
Randomized Renaming in Shared Memory Systems

Petra Berenbrinka, André Brinkmannb, Robert Elsässerc, Tom Friedetzkyd,
Lars Nagele

aFachbereich Informatik, Universität Hamburg, 22527 Hamburg, Germany
bZentrum für Datenverarbeitung, Johannes Gutenberg-Universität Mainz, 55099 Mainz,

Germany
cDepartment of Computer Sciences, University of Salzburg, 5020 Salzburg, Austria

dSchool of Engineering and Computing Sciences, Durham University, Durham, DH1
3LE, United Kingdom

eDepartment of Computer Science, Loughborough University, Loughborough, LE11 3TU,
United Kingdom

Abstract

Renaming is a task in distributed computing where n processes are assigned
new names from a name space of size m. The problem is called tight if
m = n, and loose ifm > n. In recent years renaming came to the fore again
and new algorithms were developed. For tight renaming in asynchronous
shared memory systems, Alistarh et al. describe a construction based on the
AKS network that assigns all names withinO(logn) steps per process. They
also show that, depending on the size of the name space, loose renaming can
be done considerably faster. For m = (1 + ε) · n and constant ε, they
achieve a step complexity of O(log logn).

In this paper we consider tight as well as loose renaming and introduce
randomized algorithms that achieve their tasks with high probability. The
model assumed is the asynchronous shared-memory model against an adap-
tive adversary. Our algorithm for loose renaming maps n processes to a
name space of size m = (1 + 2/(logn)`) · n = (1 + o(1)) · n performing
O(`·(log logn)2) test-and-set operations. In the case of tight renaming, we
present a protocol that assigns n processes to n names with step complexity
O(logn), but without the overhead and impracticality of the AKS network.

Email addresses: berenbrink@informatik.uni-hamburg.de (Petra Berenbrink),
brinkman@uni-mainz.de (André Brinkmann), elsa@cosy.sbg.ac.at (Robert Elsässer),
tom.friedetzky@durham.ac.uk (Tom Friedetzky), l.nagel@lboro.ac.uk (Lars Nagel)

Preprint submitted to Elsevier November 26, 2020

This algorithm utilizes modern hardware features in form of a counting de-
vice which is also described in the paper. This device may have the potential
to speed up other distributed algorithms as well.
Keywords: tight renaming, loose renaming, distributed algorithm, shared
memory model, randomized algorithm

1. Introduction

Renaming is a task in distributed computing in which processes are as-
signed distinct names from a new and usually small name space. The number
of processes is denoted by n, the size of the name space by m. The problem
is called tight if m = n and loose if m > n. Dependent on the model, the
processes communicate synchronously via messages or have asynchronous ac-
cess to shared memory. In the former case, the objective is to restrict the
number of communication rounds and possibly the size of the messages; in
the latter case, the objective is to minimize the (total) step complexity. The
step complexity is the maximum number of accesses to the shared memory by
any process; the total step complexity sums up the accesses by all processes.
We assume that an arbitrary number of processes can fail which are chosen
by an adaptive adversary.

In recent years renaming gained new popularity and several papers ap-
peared that investigated renaming in the synchronous message-passing model
[1, 2, 3] and in the asynchronous shared-memory model [4, 5, 6, 7, 8, 9, 10, 11].
Assuming the shared-memory model with the names stored in test-and-set
registers, the authors of [8] describe a construction based on the AKS net-
work that assigns all names to a tight name space within O(log n) steps per
process. For loose renaming in the same model, it is shown in [10] that
O(log log n) steps are sufficient to provide n processes with distinct names
from a name space of size (1 + ε) · n where ε is a constant.

In this paper we consider tight as well as loose renaming in the asyn-
chronous shared-memory model1. The presented algorithms use random bits
and achieve their tasks with high probability2.

1This paper is an extended version of work published in [12]. It provides a more detailed
description and analysis including the total step complexity and the space complexity of
the algorithms.

2An event A occurs with high probability (w.h.p.) if Pr [A] ≥ 1−1/nc for some constant

2

For tight renaming, our algorithm has a step complexity of O(log n),
asymptotically equal to the algorithm of Alistarh et al. [8] while avoiding the
overhead of an AKS network. The total step complexity is lower with O(n)
(compared to O(n log n) [8]). In order to achieve this result, the names must
be stored in a special type of hardware register with an integrated counting
device.

Our two algorithms for loose renaming map n processes to a name space
of size m = (1 + ε) · n w.h.p. where ε = o(1). The first algorithm requires a
name space of size m = (1 + 2/(log log n)`) · n and has a step complexity of
O((log log n)`). For the second algorithm, the size of the name space is only
m = (1 + 2/(log n)`) · n and the step complexity O((log log n)2). To the best
of our knowledge, these are the first algorithms that achieve almost tight
renaming (i.e., with only a sublinear addition of names) in a poly-double-
logarithmic number of steps.

The remainder of the paper is structured as follows: After a discussion
of the related work in Section 2, the model is described in Section 3. The
special hardware register which used by the algorithm for tight renaming is
explained in Section 4. This algorithm is stated and analyzed in Section 5.
The algorithms for loose renaming are discussed in Section 6. The paper is
summarized and concluded in Section 7.

2. Related Work

There is a substantial amount of work on algorithms for renaming in dif-
ferent models. In this section we only consider results in the asynchronous
shared-memory model using test-and-set (TAS) registers, similar to our model.
The names are stored in TAS registers. Unless stated otherwise, testing such
a register is assumed to be an atomic hardware operation and takes one step.
The first process that tests a TAS register wins it and gets the name in it.
If several processes test a TAS register at the same time, an arbitrary one of
them wins it.

Additionally, we focus on randomized algorithms; for an overview of de-
terministic algorithms we refer the reader to [5]. We distinguish between
loose and tight renaming. In loose renaming the name space is larger than
the number of processes, whereas in tight renaming the size of the name

c > 0.

3

Tight renaming Loose renaming
Complexity Name space Complexity

Step O(log2 n) [8] (1 + ε)n log log n+O(1) [10]
complexity O(log k) [8] (AKS) O(k) O((log log k)2) [10]

Ω(log n) [8] O(n) Ω(log log n) [10]
Total step O(n log2 n) [4, 8] (1 + ε)n O(n log2 n) [13]
complexity O(k log k) [8] (AKS) (1 + ε)k O

(
k log2 k

log2(1+ε)

)
[4]

(1 + ε)n O(n) [10]
O(k) O(k log log k) [10]

Table 1: Known lower and upper bounds for the model used in this paper. All upper
bounds hold with high probability. The lower bound for loose renaming assumes a linear
number of TAS objects. ε > 0 is a constant. Using k instead of n is to indicate that the
respective algorithm is adaptive. AKS marks the algorithm using an AKS network.

space equals the number of processes. In the case of adaptive renaming, the
number of processes is not known in advance. Table 1 summarizes the step
complexity results from the literature.

Loose Renaming. Panconesi et al. [13] were the first to use randomization for
loose renaming. They use a probabilistic TAS register that selects a winner
among parallel accesses with probability 1−o(1). They present an algorithm
that assumes a name space of size (1+ε)n for a constant positive ε. The total
step complexity of their algorithm is O(n log2 n) with probability 1− o(1).

In [4] Alistarh et al. present the first adaptive randomized renaming al-
gorithm where the contention k, i.e. the actual number of participating pro-
cesses, is not known in advance. They propose an adaptive TAS register
implementation called RatRace with access costs O(log2 k). Based on that
implementation, the algorithm performs loose renaming on a name space of
size (1 + ε) · k and has a total step complexity of O(k log4 k/ log2(1 + ε))
(where a log2 k factor would be saved in the case of constant-cost TAS ac-
cess). The space complexity of the RatRace algorithm is reduced from O(k3)
to O(k) by Giakkoupis and Woelfel in [9]. They also show that test-and-
set can be implemented with a step complexity of O(log∗ k) assuming an

4

oblivious adversary, where log∗ denotes the iterated logarithm3.
Alistarh et al. [10] present one non-adaptive algorithm, ReBatching, and

two adaptive ones, AdaptiveReBatching and FastAdaptiveReBatching, as-
suming TAS registers given in hardware and an adaptive adversary which is
allowed to see the state of all processes (including the results of coin flips)
when making its scheduling choices. We use their results in Section 6, which
is why we phrase them in the following theorem and restate the ReBatching
algorithm (Algorithm 1).

Theorem 1 (Theorem 4.1, 5.1 and 5.2 in [10]). For any fixed ε > 0 and a
name space of size (1 + ε)n, ReBatching uses O(n) TAS objects and achieves
w.h.p. step complexity at most log log n+O(1) and total step complexity O(n)
against an adaptive adversary.

The adaptive algorithms require a name space of size O(k). AdaptiveRe-
Batching has step complexity O((log log k)2) and FastAdaptiveReBatching
a total step complexity of O(k log log k).

The ReBatching algorithm divides the name space of size (1 + ε)n into
disjoint sets Bi, 0 ≤ i ≤ dlog log ne, where |B0| = n and, for i > 0, |Bi| =
dεn/2ie. Every process tests ti TAS registers from each set Bi, until it wins
one. The ti are defined in the pseudocode of Algorithm 1.

The authors of [10] also show a lower bound of Ω(log log n) on the step
complexity of randomized renaming given an oblivious adversary and that the
name space and the number of TAS objects are linear in n. For deterministic
algorithms, in comparison, the lower bound is known to be Ω(n) and, thus,
exponentially worse [11].

Tight renaming. In [14] Eberly et al. consider a renaming problem in which
the name space size ` is smaller than the number n of processes. They use
a different model that allows processes to release names and assume that no
more than k ≤ ` processes hold or acquire names at the same time. Their
randomized tight renaming algorithm has an amortized step complexity of
O(k log k) where the step complexity is here defined as the maximum number
of steps that any process performs to find a name.

Alistarh et al. [4] present a very simple tight renaming algorithm called
ReShuffle which lets every process choose one random object out of all TAS

3The iterated logarithm of k is the number of times the logarithm must be applied
before the result is equal to or is less than 1.

5

Algorithm 1 ReBatching(n, ε) [10]
1: /* m = d(1 + ε)ne */
2: shared: array B[0 . . .m− 1] of TAS objects
3: /* κ = dlog log ne
4: for each i ∈ {0, . . . , κ}

5: ti =

d17 ln(8e/ε)/εe if i = 0
1 if 1 ≤ i ≤ κ− 1
3 if i = κ

6: bi =

n if i = 0
dεn/2ie if 1 ≤ i ≤ κ

7: si = ∑
0≤j<i bj

8: Bi = B[si . . . si + bi − 1] */
9: for all processes in parallel do

10: for i ∈ {0, . . . , κ} do
11: for ti times do
12: choose random TAS object x in Bi i.u.r.
13: if x is won then
14: break

objects in each round, until it wins a name. It is shown that ReShuffle has
a total step complexity of O(n log2 n) if a TAS access has constant costs. In
the paper the costs of an access are O(log2 n), and the total step complexity
is given as O(n log4 n). In Section 6, we use a similar algorithm for loose
renaming.

In [8] Alistarh et al. give two new randomized algorithms for tight re-
naming which work in the presence of an adaptive adversary. The first al-
gorithm called BitBatching divides the TAS registers storing the names into
` = O(log n) clusters of decreasing size. The first `−1 clusters have size n·2−i

for i = 1, ..., `− 1; the last cluster contains the remaining O(log n) registers.
Every process goes through the clusters sequentially and tests O(log n) reg-
isters in each of them, until it wins one and thus gets a name. The step
complexity of the algorithm is therefore O(log2 n) if the TAS registers are
implemented in hardware. We use the basic idea of their approach in two
algorithms for tight and loose renaming.

The second tight renaming algorithm in [8] transforms any sorting net-
work into an adaptive renaming protocol with an expected step complexity

6

cost equal to the depth of the sorting network. Using an AKS sorting net-
work, this gives a strong adaptive renaming algorithm with step complexity
O(log k) and total step complexity O(k log k). This approach has the disad-
vantage that while the depth of the AKS network is logarithmic, the constant
is a rather unwieldy, not to mention the complicated structure of an AKS
network. It also needs a large amount of TAS registers because the width of
the network equals the initial name space of the processes. The authors show
that the step complexity is asymptotically optimal. Deterministic algorithms
for tight renaming, on the other hand, have a step complexity of Θ(n) [11].

Our tight renaming algorithm in Section 5 has the same step complexity
as the AKS network algorithm, but a better total step complexity. Besides,
it is simpler and more space-efficient, yet requires a special type of hardware
register.

3. Preliminaries

3.1. Model
The considered machine model is the asynchronous shared-memory model

with concurrent reads and concurrent writes (CRCW). The processes follow
an algorithm composed of steps. Any number of processes may fail by crash-
ing, and a failed process does not perform further steps in the execution.
The order in which processes perform steps and their crashes are controlled
by an adversary. We assume an adaptive adversary that is allowed to see
the state of all processes (including the results of coin flips) when making its
scheduling choices.

The asynchronous shared memory contains the name space withm names
and can be accessed by all n processes. Besides the name space, additional
memory can be used as temporary memory. Like in [11], each name is stored
in a test-and-set (TAS) register that can be concurrently tested by several
processes, but only won by one process.

For our tight renaming algorithm, we use a special hardware register,
called τ(s)-register. It includes a counting device with TAS bits, i.e. TAS
registers consisting of only one bit. In each step each process is allowed to
test at most one TAS register or TAS bit. When a process wins a TAS bit,
the bit, initially set to 0, is set to 1, and the process knows that it has been
successful. When a process wins a TAS register, it is assigned the name in
it. Like in other papers, e.g. [11], we assume that concurrent accesses to the
same TAS register or TAS bit can be executed in one step and that every name

7

and address can be read or written in one step. Some of these names and
numbers have log n bits (or more). Likewise it is assumed that a processor’s
registers and instructions can handle numbers of this size and run processor
instructions like xor and popcnt on these numbers in O(1).

The τ(s)-register and the counting device are described in more detail in
Section 4.

3.2. Technical tools
In the technical parts of this paper we use the following versions of the

well-known Chernoff concentration inequality.

Lemma 2. Let X1, . . . , Xn be independent random variables such that Xi ∈
{0, 1}. Let pi = P (Xi = 1) = E[Xi], X = ∑n

i=1 Xi and µ = E[X] =∑n
i=1 E[Xi] = ∑n

i=1 pi. Then,

1. For any δ ∈ [0, 1], P [X ≥ (1 + δ) · µ] ≤ e−µδ2/3.
2. For any δ ≥ 1, P [X ≥ (1 + δ) · µ] ≤ e−µδ/3.
3. For any δ > 0, P [X ≤ (1− δ) · µ] ≤ e−µδ2/3.
4. For any δ > 0, P [X ≥ (1 + δ) · µ] ≤

(
eδ

(1+δ)1+δ

)µ
.

4. τ (s)-register

In order to efficiently calculate tight renaming, our algorithm depends on
special hardware registers, called τ(s)-registers. Each of these registers has
two parts: (i) a set of s TAS registers that contain the names, (ii) a counting
device managing 2 log n TAS bits. The counting device counts the number of
TAS bits set and allows at most s of them to be permanently set; the others are
unset again. Any process that wants to get a name has to permanently win
one of the 2 log n TAS bits first. After checking if the TAS bit is permanently
set, the process systematically goes through the TAS registers, until it wins
one of them, and retrieves the name. It must win one of the TAS register
because there are exactly s of them and at most s processes are allowed to
search.

As the TAS registers and the search are straightforward, we only have a
closer look at the counting device.

8

4.1. Counting Device
The counting device is composed of 2 log n individual TAS bits and can

restrict the number of permanently set 1-bits to any positive threshold s ≤
2 log n. We assume that all individual bits of a τ(s)-register have the same
clock as input and that it is possible to read all 2 log n individual bits within
one operation. The register operates in clock cycles that are divided in
phases. The synchronization of the bits permits that supernumerary TAS bits
can be unset before the counting device is accessed again by new processes.

However, we do not make any assumptions about the arrival or the order
of the requests. Processes can use different clocks and send their requests
asynchronously at any time. Yet, since requests are only answered in a certain
phase, the processing may start with a (constant) delay. The implementation
of a τ(s)-register is based on Algorithm 2 which represents one clock cycle.

Algorithm 2 Algorithm of τ(s)-register
1: allowed_bits← s− popcnt(in_reg)
2: for i ∈ {1, . . . , 2 log n} in parallel do
3: processes test-and-set bit bi
4: if s < popcnt(in_reg) then
5: util_reg0 ← out_reg xor in_reg
6: for i ∈ {1, . . . , 2 log n} in parallel do
7: util_regi ← util_reg0 << (i− 1)
8: if popcnt(util_regi) = allowed_bits then
9: if bt(util_regi, 1) then

10: util_regi ← util_regi >> (i− 1)
11: out_reg← out_reg or util_regi
12: in_reg← out_reg
13: else
14: out_reg← in_reg

The counting device has two main registers: in_reg and out_reg. The
register in_reg contains the TAS bits the processes access. The bits of register
out_reg can be read by the processes to check whether they have really won
their respective TAS bit. After each execution, both registers are updated
such that exactly those bits are set in in_reg that have been won by processes
and that out_reg is an exact copy of in_reg. Aside from these two registers,
2 log n+ 1 auxiliary registers util_regi, i = 0, ..., 2 log n, are needed.

9

A clock cycle is divided in two phases, the first one covers lines 1–3, the
second lines 4–14: In the first line, the algorithm determines the number of
bits the register in_reg is short of the threshold s. Then, in lines 2–3, the
TAS bits of in_reg parallelly handle requests of processes. Every request to
a TAS bit bi fails if bi is already set to 1. If bit bi is unset and if there is
at least one request to bi, bi will be (preliminarily) set by exactly one of the
processes. All other requests to bi fail.

If the threshold s is exceeded in line 4, (popcnt(in_reg) − s) many of
the new bits have to be removed. For this purpose, util_reg0 is prepared in
line 5 as a copy of in_reg without the old bits, i.e. the bits set prior to this
cycle. The algorithm then shifts util_reg0 by every possible number of bits
(line 7) and selects the only resulting bit array util_regi which has both, the
correct number of new bits (line 8) and a 1-bit in the first position (line 9).
(The first bit is tested using the instruction bt(util_regi, 1).) util_regi is
shifted back (line 10) and combined with the old bits in out_reg (line 11).
The resulting bit array having exactly s bits, s − allowed_bits old and
allowed_bits new bits, is stored in out_reg (line 11) and in_reg (line 12).

If the threshold s is not exceeded in line 4, in_reg can simply be copied
to out_reg (line 14).

A process that won a TAS bit (in line 3) has to check whether this TAS
bit was later unset (in line 12). It can be certain that the TAS bit is unset
as soon as it is unset in in_reg, and it can be certain to have won it, once
the according bit has also been set in out_reg. In the latter case, it can
immediately start searching the TAS registers for a free name.

Each step of the algorithm can be performed in a constant number of
time steps, usually in one time step, so that the τ(s)-register only induces
a constant slowdown compared to a standard TAS register. Nevertheless,
there is a significant hardware overhead of O(log n) additional registers and
arithmetic logic units. It is therefore unlikely that such a register will be
actually built, but it could be constructed based on this description.

4.2. Example
Figure 1 describes one cycle of a τ(log n)-register where log(n) = 10.

Before the cycle 7 of the 10 names are assigned (indicated by filled quad-
rangles), and thus 7 of the 2 · log(n) = 20 TAS bits were won. The in_reg
contains the old won bits as well as 6 bits newly tested in the current cy-
cle. The out_reg only contains the old bits. Since there are only 3 names
left, 3 of the 6 newly set bits must be unset for which the utility registers

10

in_reg	before	cycle

out_reg	before	cycle

util_reg_0

util_reg_1

util_reg_2

util_reg_3

util_reg_13

util_reg_2log(n)

util_reg_13	right	shifted

registers	with	names	before	cycle

out_reg	after	cycle

registers	with	names	after	cycle

in_reg	after	cycle

Figure 1: Example cycle of a τ(logn)-register.

util_regi are used. (They would not be used if the threshold of 10 was
not exceeded.) util_reg0 only contains the new bits which are obtained by
XORing in_reg and out_reg. util_regi, 1 ≤ i ≤ 2 · log(n), is obtained by
left-shifting util_reg0 by i − 1 positions. From these utility registers, the
hardware algorithm chooses the one with 10 − 7 = 3 bits in which the first
bit is set. This is util_reg13. util_reg13 is right-shifted and ORed with
out_reg to create the result which is then stored in in_reg and out_reg.
The 3 processes that have won TAS bits pick the 3 remaining names from the
10 TAS registers.

11

5. Tight Renaming using τ (logn)-Registers

In this section we design and analyse an algorithm (given as Algorithm 3)
for solving the tight renaming problem using τ(log n)-registers in timeO(log n)
and spaceO(n). We start with a high-level description of algorithm and anal-
ysis and introduce the notation.

We are using an auxiliary array Taux of length 2n of TAS bits belonging
to n/ log n many τ(log n)-registers. Recall, each τ(log n)-register has 2 log n
TAS bits (which we also refer to as blocks). We divide the array into R =
logn−log logn

log 2 = O(log n) clusters C1, C2, · · · , CR defined as follows and one
cluster CR+1 with the remaining names. For i ∈ {1, ..., R}, Ci consists of

ci = 2 · n
2i

TAS bits and hence of
bi = ci

2 log n = n

2i · log n
many τ(log n)-registers (or blocks). Each of the blocks is responsible for log n
names.

Algorithm 3 Tight renaming procedure for every process
1: for i ∈ {1, . . . , R} do
2: for j ∈ {1, . . . , k} do
3: test any TAS bit in cluster Ci at random
4: if TAS bit has been won then
5: check control bit
6: if control bit has been set then
7: search associated TAS registers
8: take first free name found
9: return success

10: for all TAS registers r ∈ CR+1 do
11: test r
12: if r is won then
13: take name in r
14: return success
15: return failure

Algorithm 3 is executed by every process and proceeds in rounds. As
long as a process is active (initially all n of them), it probes the clusters in

12

the order of their indices (first loop) and every cluster a constant number of
times (second loop). Hence, denoting the number of clusters by R and the
number of constant tries per cluster by k, the maximum number of rounds
is R · k = O(log n).

In every such round all active processes randomly pick one TAS bit from
the current cluster (line 3). Each TAS bit having received at least one request
accepts an arbitrary one of those. Each τ(log n)-register keeps at most log n
many successful requests (we refer to this as the block discarding step). A
process that has won the TAS bit checks the control bit of the τ(log n)-register
(see Section 4.1). If the control bit is set, it was successful. It picks a name
from the associated TAS register and becomes inactive (lines 7-9).

We will show that every τ(log n)-register receives at least k log n many
process requests in expectation, and infer that, in each τ(log n)-register, at
least half of the TAS bits receive at least one request with high probability, so
that after the block discarding step we have precisely log n accepted requests
per block. In other words, the idea is to choose cluster sizes such that w.h.p.
each block in a given cluster receives just sufficiently many requests.

If a process is not successful probing the first R clusters, it will search
the remaining TAS registers for a name. We will show in Observation 3 that
the number of these registers is O(log n).

We should like to point out that whilst we talk about rounds as though
we have a synchronized protocol, this is in fact not the case. We use the
notion only for ease of presentation. In reality, each process first tries cluster
C1, then cluster C2, and so forth, until successful. In this sense the processes
do operate in phases as indicated, but independent of one another. The
algorithm is therefore wait-free.

The main result of this section is Theorem 5. To prove it, we will use the
following observation and lemma.

Observation 3. The cluster CR and CR+1 have size

cR = cR+1 = O(log n).

Proof. CR+1 and CR have the same size because

cR+1 = 2n−
R∑
i=1

ci = 2n−
R∑
i=1

2n
2i = 2n

2R = cR.

13

Since R is defined as

R = log n− log log n
log 2 = log2

n

log n

it follows that
cR = cR+1 = 2n

2R = 2 log n = O(log n).

Lemma 4. Let ` be an arbitrary, positive constant, and let c ≥ `+2. Suppose
2c log n balls are allocated into 2 log n bins independently and uniformly at
random. With probability at least 1 − 1/n`, there are no more than log n
empty bins.

Proof. For 1 ≤ i ≤ 2 log n, let Xi be a binary random variable with Xi = 1
if and only if the i-th bin remains empty. Let

X =
2 logn∑
i=1

Xi

denote the number of empty bins. The probability that a ball is allocated
to the i-th bin is 1

2 logn , and since 2c log n balls are allocated in total, the
expected value E[Xi], 1 ≤ i ≤ 2 log n, is

E[Xi] = Pr [Xi = 1] =
(

1− 1
2 log n

)2c logn

<
1
ec
.

This implies

E[X] =
2 logn∑
i=1

E[Xi] <
2 log(n)
ec

.

We wish to apply a Chernoff-type bound to X, but clearly the Xi are
not independent. It is, however, well-known (see e.g. Theorem 46 on page 21
of [15]) that they are negatively associated, which immediately implies that
we may use any Chernoff bound (normally requiring independent random
variables) of our choosing. Intuitively, negative association of a collection of
random variables means that if we know some subset of the variables to have
“large” values, then this decreases the probability of another, disjoint subset
to take “large” values as well – in our case, if a subset of bins remains empty

14

(with their Xi = 1), then another subset is less likely to remain empty as
well (with their Xi = 1).

The remainder of the proof is now a mere formality. We apply the generic
version of the Chernoff bound (given in Lemma 2) and choose δ = ec/2 − 1
so that (1 + δ) · 2 logn

ec
= log n. Notice that c > ln(2) implies δ = ec/2− 1 > 0.

Pr [X ≥ log n] = Pr [X ≥ (1 + δ)2 log(n)/ec]

≤
(

e(ec/2−1)

(ec/2)(ec/2)

)2 log(n)/ec

=
(

e(ec/2−1)2/ec

(ec/2)(ec/2)2/ec

)logn

=
(
e(1−2/ec)

ec/2

)logn

= 2logn

nc−1+2/ec

≤ n1/ log2 e

nc−1 < n1.7−c

< n−`

The last inequality follows from our constraint on c in the statement of this
lemma.

We are now ready to state and prove the main result of this section.

Theorem 5. With high probability, Algorithm 3 assigns n processes to a
name space of size n within O(log n) steps per process, using O(n) extra
space. The total step complexity is O(n).

Proof. The space can be bounded by O(n) because storing the names in
τ(log n)-registers increases the required space only by a constant factor. The
step complexity of O(log n) follows from the fact that every process following
Algorithm 3 probes R = O(log n) clusters and in every cluster only a constant
number of TAS bits. When it wins a name in the first R clusters or in the last
cluster CR+1, it will retrieve the name in O(log n) steps (see Section 4.1 and
Observation 3). So, for the first claim it remains to show that every name is
assigned with high probability. For this we will bound the probability of not
assigning all names for every block in every cluster (except for CR+1).

Every cluster Ci, 1 ≤ i ≤ R, has ci = 2n/2i TAS bits and bi = n/(2i · log n)
blocks. While it has ci/2 names, it receives requests from at least ci many
processes which can be shown by induction: Basis: Cluster C1 gets requests
from c1 = n processes and has c1/2 = n/2 names. Step: If cluster Ci gets

15

requests from at least ci processes for ci/2 names, then at least ci+1 = ci/2
processes will proceed to the next cluster Ci+1 which has ci+1/2 names.

We let every process send up to 4c requests per cluster Ci, where c is a
constant. If it gets a name before, it will stop, but at least half of the processes
will send all requests, and therefore each of the bi many blocks receives at least
4c
2 ·

2n
2i ·

2i·logn
n

= 4c · log n requests in expectation. Let X denote the random
variable counting the requests one block receives. Applying a Chernoff bound
of Lemma 2, we obtain:

Pr [X ≤ 2c · log n] = Pr [X ≤ E[X]/2]

≤ e− 4c·logn
3 ·(1

2)2

= n−c/3

If each block receives 2c log n requests, then, according to Lemma 4, half
of the 2 log n TAS bits in each block will receive at least one request with
probability 1 − n−c+2. Consequently, after the last block discarding step,
precisely log n of the 2 log n TAS bits in each block will have accepted a
request with probability at least

1− n−c/3 − n−c+2.

A union bound over all blocks proves the first claim for c large enough.
The total step complexity follows from the fact that only ci many pro-

cesses perform the (at most) k steps on cluster Ci:

R∑
i=1

ci · k + c2
R+1 =

R∑
i=1

2n
2i · k + (2 log n)2 ≤ 2nk + 4 log2 n.

6. Loose Renaming in the Standard Model

In this section we consider the problem of loose renaming where the name
space is larger than the number of processes n. In [10] the authors propose
a loose renaming algorithm of step complexity O(log log n) that uses a name
space of size (1 + ε) · n where ε > 0 is an arbitrary constant. Assuming the
same model (which is described in Section 3.1), we introduce two renaming
algorithms using smaller name spaces.

16

In both cases, we first present an algorithm that renames most but not
all of n processes using a name space of size n. We call such a renaming
algorithm k-almost tight if it assigns a name to all but k processes, with
k = o(n). In Lemma 6 and 8, respectively, we show that Algorithm 4 and 5
meet this condition.

To supply names to all processes, we then apply the method from [10]
and assign to the remaining processes names from an additional name space
starting at n+ 1. The respective results are stated in Theorem 7 and 9.

Note that one can also apply the framework of [10] to transform our
algorithms into adaptive algorithms when the number k of active processes
that are looking for a name is not known in advance. Unfortunately, the
name space would become O((1 + ε) · k) where ε is an arbitrary constant.
Hence, using our protocols would not result in an improvement compared
to [10].

Algorithm 4 Almost tight renaming procedure for each process (used in
proof of Lemma 6)

1: for 2 · (log log n)` times do
2: test a TAS register r randomly chosen from all n TAS registers
3: if r has been won then
4: take name in r
5: return success
6: return failure

Lemma 6. Assume we have n test-and-set registers and n processes. Then
n

(log logn)` -almost tight renaming can be done w.h.p. in the adaptive adversary
model with a step complexity of

O((log log n)`).

Proof. We use Algorithm 4 which is very simple as every process randomly
selects from all n TAS registers in every step. For the analysis we divide the
steps into ` log2 log log n many phases. Phase i has 2i many steps. In every
step of each phase, every register receiving requests is set by an arbitrary
one of the accessing processes (and remains set for the rest of the algorithm).
This process takes the name and becomes inactive. As given in the algorithm,

17

the total number of steps per process, i.e. the step complexity, is at most

` log2 log logn∑
i=1

2i ≤ 2 · (log log n)`.

We call phase i successful if, at the end of phase i, there are at most n/2i
processes that are not assigned to a register. If all ` log2 log log n phases are
successful, there will be

n

2` log2 log logn = n

(log log n)`

processes left which are not assigned to a name, and thus the renaming will
be n

(log logn)` -almost tight.
In the following we prove by contradiction that every phase is w.h.p.

successful. Fix a phase i, 1 ≤ i ≤ ` log2 log log n, and assume that phase i
is the first phase which is not successful. We can assume that during every
step of phase i, we have at least n/2i active processes (otherwise phase i is
successful) and unset registers. Hence, the total number of random choices
in phase i is at least

n

2i · 2
i = n.

The probability that an arbitrary unset register rj does not receive any of
the requests is at most (

1− 1
n

)n
≤ 1
e
.

For each rj let Xij be the binary random variable that is 1 if rj remains unset
and 0 otherwise. Let Xi = ∑

j Xij be the random variable that counts the
number of unset registers at the end of phase i. Then

E[Xi] ≤
n

2i−1 ·
(1
e

)
.

Since the Xij are negatively associated and since E[Xi] ≥ n/((log log n)`),
we can apply Chernoff bounds (Lemma 2) and obtain

Pr
[
Xi ≥

n

2i
]
≤ Pr

[
Xi ≥ E[Xi] ·

(
1 + e− 2

2

)]
≤ e

− n

(log logn)`
· (e−2)2

4·3 .

18

So, w.h.p. the number of unset registers at the end of the phase is at most
n
2i , meaning that the phase is successful. Now we can use the union bound
over all phases i to show the lemma.

Theorem 7. Assume n processes and a name space of size

n ·
(

1 + 2
(log log n)`

)
.

Then, w.h.p., loose renaming can be done in the adaptive adversary model in
linear space with a step complexity of

O((log log n)`).

The total step complexity is

O(n log log log n).

Proof. First Algorithm 4 is used to assign a name to all but n/(log log n)`
many of the processes in O((log log n)`) steps (Lemma 6). In a second step,
the ReBatching algorithm (Algorithm 1) of [10] assigns names to the remain-
ing unnamed processes from the name space n+1 to n+2n/(log log n)`. The
ReBatching algorithm has a step complexity of O(log log n) (Theorem 1) so
that the step complexity of both algorithms combined is still O((log log n)`).

For the total step complexity, consider the ` log2 log log n phases defined
in the proof of Lemma 5. Assuming that every phase is successful, the
maximum number of steps in Algorithm 4 is

` log2 log logn∑
i=1

n

2i−1 · 2
i = 2n` log2 log log n,

and the ReBatching algorithm on the reduced name space has a total step
complexity of o(n).

The number of TAS registers and the space required are linear because
algorithm 4 does not require any space other than the TAS registers storing
the names, and the space requirement of the ReBatching algorithm is also
linear in the size of the name space.

19

Algorithm 5 Almost tight renaming procedure for each process (used in
proof of Lemma 8 which also defines the clusters Ci)

1: for i = 1, ..., 2` log log n do
2: for j = 1, ..., 2` log log n do
3: test a TAS register r randomly chosen from all TAS registers in Ci
4: if r has been won then
5: take name in r
6: return success
7: return failure

Lemma 8. Assume that a renaming instance is given with n TAS registers
and n processes. Then, w.h.p., n/(log n)`-almost tight renaming can be done
in the adaptive adversary model with a step complexity of

(2` log log n)2.

Proof. We use Algorithm 5. This algorithm works in 2` log log n phases for
which the registers are divided into a sequence of clusters. For 1 ≤ i ≤
2` log log n, the ith cluster contains n/2i many registers. In phase i the
processes randomly choose registers from the ith cluster only. Every phase
consists of 2` log log nmany steps. In every step of every phase i, all unnamed
processes send a request to a randomly chosen TAS register from cluster i. A
register receiving requests is set by one of the accessing processes, and the
corresponding process becomes inactive.

At the beginning of phase i ≥ 2 there are at least

n−
i−1∑
j=1

n

2j = n

2i−1

many active processes. At the end of phase i at least n/2i active processes are
left which implies that at least n/2i · 2` log log n requests are sent in phase i.
The probability for a register in cluster i to receive no request is therefore at
most (

1− 2i
n

) n

2i
·2` log logn

≤ e−2` log logn = 1
(log n)2` .

Let X count the number of unvisited registers in all clusters. Then we

20

have E[X] ≤ n/(log n)2` and, applying Chernoff bounds (Lemma 2),

Pr
[
X ≥ n

(log n)3`/2

]
= Pr [X ≥ (1 + δ) · E[X]]

≤ e−δE[X]/3

≤ e
−
(

n

(logn)3`/2 −E[X]
)

· 1
3

≤ e
−
(

n

(logn)3`/2 − n

(logn)2`

)
· 1

3

≤ e
−n·
(

(logn)`/2−1
3·(logn)2`

)
.

Since the number of registers outside of the clusters is n/22` log logn <
2n/(log n)2`, the number of unvisited registers and thus of unnamed processes
is w.h.p. at most

n

(log n)3`/2 + 2n
(log n)2` <

n

(log n)`
for n large enough.
Theorem 9. Assume, we have n + 2 · n

(logn)` test-and-set registers and n
processes. Then, w.h.p., loose renaming can be done in the adaptive adversary
model in linear space with a step complexity of

O((log log n)2).

The total step complexity is

O(n log log n).

Proof. The proof is very similar to the one of Theorem 7 and applies two al-
gorithms. The first is Algorithm 5 which assigns a name to all but n/(log n)`
many of the processes (Lemma 8). The second one is the ReBatching algo-
rithm (Algorithm 1) of [10] which assigns names to the remaining unnamed
processes from the name space n + 1 to n + 2n/(log n)`. The ReBatching
algorithm has a step complexity of O(log log n) on the reduced name space
(Theorem 1) so that the step complexity of both algorithms combined is
O((log log n)2).

For the total step complexity, we sum up the maximum number of steps
per phase over all phases and obtain

2` log logn∑
i=1

n

2i−1 · 2` log log n ≤ n · 4` log log n.

21

The ReBatching algorithm on the reduced name space has a total step com-
plexity of o(n).

The number of TAS registers and the space required are linear because
algorithm 5 does not require any space other than the TAS registers storing
the names, and the space requirement of the ReBatching algorithm is also
linear in the size of the name space.

7. Conclusion

In this paper we have considered the renaming problem in the asyn-
chronous shared-memory model. By utilizing new hardware features and
extending the concept of the test-and-set register, we have shown that even
a fairly straightforward randomized algorithm can perform tight renaming in
O(log n) steps with high probability. The hardware added is a set of register
clusters, each containing log n names, which increase the success probability
for the random accesses of the processes by seemingly enlarging the name
space.

Our solutions to the loose renaming problem work in the standard model
in which the names are stored in “plain” test-and-set registers. The algo-
rithms are the first to achieve almost tight renaming in poly-double-logarithmic
step complexity mapping n names to a name space of size only (1 + o(1)) ·n.

While there is a known matching lower bound for loose renaming, it re-
mains open to show that the lower bound for tight renaming can be extended
to the τ -register. An interesting future task will be the exploration of mod-
ern hardware capabilities and how new features can improve solutions to
fundamental problems in distributed computing.

References

[1] S. Chaudhuri, M. Herlihy, M. R. Tuttle, Wait-free implementations in
message-passing systems., Theor. Comput. Sci. 220 (1) (1999) 211–245.

[2] M. Okun, Strong order-preserving renaming in the synchronous message
passing model., Theor. Comput. Sci. 411 (40-42) (2010) 3787–3794.

[3] D. Alistarh, O. Denysyuk, L. Rodrigues, N. Shavit, Balls-into-leaves:
Sub-logarithmic renaming in synchronous message-passing systems, in:
Proceedings of the 2014 ACM Symposium on Principles of Distributed
Computing, PODC ’14, ACM, New York, NY, USA, 2014, pp. 232–241.

22

[4] D. Alistarh, H. Attiya, S. Gilbert, A. Giurgiu, R. Guerraoui, Fast ran-
domized test-and-set and renaming., in: N. A. Lynch, A. A. Shvartsman
(Eds.), DISC, Vol. 6343 of Lecture Notes in Computer Science, Springer,
2010, pp. 94–108.

[5] A. Brdosky, F. Ellen, P. Woelfel, Fully-adaptive algorithms for long-lived
renaming, Distributed Computing 24 (2) (2011) 119–134.

[6] A. Castañeda, S. Rajsbaum, M. Raynal, The renaming problem in
shared memory systems: An introduction, Comput. Sci. Rev. 5 (3)
(2011) 229–251.

[7] D. Alistarh, J. Aspnes, S. Gilbert, R. Guerraoui, The complexity of
renaming, in: Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS ’11, IEEE Computer Society,
Washington, DC, USA, 2011, pp. 718–727.

[8] D. Alistarh, J. Aspnes, K. Censor-Hillel, S. Gilbert, M. Zadimoghaddam,
Optimal-time adaptive strong renaming, with applications to counting.,
in: C. Gavoille, P. Fraigniaud (Eds.), PODC, ACM, 2011, pp. 239–248.

[9] G. Giakkoupis, P. Woelfel, On the time and space complexity of ran-
domized test-and-set, in: PODC, 2012, pp. 19–28.

[10] D. Alistarh, J. Aspnes, G. Giakkoupis, P. Woelfel, Randomized loose
renaming in O(log log n) time, in: Proceedings of the 2013 ACM Sym-
posium on Principles of distributed computing, PODC ’13, ACM, New
York, NY, USA, 2013, pp. 200–209.

[11] D. Alistarh, J. Aspnes, K. Censor-Hillel, S. Gilbert, R. Guerraoui, Tight
bounds for asynchronous renaming, J. ACM 61 (3) (2014) 18:1–18:51.

[12] P. Berenbrink, A. Brinkmann, R. Elsässer, T. Friedetzky, L. Nagel, Ran-
domized renaming in shared memory systems, in: Proceedings of the
2015 IEEE International Parallel and Distributed Processing Sympo-
sium, IPDPS ’15, IEEE Computer Society, USA, 2015, p. 542–549.

[13] A. Panconesi, M. Papatriantafilou, P. Tsigas, P. M. B. Vitanyi, Random-
ized naming using wait-free shared variables, Distributed Computing
11 (3) (1998).

23

[14] W. Eberly, L. Higham, J. Warpechowska-Gruca, Long-lived, fast, wait-
free renaming with optimal name space and high throughput, in: DISC,
1998, pp. 149–160.

[15] D. Dubhashi, D. Ranjan, Balls and Bins: A Study in Negative Depen-
dence, BRICS, 1996.
URL http://www.brics.dk/RS/96/25/BRICS-RS-96-25.pdf

24

