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Abstract: Once exceptionally abundant, the Rusty Blackbird (Euphagus carolinus) has declined precip-
itously over at least the last century. The species breeds across the Boreal forest, where it is so thinly
distributed across such remote areas that it is extremely challenging to monitor or research, hindering
informed conservation. As such, we employed a targeted citizen science effort on the species’ winter-
ing grounds in the more (human) populated southeast United States: the Rusty Blackbird Winter
Blitz. Using a MaxEnt machine learning framework, we modeled patterns of occurrence of small,
medium, and large flocks (<20, 20–99, and >99 individuals, respectively) in environmental space
using both Blitz and eBird data. Our primary objective was to determine environmental variables that
best predict Rusty Blackbird occurrence, with emphasis on (1) examining differences in key environ-
mental predictors across flock sizes, (2) testing whether environmental niche breadth decreased with
flock size, and (3) identifying regions with higher predicted occurrence (hotspots). The distribution
of flocks varied across environmental predictors, with average minimum temperature (~2 ◦C for
medium and large flocks) and proportional coverage of floodplain forest having the largest influence
on occurrence. Environmental niche breadth decreased with increasing flock size, suggesting an
increasingly restrictive range of environmental conditions capable of supporting larger flocks. We
identified large hotspots in floodplain forests in the Lower Mississippi Alluvial Valley, the South
Atlantic Coastal Plain, and the Black Belt Prairie.

Keywords: Black Belt Prairie; citizen science; conservation; machine learning; niche modeling; group
size; habitat use; species distribution models

1. Introduction

The Rusty Blackbird (Euphagus carolinus) is a Nearctic icterid that exhibits near exclu-
sive reliance on forested wetland habitats in boreal, transitional and deciduous biomes
throughout its annual cycle [1–3]. The species is among the most steadily and precipitously
declining temperate North American landbirds, [4–6] and is recognized as “Vulnerable”
by the International Union for the Conservation of Nature. There is some anecdotal
evidence that factors in boreal breeding regions of northeast North America may be lim-
iting the population (timber management and nest success: [7]; mercury: [8]). However,
demographic rates for Rusty Blackbirds across the Boreal are similar to those of other
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songbirds [1]), suggesting that the overall population is likely limited by factors outside
the breeding grounds.

Specifically, habitat modification on the species’ wintering grounds has been impli-
cated as a likely driver of the decline [5,9], stressing the importance of studying this period
of the species’ life cycle. Further, population monitoring and broad assessments of habitat
selection across the boreal breeding range are extremely challenging given the general
remoteness and the very low density of roads, humans, and Rusty Blackbirds themselves.
The Breeding Bird Survey, for example, detects so few Rusty Blackbirds that with the
exception of more developed parts of Alaska it is not possible to use these data to monitor
population trends. All of these factors coupled with the species’ considerably more social
(flocking) nature on the wintering grounds and the high densities of citizen scientists
(birders) in the southeast United States point to the advantages of studying the species
during winter. The wintering grounds are not without their challenges, however; diffuse
and localized distribution, nomadism, and difficulty in accessing often ephemeral wetland
habitats constrain our ability to dependably study wintering Rusty Blackbirds [9]. Conven-
tional means of investigation, such as use of mark-recapture (e.g., to evaluate survival as
a function of winter habitat metrics), may not be viable due to high vagility and low site
fidelity between years (e.g., [10,11].

Once reported in wintering flocks numbering tens of thousands [4], Rusty Blackbirds
are now occasionally observed in flocks approaching a few thousand individuals, with
much smaller groups being more common [12,13]. Still, flocking behavior in Rusty Black-
birds may provide a proximate cue allowing researchers to identify and characterize winter
habitat (e.g., key sites, condition, relative quality or suitability for foraging). Foraging
theory predicts that abundance and distribution of food resources influence group size,
with more resource rich environments favorable to flocks of larger size (sensu [14–18]).
Relationships between group size and resource availability have been shown in a wide va-
riety of taxa, including primates (e.g., Lemur catta [19]), fish (e.g., Fundulus diaphanous [20]),
and birds (e.g., Junco phaeonotus [21]). Where food resources are less available, interference
competition can moderate flock size as individuals seek to optimize foraging efficiency
beyond the confines of competitive groups [15]. Demographic studies in a number of bird
species support that the size of conspecific aggregations is positively associated with higher
quality habitats [22,23].

Because flock size is expected to vary as a function of habitat quality or compatibility,
evaluating environmental features associated with flocks of different sizes may provide ev-
idence for conditions and locations most favorable for greater numbers of wintering Rusty
Blackbirds. Assessing distributions in environmental space, as opposed to geographic
space, is necessary for the species as wintering individuals often travel long distances across
the landscape, and thus site level habitat characteristics have not consistently predicted
occupancy [2]. An understanding of such relationships could offer immediate relevance in
informing conservation programs and facilitating further research and monitoring support-
ing full annual cycle stewardship of this species, as well as yield new insights regarding
niche dynamics in flocks of different sizes.

Here, we evaluate the relationships of climatic and landcover attributes in predicting
the occurrence of Rusty Blackbirds across their wintering range and ask whether these
relationships vary with flock size. Previous studies have observed that, at local scales, large
flocks of Rusty Blackbirds are constrained to a narrow set of environmental conditions and
geographic areas, whereas smaller flocks are comparatively widespread (e.g., [12,24,25]).
We sought to quantify these observations at the spatial extent of winter range of the species,
predicting that (1) large flocks of Rusty Blackbirds (>100 observed individuals) occupy a
different environmental niche than small or medium flocks (<20, 20–99, respectively) and
(2) large flocks occupy a narrower environmental niche breadth than small or medium
flocks [26]. We define niche breadth as the multidimensional range of specific biotic
and abiotic conditions that a group of organisms occupies [27–29]. We used occurrence
data from two citizen science programs, the Rusty Blackbird Winter Blitz (Blitz; http:
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//rustyblackbird.org/outreach/migration-blitz/) and eBird [30], to test these predictions
by modeling the distributions of Rusty Blackbird flock size classes in environmental space.
In a closely related project, we performed a three-year “Spring Blitz” for migrating Rusty
Blackbirds, but those results are addressed elsewhere [31]. We compared biotic and abiotic
attributes that best predicted occurrences of flock size classes and evaluated differences
in environmental niche breadth among classes. We suggest focal regions for wintering
Rusty Blackbirds (hotspots), defined as regions with higher predicted occurrence, and
discuss implications to future research and conservation. Finally, given the proliferation of
citizen science monitoring projects, we evaluated whether the Blitz, a targeted volunteer
effort requiring considerable investment and coordination, yielded observational data
that improved predictive strength of relationships relative to use of comparable eBird
data alone.

2. Methods

We used a maximum entropy (MaxEnt) modeling approach to examine habitat suitabil-
ity across flock size classes and observational methods. In species distribution modeling,
habitat suitability is defined as the likelihood of occurrence of a species in association with
environmental variables ([32], but see [33]). MaxEnt is a machine-learning method that
compares occurrence data with that of background samples in environmental space (see
Supplementary File S1 1.1; [34]). In this context, training samples represent subsets of
locations in which Rusty Blackbirds were observed. Background samples represent subsets
of locations that were sampled but no Rusty Blackbirds were observed.

We used Rusty Blackbird observations submitted from the Blitz, as well as those col-
lected through traditional eBird [30] protocols. The Blitz was a coordinated effort among cit-
izen scientists to search for Rusty Blackbirds across the species’ wintering range by conduct-
ing traveling counts of 8 km or less during target dates of 1 January–28 February 2009–2011.
Blitz observations were submitted using a special eBird portal (https://ebird.org/home)
and recorded date, location, species, numbers, effort and other attributes (see [35]). To
supplement Blitz data, we used traditional eBird checklists that reported Rusty Blackbirds
on traveling counts conducted in 2009–2011 during corresponding Blitz periods [30]. We
considered each eBird and Blitz checklist as an independent observation, omitting dupli-
cates (i.e., observations submitted by multiple persons). We georeferenced observation
locations with a 4-km resolution raster grid (see below). To avoid pseudoreplication, if a
grid cell contained >1 independent observation we retained only the observation recording
the highest Rusty Blackbird count.

We classified Rusty Blackbird observations by flock size (small: <20; medium: 20–99;
large: >99 individuals), and sampling protocol (Blitz or eBird). Flock size classes were
determined by the frequency of observations of a given number of individuals and approx-
imate the lower (small flocks) and upper (large flocks) quantiles of observations within the
combined pool of eBird and Blitz samples. While we use the term “flock” to designate the
number of birds observed, both Blitz and traditional eBird observations were reported as
traveling counts. Thus, it is possible that in some cases, aggregates designated as “large
flocks” may be comprised of several small or medium-sized true flocks.

Given that flocks aggregate in common roosts at night and may be observed traveling
in smaller groups during the day, we examined whether the time of observation biased our
results. We determined the time of observation for each checklist used in our analysis (i.e.,
the maximum observed Rusty Blackbirds within a given raster cell). All time values were
standardized to Coordinated Universal Time as a function of their geographic coordinates.
Given that day length varies by geographic location and over the two-month period of this
study, we used the R package activity [36] to transform the times of observation to solar
times, which are defined here as radian time values relative to civil sunrise times for a given
date and location [37,38]. We then fit Von Mises circular kernel density distributions to
detections within each flock size class [36]. Following Ridout and Linkie [39], we calculated
the degree of overlap (∆̂4) between fitted distributions and used randomization (with
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replacement; n = 10,000 iterations) to test the null hypothesis that detections come for the
same distribution (α = 0.05). For each of the flock size class pairs, we failed to reject the
null hypothesis (File S1), providing supportive evidence that the time of day in which an
observation occurred was unlikely to introduce bias into our results.

A limitation to occurrence-only modeling methods such as MaxEnt is that occurrence
data, especially data collected opportunistically, are often biased toward areas of higher
sampling effort (e.g., as a function of accessibility, convenience, or availability of human
observers; see [40]. This confounds inferences regarding distribution, habitat use and
environmental niche, and may cause inflated measures of model performance [41,42]. To
mitigate this potential bias in our models, we generated background data by summarizing
eBird checklists (2009–2011; n = 13,218 checklists) across each 4 km grid cell. In doing
so, this method assumes that the sampling bias associated with checklists observing
Rusty Blackbirds is similar to that of eBird checklists where Rusty Blackbirds were not
observed [43,44]. By using random eBird sampling locations as background points, rather
than random locations from the entire study extent, we were able to construct models that
evaluate the occurrence of Rusty Blackbird observations in environmental space relative
to points on the landscape presumed to be representative of any geographic biases in
our Rusty Blackbird observations (see [45]). Additionally, we limited background point
selection, and thus the extent of our distribution models [46], to the geographic extent that
contained 99% of Rusty Blackbird observations, which corresponded to the land area of the
Eastern United States, bounded in the west at a longitude of −100◦.

We constructed models with up to 14 environmental covariates to predict Rusty
Blackbird habitat suitability, including two climatic and 12 land cover covariates (see
Table S1). We used the raster package in Program R [47,48] for all environmental layer
processing. We obtained mean precipitation and minimum temperature data for the
months of January and February 2009–2011 (4-km resolution, [49]). Though there was
considerable annual variation in average minimum temperature and precipitation within
our study area, small annual sample sizes of Rusty Blackbird observations necessitated
averaging these covariates across the three winters. We obtained 30-m-resolution land
cover data from the US Gap Analysis project [50] and reclassified Gap classes into the
following 12 categories: floodplain forest, hardwood forest, plantation hardwood forest,
upland forest, mixed forest, woodland, shrub, wetland, grassland, pasture, row crops, and
developed land (Figure 1, Table S1). We calculated the mean proportional cover of each
category within a 4 km resolution raster grid. This spatial scale is roughly equivalent to
winter home range sizes observed for Rusty Blackbirds [12]. The values of all environmental
variables were extracted to the spatial locations of Rusty Blackbird observations and eBird
background samples.

Models were constructed using MaxEnt 3.3.3 [34] and implemented in the R package
dismo [51]. We randomly partitioned observations into five replicates (k-fold partitioning
with cross-validation), with 80% of observations for each replicate used to fit the MaxEnt
model (i.e., training samples) and the remaining 20% of the observations held aside to
evaluate model performance (i.e., test samples). To minimize the number of features used
in model construction and maximize the interpretability of individual covariate effects,
we used linear feature constraints of environmental covariates in model construction [52].
However, because Rusty Blackbirds may exhibit a non-linear distribution in response to
minimum winter temperatures, we included a quadratic form of the minimum temperature
model covariate. To limit model over-fitting, we calibrated models by selecting the most
parsimonious models for each flock size class (see Supplementary File S1 1.2).
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Figure 1. Processing steps from classified land cover layer to distribution modeling.

3. Model Evaluation

We evaluated model performance by comparing model sensitivity (the true positive
rate—the proportion of correctly identified samples at a given threshold of habitat suit-
ability) and specificity (the false positive rate—the proportional predicted area for the
model) for each flock size class and observational method. To do so, we assessed the area
under the receiver operator curve (AUC) for test samples. AUC describes the sensitivity
and specificity of a model at a given threshold of suitability and represents how well the
model predicts the Rusty Blackbird observations (see Figure 2). AUC values of 0.5 rep-
resent equivalent model performance relative to random, 0.5–0.6 “poor” performance,
0.6–0.7 “fair” performance, 0.7–0.8 “good” performance, 0.8–0.9 “very good” performance,
and 0.9–1.0 “excellent” model performance [53,54]. We tested whether the predictive ca-
pacity of models varied by flock size by comparing training AUC across folds for a given
flock size class against a null distribution developed by permuting two flock size classes
(i.e., suitability models developed by shuffling large and small flock observations). To
determine whether Blitz data improved model performance, we compared observed AUC
against a null distribution developed by randomizing eBird and Blitz samples.
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4. Influence of Environmental Variables

To determine which environmental variables best predict Rusty Blackbird occurrence
for each flock size class, we compared the influence of variable inclusion or removal on
model performance. The coefficient for each variable (λ) describes the influence of that
variable on suitability estimates, with positive values representing enhanced suitability
and negative values representing lower suitability. To determine contribution of a variable
to model fit, we evaluated jackknife estimates of the increase and decrease in AUC with the
inclusion and removal of a given variable, averaged across replicate runs [55]. Additionally,
we examined the difference in the occurrence of environmental covariates between flock
sizes, observation protocols, and background data by permuting covariate values between
classes. We compared empirical and null distributions of each environmental variable with
a one-tailed test of the null hypothesis that the distributions are not statistically different
(α = 0.05) using the R package permute (n = 10,000, [56]).

5. Difference in Environmental Niche by Flock Size

To assess differences in Rusty Blackbird environmental niche breadth among flock
size classes, we evaluated the predicted niche breadth using ENMTools [57]. This metric
follows Levins’ [29] definition of niche breadth, which describes the degree of uniformity of
resource states within a distribution of individuals. Niche breadth is standardized to range
between 0 and 1, where 0 represents a habitat specialist and 1 represents a habitat generalist.
To evaluate our prediction that niche breadth will vary by flock size, we compared the
empirical niche breadth metric for each size class with species distribution maps developed
by permuting flock size class assignments. We further explored Rusty Blackbird use of
niche space by assessing model prevalence, which is the MaxEnt estimate of the average
probability of presence at background sites [58], and fractional predicted area of suitable
habitat. We calculated fractional predicted area at the logistic threshold of equal model
sensitivity and specificity. We statistically evaluated differences in prevalence and fractional
predicted area between flock size classes by comparing the observed values for a given
flock with a null distribution developed by permuting flock size class labels (α = 0.05).

To test whether realized ecological niches differed among flock size classes, we evalu-
ated the suitability distributions using niche equivalency analysis and assessed the distri-
bution of samples across individual environmental variables. Niche equivalency between
flock size classes was determined by calculating the degree of similarity (modified Hellinger
distances, I) between habitat suitability maps [59] and implemented in the R package phylo-
clim [60]. I ranges in value from 0, in which there is no overlap in the environmental niche
between classes, to 1, in which the two classes have identical distributions [59]. We com-
pared observed similarity against a null distribution developed by randomly permuting
flock class labels (n = 99 permutations). We assessed statistical significance (α = 0.05) by
comparing the observed and null distributions, with a one-tailed test of the null hypothesis
that environmental niche models are equivalent. We compared the observed distributions
of flock size classes of Rusty Blackbirds for each environmental variable using two-tail
Kolmogorov–Smirnov tests of the null hypothesis that samples were drawn from the
same distribution.

6. Results

The Blitz produced 678 independent checklists east of −100◦ longitude. eBird pro-
vided an additional 1429 traditional checklists with Rusty Blackbird observations corre-
sponding to the same area and time periods. Limiting checklists to one per 4-km raster
grid cell resulted in 495 Blitz and 714 traditional eBird checklists (Table 1). Predicted
suitability maps (Figure 2) across all flock size classes suggested hotspots within the Lower
Mississippi Alluvial Valley (LMAV), Black Belt Prairie (BBP), and South Atlantic Coastal
Plain (SACP). For small flocks, there were additional broad areas of moderately high to
high predicted suitability, whereas for large flocks the extent of high predicted suitability
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was more clearly limited to the aforementioned areas albeit much more restricted within
the LMAV.

Table 1. Number of checklists used in this analysis by flock size class and observation method. The
sample size reflects the number of samples used after subsetting samples to one observation per
raster grid cell.

Sampling Method Flock Size Class
Small (1–19) Medium (20–99) Large (>99) Total

Blitz 281 128 86 495
eBird 387 234 93 714

Total 668 362 179 1209

7. Model Performance and Environmental Correlates by Flock Size

Model performance increased with flock size, with fair performance for small flocks
(AUC: 73.7 across samples) and good performance for medium and large flocks (AUCs
83.2 and 88.0 across samples, respectively; Figure 3B). Compared to models using eBird data
alone, models augmented with Blitz data showed improved performance for medium and
large flocks as suggested by higher AUC values (0.73 ± 0.01 and 0.72 ± 0.01 vs. 0.83 ± 0.02
and 0.88 ± 0.02, respectively; Figure 3B).
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Among the environmental covariates, average minimum temperature most strongly
predicted habitat suitability, contributing >60% of the models’ predictive capacity for each
flock size class (Figures 4 and 5A). Larger flock sizes were associated with higher average
minimum temperatures (small: −1.74 ◦C, 95% CI [−1.74, −1.56]; medium: −0.40 ◦C, CI
[−0.52, −0.27]; large: 0.05 ◦C, CI [−0.09, 0.19]), with peak densities of small, medium
and large flocks occurring at −3.81, 1.91, and 1.92 ◦C, respectively (Figure 5A). Average
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minimum temperatures associated with the species’ occurrence were considerably higher
than that of background points (−3.59 ◦C, CI [−3.62, −3.56]).
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Figure 4. The relative contribution of environmental covariates to predicted Rusty Blackbird occur-
rence. Variables are subset to those with the greatest explanatory power, with the bar graph on the
right excluding minimum temperature (i.e., showing landcover variables only). Legend symbols
(+,−) represent whether Rusty Blackbirds were positively or negatively associated with the variable.
Rusty Blackbird observations peaked at intermediate minimum temperatures, and is thus denoted
with +/−. For a complete list of variable contributions, see Table S1.
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Figure 5. The gaussian kernel density distributions of average minimum temperature and floodplain forest (A,B) at
occurrence points for each flock size class. Plot (C) describes the proportional density distribution of floodplain forest,
which is the ratio of the kernel density of observations relative to that of the background points.

Among land cover covariates (Figures 4 and 5, Table 2), proportion of floodplain forest
had the greatest influence on predicted habitat suitability. The variable contribution of
floodplain forest to large flock distributions was nearly twice as that of small and medium
flocks. Other landcover variables that contributed to predicted habitat suitability across all
flock size classes were proportion of row crops and pasture, both of which were positive
influences (Table 2). Proportion of highly developed land was negatively associated with
large flock distributions but was not predictive of small or medium-sized flocks. Likewise,
woodland and shrub land cover classes were negatively associated with small and medium-
sized flocks but were not predictive of large flocks. Surprisingly, the data provided only
limited support for a positive association between habitat suitability and non-floodplain
wetlands, with emergent wetlands only associated with medium-sized flock distributions
and wooded wetlands for only small flocks.
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Table 2. Land cover variable coefficients (λ) and contribution of each variable to model performance and small, medium,
and large flocks. Variables represent the proportional cover of the land use category within a 4 km grid cell. Empty
cells represent variables that were excluded from the candidate model sets due to lack of statistical support, as evaluated
with AICc.

Land Cover Variable
Variable Coefficient (λ) Variable Contribution (%)

Flock Size Flock Size
Small Medium Large Small Medium Large

Highly developed −0.83 1.2

Low-intensity development 1.17 1.41 1.3 1.1

Floodplain 1.84 2.44 3.33 14.9 14.1 26.4

Mixed forest 2.33 2.9

Pasture 0.70 1.58 1.47 2.1 3.3 1.6

Row crop 1.09 1.93 2.08 5.9 4.9 3.3

Shrub −3.26 −2.29 3.7 1.1

Emergent wetand 2.50 1.5

Woody Wetland 1.63 2.9

Woodland −1.73 −1.64 1.9 1.3

8. Environmental Niche

Niche breadth decreased with increasing flock size. Predicted niche breadth for small
flocks was 0.67, medium flocks were 0.47, and large flocks 0.37. Prevalence (i.e., average
probability of presence at background sites) was inversely associated with flock size, with
small, medium, and large flocks having predicted prevalence values of, 0.44, 0.28, and
0.20, respectively. The observed prevalence for large flocks was significantly lower than
that of small flocks (p < 0.001) but statistically indistinguishable from medium-sized flocks
(p = 0.773). Observed prevalence for medium flocks was significantly lower than that of
small flocks (p = 0.005). Likewise, the fractional predicted area of suitable habitat increased
with flock size, ranging from 33 percent for small flocks, 24 percent for medium-sized
flocks, and 20 percent for large flocks. Fractional predicted area of suitable habitat was
significantly lower for large and medium-sized flocks relative to small flocks (p < 0.001)
but was statistically indistinguishable for large and medium flocks (p = 0.72).

The three flock size classes occupied similar but statistically distinct realized envi-
ronmental niches. Across niche axes, we found significant differences between the small
flock size class and the medium (i = 0.939, p < 0.001) and large flock size classes (i = 0.906,
p < 0.001) but only marginal differences between the medium and large flock size classes
(i = 0.979, p = 0.102). Among individual environmental variables, we found strong evidence
of differences between the distribution of samples across flock size classes, most notably
regarding the distribution about minimum temperatures and floodplain forests (Table 3).
Whereas the modes of the temperature distributions for all three flock size classes were
similar, medium and large flocks were observed in a narrower range of temperatures than
small flocks (Figure 5B). Likewise, while all flock size classes were positively associated
with floodplain forest (Figure 5B), the degree of association to floodplain forest increased
with flock size (Figure 5C).
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Table 3. The difference (D) in the distribution of each environmental covariate between Rusty Blackbird flock size classes.
p-values below 0.05, in bold, suggest that the flocks occupy a different environmental space.

Environmental Variable
Small vs. Medium Flocks Small vs. Large Flocks Medium vs. Large Flocks

D p-Value D p-Value D p-Value

High-intensity dev. 0.058 0.197 0.084 0.164 0.066 0.573
Low-intensity dev. 0.053 0.324 0.057 0.623 0.360 0.993
Floodplain forest 0.112 <0.001 0.208 <0.001 0.139 0.001
Hardwood forest 0.096 0.005 0.045 0.866 0.113 0.055

Mixed forest 0.024 0.994 0.099 0.064 0.096 0.153
Grassland 0.117 <0.001 0.084 0.164 0.079 0.338

Pasture 0.046 0.489 0.055 0.663 0.062 0.651
Row crop 0.036 0.788 0.098 0.066 0.096 0.146

Shrub 0.028 0.956 0.014 0.002 0.141 0.007
Upland forest 0.046 0.489 0.022 1.000 0.050 0.873

Emergent wetland 0.034 0.836 0.099 0.065 0.0696 0.516
Woody wetland 0.061 0.183 0.116 0.018 0.087 0.240

Woodland 0.010 0.003 0.139 0.002 0.040 0.979
Precipitation 0.088 0.013 0.153 0.001 0.093 0.179

Minimum temperature 0.170 <0.001 0.271 <0.001 0.112 0.030

9. Discussion

We used novel targeted citizen science data from the Blitz and eBird to identify and
describe suitable habitat for a widespread, highly vagile, and declining species, the Rusty
Blackbird. Across two winters, occurrence was most strongly linked to minimum tempera-
tures and the proportion of floodplain forest in the surrounding landscape. Although all
flock sizes were associated with proportion of floodplain forest, pasture, and row crops,
and the convex quadratic effect of average minimum temperature, we found considerable
differences among flock size distributions. Predictably, large and medium-sized flocks
were more similar in their environmental distributions relative to small flocks. Large and
medium flocks had narrower environmental niches than small flocks, showing a greater
preference for floodplain forest. We identified Rusty Blackbird hotspots in the LMAV,
the Black Belt region of Alabama and Mississippi and the Southeast Coastal Plain. The
Blitz was ultimately successful: adding Blitz data to eBird data significantly increased our
predictive power.

10. Environmental Predictors of Occurrence

Rusty Blackbirds exhibited a strong association with floodplain forest, with the degree
of influence of this variable positively associated with flock size (Table 3, Figure 5). Given
that floodplain forest is expected to represent optimal foraging habitat for Rusty Blackbirds,
this provides supportive evidence that large flocks are representative of higher quality habi-
tats as a consequence of coarse-level local enhancement (e.g., [22,23]). Winter floodplains
in the southeastern United States historically provided vast areas of shallow water crucial
for migratory birds [61]. These environments, which represent seasonally flooded forested
habitats, provide an abundance of invertebrates for Rusty Blackbirds, which spend much
of the winter foraging in, or adjacent to, shallow water [1,62]. In the southeastern United
States, floodplain forests have experienced extraordinary rates of direct landscape modifi-
cation, historically due primarily to agricultural conversion and more recently as a result of
urban development [9,61,63,64]. Moreover, hydrologic alteration has greatly reduced the
extent and integrity of floodplain wetlands throughout the region [65]. Combined, these
pressures have resulted in a 75–85% loss of the historic extent of floodplain forests in the
Southeast [66,67] and the remnant patches of this habitat are highly fragmented [68,69].
Within our study extent, the LMAV hosts the largest area of floodplain forest and this
region yielded the highest predicted habitat suitability for Rusty Blackbirds across flock
size classes (Figure 2). Christmas Bird Count data suggest that the LMAV, considered to
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be the core of the species’ range, has experienced the steepest population declines and
thus, maintenance of floodplain forests in this region is likely critical for Rusty Blackbird
conservation [70].

Surprisingly, neither emergent nor woody wetlands had substantial influence on
habitat suitability for Rusty Blackbirds. Although these land cover classes appear to provide
important habitat features for the species [71], they may have been underrepresented by
Blitz and eBird samples. Our ability to detect an influence of these land cover classes may
have also been limited by the coarse spatial grain of our analysis. For example, though
Rusty Blackbirds often forage on wet lawns in suburban areas [25] it would not be feasible
to detect these habitat features at our scale of analysis, especially when using traveling
count data. Sampling constraints also limited our ability to assess the effects of pecan
orchards on Rusty Blackbird occurrences. Lipid-rich tree mast from pecan orchards may
help the birds prepare for cold weather events [25], and wintering individuals that utilized
pecan groves in Mississippi (mostly adult males), were in better body condition than those
in wet forest or along creeks [24]. Despite the expected importance of this anthropogenic
resource, there was not adequate representation of this land cover class in background nor
Rusty Blackbird samples to include the variable in our analysis.

The influence of human land use on habitat suitability varied with flock size. Large
flocks, unlike medium or small flocks, were negatively associated with high intensity
development; i.e., when the proportional cover of high intensity development exceeded
70%, the probability of encountering a large flock approached zero. These results are con-
sistent with those of Mettke-Hofmann et al. [24], Newell [10], and Newell Wohner et al. [25]
who observed that smaller groups of Rusty Blackbirds can use certain agricultural and
suburban areas, taking advantage of abundant pecans and earthworms, respectively. The
species’ positive (though relatively weak) association with pasture and row crops is more
puzzling, as it is not generally associated with these habitats (pecans are not classified
as a row crop; [1]). It is possible that the low-lying, nutrient-rich floodplain landscapes
that the species favors also make good croplands and pasture for farmers, and as such,
both floodplain forest that Rusty Blackbirds presumably prefer, and that these agricultural
habitats were often included in the 4-km grid cells we employed. Combined, our findings
suggest that, though suburban and agricultural areas appear to offer resources for smaller
groups of Rusty Blackbirds, larger tracts of floodplain forest will have to be maintained to
support the persistence of large flocks.

Average minimum temperature was the most important variable driving habitat
suitability for all flock sizes, with medium and large flocks predicted to occur at higher
temperatures than small flocks. Habitat suitability estimates for medium and large flocks
peaked where minimum mean temperatures occurred at means slightly higher than the
freezing point of water: 1.91 ◦C and 1.92 ◦C, respectively. Suitability estimates for small
flocks peaked at −3.8 ◦C—nearly 6 ◦C less than medium and large flocks. The warmer
temperatures associated with medium and large flocks likely reflect the foraging behavior
of Rusty Blackbirds, which spend much of their time wading in shallow water searching for
aquatic prey [1]. Shallow water tends to freeze before deeper water, which would quickly
prohibit birds from foraging in the substrate, making aquatic prey unavailable. Moreover,
wetland invertebrate abundance is positively associated with water temperature [72–74].
Conversely, the colder temperatures associated with small flocks may represent marginal
habitats in which birds utilize terrestrial resources in freezing temperatures (see [24,25]).

Because temperatures were averaged across years of the study, we were unable to
assess the annual occurrences of Rusty Blackbirds. The species varies widely in its win-
tering distribution [9] and site fidelity [10], most likely because of differences in winter
temperatures and water levels across years. Rusty Blackbirds’ association with temper-
atures just above freezing supports our theory that the species, which is a facultative
migrant not tightly linked to day length [1], migrates south from the Boreal forest to avoid
freezing water. Birds may then spend many weeks in the northern United States during
stopover periods in fall [75,76], only to move south again when frozen foraging habitat
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pushes them further. Future work should assess whether carryover effects due to variable
wintering conditions impact the birds across their full annual cycle [77,78], including on
their breeding grounds in the Boreal forest.

11. Larger Flocks Have a Narrower Niche Breadth

We found strong evidence that large and medium flocks have narrower environmental
niches than small flocks, as measured by Levins’ [29] niche breadth metric and, conse-
quently, prevalence and fractional predicted area of suitable habitat was higher for small
flocks than medium and large flock size classes. Whereas such differences in niche breadth
have been observed across a variety of taxa using environmental niche modeling (e.g., [79]),
this represents among precious few examples of the relationship between flock size and
niche [26]. This pattern is abundantly clear across large scales, as small flocks have a much
broader geographic range of suitable habitat than large and medium flocks. Conversely, the
area of suitable habitat (Figure 2) for large flocks is much smaller and is largely constrained
within the center of the species range. Again, this highlights the relative vulnerability
of larger flocks of Rusty Blackbirds and the relative flexibility of smaller flocks. Small
flocks may be able to persist in heterogenous landscapes with small patches of ephemeral
resources (e.g., fruiting pecan orchards, lawns with surfacing earthworms), whereas larger
flocks may be limited to the highest quality habitats. Future studies (e.g., using tracking
technology) should examine space use of large vs. small flocks to understand how medium
(i.e., <4 km) and small-scale habitat features affect fitness and niche space.

The use of flock size herein to approximate habitat quality represents a limitation to
the inference of our results. Blitz and traditional eBird observations were traveling counts,
thus in some instances, birds observed on a given count could have comprised one or
several true flocks. As such, it was not technically possible to distinguish between a single
large flock or a higher density of smaller flocks; however, given our own observations of the
species (e.g., [12]), we believe the vast majority of the counts probably represented single
flocks, so we are comfortable interpreting results based on this assumption. Moreover,
traveling counts limit the spatial grain of the analysis, as counts may occur at any point
along the observer’s route. To address this, we highly recommend the use of stationary
count data to allow for assessing the distribution of flocks as it relates to land cover
data (e.g., evaluating resource dispersion hypothesis as described by [80]). Even without
these limitations, density itself is not a clear indicator of habitat quality [11,81]. Further
research (e.g., survival) is therefore needed to confirm that large flocks are representative of
environments of higher quality habitat [33]. Sex or age-related segregation of the observed
flocks may provide additional evidence of habitat quality [82]. Dominance hierarchies can
indicate habitat quality in a number of bird species (e.g., the American Redstart, Setophaga
ruticilla, [83]). For example, in Rusty Blackbirds, Mettke-Hofmann et al. [24] observed that
adult males maintained a higher body condition and occupied habitats with higher pecan
mast production than females and immature birds. Unfortunately, age and sex data from
the Blitz were not adequate to address this issue in the current study.

Ultimately, a demographic response, most appropriately overwinter survival, is nec-
essary to truly ascertain whether flock size is an appropriate indication of winter habitat
quality for Rusty Blackbirds [84]. In particular, despite some location-specific evidence hint-
ing at population limitation on the breeding grounds in the Boreal forest [7,8], a full-annual
cycle population model suggests that wintering juvenile survival is the demographic pa-
rameter most tied to the species’ rate of population change (Clark Rushing, Steve Matsuoka,
Luke L. Powell et al. unpublished analysis). Whereas estimating overwinter survival may
be very challenging given the species’ low site fidelity, alternative proximate habitat quality
metrics that can be utilized in combination for Rusty Blackbird flocks include but are not
limited to: departure time (e.g., [85]), body condition (e.g., [86,87], but see [84,88]), and
telomere length (e.g., [89]).
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12. Regional Hotspots and Conservation

The LMAV was a particularly suitable area for all flock sizes (Figure 2, [5]). Though we
also found a broad swath across the southeast coastal plain that was generally suitable, with
small hotspots in north coastal South Carolina [25], the majority of the East Coast of the
United States appears less suitable than the LMAV. Stable isotope data [90] and light level
geolocators [75] indicate that Rusty Blackbirds wintering in the LMAV primarily migrate
to Alaska and western Canada—the Western Boreal—whereas those from the southeast
coastal plain breed in northeast North America—the Southeastern Boreal. It remains
unclear whether flock sizes in the southeast coastal plain are constrained by anthropogenic
disturbance or if it is the quality and extent of floodplain forests of the LMAV that leads to
larger flock sizes in that region.

A novel finding from our study was the emergence of the Black Belt region (Ecoregion
65, [91–93]) as a hotspot across all Rusty Blackbird flock size classes. The Black Belt,
which arcs along the boundary of the piedmont and coastal plain in Mississippi and
Alabama, was historically a mosaic of prairie and forested habitat [94]. Whereas most of
the region’s native vegetation was cleared for cotton-based agriculture [94–97], the Black
Belt remains embedded within a vast matrix of floodplain forest. To date, we know of
no Rusty Blackbird research projects within 500 km of the Black Belt—thus, our results
highlight a need for targeted field studies to further qualify the use and importance of this
region to Rusty Blackbirds.

The emergence of the Black Belt region as a hotspot underscores the benefits and
limitations of species distribution modeling. Whereas comparably few eBird and Blitz
samples were recorded within the region, the MaxEnt model, as implemented here, is
carried out in environmental space [52], which allowed us to generate predictions for the
Black Belt as a function of its environmental characteristics [98]. As a cautionary note,
however, this approach is limited in its ability to directly inform conservation efforts,
as it yields information about the type of environment an organism uses rather than
occurrences per se [99]. Moreover, our models are undoubtedly imperfect—for example,
some areas of high predicted suitability for large flocks were of low predicted suitability for
medium-sized flocks (e.g., north-central LMAV). This was likely driven by the difference in
habitat preferences of large vs. medium flocks (e.g., large flocks had higher preference for
floodplain forest, Table 3) as well as by stochasticity in where birds were detected. As such,
we suggest that systematic sampling of predicted Rusty Blackbird hotspots—particularly in
the Black Belt region—is a crucial step towards linking our results with management efforts.

13. Did the Blitz Help Relative to eBird Alone?

The Blitz significantly improved the predictive power of spatial models compared to
using eBird alone (Figure 3), highlighting the value of this novel citizen science approach
to improve understanding of a wide-ranging species of conservation concern. Further, the
addition of the Blitz especially improved our predictive power for large flocks (Figure 3B),
as we effectively doubled the number of large flocks detected (Table 1). This is important,
as it allows us to precisely concentrate targeted studies on sites at which we predict only
the very highest flock sizes of Rusty Blackbirds. We also utilized a somewhat novel way to
address biases associated with modeling eBird data by using background samples from
eBird lists across taxa: our background data were generated with equivalent bias to our
occurrence data. Our comparison of background and occurrence data therefore provides
conservative estimates of Rusty Blackbirds in environmental space. An important caveat to
our Blitz effort is that participants were searching for Rusty Blackbirds in habitats that were
expected to be suitable for the species–this has the potential to bias suitability predictions
towards environments that are pre-determined to be suitable. A preliminary analysis
of our results, however, produced estimates from eBird and Blitz data that were similar,
suggesting that any such bias was nominal. In addition to the quantitative benefits of
the Blitz, it was clear the Blitz raised considerable awareness for the plight of the Rusty
Blackbird (e.g., Audubon magazine, eBird website, conservation partners participating
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in the Blitz, etc.). Given that citizen scientists submitted 678 checklists specifically for the
Blitz, the program was clearly successful in engaging birders with ornithological research
and conservation concerns to which they may not previously have been exposed.

Taken together, the data provided by citizen science participants of the Blitz and
eBird program have enhanced our understanding of the occurrence of this Boreal-breeding
species throughout its wintering areas. Whereas wintering Rusty Blackbirds can be found
across most of the southeastern United States, only a narrow subset of the region was
found to be suitable for large flocks of the species. By targeting these regions for future
research, we can maximize sampling efficiency by searching areas predicted to provide high
quality habitat. Targeted research is crucial given the limitations associated with presence-
only observations. Using the MaxEnt framework, with presence-only data, locations
where birds were not observed (i.e., background data) cannot be treated as true absences
(see [100,101]). This is especially problematic when detection probability varies and cannot
be incorporated into the model [102] and imparts a limitation to how citizen science data
can be used to inform conservation in this context [103]. The use of presence-absence data to
model occupancy (e.g., [2]), can also allow researchers to address temporal variation in the
presence of Rusty Blackbird flocks, which may yield further insight into habitat quality (e.g.,
abundance-occupancy relationships, [104]). Moreover, identifying and counting individual
flocks from fixed points in the landscape and evaluating these observations at multiple
spatial scales would provide researchers with the ability to assess alternative explanations
for flock size distributions, such as the resource dispersion hypothesis (reviewed in [80]).
Future work that utilizes systematic sampling to estimate the geographic distribution of
Rusty Blackbird flocks and assess the relationship between flock size and habitat quality is
therefore a critical next step towards conserving this imperiled species.
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