appendix B , we compare several halo pairwise velocity

tatistics predicted by these simulations with the predictions from
 high-resolution simulation using a different code, and find that
G-GLAM gives reliable results down to small scales. 

 T H E  STREAMI NG  M O D E L  O F  REDSHIFT  

PAC E  DI STORTI ONS  

n this section, we focus on the mapping between real-space and
edshift-space two-point statistics. The redshift–space halo correla-
ion function depends on the real-space correlation function and the
alo pairwise velocity PDF, as described by the so-called streaming
odel. We show that this PDF can be accurately described by an ST

istribution in different MG scenarios. The ST distribution has four
ree parameters, which can be related to the first four moments of
he pairwise velocity PDF. It can therefore match the skewness and
urtosis of the halo pairwise velocity PDF predicted by N -body
imulations. Finally, we will show that modelling skewness and
urtosis is rele v ant for constraining MG models through small-scale
edshift space clustering measurements. 

.1 Redshift-space distortions 

he real-space TPCF is defined as 

R ( r) = 

〈
δ( x ) δ( x + r ) 

〉
, (16) 

here δ( x ) the number density contrast of the tracer field under
nvestigation at position x , and 〈···〉 denotes the ensemble average.
his quantity only depends on the length, r , of the pair separation
ector, r , due to the assumed statistical isotropy and homogeneity
f clustering in real space. ξR ( r ) describes the excess probability of
ot our main interest anyway. On the other hand, as we shall see below, this 
uning will make it easier when comparing other physical quantities. 
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nding a pair of tracers with separation r , compared with a random
istribution of points. 
In redshift space, the statistical isotropy is broken since there is

 ‘special’ line-of-sight direction, the velocity component of which 
ould induce additional redshifts or blueshifts, causing distortions 
o the tracer correlation function equation ( 16 ). This is known
s redshift-space distortions, or RSD. In this space (denoted by 
uperscript S ), the correlation function, which is similarly defined as 

S ( s, μ) = 

〈
δS ( x ) δS ( x + s ) 

〉
, (17) 

epends not only on the pair separation s = | s | , but also on the angle
f s with respect to the line-of-sight direction ˆ z , characterized by 
he cosine μ ≡ ˆ s · ˆ z . This dependence can also be expressed by the 
eparations perpendicular ( s ⊥ 

) and parallel ( s � ) to the line of sight,

.e. ξS ( s ⊥ 

, s � ), where s = 

√ 

s 2 ‖ + s 2 ⊥ 

and s � = s μ, and we will use

oth notations. It is convenient to decompose the 2D anisotropic 
orrelation function ξS ( s , μ) into multipole moments in a basis of
egendre polynomials, L � ( μ), as 

S ( s, μ) = 

∑ 

� 

ξ� ( s) L � ( μ) , (18) 

here � is the order of the multipole. Odd � moments vanish
ince ξS ( s , μ) is symmetric in μ. We will focus on the first three
on-vanishing multipoles, i.e. the monopole ( � = 0), the quadrupole 
 � = 2) and the hexadecapole ( � = 4). We measure ξS ( s , μ) in the
eparation range 4 ≤ s/ ( h 

−1 Mpc ) ≤ 30 for 26 linearly spaced bins
f size 1 h 

−1 Mpc , and in the angular cosine range 0 ≤ μ ≤ 1 for 240
qually spaced linear bins. We hav e e xplicitly checked that these
hoices lead to converged result at sub per cent level. 

We use the publicly available PYTHON package HALOTOOLS 4 

Hearin et al. 2017 ) to measure real- and redshift space correlation
unctions of halo catalogues from the simulations. In cases where the 
imulation box is large enough, or where there are many independent 
ealizations, we adopt the plane-parallel approximation, assuming 
hat the line-of-sight direction ˆ z is along one of the three axes of the
artesian coordinate system for all haloes. The systematic deviations 
aused by this assumption have been shown to be small for the
urrent surv e ys (Samushia, Perci v al & Raccanelli 2012 ; Yoo & Seljak
015 ). Under this approximation, the relation between the real ( r )
nd redshift ( s ) space positions of a halo is given by 

 = r + 

v ( r ) · ˆ z 
a H ( a) 

ˆ z , (19) 

here v ( r ) is the peculiar velocity of the halo and H ( a ) is the Hubble
actor at a given scale factor a . 

.2 The streaming model 

he streaming model of RSD, introduced by Peebles ( 1980 ) and sub-
equently generalized by Fisher ( 1995 ), is a probabilistic approach 
o relate the clustering statistics of tracers in real and redshift spaces.
he full complexities of modelling the redshift-space TPCF, ξS ( s ⊥ 

, 
 � ), are encoded in the pairwise velocity PDF, which is the probability 
istribution of the relativ e v elocities in a pair of tracers (haloes in
ur case) at a given halo separation; this is explicitly defined as
 12 ≡ v 2 − v 1 , where v 1 , v 2 are the velocities of the two haloes in 
he pair. 

Because the number of tracers is conserved in real and redshift
pace, the fractional number o v erdensity in the two spaces is related
 https:// halotools.readthedocs.io/en/ latest/ 

a

m

y 

1 + δS ( s ) 
]
d 3 s = 

[
1 + δR ( r ) 

]
d 3 r . (20) 

his equation can be futher manipulated (Scoccimarro 2004 ) to 
btain the exact relationship between real- and redshift-space two- 
oint correlation functions 

 + ξS ( s ⊥ 

, s ‖ ) = 

∫ ∞ 

−∞ 

d r ‖ 
[
1 + ξR ( r) 

]P( s ‖ − r ‖ | r ) , (21) 

here 

 ⊥ 

≡ r ⊥ 

, s ‖ ≡ r ‖ + 

v ‖ 
a H ( a ) 

, (22) 

r ≡ ( r ⊥ 

, r ‖ ), r ≡
√ 

r 2 ⊥ 

+ r 2 ‖ , and P( v ‖ | r ) is the PDF of line-of-sight

elativ e v elocities of halo pairs separated by r . 
The line-of-sight pairwise velocity PDF, P( v ‖ | r ) can be calculated

rom the full halo pairwise velocity distribution, P( v r , v t | r), where v r 
nd v t are the pairwise velocity components parallel and transverse to
he pair separation vector r , respectively. The line-of-sight projection 
f velocities is given by 

 ‖ = v r cos θ + v t sin θ , (23) 

here θ ≡ arctan ( r ⊥ 

/r ‖ ) is the angle between the line of sight and
he separation vector r . Therefore, 

( v ‖ | r ) = 

∫ 
d v r 

sin θ
P 

(
v r , v t = 

v ‖ − v r cos θ

sin θ

∣∣∣∣ r 
)

. (24) 

ote that the distribution P( v r , v t | r) only depends on the separation
ength r (instead of the vector r ) due to statistical homogeneity and
sotropy in real space. It is an intrinsic property of N -body systems,
hich are determined by dynamical evolution under gravity. 
Since we are discussing halo velocity fields, rather than the 

elocities of randomly chosen points in space, the moments m ij and
he central moments c ij (where i , j are non-ne gativ e inte gers) of the
airwise velocity PDF, which are defined as 

 ij ( r) ≡
∫ 

d v r d v t ( v r ) 
i ( v t ) 

j P( v r , v t | r) , (25) 

nd 

 ij ( r) ≡
∫ 

d v r d v t [ v r − m 10 ( r) ] i [ v t − m 01 ] 
j P( v r , v t | r) , (26) 

hould be weighted by halo mass when measured from simulations, 

 ij ( r) = 

〈
[1 + δ( x 1 )][1 + δ( x 2 )]( v r ) i ( v t ) j 

〉
〈 [1 + δ( x 1 )][1 + δ( x 2 )] 〉 , (27) 

nd 

 ij ( r) = 

〈
[1 + δ( x 1 )][1 + δ( x 2 )] [ v r − m 10 ( r) ] i [ v t − m 01 ( r) ] j 

〉
〈 [1 + δ( x 1 )][1 + δ( x 2 )] 〉 , (28) 

here r ≡ | x 2 − x 1 | . Statistical isotropy in the transverse plane
mplies that only moments with even powers of the transverse 
omponent are non-zero. The four lowest order non-zero moments 
re 

m 10 , 

c 20 , c 02 , 

c 30 , c 12 , 

c 40 , c 22 , c 04 . 

(29) 

Similarly, the line-of-sight velocity moments and central moments 
re defined as 

 n ( r ) ≡
∫ 

d v ‖ ( v ‖ ) n P( v ‖ | r ) (30) 
MNRAS 514, 440–459 (2022) 
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nd 

 n ( r ) ≡
∫ 

d v ‖ 
[
v ‖ − m 1 ( r ) 

]n P( v ‖ | r ) . (31) 

ccording to equation ( 23 ), the relations between the moments of
he PDFs P 

(
v ‖ | r 

)
and P ( v r , v t | r ) are given by (Cuesta-Lazaro et al.

020 ) 

 n ( r ⊥ 

, r ‖ ) = 

n ∑ 

k= 0 

(
n 

k 

)
μk (1 − μ2 ) 

1 
2 ( n −k) c k,n −k ( r) , (32) 

here μ ≡ r � / r is the direction cosine as before, c n is the n th central
oment of the line-of-sight velocity distribution P( v ‖ | r ⊥ 

, r ‖ ), and
 k , n − k denotes the moment of the k -th radial component, ( n − k )-
h transverse component of P( v r , v t | r). The n -th moment about the
rigin is denoted as m n . In what follows, we will need the line-
f-sight pairwise velocity moments m 1 , c 2–4 for the streaming model
redictions, and these will be obtained by first measuring the pairwise
elocity moments c ij ( r ) from the simulated halo catalogues in real
pace and then performing the conversions using equation ( 32 ), since
he latter are an intrinsic property of halo catalogues while the former
lso depend on the specified line-of-sight direction. 

.2.1 The Gaussian streaming model (GSM) 

n its early applications, the streaming model was used to predict
he galaxy clustering measured from the CfA surv e y (Davis &
eebles 1983 ). In this case, the best fit to the observational data
as found using an exponential form for the pairwise velocity
istribution. Fisher ( 1995 ) showed that the streaming model with
 Gaussian velocity PDF and a scale-dependent velocity dispersion
ould reproduce the linear perturbation theory result for RSD on large
cales. Scoccimarro ( 2004 ) demonstrated that the pairwise velocity
DF is not Gaussian, even for a Gaussian matter density field, but it
an be approximated by a Gaussian near its peak. Based on a non-
erturbative resummation of the linearized limit (Fisher 1995 ) of the
treaming model equation ( 21 ), Reid & White ( 2011 ), Carlson et al.
 2013 ) proposed that the line-of-sight pairwise velocity PDF can be
pproximated by a Gaussian function 

 G ( v ‖ | r ) = 

1 √ 

2 πc 2 ( r ) 
exp 

[
− ( v ‖ − m 1 ( r )) 2 

2 c 2 ( r ) 

]
, (33) 

here we note that the Gaussian model parameters m 1 and c 2 are
cale dependent. The GSM has become one of the most commonly
sed RSD models in galaxy surv e ys (e.g. Reid et al. 2012 ; Samushia
t al. 2014 ; Satpathy et al. 2017 ; Tamone et al. 2020 ). 

Considering the massive dark matter haloes, Kuruvilla & Porciani
 2018 ) applied the CLPT formalism to compute the ingredients in the
SM, including the real-space clustering, and the first- and second-
rder pairwise v elocity moments. The y obtained predictions for the
edshift-space correlation function monopole and quadrupole which
re accurate to 2–4 per cent down to � 25 h 

−1 Mpc , compared to
tatistics measured in N -body simulations. Bose & Koyama ( 2017 )
dopted the GSM combined with the regularized perturbation theory
o compute the large-scale redshift-space halo power spectrum and
PCF, for Vainshtein screened and Chameleon screened MG models
s well as GR. Also based on the GSM, Bose et al. ( 2020 ) presented
 hybrid approach to predict the quasi non-linear redshift space
atter power spectrum multipoles. Valogiannis, Bean & Aviles

 2020 ) extended the GSM to calculate the redshift-space correlation
unctions for biased tracers in modified gravity models, by employing
he Lagrangian Perturbation Theory (LPT) and CLPT resummation
cheme to predict the ingredients of the GSM, including ξR ( r ),
NRAS 514, 440–459 (2022) 
 1 ( r ) and c 2 ( r ). Their new approach qualitatively reproduces the
edshift-space correlation function quadrupole in the MG simulations
ompared, down to at least 17 h 

−1 Mpc , and traces the shape of the
exadecapole down to similar small scales. 
Despite its simplicity and popularity, it is well known that the

aussian model described by equation ( 33 ) does not fully describe
he pairwise velocity PDF, especially for pairs at small separations
Bianchi, Chiesa & Guzzo 2015 ; Uhlemann, Kopp & Haugg 2015 ;
ianchi, Perci v al & Bel 2016 ; Kuruvilla & Porciani 2018 , see also
ig. 2 ), because the true PDF as measured from simulations can have
ignificant skewness and kurtosis, which are absent in a Gaussian
DF. 

.2.2 The Skewed Student-t (ST) distribution 

uesta-Lazaro et al. ( 2020 ) proposed to use the so-called ST
istribution (Azzalini & Capitanio 2009 ) to model P 

(
v ‖ | r 

)
(see

lso Zu & Weinberg 2013 , for an earlier application in a similar
ontext). The ST distribution is constructed from the Student’s t -
istribution, whose PDF for a random variable x in one dimension is 
iven by 

 1 ( x − x c | w, ν) = 

�( ν+ 1 
2 ) √ 

νπw�( ν2 ) 

[ 

1 + 

1 

ν

(
x − x c 

w 

)2 
] − ν+ 1 

2 

. (34) 

his distribution is characterized by three parameters: the location
f the centre x c , the shape parameter w, and the number of degrees
f freedom ν. 
The expression for the ST distribution of line-of-sight pairwise

elocities, which originates from the t -distribution ( 34 ), is given by 

P ST ( v ‖ ; v c ( r ) , w( r ) , α( r ) , ν( r ) | r ) = 

2 

w 

t 1 ( v ‖ − v c | 1 , ν) 

× T 1 

(
α

v ‖ − v c 

w 

[
ν + 1 

ν + 

(
( v ‖ − v c ) /w 

)2 

]1 / 2 

; ν + 1 

)
, (35) 

here T 1 is the 1D cumulative t -distribution with ν + 1 degrees of
reedom, and v c , w, α, and ν are the four free parameters, themselves
unctions of r , which fully specify the ST distribution. 

Although equation ( 35 ) looks quite lengthy, it has the advantage
hat the four parameters can be analytically related to its first four

oments m 1 and c 2, 3, 4 (see equations A1–A6 in appendix A of
uesta-Lazaro et al. 2020 , we have reproduced these relations in
ppendix A of this paper for completeness). Furthermore, Cuesta-
azaro et al. ( 2020 ) found that the ST distribution fits the P 

(
v ‖ | r 

)
easured from simulations very well, in particular for close pairs,

nd consequently it leads to much more accurate predictions of the
SD multipoles ξS 

� ( s) at small scales. We will see that it also works
ery well for the modified gravity models described in Sections 2.1.1
nd 2.1.2 . 

In practice, the ST model parameters, v c ( r ) , w( r ) , α( r ) , ν( r ),
re determined in the following way: (1) measure the lowest four
oments of the pairwise velocity distribution P ( v r , v t | r ) from

he simulated halo catalogues, (2) convert these to the lowest four
oments of the line-of-sight projected velocity PDF P 

(
v ‖ | r 

)
using

quation ( 32 ), and (3) compute v c , w, α, ν using the relations given
n Appendix A . Schematically this can be illustrated as follows: {

m 10 ; c 20 , 02 ; c 30 , 12 ; c 40 , 22 , 04 

}
( r) 

equation (32) −−−−−→ { m 1 , c 2 , c 3 , c 4 } ( r ) 
Appendix A −−−−−−→ { v , w, α, ν} ( r ) . (36) 
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Figure 2. The pairwise line-of-sight velocity distribution P( v ‖ | r ) for dark matter haloes with number density n̄ h = 10 −3 ( h −1 Mpc ) −3 at z = 0.5, e v aluated at 
different separations r = ( r ⊥ , r ‖ ), from ten MG-GLAM cosmological runs for the F5n1 model. The rows show increasing r � separation, and the columns show 

increasing r ⊥ . The black dots with error bars represent the mean and standard deviation from 10 realizations. The red dashed–dotted and blue solid lines show 

the Gaussian and ST models, respectively. The best-fitting parameters are obtained by converting the measured pairwise velocity moments, instead of directly 
fitting the black dots, as described in Section 3.2 . The black dashed lines represent the line-of-sight pairwise velocity mean, m 1 ( r ), by integrating the measured 
velocity PDF, and the grey dashed lines show zero velocity value to aid visualization. All velocities are rescaled by 1/( aH ) according to equation ( 19 ) so that 
the y hav e the unit of length. 
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 RESULTS  

ur aim is to demonstrate the importance of modelling higher 
rder moments, beyond the mean and variance of the pairwise 
elocity distribution, to constrain modified gravity models using 
SD. In this section, we show that using the ST distribution as a
eneric phenomenological model to convert the velocity moments 
nto redshift-space clustering through the streaming model is also 
pplicable to MG models, by showing that its prediction agree very 
ell with the measurements from N -body simulations, down to scales 

round 5 h 

−1 Mpc . 
In Section 4.1 , we analyse the ingredients of the SMs, in particular

he halo pairwise line-of-sight velocity PDF and its moments, as 
easured from ( MG- ) GLAM simulations for a range of MG models.

n Section 4.2 , we show that the Skew-T Streaming Model (STSM)
an accurately predict both the redshift-space TPCF multipoles in 
ifferent MG models, but also their relative enhancement with respect 
o GR, down to small scales. In Section 4.3 , we perform a simple
 e  
isher analysis to illustrate how, by including small-scale RSD 

nformation, the power of galaxy clustering analyses in constraining 
G models can be significantly impro v ed. 

.1 Streaming model ingredients 

.1.1 Halo line-of-sight pairwise velocity PDFs 

n Fig. 2 , we show the line-of-sight pairwise velocity PDF of dark
atter haloes from the F5n1 simulations run using MG-GLAM , for

ine selected combinations of ( r ⊥ 

, r � ) co v ering large, intermediate,
nd small scales. The figure shows increasing r ⊥ 

values from top to
ottom and increasing r � values from left to right. The black dots
epresent the measured PDFs of dark matter haloes, and the lines
how the Gaussian (red) and ST (blue) distributions. The best-fitting 
odel parameters are obtained by converting the measured pairwise 

elocity moments, as described in Section 3.2 and specifically in 
quation ( 36 ) for the ST model. Comparing this plot with fig. 2
MNRAS 514, 440–459 (2022) 
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Figure 3. The four lowest order moments of the radial and transverse halo pairwise velocity distribution for the f ( R ) gravity model with n = 1 and 10 values of 
log 10 | f R 0 | equally spaced in the range between −6.0 and −4.5, as labelled, at z = 0.5, from the MG-GLAM simulations. The lower subpanels show the relative 
differences between the f ( R ) and GR models. The horizontal dashed line denotes 0. The halo catalogues have a fixed number density of n h = 10 −3 ( h −1 Mpc ) −3 

for all models. 

o  

t  

2  

r  

s  

m  

h
 

h  

s

 

m  

a  

s  

f
 

t  

m  

t  

w  

d
 

o  

s  

b  

i

5

a
c

<

(  

fi
 

c

4

F  

t  

0  

g  

b  

a  

d  

f  

c  

p  

b  

t
 

G  

p  

t  

c  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/1/440/6585663 by U
niversity of D

urham
 user on 29 June 2022
f Cuesta-Lazaro et al. ( 2020 ), which shows measurements from
he standard gravity simulation suite Dark Quest (Nishimichi et al.
019 ), we see that the same conclusions can be reached regarding the
elative performance of the Gaussian and ST models, even though
everal aspects of the analyses are different, such as: the gravity
odels ( f ( R ) gravity versus � CDM), the N -body codes used, the

alo finders applied and the mass definitions. 
In section 3.2 of Cuesta-Lazaro et al. ( 2020 ) there is a compre-

ensive discussion on how the behaviour of P ( v ‖ | r ) depends on pair
eparation. Here, we make similar observations: 

(i) The ST model is a better description of the simulation measure-
ents than the Gaussian distribution on all scales we have looked

t, at the expense of requiring two more parameters to quantify the
kewness and kurtosis of the PDF. The impro v ement is significant
or small separations ( r ⊥ 

, r ‖ � 25 h 

−1 Mpc ). 
(ii) The behaviour of P ( v ‖ | r ) in GR and f ( R ) gravity is qualita-

ively similar, although the gravity is enhanced in the latter. The ST
odel achieves a similar level of agreement as in the GR case. Since

he ST distribution describes the measured velocity PDF accurately,
e can use the ‘best-fit’ 5 ST results as proxies to explore the
ifferences in P( v ‖ | r ) between f ( R ) gravity and � CDM. 
(iii) For small separations, such as r ‖ = 5 . 50 h 

−1 Mpc , r ⊥ 

= 0.5
r 5 . 50 h 

−1 Mpc , the line-of-sight velocity distributions are strongly
ke wed to wards negati ve pairwise velocities. This can be explained
y the fact that such close halo pairs are more likely to be located
n high-density regions where haloes infall towards each other ( v � 
NRAS 514, 440–459 (2022) 

 Note that quotation marks are used here since strictly speaking this is not 
 fit. Instead, as described abo v e, the ST distribution parameters have been 
alculated directly using the measured velocity moments. 

F  

o  

t  

t  

t  

s  
 0). This skewness is less obvious when we go to large r ⊥ 

or r � 
e.g. 49 . 50 h 

−1 Mpc ), since for large separations the probabilities of
nding infalling and receding halo pairs tend to differ less. 
(iv) The measured line-of-sight velocity PDFs are heavily tailed

ompared with their best-fit Gaussian ones. 

.1.2 Halo pairwise velocity moments 

ig. 3 shows the four lowest order moments of the radial and
ransverse halo pairwise velocity PDFs from halo catalogues at z =
.5 with fixed number density n̄ h = 10 −3 ( h 

−1 Mpc ) −3 for the f ( R )
ravity model with n = 1 and ten log 10 | f R 0 | values evenly spaced
etween −6.0 (the weakest modification) and −4.5 (the strongest),
long with the relati ve dif ferences with respect to the � CDM results
isplayed in the lower subpanels. We have checked the results for
 ( R ) models with n = 0 and n = 2, and found similar results, but for
larity those are not shown here. Fig. 4 is the same as Fig. 3 , but
resents the DGP model with 30 H 0 r c values logarithmically spaced
etween 0.25 and 10. We only show one of each higher order moment
o make the plot easier to read. 

The differences in the velocity moments between the MG and
R models are caused by the MG effects and the different halo
opulations. The latter occurs because, at fixed halo number density,
he haloes from different models are likely not to have a one-to-one
orrespondence, even though the simulations start from the same ICs.
 or e xample, the contrib ution of the f ( R ) gra vity effect is suppressed
n scales larger than the range of the fifth force. Therefore, we expect
hat the radial mean velocity relative enhancement, 
m 10 /m 

GR 
10 , tends

o be zero on large scales (e.g. � 40 h 

−1 Mpc ). Ho we ver, due to
he halo population difference, we see that this is not the case as
hown in the upper left panel of Fig. 3 : 
m 10 /m 

GR 
10 on large scales
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Figure 4. The same as Fig. 3 , but for the DGP model with 30 H 0 r c values in the range of [0.25, 10], as labelled. 
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s scale-independent but f̄ R0 -dependent. We are mainly interested in 
he difference caused by MG ef fects; ho we ver, Figs 3 and 4 only
rovide an incomplete picture of how the velocity moments depend 
n the MG model parameters. 
We can isolate the MG effects, at least on large scales, on halo

airwise velocity moments and halo clustering by tuning the mass cut 
f MG halo catalogues, so that the real-space correlation functions 
R ( r ) agree with the GR ones on large scales. Due to the small
imulation box size, the correlation functions are noisy and the tuning 
s not reliable for a single realization. We only tuned the MG models
or which we have run ten or more realizations, i.e. GR, F5n0, F5n1,
nd N1. The resulting real-space correlation functions are presented 
n the right-hand panel of Fig. 1 . In the rest of this paper, we will
l w ays use these tuned MG halo catalogues for the halo clustering
nalysis unless otherwise stated. 

Fig. 5 shows the same halo velocity moments measurements as 
n Figs 3 and 4 , but for the matched halo catalogues and models
nly. We can see that after matching the large-scale halo correlation 
unctions, the mean velocity relati ve dif ference of f ( R ) gravity with
espect to � CDM is consistent with zero on scales � 40 h 

−1 Mpc ,
or both F5n1 and F5n0. The different values of n only affect the
mall-scale mean velocities, with the boost in n = 0 being larger as
he fifth force is less screened in this case (cf. section 5.1 of Ruan
t al. 2022 ). For higher order moments, the relati ve dif ferences on
ar ge scales conver ge towards non-zero constants, whose values are 
lightly different for n = 0 and 1. For the nDGP model (N1), the
ehaviour of the velocity moments is qualitati vely dif ferent from
hat of f ( R ) gravity on all scales. We will interpret this result in the
ontext of MG effects next. 

As mentioned in Section 2 , the DGP and f ( R ) gravity models
eature different screening mechanisms (Vainshtein versus thin-shell 
hameleon screening). In the DGP case, the fifth force is screened 
lose to and inside massive bodies, but is unscreened and proportional
o the Newtonian force when placed at a far distance. This means that
tructure formation is enhanced on large scales here, which is in con-
rast to f ( R ) gravity, where the finite range of the fifth force means that
tructure formation is enhanced only below the Compton wavelength 
f the scalaron field. As a result, unlike in f ( R ) gravity, the large-scale
alue of the radial mean velocity enhancement in DGP is non-zero.
e find that this scale-independent value agrees well with the linear

erturbation theory prediction of the first pairwise velocity moment, 
 10 , which is related to the halo TPCF as (e.g. Sheth et al. 2001 ) 

 10 ( r) = −2 

3 
β

r ̄ξR ( r) 

1 + ξR ( r) 
, (37) 

here β ≡ f / b 1 , f ( z) is the linear growth rate, b 1 is the linear halo
ias, and ξ̄R ( r) is the v olume-a veraged halo correlation function 

¯R ( r ) ≡ 3 

4 πr 3 

∫ r 

0 
4 πξR ( r ′ ) r ′ 2 d r ′ . (38) 

ccordingly, the relati ve dif ference on large scales is approximately
iven by 

m 

N1 
10 

m 

GR 
10 

− 1 ≈ βN1 

βGR 
− 1 . (39) 

ote that we have used the fact that the large-scale real-space halo
PCF of N1 has been tuned to match the � CDM one. The values
f f ( z) at z = 0.5 and the linear bias b 1 are, respectively, calculated
nd measured 6 as 

 

GR ( z = 0 . 5) = 0 . 761 , b GR 
1 = 1 . 602 ± 0 . 007 , (40) 

 

N1 ( z = 0 . 5) = 0 . 804 , b N1 
1 = 1 . 527 ± 0 . 006 , (41) 
MNRAS 514, 440–459 (2022) 
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Figure 5. The four lowest order moments of the radial and transverse halo pairwise velocity distribution at z = 0.5, for the f ( R ) model with f R 0 = −10 −5 , n = 0 
(F5n0, blue), and 1 (F5n1, red), the DGP model with H 0 r c = 1 (N1, orange) and the � CDM (black) model. The lower subpanels show the relative differences 
between the MG and GR models. The error bars present the standard deviation of 10 realizations for each model. For the third and fourth order moments we 
only show the error bars of the � CDM results to a v oid clutter. The purple bands show the theoretical prediction by equation ( 42 ). This figure differs from 

Figs 3 and 4 in that here the number densities of haloes have been tuned slightly so that the MG models all match the real-space halo TPCF of GR in the range 
r ∈ [5 , 30] h −1 Mpc . 
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hich give m 

N1 
10 / m 

GR 
10 − 1 = 0 . 108. This value (the purple shade re-

ion in the lower subpanel of the upper left panel in Fig. 5 ) agrees well
ith what we find in the simulation data (orange line and data points).
In fact, we can qualitatively explain the behaviour of pairwise

elocity moments enhancement for ξR -tuned MG halo catalogues,
or all the 4 velocity moments shown in Fig. 5 , as follows. 

The pairwise velocity moments can broadly be thought of as
a ving two contrib utions: the b ulk flow of haloes, which mainly
ontributes on large scales, and the random motion caused by small-
cale shell crossing and virialization inside dark matter haloes. The
airwise velocity moments can be approximated by the bulk flow and
andom motion terms, assuming that they are independent of each
ther so that the cross-correlation between them can be ignored. We
ote that, while the random motions occur on small scales, their
ontribution still affects the even-order pairwise velocity moments
or pairs of haloes at large separations – this is because random
otions do contribute to the velocity difference of the pair, v in

quation ( 27 ), and when taking even powers of v there can be no
ancellation and this contribution stays in the final m ij . 

As mentioned abo v e, the effect of the fifth force in f ( R ) gravity is
uppressed on large scales which are well beyond the range of the
orce (the inverse of the scalaron Compton wavelength), whereas on
mall scales we would expect to observe some effect (except where
hameleon screening works efficiently to suppress it). On the other
and, in DGP models, gravity is enhanced by a constant factor on
arge scales, but is very efficiently suppressed within a few times the
ypical halo virial radius (see e.g. Hern ́andez-Aguayo et al. 2021 ).
his implies that in the two MG models the contributions from the
ulk flow and the random motion will behave very differently. 

On small scales where the random motions are strong, the velocity
oment boost in f ( R ) gravity can be considerable, since the fifth force

s only fully screened in a few very massive haloes, and is unscreened
or most objects (at least for the F5n1 and F5n0 models considered
NRAS 514, 440–459 (2022) 
ere). In DGP models, the Vainshtein screening is efficient on
cales smaller than the Vainshtein radius, which causes the MG
nhancement to be small towards these scales. This is qualitatively
onsistent with the small-scale behaviour of 
m 10 /m 

GR 
10 observed in

he upper left subpanel of Fig. 5 . 
Linear theory has explained the large-scale behaviour of the first-

rder moment enhancement in both gravity models. Similarly, the
eading (linear) term of higher order moment enhancements in
erturbation theory, which describes the bulk flo w, is gi ven by (see
ppendix D for a heuristic deri v ation): 

c MG 
n 

c GR 
n 

− 1 ≈
(

βMG 

βGR 

)n 

− 1 , on large scales . (42) 

he horizontal purple bands in Fig. 5 present the linear predictions
or the N1 model. For odd-order pairwise velocity enhancements,
he large-scale N -body measurements (orange lines) agree well with
he linear theory, while for even-order moments, the measurements
re systematically smaller. This behaviour can be explained by
mploying the bulk flow (bf) and random motion (rm) decomposition
entioned abo v e. To be specific, we consider the second-order
oment c 20 , but the argument works for any other even-order
oments. Consider the large-scale difference of c 20 between N1

nd � CDM and let us decompose the moments into bulk flow and
andom motion contributions 

c 20 ≡ [ c ] MG − [ c ] GR (43) 

= c bf 
MG + c rm 

MG − ( c bf 
GR + c rm 

GR ) (44) 

DGP ≈ c bf 
MG − c bf 

GR , (45) 

here in the last line we have made use of the fact that the random
otion contributions in the DGP and GR models are approximately

he same (i.e. c rm 

DGP ≈ c rm 

GR ) due to the screening of the fifth force.
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aking the ratio with respect to the moment of � CDM, we have 


c 

c GR 
≈ c bf 

MG − c bf 
GR 

c bf 
GR + c rm 

GR 

< 

c bf 
MG − c bf 

GR 

c bf 
GR 

≈
(

βMG 

βGR 

)2 

− 1 , (46) 

here for the inequality we have implicitly used the facts c bf 
DGP > c bf 

GR 

nd c rm 

GR > 0 (as mentioned abo v e, for ev en moments, c rm 

GR �= 0 even
or halo pairs at large separations). This is the reason why the even-
rder moments of the simulation measurements are lower than those 
redicted by the linear theory, equation ( 42 ). 
For the odd-order moments, equations ( 43 )–( 45 ) are still valid.

he difference arises in the inequality of equation ( 46 ). Random
otion contributions to odd-order velocity moments are significantly 

maller than those of even-order moments, since even-order powers 
f v are al w ays positive and therefore can have no cancellation in
quation ( 27 ), but odd-order powers of v in equation ( 27 ) can so that
 

rm 

GR ≈ 0. We therefore have, for odd-order moments, 


c 

c GR 
≈ c bf 

MG − c bf 
GR 

c bf 
GR + c rm 

GR 

≈ c bf 
MG − c bf 

GR 

c bf 
GR 

≈
(

βMG 

βGR 

)2 

− 1 . (47) 

.1.3 Halo real space two-point correlation functions 

s mentioned abo v e, we hav e constructed the GR halo catalogues to
ave a fixed number density, and tuned the minimum mass cut M min 

f the various MG halo catalogues so that the halo real-space TPCFs
atch their GR counterparts closely. As shown in the right-hand 

anel of Fig. 1 , the correlation functions of the tuned f ( R ) gravity and
GP halo catalogues agree with the � CDM counterparts on scales 

arger than ∼ 10 h 

−1 Mpc to within a relative difference of less than
 � per cent. 
The effect of MG on the TPCF of halo catalogues with fixed n h ,

r fixed minimum mass cut M min , is interesting in its own right.
o we ver, this has been investigated in various previous works, 
ore recently by Alam et al. ( 2021b ). On the other hand, as we

av e discussed abo v e, the tuning of n h to make it MG model
ependent – in order to achieve a matching of the real-space halo 
PCFs in different models – leads to catalogues where the effect of
ifferent halo populations can be more cleanly separated from that 
f the fifth force. In addition, since the real-space halo TPCFs are
atched, any difference in the redshift-space clustering is necessarily 

aused by the difference in the pairwise velocities. This makes the 
nterpretation of the underlying physics more straightforward. As 
 result, for the rest of this paper we will only use the tuned halo
atalogues. 

.2 Halo redshift-space two-point correlation function 

ultipoles 

n this subsection, we will apply the ST velocity distribution to the
treaming model, to predict halo redshift–space correlation function 
onopoles, quadrupoles, and hexadecapoles. Since our goal is to 

how that the ST model is generic and applicable to both � CDM and
G models, we measure all the ingredients of the streaming model, 

ncluding halo real-space correlation functions and pairwise velocity 
oments, from the simulations. We use the MG-GLAM simulation data 

or this investigation. The halo catalogues at z = 0.5 with the halo
umber density around 10 −3 ( h −1 Mpc) −3 are used in this section.
e measure the model ingredients for each realization, compute 

he streaming model predictions and then present the average and 
tandard deviation. The results with other number densities and in 
ther redshifts are qualitatively similar, and some of these will be 
hown in Appendix C . 
In Fig. 6 , we show the multipoles of the redshift–space correlation
unction, ξS 

0 , 2 , 4 ( s) (the different rows), for the � CDM, F5n0, F5n1,
nd N1 models (the different columns). In the lower subpanels of each 
anel, the relati ve dif ferences between the model predictions and the
imulation measurements are displayed. The monopole predictions 
re quite accurate for both GSM and STSM, while it is apparent
hat STSM performs slightly better. If one targets at per cent-level
ccuracy, then GSM fails at s � 10 h 

−1 Mpc while STSM works well
own to s � 5 h 

−1 Mpc . The impro v ement made by using the ST
elocity distribution is significant when we consider the quadrupole. 
he GSM is biased for scales � 20 h 

−1 Mpc , whilst the STSM only
tarts failing on scales smaller than 5 h 

−1 Mpc . Similar behaviour
s found for the hexadecapole. Although the measurement of the 
exadecapole is rather noisy, mainly due to the small simulation 
ox size, the ST model agrees with simulation measurements within 
ne standard deviation for scales larger than � 8 h 

−1 Mpc , while the
SM is biased on all scales considered here. 
The STSM matches the ξS 

0 , 2 , 4 ( s) on scales larger than the maximum
eparation shown in Fig. 6 , so to impro v e the readability of the figure,
e opt not to show the behaviour on larger scales. We conclude that

he ST pairwise velocity distribution with the streaming model is 
ompetent in predicting redshift-space correlation functions in f ( R )
ravity and the DGP model, as well as in GR. 
Note that this excellent performance of the ST model is under

deal conditions: all ingredients of the streaming model of RSD, e.g.
he halo real-space two-point correlation function, ξR ( r ), and the
our lowest order pairwise velocity moments, are all measured from 

imulations, instead of using theoretical models. We will briefly 
iscuss our plan on constructing simulation-based emulators for 
R ( r ) and higher order pairwise velocity moments in Section 5 to
xtend the unbiased predictions down to highly non-linear scales. 

Fig. 7 compares the enhancements, with respect to � CDM, of the
easured RSD monopole (upper panels), quadrupole (middle), and 

exadecapoe (lower) from the simulated halo catalouges (symbols 
ith error bars), against the predictions by the Gaussian (red dashed

ines) and ST (blue solid) streaming models. The left column shows
he results for F5n1 and the right-hand panel for N1. We note
hat, again, for both MG models, STSM outperforms the GSM in
atching the simulation data. For the monopole, GSM starts to fail at
10 h 

−1 Mpc while STSM works well down to ∼ 3 h 

−1 Mpc . For the
uadrupole, the GSM prediction deviates from simulation data at s �
0 h 

−1 Mpc , while STSM remains in good agreement with the latter
own to ∼ 5 h 

−1 Mpc . For hexadecapole, we can see an improvement
n STSM as well, though here the simulation data is noisier. 

.3 Schematic demonstration of scale dependence of the 
onstraint on MG parameters 

e have seen that, compared with the traditional Gaussian model, 
he ST model has achieved greater success in predicting halo 
lustering on smaller scales (5 - 25 h 

−1 Mpc ). In order to quantitatively
emonstrate the constraining power gained from small-scale RSD 

ignals, we will forecast the constraints on the MG parameters using
 highly simplified Fisher analysis, in which all parameters are fixed
xcept the MG parameters such f̄ R0 in f ( R ) gravity and H 0 r c in DGP.

The Fisher matrix method provides a way to propagate the 
bservable uncertainty to the constraints of cosmological parameters. 
ur calculation of the Fisher matrix is based on Tegmark ( 1997 )

nd Seo & Eisenstein ( 2003 ), assuming a Gaussian likelihood
unction for our measurements of the correlation function multipoles. 
dditionally, we ignore any parameter dependence of the covariance 
atrix, in which case the Fisher matrix of a redshift slice centred at
MNRAS 514, 440–459 (2022) 
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Figure 6. The monopole, quadrupole, and hexadecapole of the redshift-space two-point correlation functions for GR (left column), the DGP model with H 0 r c = 

1 (N1; right column), and f ( R ) gravity model with f R 0 = −10 −5 and n = 0 (F5n0; second column) and 1 (F5n1; third column) at z = 0.5, from the ( MG ) -GLAM 

simulations (black dots). Also shown are the Gaussian (red dashed–dotted lines) and ST (blue solid lines) streaming model predictions, where the ingredients 
of the model are measured from simulations. In the lower sub-panels, the relative differences between the SM predictions and the simulation measurements, 
ξmodel ( s )/ ξ sim ( s ) − 1, are shown. The horizontal dashed lines in the lower subpanels denote 0, the grey shaded regions shows ±1 per cent for the monopole and 
quadrupole. The vertical dashed lines indicate where the STSM predictions start to differ significantly from simulation measurements. 
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 can be approximated as 

 ij = 

∑ 

αβ

∂f α

∂p i 

Cov −1 [ f α, f β ] 
∂f β

∂p j 

, (48) 

here Greek indices α, β label the spatial separation bins, e.g. s α;
 α = { ξS 

0 ( s α) , ξS 
2 ( s α) } are the redshift–space halo correlation function

ultipoles at redshift z; Cov[ f α , f β ] is the corresponding covariance
atrix and p i , p j are the model parameters (only one parameter in our

implified case here) being considered, which are { f̄ R0 } in f ( R ) gravity
nd { H 0 r c } in the DGP model. The covariance matrix of the redshift-
pace multipole moments are calculated from the halo catalogues of
2 GLAM � CDM runs. The 1 σ error is given by 

√ 

( F 

−1 ) 11 . We fix
he maximum separation s max = 35 h 

−1 Mpc , and vary the minimum
cale s min from 22 to 2 . 5 h 

−1 Mpc to explore the constraining power
n MG parameters gained from small-scale information. 
For the F5n1 and N1 models considered here, the deri v ati ves in

quation ( 48 ) are approximated by (taking ξS 
0 ( s) as an example) 

∂ξS 
0 ( s α; f̄ R0 ) 

∂ f̄ R0 
≈ ξS 

0 ( s α; −10 −5 ) − ξS 
0 ( s α; GR ) 

−10 −5 
(49) 
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nd 

∂ξS 
0 ( s α; γ ) 

∂( H 0 r c ) 
≈ ξS 

0 ( s α; 1) − ξS 
0 ( s α; γGR = 0) 

1 
, (50) 

espectively, where γ ≡ 1/( H 0 r c ). 
The Fisher forecast results are presented in Fig. 8 , in which we

ave considered three scenarios: using monoopole data only (red),
sing quadrupole data only (blue), and using both monopole and
uadrupole (black). In all cases it is clear that the constraining power
n both f̄ R0 and H 0 r c monotonically increases with decreasing s min .
ompared with using the monopole data alone, the addition of the
uadrupole data (which on its own does not produce very strong
onstraints) tightens the constraints by ∼ 20 per cent . Including the
exadecapoles leads to little improvement, which is unsurprising
iven the rather noisy hexadecapole measurements. Most interest-
ngly, we note that, for both f ( R ) gravity and DGP, including scales
f s � 10 h 

−1 Mpc can markedly impro v e the constraints on the MG
arameter. This confirms that small-scale RSD, if measured precisely
nd modelled accurately, can be a promising tool to help test gravity
odels using galaxy clustering data. 

art/stac1345_f6.eps
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Figure 7. The relati ve dif ference of redshift-space two-point correlation function multipoles between F5n1 and GR (left column), and between N1 and GR 

(right column), from the ( MG ) -GLAM simulations. The black dots with error bars are the measurements from simulations, and the small crosses with error bars 
in the top row are the relati ve dif ferences in the real-space halo TPCFs – these are measured from the tuned halo catalogues and are there just for comparison. 
The streaming model predictions are plotted as the red dashed–dotted (GSM) and blue solid (STSM) lines. The grey-shaded areas correspond to the standard 
deviation for GR o v er 72 × 3 measurements obtained from 72 realizations of the GLAM code. 

Figure 8. The dependence of the constraining power on f̄ R0 (left) and H 0 r c (right) from halo redshift–space correlation function multipole measurements, on 
the minimum scale s min included in the constraints, based on our simplified Fisher forecast with different minimum scales considered. The maximum scale 
is fixed to s max = 35 h −1 Mpc . Three scenarios are considered: monopole data alone (red), quadrupole data only (blue), and including both monopole and 
quadrupole (black). 
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 C O N C L U S I O N S  A N D  DISCUSSION  

er cent-level accuracy in modelling the anisotropies of redshift- 
pace galaxy clustering is required to accurately reco v er cosmolog- 
cal information from RSD signals in order to distinguish between 
ark energy and modified gravity scenarios. Within the framework 
f the streaming model of RSD, this requires that, compared with the
urrent status, we must: (i) impro v e the mapping of real- to redshift-
pace correlations, i.e. find a better description of the pairwise 
elocity distribution, (ii) increase the accuracy of the predictions 
f the streaming model ingredients, including the halo real-space 
orrelation function ξR ( r ) and the pairwise velocity moments. We 
av e inv estigated both aspects in the context of modified gravity
osmologies. For the first aspect, we have demonstrated that the ST
 P  
robability distribution for the halo pairwise velocity, which was 
ntroduced by Cuesta-Lazaro et al. ( 2020 ) as an alternative to the
raditional Gaussian model, is applicable to the measurements from 

he N -body simulations of all MG models considered here. For the
econd aspect, we have explored MG signals in both the individual
ngredients and predictions of the streaming model. This work has 
ade full use of MG-GLAM (Hern ́andez-Aguayo et al. 2022 ; Ruan

t al. 2022 ), a new code for fast production of full N -body simulations
n a wide range of MG models. 

The traditional Gaussian distribution fails to fully capture some 
roperties of the halo pairwise velocity PDF found in N -body
imulations, such as the skewness and kurtosis. The ST distribution 
an be tuned to match the four lowest order velocity moments of
( v ‖ | r ) with four parameters (two more than a Gaussian). Compared
MNRAS 514, 440–459 (2022) 
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ith the Gaussian form, the ST model extends the validity of the
treaming model from � 7 to � 5 h 

−1 Mpc for the monopole, and
 15 to � 5 h 

−1 Mpc for the quadrupole. For the hexadecapole, the
T model gives predictions that are correct down to about 8 h 

−1 Mpc ,
hile the GSM is biased on all scales shown. The performance of
T is equally good among all considered gravity models, including
 CDM, f ( R ) gravity with f̄ R0 = −10 −5 , n = 0 (F5n0) and 1 (F5n1),

nd the normal branch of DGP with H 0 r c = 1 (N1). 
We hav e inv estigated the MG enhancements of halo pairwise

elocity moments and redshift-space correlation functions with
espect to the � CDM baseline. To remo v e the effect of different
alo populations on large scales and make the physics in the results
asier to interpret, we have tuned the mass cut of MG halo catalogues
o match the real-space correlation functions to that of the � CDM
alo catalogues on large scales. With this, the MG pairwise velocity
oment enhancements on large scales can be explained by linear

heory. 
We have performed a simple Fisher forecast analysis to assess

he impact of including small-scale information on the power of
SD in testing and distinguishing different gravity models. Fig. 8
emonstrates that both including the RSD quadrupole and including
ata from scales of s � 15 h 

−1 Mpc can substantially decease the
ncertainty in the constrained MG parameters. This highlights the
otentially important role played by small-scale RSD in cosmolog-
cal tests of gravity using data from upcoming galaxy surv e ys such
s DESI and Euclid. 

The analysis in this work has been largely theoretical, since we
ave focused on haloes and made use of direct measurements from
imulations for a fixed number of theoretical models. To apply the
T model to real galaxy surv e y data and fully exploit its accuracy
n small scales, we need to impro v e in a couple of aspects. First of
ll, we need accurate predictions of the two SM model ingredients –
he pairwise velocity moments and real-space correlation functions –
or arbitrary cosmological models. While on linear and quasi-linear
cales, perturbation based approaches have proven very useful in
his regard, since our focus here is on the small, non-linear scales,
here the perturbative approach fails, alternatives need to be sought.
e plan to build emulators for the pairwise velocity PDF moments

nd TPCFs, taking advantage of the large number of big simulations
hat will be enabled by the fast MG-GLAM code. Note that this is
ifferent from directly emulating the 2D redshift–space correlation
unctions or their multipoles, since the SM ingredients are quantities
ith clearer physical meanings. 
Secondly, we need to extend our analysis to observable tracers of

he large-scale structure, such as galaxies. The inclusion of satellite
alaxies in clustering analysis will lead to a substantial finger-of-God
ffect, which can pose new challenges to the accurate modelling of
mall-scale RSD, and this needs to be investigated. Also, since our
imulations are dark matter only, a model of galaxy–halo connection,
uch as Halo Occupation Distribution (HOD; e.g. Berlind et al. 2003 ;
heng et al. 2005 ), abundance matching (e.g. Conroy, Wechsler &
ravtsov 2006 ; Moster et al. 2010 ; Reddick et al. 2013 ), and

emi-analytical galaxy formation models (e.g. Kauffmann, White &
uiderdoni 1993 ; Cole et al. 1994 ; Lacey et al. 2016 ), is needed, and

his will likely introduce additional uncertainties in the predicted
ignal. For simulations with relatively low resolution, the HOD
ethod is usually adopted to construct galaxy mock catalogues by

opulating the simulated haloes, where the HOD parameters can
e calibrated to match the observed galaxy number density and
ertain properties of their large-scale correlation. In a forthcoming
roject, we will focus on the redshift-space TPCF multipoles for
OD galaxies, and use these to reassess the constraining power of
NRAS 514, 440–459 (2022) 
mall-scale RSD in gravity tests. Modelling the redshift-space galaxy
lustering within the streaming model gives us more flexibility when
ombining with the HOD prescription. 
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PPENDI X  A :  M E T H O D  O F  M O M E N T S  F O R  

H E  ST  DI STRI BU TI ON  

he four parameters of the skew-T distribution, v c , w, α, ν, can be
nalytically related to the first four moments. To simplify the relation
etween these moments and parameters, let us introduce 

b ν = 

( ν

π

) 1 
2 � 

(
ν−1 

2 

)
�( ν/ 2) 
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δ = 
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(1 + α2 ) 
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c 3 
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3 / 2 
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c 4 

c 2 2 
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(A1) 

he moments can then be written as 

 1 = v c + wδb ν, (A2) 

 2 = w 
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[
ν

ν − 2 
− δ2 b 2 ν

]
, (A3) 

1 = δb ν

[
ν(3 − δ2 ) 

ν − 3 
− 3 ν

ν − 2 
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]− 3 
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, (A4) 
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γ2 = 

[
3 ν2 

( ν − 2)( ν − 4) 
− 4 δ2 b 2 νν(3 − δ2 ) 

ν − 3 
− 6 δ2 b 2 νν

ν − 2 
− 3 δ4 b 4 ν

]
[

ν

ν − 2 
− δ2 b 2 ν

]−2 

. 

(A5) 

hese form a system of non-linearly coupled algebraic equations that
an be solved numerically: parameters w, α, and ν are obtained from
he last three equations given the variance, skewness, and kurtosis of
he distribution, and the remaining parameter, v c , can then directly
e obtained from the equation for the mean. 

PPENDIX  B:  C O N V E R G E N C E  TESTS  

he GLAM and MG - GLAM simulations used in this work have a
elatively small box size, 512 h 

−1 Mpc . While their mass resolution
s high compared to many other MG simulations to date, the particle-

esh nature of the GLAM -based codes means that the force resolution
n these runs is poorer than what could be achieved using adaptive-
esh-refinement simulations with the same particle number and box

ize. In addition, MG - GLAM is a relatively new code and, while it has
assed various tests as demonstrated in the code papers, those tests
o not include velocity field statistics such as the ones considered in
his work. For these reasons, in this Appendix we will carry out a
est of the latter, by comparing the first four halo pairwise velocity
oments measured from MG - GLAM simulations of F5n1 and GR,
ith the predictions by a higher resolution LIGHTCONE simulation

or the same models. 
The MG LIGHTCONE simulation project (Arnold et al. 2019b )

rovides a set of high-resolution cosmological simulations of GR and
5n1, which employs the MG N -body code MG-GADGET (Puchwein
t al. 2013 ), adopting the same Planck15 � CDM cosmology. Starting
rom identical initial conditions, the pair of GR and F5n1 simula-
ion runs followed the dynamical evolution of 2048 3 dark matter
articles in a box with 768 h 

−1 Mpc comoving length, reaching a
ass resolution of M particle = 4 . 50 × 10 9 h 

−1 M 	. This high-mass
esolution make sure that the measured halo clustering signals are
NRAS 514, 440–459 (2022) 

igure B1. The four lowest order moments of the radial and transverse halo pairw
roject and MG-GLAM simulations. The lower subpanels show the relative differenc
recise on small scales (down to ∼ 1 h 

−1 Mpc ). The halo catalogues
re obtained with the SUBFIND (Springel et al. 2001 ) algorithm. The
alo mass definition adopted is M 200c ≡ 4 π

3 ( r 200c ) 3 200 ρc , where ρc 

3 H 

2 /(8 πG ) is the critical density of the Universe, and r 200c is the
pherical halo radius within which the spherically averaged mass
ensity equals 200 times ρc . The halo catalogues at redshifts z = 1
nd 0 are available. 

The results are shown in Fig. B1 , where the four panels from upper
eft to lower right are respectively for the first-, second-, third-, and
ourth-order moments. In each panel, the upper subpanel shows the
agnitudes of the moments as a function of the halo separation r ,
hile the lower subpanel shows the relative difference between F5n1

nd GR. The line styles and colours are indicated by legends. All
esults are at z = 0. 

When reading Fig. B1 , let us bear in mind that the halo populations
n the ( MG )- GLAM and MG LIGHTCONE simulations are necessarily
ifferent. This suggests that these two sets of simulations can have
ifferent halo biases, which would affect the amplitudes of the
elocity moments, although the shapes are broadly the same, as can
e readily seen. We have not made attempts to force an agreement
y adjusting the halo number densities in the different simulations,
 ut we ha v e checked this using sev eral � CDM simulations that use
ifferent simulation codes, resolutions, and halo finders, and found
imilar levels of discrepancy among all of them. 

More interestingly, the lower subpanels show that the model
ifference between F5n1 and GR predicted by the two sets of
imulations agree very well for all the analysed velocity moments,
nd all halo separations shown in Fig. B1 . In particular, the first
oment, m 10 , which the redshift-space halo correlation function

uadrupole is most sensitive to, agrees between the two sets of
imulations down to ∼ 5 h 

−1 Mpc. This shows that the MG - GLAM

imulation results can be used to study RSD at such small scales. 
Fig. B1 also shows that the enhancements of the velocity moments

re different on small scales between the MG-GLAM and LIGHTCONE

imulations. This difference is in most cases at a few per cent
t most abo v e � 10 h 

−1 Mpc , and – in the case of m 10 – around
he per cent level. This level of difference is e xpected giv en the man y
ise velocity for the GR and F5n1 models at z = 0, from the MG light-cone 
e between the velocity moments of the F5n1 and GR. 
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nloade
ifferences in the two sets of simulations, from codes to technical 
pecifications, such as details of halo finding. The effect of these 
imulation/technical differences can also be seen by comparing the 
alues (rather than the model differences) of the moments predicted 
y the two simulations (the upper subpanels of each panel). 
At < 10 h 

−1 Mpc , we see a stronger discrepancy between the two
imulations for c 30 and c 40 , at � 10 per cent (for c 04 the agreement
s much better – see the green/purple curves in the lower right panel
f Fig. B1 ). Again, given the more significant differences between 
he absolute curves of c 30 and c 40 for the same models, such as GR,
s shown in Fig. B1 (the green solid and purple solid curves in the
pper subpanel of the lower left panel), this is not surprising. Note
n particular that MG-GLAM uses M vir while LIGHTCONE uses M 200 c 

s the halo mass definition. 

i  

igure C1. The monopole, quadrupole, and hexadecapole of the redshift-space tw
 R 0 = −10 −5 and n = 0 (F5n0; middle column) and 1 (F5n1; right column), at diff
black dots), along with the Gaussian (red lines) and ST (blue lines) streaming mod
M predictions and the simulation measurements, ξmodel ( s )/ ξ sim ( s ) − 1, are shown. 
egions denoting ±1 per cent for the monopoles and quadrupoles. The vertical da
rom simulation measurements. 

d

PPENDI X  C :  T H E  P E R F O R M A N C E  O F  T H E  ST  

O D E L  IN  M O R E  M O D E L S  

n Fig. 6 , we have demonstrated that the ST streaming model
orks very well in predicting the redshift-space correlation function 
ultipoles ξS 

0 , 2 , 4 in not only the GR model, as found by Cuesta-
azaro et al. ( 2020 ), but also for several modified gravity models.
o we ver, due to space limit, in that figure we have only presented

he results at a single redshift ( z = 0.5) and around a single halo
umber density n h = 10 −3 . 0 ( h 

−1 Mpc ) −3 . 
We have also carried out similar checks for a range of other red-

hifts and halo number densities, and in all cases we found similarly
ood agreement between the ST streaming model and simulation 
redictions of RSD multipoles. A few selected examples are shown 
n Fig. C1 . The left, middle, and right columns are, respectively,
MNRAS 514, 440–459 (2022) 

o-point correlation functions for GR (left column), f ( R ) gravity model with 
erent redshifts as indicated by the subtitles, from the MG-GLAM simulations 
el predictions. In the lower sub-panels, the relative differences between the 

The horizontal dashed lines in the lower subpanels denote 0, the grey-shaded 
shed lines indicate where the STSM predictions start to differ significantly 
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R n h = 10 −3.5 ( h −1 Mpc) −3 at z = 0, F5n1 n h = 10 −3.0 ( h −1 Mpc) −3 

t z = 0.5, and F5n1 n h = 10 −3 ( h −1 Mpc) −3 at z = 1. The three
ows are for ξS 

0 , 2 , 4 , respectively. In each panel, the upper subpanel
ompares simulation measurement (symbols with error bars) with the
redictions of the Gaussian (red) and ST (blue) streaming models,
nd the lower subpanel shows the relative differences between the
wo streaming models with respect to the simulation measurement.
n all the cases, the ST streaming model clearly gives more reliable
redictions than the Gaussian one, indicating that the former can be
pplied to the modified gravity models studied in this work. There
s no apparent reason why we should not expect it to work for other
odels as well. The performance of the GSM is better in the lower

alo number density case, which is expected, since the pairwise
elocity PDF becomes more Gaussian for more massive haloes. 

Although not shown here, we have also checked the ST streaming
odel for a few other � CDM simulations which were run using

ifferent codes, at different resolutions and with different halo
nders. In all cases, the agreement with simulation prediction is
qually good. 

PPENDIX  D :  LINEAR  P E RTU R BAT I O N  

R E D I C T I O N S  O F  H A L O  PA IRW ISE  

E LOCITY  M O M E N T S  

n this appendix, we aim to present a deri v ation of equation ( 42 ),
howing that in linear perturbation theory the n th order halo pairwise
elocity (central) moments, c n , scale as βn , where β ≡ f / b 1 was
ntroduced in equation ( 37 ). 

We start from the line-of-sight peculiar velocity difference be-
ween points x and x ′ , expressed in terms of the velocity divergence
( x ) ≡ ∇ · v ( x ), 

 ‖ = 

[
v ( x ) − v ( x ′ ) 

] · ˆ z = −i 

∫ 
k 
e i k ·( x −x ′ ) k · ˆ z 

k 2 
θ ( k ) 

= −i aHf 
∫ 

k 
e i k ·( x −x ′ ) k · ˆ z 

k 2 
δL ( k ) + O 

[
( δL ) 

2 
]

= β ( −i aH ) 
∫ 

k 
e i k ·( x −x ′ ) k · ˆ z 

k 2 
δh ( k ) + O 

[
( δL ) 

2 
]

, (D1) 

here ˆ z stands for an arbitrary line of sight, and the integration
ymbol 

∫ 
k is a short-hand for (2 π ) −3 

∫ 
d 3 k . In the second and third

ines we have used that at linear order we can relate the velocity
ivergence to the linear matter perturbations as θ ( k ) = aHf δL ( k ),
hile the halo o v erdensity is giv en by δh ( k ) = b 1 δL ( k ), showing that

n linear perturbation theory v � is determined by β times a quantity
epending only on the halo density field. 
Consequently, at leading order the n -th moment of the pairwise

elocity PDF, 

 n ( r ) = 

〈
v n ‖ [ 1 + δh ( x ) ] 

[
1 + δh ( x ′ ) 

]〉
1 + ξhh ( r) 

, (D2) 

here r = x − x ′ , can be written as βn multiplied by a term
epending on the halo auto power spectrum or correlation function.
xplicitly, making use of equation ( D1 ) and keeping only the leading
rder contributions, we obtain for the first moment: 

1 + ξhh ( r)] m 1 ( r ) ≈ 2 
〈
v ‖ δh 

〉
= 2 β aH 

r · ˆ z 

r 

∫ 
k 
j 1 ( k r) 

P hh ( k ) 

k 
, (D3) 
NRAS 514, 440–459 (2022) 
hereas the second moment gives 

[1 + ξhh ( r)] m 2 ( r ) 

≈ (1 + ξhh ) 
〈
v 2 ‖ 
〉 + 2 

〈
v ‖ δh 

〉 〈
v ‖ δ′ 

h 

〉
= 2 β2 ( aH ) 2 

{ (
r · ˆ z 

r 

)2 [
(1 + ξhh ) 

∫ 
k 
j 2 ( kr) 

P hh ( k) 

k 2 

+ 

(∫ 
k 
j 1 ( k r) 

P hh ( k ) 

k 

)2 ]

− 1 + ξhh 

3 

∫ 
k 

[
j 2 ( kr) + j 0 ( kr) − 1 

]P hh ( k) 

k 2 

}
, (D4) 

nd similar relations can be derived for the higher order moments. 
Crucially, because in this work the halo catalogues from different

ravity (or, more generally, different cosmological) models have
een tuned so that they have the same halo correlation function
hh ( r ) and halo power spectrum P hh ( k ), these expressions show that,
hen taking ratios of the pairwise velocity moments from different
odels all terms involving ξ hh or P hh cancel. This leaves only factors

f β, and given two models, A and B , we therefore have 

m n,A 

m n,B 

= 

(
βA 

βB 

)n 

. (D5) 

t is important to stress that this only holds in linear theory and
or that reason it is not guaranteed that equation ( D5 ) is valid on
ufficiently large scales, as it is well known that for instance the
arge-scale v ariance recei ves significant contributions from small-
cale virialized motions (Scoccimarro 2004 ). For more discussion
n this point and how this alters the ratio in equation ( D5 ) for even-
rder velocity moments, see Section 4.1.2 . 

PPENDI X  E:  N U M E R I C A L  DETA I LS  O F  T H E  

TREAMI NG  M O D E L  I N T E G R AT I O N  

his appendix presents the numerical details in the computation
f the streaming model predictions from the ingredients measured
rom simulations. The streaming model for the redshift-space TPCF
equation 21 ) has two ingredients: the real-space TPCF and the
ine-of-sight pairwise velocity PDF, i.e. the position and velocity
nformation of tracers. 

As mentioned in equation ( 36 ), we do not directly use P( v ‖ | r ) in
ur model predictions, but approximate it with the ST distribution 

 ST 

(
v ‖ | v c ( r ) , w( r ) , α( r ) , ν( r ) 

)
. 

he four ST parameters for a given pair separation r can be fixed
y the first four line-of-sight pairwise veolcity moments m 1 , c 2 - 4 ( r ),
.e. by solving the four non-linearly coupled algebraic equations,
quations ( A2 )–( A5 ). This is done by using the fsolve function
f the standard open-source scipy (Virtanen et al. 2020 ) library. 
The line-of-sight pairwise veolcity moments can be obtained by 

(i) either directly measuring the line-of-sight pairwise distribution
( v ‖ | r ), or 
(ii) measuring the 2D2F pairwise veolcity distribution P( v r , v t | r)

nd projecting its moments along the line of sight according to
quation ( 32 ). 

We prefer the second approach since P( v r , v t | r) takes advantage of
ymmetries and does not require fixing a particular line-of-sight when
sing the simulation data. We have checked that the projected line-
f-sight moments from these two approaches are in good agreement.
ig. E1 shows the case of the halo catalogues from GLAM simulations
ith the number density n h = 10 −3 . 5 ( h 

−1 Mpc ) −3 at z = 0.5. The
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Figure E1. The first four orders of the line-of-sight halo pairwise velocity 
moments, from direct measurements (black solid lines) and pairwise velocity 
moments projection (blue dashed lines). The halo catalogues are from the 
GLAM simulations with a fixed number density n h = 10 −3 . 5 ( h −1 Mpc ) −3 at 
z = 0.5. 
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T distribution with the model parameters obtained by this method 
as been compared with the measured line-of-sight velocity PDF in 
ig. 2 . 
In practice, the streaming model numerical integrals can be 

ensitive to various factors, such as the choice of integration method,
he binning scheme etc., and it is important to make sure that one’s
hoices lead to converged results. We have created an example code
or this, which can be found here. The example code calculated 
he redshift-space correlation function multipoles for the GLAM halo 
atalogues with the number density 10 −3 . 0 ( h 

−1 Mpc ) −3 at z = 0.25.
or the model ingredients ξR ( r ), m 10 ( r ) and c (2)-(4) ( r ), we measured

hem in the separation bins linearly spaced o v er 1 ≤ r/ ( h 

−1 Mpc ) ≤
20 with a bin width 
r = 1 h 

−1 Mpc . The optimal configurations
epend on the tracers’ type (e.g. haloes versus galaxies), number 
ensity and redshift, etc. 
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