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Abstract. A wealth of research has focused on elucidat-
ing the key controls on mass loss from the Greenland and
Antarctic ice sheets in response to climate forcing, specif-
ically in relation to the drivers of marine-terminating out-
let glacier change. The manual methods traditionally used
to monitor change in satellite imagery of marine-terminating
outlet glaciers are time-consuming and can be subjective, es-
pecially where mélange exists at the terminus. Recent ad-
vances in deep learning applied to image processing have
created a new frontier in the field of automated delineation
of glacier calving fronts. However, there remains a paucity
of research on the use of deep learning for pixel-level se-
mantic image classification of outlet glacier environments.
Here, we apply and test a two-phase deep learning approach
based on a well-established convolutional neural network
(CNN) for automated classification of Sentinel-2 satellite im-
agery. The novel workflow, termed CNN-Supervised Clas-
sification (CSC) is adapted to produce multi-class outputs
for unseen test imagery of glacial environments containing
marine-terminating outlet glaciers in Greenland. Different
CNN input parameters and training techniques are tested,
with overall F1 scores for resulting classifications reach-
ing up to 94 % for in-sample test data (Helheim Glacier)
and 96 % for out-of-sample test data (Jakobshavn Isbrae and
Store Glacier), establishing a state of the art in classification
of marine-terminating glaciers in Greenland. Predicted calv-
ing fronts derived using optimal CSC input parameters have
a mean deviation of 56.17 m (5.6 px) and median deviation of
24.7 m (2.5 px) from manually digitised fronts. This demon-
strates the transferability and robustness of the deep learn-
ing workflow despite complex and seasonally variable im-
agery. Future research could focus on the integration of deep
learning classification workflows with free cloud-based plat-

forms, to efficiently classify imagery and produce datasets
for a range of glacial applications without the need for sub-
stantial prior experience in coding or deep learning.

1 Introduction

Quantifying glacier change from remote sensing data is es-
sential to improve our understanding of the impacts that cli-
mate change has on glaciers (Vaughan et al., 2013; Hill et
al., 2017). In many glaciated areas, well-established semi-
automated techniques such as image band ratio methods are
used to extract glacier outlines for this purpose and to cre-
ate glacier inventories (Paul et al., 2016). These methods are
widely used in studies of mountain glaciers and ice caps (e.g.
Bolch et al., 2010; Frey et al., 2012; Rastner et al., 2012; Guo
et al., 2015; Stokes et al., 2018). However, they are less effec-
tive for mapping more complex glaciated landscapes such as
marine-terminating outlet glaciers, which often contain spec-
trally similar surfaces like mélange (a mixture of sea ice and
icebergs) near their calving fronts (Amundson et al., 2020).

As a result, manual digitisation remains the most common
technique used to delineate marine-terminating glaciers (e.g.
Miles et al., 2016, 2018; Carr et al., 2017; Wood et al., 2018;
Brough et al., 2019; Cook et al., 2019; King et al., 2020).
Nonetheless, the labour-intense nature of manual digitisa-
tion can result in datasets with spatial or temporal limita-
tions (Seale et al., 2011). With this in mind, the importance
of processes occurring at marine-terminating outlet glaciers
on a range of spatio-temporal scales (Amundson et al., 2010;
Juan et al., 2010; Chauché et al., 2014; Carroll et al., 2016;
Bunce et al., 2018; Catania et al., 2018, 2020; King et al.,
2018; Bevan et al., 2019; Sutherland et al., 2019; Tuckett et
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al., 2019) highlights the growing need for a more efficient
method to quantify outlet glacier change, especially in an era
of increasingly available satellite data.

To confront this challenge, several specialised automated
techniques reliant on traditional image processing and com-
puter vision tools (i.e. semantic segmentation and edge detec-
tion) have been developed to extract ice fronts in Greenland
and Antarctica (Sohn and Jezek, 1999; Liu and Jezek, 2004;
Seale et al., 2011; Krieger and Floricioiu, 2017; Yu et al.,
2019). Semantic segmentation, a term interchangeable with
pixel-level semantic classification, divides an image into its
constituent parts based on groups of pixels of a given class
and assigns each pixel a semantic label (Liu et al., 2019).
It remains a core concept underlying more recent advance-
ments which use deep learning approaches to classify im-
agery for more efficient automated calving front detection
(Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et
al., 2019; Cheng et al., 2021).

Deep learning is a type of machine learning in which a
computer learns complex patterns from raw data by build-
ing a hierarchy of simpler patterns (Goodfellow et al., 2016).
Convolutional neural networks (CNNs) are deep learning
models specifically designed to process multiple 2D ar-
rays of data such as multiple image bands (LeCun et al.,
2015). They differ from conventional classification algo-
rithms based solely on the spectral properties of individ-
ual pixels by detecting the contextual information in images
such as shape and texture, in the same way a human oper-
ator would. This is beneficial for classification of complex
environments with little contrast between spectrally similar
surfaces (e.g. glacier ice/ice shelves, snow, mélange, and wa-
ter containing icebergs) where traditional statistical classifi-
cation techniques (e.g. maximum likelihood) produce more
noisy classifications (Li et al., 2014). Previous studies which
apply deep learning to detect the calving fronts of marine-
terminating glaciers used a type of CNN called a fully con-
volutional neural network (FCN) (Ronneberger et al., 2015)
and various post-processing techniques to extract the bound-
aries between (1) ice and ocean in Antarctica (Baumhoer
et al., 2019) and (2) marine-terminating outlet glaciers and
mélange/water in Greenland (Mohajerani et al., 2019; Zhang
et al., 2019; Cheng et al., 2021). Calving fronts detected us-
ing these methods deviate by 38 to 108 m (<2 to 6 px) from
manual delineations, providing an accurate automated alter-
native to manual digitisation.

These approaches have so far relied on a binary classifi-
cation of input images. For example, Baumhoer et al. (2019)
used only two classes (land ice and ocean). Similarly, Zhang
et al. (2019) classified images into ice mélange regions and
non-ice-mélange regions (the latter including both glacier
ice and bedrock). While these methods are valuable for ex-
tracting glacier and ice shelf fronts to quantify fluctuations
over time, they perhaps overlook the ability of deep learning
methods to create highly accurate image classification out-
puts which contain more than two classes (i.e. not just ice and

no-ice areas). Aside from calving front delineation, a method
which produces multi-class image classifications could pro-
vide an efficient way to further elucidate processes and in-
teractions controlling outlet glacier behaviour at high tempo-
ral resolution (e.g. calving events, the buttressing effects of
mélange, subglacial plumes, and supra-glacial lakes). More-
over, deep learning has been used successfully in other disci-
plines to classify entire landscapes or image scenes to a high
level of accuracy (Sharma et al., 2017; Carbonneau et al.,
2020a). In glaciology, CNNs have been used to map debris-
covered land-terminating glaciers (Xie et al., 2020), rock
glaciers (Robson et al., 2020), supraglacial lakes (Yuan et al.,
2020), and snow cover (Nijhawan et al., 2019). Despite this,
multi-class image classification of entire marine-terminating
outlet glacier environments has not yet been tested using
deep learning.

Thus, the aim of this paper is to adapt a two-phase deep
learning method which was originally developed to clas-
sify airborne imagery in fluvial settings (Carbonneau et al.,
2020a) and test it on satellite imagery of marine-terminating
outlet glaciers in Greenland. We first modify and train a well-
established CNN using labelled image tiles from 13 season-
ally variable images of Helheim Glacier, southeast Green-
land. The two-phase deep learning approach is then applied
to produce pixel-level classifications, from which calving
front outlines are detected and error is estimated from manu-
ally delineated validation labels. We assess the sensitivity of
the classification workflow to different image band combi-
nations, training techniques, and model parameters for fine-
tuning and transferability. Our objective is to establish and
evaluate a workflow for multi-class image classification for
glacial landscapes in Greenland which can be accessed and
used rapidly without having specialised knowledge of deep
learning or the need for time-consuming generation of sub-
stantial new training data. Furthermore, we aspire to exceed
the current state of the art for pixel-level image classifi-
cation of marine-terminating outlet glacier landscapes. The
methods developed here are trained and tested on glaciers in
Greenland with a pre-defined set of seven image classes.

2 Methods

2.1 Overview of CNN-Supervised Classification

The classification workflow used here is termed CNN-
Supervised Classification (CSC) and was originally devel-
oped and tested on airborne imagery (<10 cm resolution)
to produce pixel-level land cover classifications of fluvial
scenes (Carbonneau et al., 2020a). CSC is a two-phase work-
flow based on convolutional architectures which concate-
nates a CNN to a multilayer perceptron (MLP) or compact
CNN (cCNN). The two-phase approach was designed to sim-
ulate traditional supervised classification techniques (Car-
bonneau et al., 2020a). In effect, a pre-trained CNN is used
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in the first phase of CSC to produce locally specific train-
ing labels for each individual input image, replacing man-
ual collection of training data which is typically required
for traditional machine learning classifiers (Carbonneau et
al., 2020a). The phase one CNN therefore accounts for im-
age heterogeneity and incorporates the specific illumination
conditions and seasonal characteristics of each unseen image
by detecting local predictive features like brightness, texture,
and geometry (e.g. crevasses) in relation to class. Thus, the
predictions of the phase one CNN provide bespoke training
labels for pixel-level image classification in phase two.

The pre-trained CNN applied in phase one of CSC falls
into the category of supervised learning (Goodfellow et al.,
2016) and is trained with a sample of image tiles which have
been manually labelled according to class (training dataset).
Each tile used to train the phase one CNN represents a sam-
ple of pure class (i.e. one class covers over 95 % of the tile
area), allowing the CNN to learn predictive features and sub-
sequently make class predictions for a tiled input image not
previously seen in training (test dataset). During phase one of
CSC, unseen test images are tiled and encoded in the form of
4D tensors which contain several separate tiles (dimensions:
tiles, x dimension, y dimension, image bands). The pre-
trained phase one CNN predicts a class for each input tile,
and the tiles are subsequently re-assembled in the shape of
the original input image (Fig. 1). As shown in Fig. 1, this pro-
duces a one band class raster made up of tiles, each of which
is denoted by a single integer representing its predicted class.
In phase two, the phase-one-predicted class raster and input
image features are used to train a second model specific to
the unseen input image. The predictions of this second model
result in a final pixel-level image classification (Fig. 1).

Since the phase one CNN predictions take the form of
a tiled class raster, it is expected that individual tiles may
straddle more than one class and result in inaccurate class
boundaries. As a result, this will generate some error in the
phase one predictions and therefore phase two training la-
bels. Nonetheless, deep learning approaches have been found
to tolerate noise in training labels (Rolnick et al., 2018).
This is because the training process minimises overall er-
ror rather than memorising noise, meaning models can still
learn a trend even if some labels are wrong. Likewise, the
phase two models used in CSC are robust to noise and have
been shown to overcome these errors with resulting pixel-
level classifications following class boundaries much more
accurately (Carbonneau et al., 2020a).

2.2 Study areas

2.2.1 Training area: Helheim Glacier, SE Greenland

An area spanning ∼ 69× 37 km (6875× 3721 px) which in-
cludes Helheim Glacier (Fig. 2a), a major outlet of the south-
eastern Greenland Ice Sheet (GrIS), was chosen to adapt
CSC for classification of marine-terminating outlet glacier

landscapes and train the phase one CNN. Helheim is one
of the five largest outlet glaciers of the GrIS by ice dis-
charge (Howat et al., 2011; Enderlin et al., 2014) and has
flow speeds of 5–11 km a−1 (Bevan et al., 2012). The glacier
has a 48 140 km2 drainage basin (Rignot and Kanagaratnam,
2006) equivalent to ∼ 4 % of the ice sheet’s total area (Stra-
neo et al., 2016), from which several tributaries converge into
a ∼ 6 km wide terminus. As shown in Fig. 2a, there is an ex-
tensive area of ice mélange adjacent to the terminus where
it enters Sermilik Fjord and is influenced by ocean currents
(Straneo et al., 2016). Inspection of available satellite im-
agery from 2019 revealed that the area of mélange varied
seasonally with monthly variations in extension and compo-
sition as previously observed (Andresen et al., 2012, 2013).

The glacier, fjord, and surrounding landscape provide an
ideal training area for the deep learning workflow because
they contain a number of diverse elements that vary over
short spatial and temporal scales and are typical of other
complex outlet glacier settings in Greenland. These char-
acteristics include (1) seasonal variations in glacier calving
front position; (2) weekly to monthly changes in the extent
and composition of mélange; (3) sea ice in varying stages
of formation; (4) varying volumes and sizes of icebergs in
fjord waters; (5) seasonal variations in the degree of surface
meltwater on the glacier and ice mélange; (6) short-lived,
meltwater-fed glacial plumes which result in polynyas ad-
jacent to the terminus; and (7) seasonal variations in snow
cover on both bedrock and ice. The resulting spectral vari-
ations over multiple satellite images, in addition to poten-
tial differences resulting from changes in illumination and
weather, pose a considerable challenge to image classifica-
tion. However, capturing these characteristics at the scale
of an entire outlet glacier image scene is important for a
more efficient and integrated understanding of how numer-
ous glacial processes interact. Examination of imagery show-
ing the seasonal change of the glacial landscape throughout
2019 resulted in the establishment of seven semantic classes,
including (1) open water, (2) iceberg water, (3) mélange, (4)
glacier ice, (5) snow on ice, (6) snow on rock, and (7) bare
bedrock (see class examples in Fig. 2b and detailed criteria
for each in Table S1). Training and validation data for the
phase one CNN applied in CSC was collected from the Hel-
heim study area shown in Fig. 2 and labelled according to
these seven classes.

2.2.2 Test areas: Helheim, Jakobshavn, and Store
glaciers

The ability of a model to accurately predict the class of pixels
in an unseen test image is called generalisation (Goodfellow
et al., 2016) and determines the transferability of the model.
To test the transferability of the CSC workflow adapted for
marine-terminating glacial landscapes in Greenland, we ap-
plied CSC to a test dataset composed of seasonally vari-
able imagery from in-sample and out-of-sample study sites
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Figure 1. Conceptual diagram of the CNN-Supervised Classification workflow showing the production of a tiled class raster in phase one.
Phase one predictions are then used as image-specific training labels for the phase two model which produces a final pixel-level classification.

Figure 2. (a) Location of the area from which phase one CNN training data were extracted, showing Helheim Glacier (66.4◦ N, 38.8◦W) and
the surrounding landscape. Sentinel-2 image acquired on 15 June 2019. (b) Example image samples for each of the seven semantic classes
used to train the phase one CNN. The outline of Greenland is from Gerrish (2020), and all Sentinel-2 imagery in this figure has been made
available courtesy of the European Union Copernicus programme.

(Fig. 3). CSC was never tested on any image that was used
in training. Rather, the in-sample test dataset is compiled of
images from the same glacier used in training but acquired
on different dates to training data. The in-sample test site in-
cludes Helheim Glacier (Helheim) and has a slightly smaller
area (∼ 47×40 km, or 4711×3986 px) compared to the train-
ing site (Fig. 3a).

The out-of-sample test areas contain Jakobshavn Isbrae
(Jakobshavn) and Store Glacier (Store) in central west (CW)
Greenland, and they represent outlet glacier landscapes never
seen during training (Fig. 3b and c). The Jakobshavn site
spans ∼ 36× 23 km (3566× 2265 px) while the Store site
spans ∼ 28× 21 km (2797× 2089 px). Both out-of-sample
test sites have notably different characteristics compared to
the Helheim site, specifically in terms of glacier, calving

front, and fjord shape, providing an adequate test of spatial
transferability. Jakobshavn is the largest (by discharge) and
fastest-flowing outlet of the GrIS (Mouginot et al., 2019).
The glacier discharges 45 % of the CW GrIS (Mouginot et
al., 2019) and has been undergoing terminus retreat, thin-
ning, and acceleration over the past few decades (Howat et
al., 2007; Joughin et al., 2008). As a result, the terminus
of Jakobshavn is composed of two distinct branches which
are no longer laterally constrained by fjord walls in the same
manner as Helheim. Store Glacier is responsible for 32 % of
discharge from the CW GrIS (Mouginot et al., 2019), but has
remained relatively stable over the last few decades (Cata-
nia et al., 2018). The calving front of Store is laterally con-
strained by the walls of Ikerasak Fjord (Fig. 3c), and both
Jakobshavn and Store glaciers have different flow directions
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Figure 3. Test areas used to quantify the transferability of the CSC workflow. (a) The in-sample test area including Helheim Glacier.
Example image acquired on 18 June 2019. (b) The out-of-sample test areas of Jakobshavn Isbrae (example image acquired on 21 May 2020)
and (c) Store Glacier (example image acquired on 28 June 2020). The outline of Greenland is from Gerrish (2020), and all Sentinel-2 imagery
in this figure has been made available courtesy of the European Union Copernicus programme.

in comparison to Helheim. The seven classes identified from
the training area were also present in the out-of-sample test
sites, including mélange which continuously occupied the
fjord at Jakobshavn and was sporadically present in front of
Store Glacier throughout the range of test imagery acquired
in 2020 (Fig. 3).

2.3 Imagery

To train and test the CSC workflow, Sentinel-2 image bands
4, 3, 2, and 8 (red, green, and blue (RGB) and near infrared
(NIR)) were used at 10 m spatial resolution. RGB bands are
commonly selected for image classification with deep learn-
ing architectures, making existing CNNs easily transferable
for the purpose of this study. Additionally, snow and ice have
high reflectance in the NIR band, which is often used in re-
mote sensing of glacial environments, for example to identify
glacier outlines using band ratios (e.g. Alifu et al., 2015). Ini-
tial testing revealed that the combination of RGB and NIR
bands (collectively referred to as RGBNIR) improved clas-
sification results compared to using RGB bands alone (see

Sect. 2.6). Thus, four-band RGBNIR images of the study
sites were used as CSC inputs.

Cloud cover and insufficient solar illumination present
challenges when using optical satellite imagery such as
Sentinel-2 data, meaning data availability for the study sites
was limited to cloud-free imagery from February to Oc-
tober. Despite these limitations, sufficient data were avail-
able to train and test CSC on seasonal timescales. There-
fore, to best encompass the seasonally variable landscape
characteristics and collect sufficient training data to repre-
sent intra-class variation, 13 cloud-free Sentinel-2 images
of the Helheim training area, taken between February and
October 2019, were acquired for phase one CNN training
(Table S2 in the Supplement). Similarly, a seasonally vari-
able test dataset composed of nine in-sample images from
2019 with different dates to training data and 18 out-of-
sample images from February to October 2020 were ac-
quired (Table S2 in Supplement). Level-2A products were
downloaded from Copernicus Open Access Hub (available
at https://scihub.copernicus.eu/dhus/#/home, last access: 20
July 2020), and RGBNIR images were created, cropped to
the study sites, and saved in GeoTIFF format. Additionally,
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a whole unseen Sentinel-2 tile (10980× 10980 px) acquired
on 13 September 2019 which included the entire landscape
surrounding Helheim Glacier was used to test CSC over a
larger spatial scale (i.e. more than a single glacier).

2.4 CSC model architectures and training

2.4.1 Phase 1: model architecture

For the base architecture of the pre-trained CNN used in
phase one of CSC, we adapted a well-established CNN called
VGG16 (Simonyan and Zisserman, 2015) which achieved
state-of-the-art performance in the ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) 2014. The architec-
ture used consists of five stacks of 13 2D convolutional layers
which have 3×3 pixel filters (Fig. 4). The filter spatially con-
volves over the input image to create a feature map, using the
filter weights. The dimensions of the output filters increase
from 64 in the first stack of convolutional layers to 512 in the
last (Fig. 4). All the convolutional layers use rectified linear
unit (ReLU) activation and are interspersed with five max-
pooling layers. The convolutional and pooling stacks are fol-
lowed by three fully connected (dense) layers (i.e. a normal
fine-tuned neural network) without shared weights, typical of
CNN architectures. This section allows the features learned
by the CNN to be allocated to a class by a final Softmax layer
with the same number of units as classes. The Softmax layer,
often used in multi-class models, determines the probability
that an image tile is a member of each output class. It con-
verts the outputs of the previous CNN layer to a probability
distribution so the class with the highest probability of mem-
bership becomes the final class label for the respective image
tile. The dense layers use L2 regularisation to reduce over-
training (Goodfellow et al., 2016; Carbonneau et al., 2020a).

The input image tile size for the first convolutional layer
in the original VGG16 model architecture was fixed as a
224× 224× 3 RGB image. However, here we tested the im-
pact of tile size to determine the optimal scale for detecting
features within the glacial landscape using 10 m resolution
imagery. Tile sizes of 50×50, 75×75, and 100×100 px were
tested, and architectures were adjusted accordingly (Fig. 4).
Overall, optimal results in both phases of CSC were achieved
using tile sizes of 50×50 px (see Sect. 2.6). Finally, since the
input RGBNIR imagery has four bands, the number of input
channels was adapted (i.e. from RGB in the original VGG
architecture to RGBNIR in the adapted architecture).

2.4.2 Phase 1: model training

To train the phase one CNN, we employed early stopping
to control hyperparameters and inhibit overfitting which oc-
curs when a model is unable to generalise between training
and validation data (Goodfellow et al., 2016). To do this,
we designed a custom callback that trains the network un-
til the validation data (20 % set aside with a train–validate–

split) reach a desired target accuracy threshold. These tar-
gets ranged from 92.5 % to 99 % and determined the num-
ber of epochs the CNN was trained for. We used categorical
cross entropy as the loss function and Adam gradient-based
optimisation (Kingma and Ba, 2017) with a learning rate of
10× 10−4 and batch sizes of 30.

When applying CSC to multiple sites, we came to a sim-
ilar conclusion to Carbonneau et al. (2020a), who found
that model transferability was improved when the phase
one CNN was trained with data from more than one site.
We therefore deployed a joint fine-tuning training procedure
where a CNN initially trained only on data from Helheim
was trained further with a small set of extra tiles (5000 sam-
ples per class) using only two images (one from winter and
one from summer) for all three glaciers. This fine tuning was
done at a low learning rate of 10× 10−5 and smaller batch
sizes of 10 in comparison to initial CNN training (which used
a learning rate of 10× 10−4 and batch size of 30). The ratio-
nale for this is that if a glacier is identified for monitoring,
the addition of two available scenes to produce data used to
fine-tune an existing CNN is not an onerous task and can de-
liver significant improvements to the final results. For clarity,
we will refer to CNN training without this extra level of fine-
tuning as “single” training and CNN training with this added
fine-tuning as “joint” training. This resulted in an additional
glacier-specific CNN with joint training for each of the three
test areas.

2.4.3 Phase 1: training data production

A dataset of 210 000 training samples with 30 000 image tiles
per class was used to train and validate the phase one CNN.
To create the training tiles, the RGBNIR images extracted
from 13 Sentinel-2 acquisitions were manually labelled ac-
cording to the seven semantic classes using QGIS 3.4 digi-
tising tools. Vector polygons labelled by class number were
rasterised to produce a per-pixel class raster the same size as
the training area. Both the input image and class raster were
then tiled using a script which extracted tiles with high over-
lap using a stride of 20 px (Fig. 5). Each tile was extracted
and assigned a class label based on the manually delineated
class raster, and any tiles occupied by less than 95 % pure
class were rejected, removing tiles containing mixed classes.
Once extracted, each image tile was augmented by three suc-
cessive rotations of 90◦ (Fig. 5). Data augmentation is a com-
mon step for bolstering training datasets in deep learning and
usually entails slightly altering existing data to increase the
number of training samples (Chollet, 2017). Tile rotation also
allows the model to learn classes which may appear at differ-
ent orientations in unseen images, for example accounting
for different glacier flow directions, providing the potential
for increased transferability. Following augmentation, tiles
were normalised by a constant value of 8192 to convert raw
Sentinel-2 data to 16-bit floating point data. This was because
a GPU with a Turing architecture was used in CNN training,
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Figure 4. Architecture of phase one CNN, adapted from the original VGG16 model architecture (Simonyan and Zisserman, 2015). Diagram
shows an example with a 50× 50 px RGBNIR input image tile. There are five stacks of 2D convolutional layers (labelled “Conv#”) which
extract features from input tiles using a 3× 3 filter. The convolutional stacks are followed by a fully connected neural network and Softmax
activation for phase one class prediction. The Sentinel-2 image in this figure is courtesy of the European Union Copernicus programme.

Figure 5. Conceptual diagram of the tiling process used to create
training and validation data. A specified tile size and stride were
used to extract tiles from the class raster and training image. Image
tiles were filtered, augmented, and saved to individual class folders
using an 80%/20% split for training and validation data.

enabling the use of the TensorFlow mixed precision training
method for which the input is 16-bit floating point data.

The tiles were randomly allocated to training and valida-
tion folders with an 80 %/20 % training–validation split for
phase one CNN training. Overall, this resulted in a dataset
upwards of 1 million tiles with a large imbalance that ranged
from 50 000 tiles in class one to 900 000 tiles in class four.
However, class imbalance can have negative impacts on
model performance (Johnson and Khoshgoftaar, 2019), so
30 000 tiles were randomly subsampled from each class, thus
drastically reducing the tile population and resulting in a bal-
anced training dataset. The final number of 30 000 tiles per
class was chosen after trial and error revealed that the CNN
could be trained with all tiles loaded in an available RAM
space of 64 GB with a 32 GB paging file. For the joint fine
tuning of phase one CNNs, a small dataset of 5000 samples
per class was extracted from a single winter image and a sin-
gle summer image for each of the three glaciers.

2.4.4 Phase 2: model architectures and training

To classify airborne imagery of fluvial scenes at pixel level
using the CSC workflow, Carbonneau et al. (2020a) applied
a pixel-based approach using an MLP in the second phase
of the workflow, achieving high levels of accuracy (90 %–

99 %). We propose that applying pixel-based techniques to
coarser-resolution imagery such as Sentinel-2 data may be
less effective compared to applying the workflow to high-
resolution imagery. Furthermore, particularly in landscapes
containing marine-terminating glaciers, many distinct classes
may be covered in snow or ice and therefore be very spec-
trally similar (i.e. all classes are white), and where this is the
case a pixel-based MLP would predictably struggle to dif-
ferentiate between classes. So, in addition to testing a pixel-
based MLP, we adopted a patch-based approach which uses
a small window of pixels to determine the class of a cen-
tral pixel, as in Sharma et al. (2017). This approach is based
on the idea that a pixel in remotely sensed imagery is spa-
tially dependent and likely to be similar to those around it
(Berberoglu et al., 2000). The use of a region instead of
a single pixel allows for the construction of a small CNN
(dubbed “compact CNN” or cCNN: Samarth et al., 2019)
with fewer convolutional layers that assigns a class to the
central pixel according to the properties of the region (Car-
bonneau et al., 2020b). It therefore combines spatial and
spectral information. Sharma et al. (2017) use a patch size of
5× 5 px for patch-based classification of medium-resolution
Landsat 8 imagery. We tested both pixel- and patch-based
approaches using an MLP and cCNN in the second phase
of the workflow (the architectures and application of which
are detailed in the following subsections “Multilayer Per-
ceptron” and “Compact Convolutional Neural Network”).
Specifically, five patch sizes of 1× 1 (pixel-based), 3× 3,
5× 5, 7× 7, and 15× 15 px were tested. This revealed that
larger patch sizes of 5× 5 to 15× 15 px delivered optimal
classification results (see Sect. 2.6).

Multilayer perceptron

For the pixel-based classification in phase two, we used an
MLP (Fig. 6a). An MLP is a typical deep learning model
(also commonly known as an artificial neural network) which
consists of three (or more) interconnected layers (Rumelhart
et al., 1986; Berberoglu et al., 2000). The MLP has five lay-
ers consisting of four fully connected (dense) layers and one
batch normalisation layer (Fig. 6a). The first dense layer has
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64 output filters and is followed by a batch normalisation
layer which helps to reduce overfitting by adjusting the ac-
tivations in the network to add noise. This is followed by two
more dense layers with 32 and 16 filters, respectively. Each
dense layer uses L2 regularisation and ReLU activation ex-
cept the output layer. The final output layer in the network
has Softmax activation and eight output filters for class pre-
diction. We used categorical cross entropy as the loss func-
tion and Adam gradient-based optimisation (Kingma and Ba,
2017) with a learning rate of 10× 10−3.

The MLP was trained using conventional early stopping
with a patience parameter and a minimum improvement
threshold. The minimum improvement was set as 0.5 %.
Training did not stabilise for at least 20 epochs, so the pa-
tience was set to 20. This means that if training does not
improve the validation accuracy by 0.5 % after a period of
20 epochs, the training will stop. Since the MLP is pixel-
based, the number of parameters was smaller compared to
the patch-based model, with 3192 trainable parameters for
RGBNIR imagery.

Compact convolutional neural network

For the patch-based classification in phase two, we used a
cCNN architecture (Fig. 6b). This model architecture is re-
ferred to as a compact CNN (see Samarth et al., 2019) be-
cause it contains fewer convolutional layers in comparison to
conventional CNNs. The cCNN learns the class of a central
pixel in a patch as a function of its neighbourhood. So, for
each pixel in the input image, a small image tile is extracted
with square dimensions of the patch size (e.g. 3× 3, 5× 5,
7× 7, or 15× 15 px). The central pixel from the phase-one-
predicted class raster is used as the associated class label.
As with the phase one CNN, there are four input channels
to match the number of bands, and the patches are fed into
the cCNN in the form of 4D tensors (dimensions: patches, x

dimension, y dimension, image bands).
The architecture of the cCNN is composed of a deepen-

ing series of convolution layers which change depending on
the patch size. In effect, we use as many 3× 3 filters as can
be accommodated by the patch size without the recourse to
padding. Therefore, for 3× 3 image patches, we use a single
2D convolution layer since the convolution of a 3× 3 image
with a 3× 3 kernel returns a single scalar value. An exam-
ple of the cCNN architecture for a 3×3 px patch is shown in
Fig. 6b. For the 5×5 image patch, we use two 2D convolution
layers. The first convolution of the 5× 5 image with a 3× 3
kernel leaves a 3×3 image which is rendered to a scalar after
a second 3× 3 convolution. For the 7× 7 image patch size,
we use three 2D convolution layers. Finally, for the 15× 15
patch size we use seven 2D convolution layers. In all cases,
each convolution layer uses 32 filters and therefore passes 32
equivalent channels to the following layer, with the exception
of the final layer which passes a set of 32 scalar predictors.
These scalars are flattened and fed into a dense top which

emulates the MLP architecture (Fig. 6a) and terminates in
the usual Softmax layer for class prediction (Fig. 6b).

As with the MLP, conventional early stopping was used to
train the cCNN with a patience parameter and a minimum
improvement threshold. The minimum improvement was set
as 0.5 %. For patch sizes of 3× 3 we used a patience of 15,
and for patches of 7×7 and 15×15 we used a patience of 10.
The number of trainable of parameters reached up to 231 582
for RGBNIR imagery with a patch size of 15× 15 px.

2.5 CNN-Supervised Classification performance

The performance of CSC was tested in two ways to allow
comparison to previous deep learning methods. Firstly, clas-
sification accuracy was measured using manually collected
validation labels. Secondly, a calving front detection method
was implemented, and error was quantified using manually
digitised calving front data for all test images.

Model performance is often measured by classification ac-
curacy (the number of correct predictions divided by the total
number of predictions). However, some models require more
robust measures of accuracy which also account for confu-
sion between predicted classes (Goodfellow et al., 2016; Car-
bonneau et al., 2020a). We therefore used an F1 score as the
primary performance metric. The F1 score is defined as the
harmonic mean between precision (p) and recall (r):

F1=
2pr

p+ r
, (1)

where precision finds the proportion of positive predictions
that are actually correct by dividing the number of true posi-
tives by the sum of both true (correct) positives and false (in-
correct) positives. Recall finds the proportion of positive pre-
dictions that were identified correctly by dividing the number
of true positives by the sum of true positives and false neg-
atives (misidentified positives). Thus, the inclusion of recall
provides a metric which represents confusion between class
predictions (Carbonneau et al., 2020a). F1 scores range from
0 to 1, with 1 being equivalent to 100 % accuracy. Carbon-
neau et al. (2020a) used classification results from 862 im-
ages to compare F1 and accuracy. They found that they are
closely correlated (accuracy= 1.03F1+4.1 % with an R2 of
0.96), with F1 and accuracy converging at 100 %.

The validation labels used to calculate F1 scores were
digitised manually using QGIS 3.4 digitising tools. Due to
the manual nature of the data collection, this resulted in some
unlabelled areas where classes were particularly difficult to
define. This often occurred at class boundaries or where very
small areas of different classes were mixed (at the scale of a
few pixels). For example, in areas where the snow on rock
class transitioned to bare bedrock, the structure of the under-
lying rock would often result in snow-covered areas spanning
just a few pixels. In cases like this, digitising small patches
of snow at pixel scale would be very time-consuming, and as
a result some areas of the images remained unlabelled. De-

The Cryosphere, 15, 5041–5059, 2021 https://doi.org/10.5194/tc-15-5041-2021



M. Marochov et al.: Image classification of marine-terminating outlet glaciers 5049

Figure 6. (a) Architecture of phase two multilayer perceptron used for pixel-based classification. (b) Architecture of the cCNN used in phase
two for patch-based pixel-level classification. Patches are extracted from the input image with a stride of one pixel, assigned a class label
according to the class raster produced in phase one, and compiled into 4D tensors which are then fed into the cCNN. An example of a 3× 3
patch is shown in this diagram which uses an architecture with a single 2D convolutional layer with 32 3× 3 filters. The convolutional layer
feeds into a fully connected network like that of the MLP for class prediction.

spite this, we aimed to cover as much of each test image with
validation labels as possible.

F1 scores were calculated based on the concatenation of
all the predictions for all available test images within the
given parameters of tile size, patch size, number of bands,
CSC phase, type of training (single or joint), glacier, and
type of test data (in-sample or out-of-sample). Given that the
calculation of F1 scores for gigapixel samples can be very
computationally intensive, each F1 score presented here was
estimated from a sample of 10 million pixels of the available
data.

In addition to classification performance, we implemented
a calving front detection method based on morphological
geodesic active contours (see Fig. S1). The method is based
on the definition of a calving front as the contact between
“ocean” pixels (open water, iceberg water, or mélange) and
glacier ice pixels. Since the final classification output from
CSC is at pixel level, this allowed for calving front detection
at the native spatial resolution of Sentinel-2 imagery (10 m).
Error was quantified for each predicted calving front by mea-
suring the Euclidean distance between each predicted calving
front pixel and the closest pixel in manually digitised calving
fronts. From this, the mean, median, and mode errors were
quantified for each predicted calving front. Calculating the
median and mode values allows the elimination of outliers
in calving front predictions (Baumhoer et al., 2019). Calving
fronts were digitised in QGIS 3.4 and rasterised to form a
single pixel-wide line.

2.6 Optimal performance parameters

Table S3 shows that the highest classification performance in
phase one was achieved using 50× 50 px tiles from images
composed of all four RGBNIR bands. For models trained
with RGB bands, performance was highest with 100×100 px
tiles, suggesting that the greater proportion of spatial infor-

mation stored in larger tiles was beneficial when using only
three bands. This finding extended to phase two results, and
the additional testing of patch- vs. pixel- based techniques re-
vealed that optimum classification performance was achieved
using larger patch sizes from 5×5 to 15×15 px (Table 1) with
F1 scores varying by only 0.6 % for classifications produced
with 50× 50 RGBNIR tiles.

Similarly, an evaluation of calving front error for CSC re-
sults revealed that a patch size of 5×5 px produced the most
accurate calving fronts, followed closely by patches of 7×7,
3× 3, and 15× 15 px (Fig. 7). Figure 7 shows the full error
distribution for predicted calving front pixels detected from
classifications produced with RGBNIR bands and 50× 50
tiles. Overall, this suggests that optimum parameters for clas-
sification and calving front accuracy combined are 50×50 px
RGBNIR tiles with a phase two patch size of 5× 5 px. Us-
ing these parameters resulted in a mean calving front er-
ror of 56.17 m (equivalent to 5.6 px) for the test dataset as
a whole (with individual mean errors of 58.81 m for Hel-
heim, 70.6 m for Jakobshavn, and 39.1 m for Store). Addi-
tionally, median error was 24.7 m (equivalent to 2.5 px) for
all test data (30 m for Helheim and Jakobshavn and 14.1 m
for Store), and modal error was 10 m (equivalent to 1 px) for
all glaciers, suggesting that mean values are increased by ex-
tremes.

In comparison, manually digitised calving fronts usually
have an error of around 2 to 4 px. For example, Carr et
al. (2017) calculated a mean calving front error of 27.1 m us-
ing repeat digitisations. In this work, small classification er-
rors of a few pixels (often caused by shadows at the front) can
lead to errors in the range of 5 to 10 px. The smaller-scale in-
formation provided in a 5×5 pixel patch is clearly optimal in
comparison to overall classification accuracy, which achieves
good results with patch sizes from 5×5 to 15×15 px. Further-
more, we note a small tail of data where large errors occurred
(Fig. 7). The secondary peak in Fig. 7 represents calving
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Table 1. F1 scores for all test data combined (single training). The highest values are highlighted in bold. RGBNIR bands, 50×50 tiles, and
the patch-based approach, specifically patches of 5× 5 to 15× 15 px, produced optimum classification results.

Phase two F1 scores (%) RGB bands RGBNIR bands

Patch size (pixels): 1× 1 3× 3 5× 5 7× 7 15× 15 1× 1 3× 3 5× 5 7× 7 15× 15

50× 50 tiles 76.1 88.8 90.6 90.5 90.8 80 89.7 91.6 91.8 92.2
75× 75 tiles 73.6 89.4 91.3 91.6 91.6 81.4 89.5 90.7 90.7 90.9
100× 100 tiles 73.2 89.5 91.4 91.6 91.1 79 88.6 89.5 89.4 89.2

Figure 7. A kernel density estimate (KDE) plot of the full error
distribution for all calving front predictions derived from all test
sites using classifications produced with optimal parameters. Error
values above 1000 m are grouped into a single bin to reduce tail
length and show a second peak which represents catastrophic errors
in calving front prediction. Note that low calving front errors occur
most with 5× 5 patches, followed by 7× 7 and 3× 3 patches, with
the highest error occurring for the pixel-based approach.

front errors of 1000 m and above which shows where calv-
ing front predictions were catastrophically erroneous. This
was caused by one of the 27 test images severely failing to
detect the calving front (despite a high F1). The calving front
error distribution derived from joint training can be found in
Fig. S2.

3 Results

3.1 Classification performance

Figure 8 shows examples of CSC applied to images of the
Helheim test site. High F1 scores are maintained despite
the noticeable seasonal differences between images, such as
changes in illumination, shadow, snow cover, ablation area,
and mélange extent (Fig. 8a, c, and e). Corresponding calving
front errors range from 10 to 42.4 m. Similarly, Fig. 9 shows
examples of CSC applied to imagery of Store Glacier (out-
of-sample). The F1 scores shown for the out-of-sample ex-
amples in Fig. 9 are slightly lower compared to the in-sample
examples (Fig. 8). This is because the out-of-sample site is
more prone to misclassification. For example, Fig. 9b shows
several areas of glacier ice which have been misclassified as
mélange. Additionally, in Fig. 9d there are areas of bedrock
which are deeply shadowed, resulting in some misclassifi-

Figure 8. Examples of pixel-level classification outputs for season-
ally variable imagery from the in-sample test site showing input
images of Helheim in the first column, which were acquired on (a)
5 March 2019, (c) 5 June 2019, and (e) 1 October 2019 and the as-
sociated CSC outputs shown in (b), (d), and (f). Classifications pro-
duced using optimal parameters with F1 scores and calving front er-
ror shown next to each classification. All Sentinel-2 imagery in this
figure is courtesy of the European Union Copernicus programme.

cations of bedrock areas as open water. These misclassifica-
tions did not increase calving front error, which ranged from
10 to 14.1 m (Fig. 9b, d, f), but lower F1 scores prompted
testing of the joint fine-tuning method.

The joint training method improved classification perfor-
mance (Table 2). Results were only marginally improved for
the in-sample study site, which was to be expected since
phase one models were already trained on data from Hel-
heim. A comparison of classification outputs from single and
joint training for an image of Store Glacier can be found in
Fig. S3, which shows that the addition of joint fine-tuning
rectified areas of misclassification seen in results which used
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Figure 9. Examples of pixel-level classification outputs for season-
ally variable imagery from the out-of-sample test site showing in-
put images of Store in the first column, which were acquired on
(a) 23 June 2020, (c) 14 September 2020, and (e) 8 October 2020
with the associated CSC outputs shown in (b), (d), and (f). Clas-
sifications produced using optimal parameters with F1 scores and
calving front error shown next to each classification. All Sentinel-2
imagery in this figure is courtesy of the European Union Copernicus
programme.

Table 2. Optimum F1 scores for classifications produced with sin-
gle and joint training (50× 50 RGBNIR tiles). Note the joint ap-
proach improves classification F1 scores, with the biggest improve-
ment for out-of-sample sites.

Phase two F1 scores (%) Helheim Jakobshavn Store

Single training 93.3 95 87.1
Joint training 94 97.3 94.6

single training, with the overall F1 score increasing from
84.7 % (single training) to 97.5 % (joint training). Figures S4
and S5 also show examples of joint training classifications.
These examples suggest that digitising two additional images
for the purposes of fine-tuning an existing pre-trained CNN
for glacier-specific classification is worth the improvements
in classification accuracy.

Confusion matrices which show the relationship between
CSC class predictions and validation data for each test glacier
are shown in Fig. S6. In summary, Fig. S6 shows good agree-
ment between predicted and actual classes for all glaciers,
with the exception of the open water class for Helheim and
Jakobshavn where confusion occurs between the iceberg wa-
ter and bedrock classes. Open water is the smallest class for

both sites, with open water often covering only small areas in
each individual image. There is still class confusion in joint
results (Fig. S7); however better overall F1 scores suggest
that improvements are made in class prediction despite a dif-
ferent pattern of inter-class confusion. Overall, these exam-
ples show the ability of CSC to classify in- and out-of-sample
imagery of marine-terminating glacial landscapes in Green-
land with different seasonal characteristics.

Moreover, the size of input imagery to the CSC workflow
is not limited to a specified set of dimensions. Since collec-
tion of validation labels for each test image required manual
digitisation, the test sites were restricted to ∼ 20 to 50 km
to allow collection of seasonal data for individual glacial
landscapes. Despite this, CSC can also be applied to entire
Sentinel-2 tiles. The outputs of the CSC workflow applied to
an entire Sentinel-2 image are shown in Fig. S8. The over-
all F1 score of this classification was 92 %. This suggests
that CSC has good classification performance at the level of
individual glaciers as well as whole glacial landscapes.

3.2 Time series of Helheim Glacier

A time series produced using CSC results showing calv-
ing front position and changes in mélange area at Helheim
throughout 2019 can be seen in Fig. 10. Figure 10a and c
show fluctuation in calving front position between March
and October 2019 with an overall pattern of retreat. Two pre-
dicted calving fronts which had an error of over 4.2 px were
removed from the time series, and frontal position change
was quantified using the rectilinear box method to account
for cross-glacier variation (Lea et al., 2014). Figure 10b and c
illustrate the variation in mélange area for all nine in-sample
test images. Taken together, these results show the robust-
ness of CSC and usefulness of multi-class outputs for holistic
analysis of marine-terminating glacial environments.

4 Discussion

4.1 Comparison to previous work

Our results build on the work of deep-learning-based classi-
fication methods for ice front delineation (Baumhoer et al.,
2019; Mohajerani et al., 2019; Zhang et al., 2019; Cheng
et al., 2021), with several key innovations and variations of
note. Firstly, the CSC workflow produces multi-class out-
puts using seven semantic classes rather than the binary out-
puts of previous methods. This fulfils the aim to provide
meaningful information which could be used for a variety
of applications at the scale of entire outlet glacier land-
scapes. In terms of classification accuracy, CSC produces
marginally better F1 scores in comparison to previous meth-
ods applied to marine-terminating glacial environments. Pre-
vious studies which focus on outlet glaciers of the GrIS do
not provide F1 scores for their classification outputs. How-
ever, Baumhoer et al. (2019) apply their method to Antarc-
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Figure 10. (a) Time series of Helheim calving front positions produced from CSC outputs of the 2019 test data. (b) Frequency of CSC-
predicted mélange pixels from the Helheim test dataset showing the seasonal variation in mélange extent. (c) Cumulative retreat of the
calving front relative to 5 March 2019 and mélange area for each test image. All background Sentinel-2 imagery in this figure has been made
available courtesy of the European Union Copernicus programme.

tic marine-terminating environments and produce overall F1
scores of 89.5 % for training areas (in-sample) and 90.5 %
for test areas (out-of-sample). In comparison, CSC produces
F1 scores of up to 93.3 % for in-sample test imagery and
91 % for out-of-sample test imagery when using a phase one
CNN trained only with data from Helheim Glacier. By ap-
plying joint CNN training to fine-tune the phase one CNN to
each test glacier, F1 scores increased to 94 % for in-sample
test data and 96 % for out-of-sample test data. It is worth not-
ing that the characteristics of Antarctic outlet glacier environ-
ments can vary substantially from Greenlandic outlet glacier
environments, potentially presenting different classification
challenges. As such, this is a tentative comparison, especially
given that CSC outputs contain seven classes at the scale of
the whole landscape, rather than just two classes focused at
the ice front.

Additionally, since previous deep learning studies which
produce binary classifications for Greenlandic outlet glaciers
do not provide F1 scores, for further comparison we inte-
grated a calving front detection method into the CSC work-
flow. Table 3 shows the mean calving front errors produced
in this study and each of the previous studies. Mean calv-
ing front errors for test imagery from both training sites (in-
sample) and test sites (out-of-sample) are provided; however
not all studies specified these values. In terms of the number
of metres that predicted fronts deviate from manual digiti-
sations, the predictions of CSC are comparable to those of
previous studies. However, in terms of the equivalent num-
ber of pixels, CSC predictions deviate from manual digiti-
sations by a few more pixels compared to previous studies

(apart from Zhang et al., 2019), indicating that if a given ap-
plication solely requires accurate calving front localisation of
a known glacier, the method presented here is not necessarily
the optimal choice.

The second major difference between CSC and previ-
ous methods is the deep learning architecture. All previ-
ous deep learning classification methods for delineating ice
fronts (Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang
et al., 2019; Cheng et al., 2021) use FCN/U-Net architectures
(Ronneberger et al., 2015). Hoeser et al. (2020) reviewed
image segmentation and object detection in remote sensing,
and whilst they do conclude that FCN/U-Net architectures
are dominant, they still find about 30 % of published work
uses patch-based approaches which are akin to the second
phase of the CSC method presented here. This suggests that
FCN architectures need not be considered the de facto algo-
rithm for glacial landscape classification. Moreover, the ad-
vantage of CSC over one-stage patch-based methods using
FCNs is that the initial phase one CNN provides transfer-
ability and delivers bespoke training labels for the pixel-level
patch-based operator (as described in Sect. 2.1). We discuss
the other major implications of the architectural differences
between our work and FCNs in the following sections.

4.1.1 Data pre-processing and computational loads

CSC has certain practical advantages over FCNs in terms
of data processing and computational loads. Firstly, the
CSC method has low pre-processing requirements. In effect,
Sentinel-2 images were cropped to produce large images
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Table 3. Mean calving front errors from previous deep learning methods designed specifically to detect ice fronts in comparison to the mean
calving front errors produced by CSC in this study.

Study Ice sheet No. of test images
Mean calving front error (and equivalent in pixels)

Training site(s) Test site(s) (sites Both training and
not used in training) test sites combined

Baumhoer et al. (2019) Antarctic 11 78.25 m (<2 px) 107.75 m (2.69 px) 93 m (2.33 px)
Mohajerani et al. (2019) Greenland 10 – 96.31 m (1.97 px) –
Zhang et al. (2019) Greenland 84 38 m (6 px) – –
Cheng et al. (2021) Greenland 162 – – 86.76 m (2.25 px)
This study Greenland 27 58.81 m (5.9 px) 54.86 m (5.5 px) 56.17 m (5.6 px)

containing whole marine-terminating glacier landscapes, yet
still within a workable size for detailed digitisation of vali-
dation labels. The only other pre-processing step required is
normalisation by a constant factor of 8192 to convert raw
Sentinel-2 data to 16-bit floating point data. Once this is
done, CSC has a low computational load. Training the initial
VGG16 model can be done in under 1 h using an I7 proces-
sor at 5.1 GHz and an Nvidia RTX 2060 GPU. When CSC is
subsequently applied to a sample image of∼ 3000×3000 px
using optimal phase one parameters and a phase two patch
size of 7×7 px, classification requires 4 min. We also coded a
low-memory-usage pathway in the main script that classifies
a large image row by row with a threshold to define “large”
set by the user. Using this, Sentinel-2 images can be classified
at native resolution (10980×10980 px each) in 12 min with a
peak RAM consumption of 11 GB. This makes CSC suitable
for use in free cloud-based solutions such as Google Colab-
oratory, providing the potential to build on existing cloud-
based tools for glacial mapping (e.g. Lea, 2018). Moreover,
given the simplicity of data pre-processing steps required for
CSC, the workflow has good accessibility and can be imple-
mented easily by new users.

In contrast, for several of the previous studies which
implement FCN architectures, a larger number of pre-
processing steps are required, including but not limited to
rotation for consistent glacier flow direction, edge enhance-
ment, and pseudo-HDR toning (Mohajerani et al., 2019;
Zhang et al., 2019; Cheng et al., 2021). Similarly, FCN ar-
chitectures can be very demanding in terms of computer
RAM and GPU RAM, especially when large images are
used as inputs. When we tested this by implementing the
popular FCN8 based on VGG16 which has ∼ 130 million
trainable parameters, we found that the largest dyadic im-
age size that could be processed was 512×512 px. This gen-
eral problem has been resolved in different ways in the Earth
observation (EO)-facing literature. Baumhoer et al. (2019)
used 40 m Sentinel-1 synthetic aperture radar (SAR) data
and a DEM at 90 m resolution as their base. Using a smaller
FCN with ∼ 7.8 million parameters, they used image tiles of
780× 780 px with four channels (HH, HV, DEM, HH/HV
polarisations) on a GTX 1080 GPU (8 GB vs. 6 GB for the

RTX2060). However, it is important to note that with 40 m
data, 780 px still cover 31.2 km. If this were Sentinel-2 op-
tical data, with a resolution of 10 m, the sample tiles would
only cover 7.8 km. In contrast, the calving front of Jakob-
shavn has a width of ∼ 11 km. To get around this sort of is-
sue using FCNs, downsampling is used. For example, Moha-
jerani et al. (2019) used an advanced pre-processing routine
that involved a re-orientation and then a resampling of the
scene to 200× 300 px. This resampling resulted in imagery
with varied resolutions across glaciers used in training and
test data. In the end, the FCN they used only had 240×152 px
in a single post-processed channel which was tested at a sin-
gle site (Helheim Glacier) with a resampled spatial resolu-
tion of 49 m (from Landsat data with 15/30 m resolution). In
contrast, the spatial resolution of the input images and result-
ing classification outputs using CSC always remains native
to raw Sentinel-2 data (i.e. 10 m).

4.1.2 Training data volume

In terms of the number of training samples used for deep
learning models, Goodfellow et al. (2016) note that, as a gen-
eral rule, each class should contain at least 5000 samples to
reach satisfactory performance, but models can reach and
exceed human-level performance when trained on at least
10 million samples. Considering this, the number of labelled
samples produced by manually labelled training images and
data augmentation in the datasets used here (210 000 tiles)
makes them relatively small. However, in comparison to pre-
trained models such as VGG16 which were trained on the
ImageNet database using over 1000 classes, our adapted
VGG16 architecture only uses seven classes and therefore
can be trained sufficiently with “only” a few hundred thou-
sand samples. This suggests that relatively few images are
needed to produce highly accurate image classifications us-
ing our workflow, reducing the time required for initial cre-
ation of manually labelled training data. Furthermore, the
number of satellite acquisitions used to produce the training
data for the phase one CNN in CSC is smaller than that used
to train models in previous FCN-based studies. Given that
our optimal phase one CNN training sample is 50× 50 px,
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a very large number of samples can be extracted from a full
Sentinel-2 tile of 10 980×10980 px. In our initial training of
the phase one CNN, we used sub-images of 6875× 3721 px
extracted from 13 Sentinel-2 acquisitions. In the joint-fine-
tuning step, we added data from six Sentinel-2 acquisitions
(one winter and one summer for each of the three glaciers).
So, in total, this work used data from 13 to 19 Sentinel-
2 acquisitions. Comparatively, Baumhoer et al. (2019) used
38 Sentinel-1 satellite acquisitions, Zhang et al. (2019) used
75 TerraSAR-X acquisitions, Mohajerani et al. (2019) used
123 Landsat 5–8 acquisitions, and Cheng et al. (2021) used
1872 images (1541 from Landsat and 232 from Sentinel-
1). So, overall, we argue that our results were obtained with
fewer training data than those from comparator FCN-facing
works.

4.1.3 Size of input imagery

The size of input imagery also represents an area where CSC
has advantages over FCNs. In FCN architectures, the in-
stance that must be classified must be well framed in the
input image. Often in the case of higher-resolution images
where such framing would lead to image sizes in excess
of 1000× 1000 px, downsampling must be used unless ex-
tremely powerfully GPUs are available. Similarly, the pre-
processing methods used in FCN-based papers start with a
user actually knowing where the feature of interest is and
cropping the image accordingly. For example, Mohajerani
et al. (2019) crops imagery to within a 300 m buffer area
of a pre-defined calving front and further crops training im-
ages to 150× 240 px for FCN training inputs. In the result-
ing images, the calving front must be kept within the frame.
This type of pre-processing is not required in CSC. Instead,
CSC can process entire tiles of Sentinel-2 data at native res-
olutions without the need for downsampling, selection, and
cropping of a known target area, or extensive pre-processing
(see Fig. S8). In order to produce digitised validation labels
for a test dataset spanning seasonally variable imagery, our
test areas were cropped to 2000/3000 px (digitisation of en-
tire Sentinel-2 tiles to near pixel levels of detail for season-
ally variable test imagery would be a more onerous task), but
the CSC method is not sensitive to where the crop bound-
aries fall, and it performs well even when an image bound-
ary cuts a glacier in half. It also works well when the user
does not have previous knowledge of the location of a fea-
ture of interest. Admittedly, in the case of glaciers, this is ar-
guably less important because we already have high-quality
glacier inventories. However, in terms of the wider scope of
image classification in EO, there are many cases where a hu-
man user cannot be expected to know a priori the location
of all features/class instances of interest in order to carry out
the level of pre-processing required by FCN architectures. In
these cases, the lower levels of pre-processing required by
CSC are advantageous and have allowed us to produce clas-

sifications for full Sentinel-2 tiles (Fig. S8) that are absent
from other works based on FCNs and U-Nets.

4.1.4 Local textures vs. object shapes

Finally, from a theoretical perspective, FCN architectures can
be strongly dependent on object shapes and less dependent
on inner textures. In the final stages of the encoder part of an
FCN architecture, the simplified shape of the object will con-
tribute to the weights learned in training (as will inter-class
relations). This means that an FCN must be trained to recog-
nise specific shapes. As a result, an FCN trained only on data
from Helheim could not be expected to perform well at the
task of classifying Jakobshavn. There are no published exam-
ples where an FCN has been trained on a single glacier and
displays transferability to very different glaciers. For exam-
ple, Mohajerani et al. (2019) train their FCN on three glaciers
(Jakobshavn, Sverdrup, and Kangerlussuaq) and only test it
on Helheim Glacier. Similarly, the FCN used by Zhang et
al. (2019) is only trained and tested on Jakobshavn, providing
no test of spatial transferability. Instead, multiple sites must
be included in FCN training in order to reach good transfer-
ability (e.g. Cheng et al., 2021). Contrastingly, in this study,
even before the application of joint fine-tuning, the phase
one VGG16 CNN solely trained on data from Helheim suc-
cessfully classified large areas of Jakobshavn, leading to very
high performance with final phase two results with F1 scores
in excess of 95 %. This is because CSC is driven by spectral
and textural properties within the object, whilst the down-
sampling often required in an FCN pipeline can remove local
textures. FCNs compensate for this by making use of inter-
class relations, which CSC does not consider. However, on
the terrestrial surface, there is a strong correlation between
the ontology of a semantic class and both colour and textu-
ral properties. This explains why a statistical learning algo-
rithm such as maximum likelihood has been used with rea-
sonable success by the EO community for nearly half a cen-
tury (Lillesand and Kiefer, 1994). Furthermore, the learning
of shapes, a strong point of FCN, is not so relevant in EO
since many semantic classes have either variable shapes or
no shapes at all. Good examples are forests/vegetation, wa-
ter body shapes (including supraglacial lakes), rocky outcrop
shapes, and sediment patches in rivers.

Overall, the empirical results presented here show that
CSC has delivered a state-of-the-art performance for novel
multi-class pixel-level classification of marine-terminating
glacial landscapes in Greenland. In summary, when com-
pared to FCN architectures, CSC has lower training data vol-
ume requirements and simpler pre-processing steps. More-
over, the workflow produces marginally better F1 scores but
marginally poorer calving front detections (in terms of pixel
dimensions). On balance, we argue that this shows that there
is still a place in EO for patch-based classification methods
such as CSC.
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4.2 CSC performance and wider application

The results reported here demonstrate that the CSC work-
flow adapted for landscapes containing marine-terminating
outlet glaciers in Greenland produces state-of-the-art pixel-
level classifications for seasonally variable imagery. After
testing the performance of different band combinations, tile
sizes, and patch sizes on seasonally variable test imagery, we
find that classifications reach F1 scores of up to 93.3 % for
in-sample test imagery and 91 % for out-of-sample test im-
agery when using a phase one CNN trained only with data
from Helheim Glacier and the overall optimal classification
parameters. With the addition of joint fine-tuning, F1 scores
increased to 94 % for in-sample test data and 96 % for out-of-
sample test data. In terms of calving front accuracy, a mean
error of 56.17 m (5.6 px) and median error of 24.7 m (2.5 px)
were achieved from classifications produced with overall op-
timum parameters. Taken together, this suggests that the ac-
curate multi-class outputs of CSC are capable of producing
datasets with sufficient levels of accuracy, for example to
monitor calving front change at a high temporal resolution.
Indeed, the method could be developed to generate exten-
sive time series data of calving front changes with 10 s of
measurements per year for multiple glaciers and over several
years, which is a key advantage over time-consuming manual
digitisation.

Given that CSC can identify multiple semantic classes, this
also provides scope for analysis in other research areas, be-
yond calving front monitoring. Changes in other class bound-
aries could be monitored, for instance to detect changes in
snowline/equilibrium line position and quantify ablation area
change (Noël et al., 2019). Similarly, the multi-class outputs
could be used to quantify seasonal changes in the area of a
specific class, for example to monitor changes in the area of
mélange (Foga et al., 2014; Cassotto et al., 2015) as shown in
Fig. 10. Moreover, while CSC operates at the scale of over-
all land cover classes, outputs could potentially be used to
isolate a specific target class for detection of smaller-scale
features, for example to detect change in the evolution of
supraglacial lakes (Hochreuther et al., 2021) and subglacial
meltwater plumes (How et al., 2017; Everett et al., 2018), as
well as iceberg tracking (Barbat et al., 2021). Finally, the out-
puts of the CSC script retain the geospatial information of the
input data, meaning classification and calving front outputs
can be easily manipulated in GIS software.

4.3 Technical considerations for future work

The joint fine-tuning method significantly improved classi-
fication F1 scores with the addition of training data from
only two glacier-specific images. Considering the improve-
ments to classification performance for out-of-sample sites,
we suggest that the manual labour required to collect 5000
additional samples per class derived from only two images is
not substantial and may be worthwhile if a glacier is iden-

tified for monitoring. Further work may also benefit from
more diverse training data for the phase one CNN rather than
training from a single glacier. Similarly, CSC did not pro-
duce very accurate classifications for images with extremely
low illumination angles. This is most likely because images
with very low illumination angles occurred most frequently
at the beginning or end of the image availability season and
made up a smaller proportion of phase one training data. To
improve the ability of CSC to classify imagery with deep
shadow and extremely low illumination angles, the propor-
tion of phase one CNN training data containing these quali-
ties could be increased. Despite this, the application of CSC
using single CNN training still produced an F1 score of up
to 91 % for out-of-sample test data, providing sufficient clas-
sification quality to detect calving fronts with a mean error
of 54.86 m (5.5 px) and a median error of 22.1 m (2.2 px).

CSC performance was optimal when using RGBNIR
bands rather than RGB bands alone. Testing the use of ad-
ditional image bands to increase spectral data may be advan-
tageous in future work. For example, Xie et al. (2020) used
a CNN trained with 17 input bands derived from Landsat 8
imagery and DEM data and found that using more bands pro-
duced higher accuracy for mapping debris-covered mountain
glaciers. However, this may not necessarily be the case with
marine-terminating outlet glaciers, and using additional input
channels is likely to increase processing time, which should
also be taken into account when considering that accurate re-
sults can be achieved using only RGBNIR bands.

We proposed that adopting a patch-based technique which
includes contextual information surrounding a pixel would
aid classification of complex and seasonally variable outlet
glacier landscapes, as it has in other applications (Sharma
et al., 2017), and we found that the phase two patch-based
method significantly outperformed the pixel-based method.
This also validates similar findings that patch-based CNNs
outperform standard pixel-based neural networks and CNNs
(Sharma et al., 2017). For calving front detection, a patch
size of 5×5 px was optimal, suggesting that the smaller-scale
contextual information contained within a 5× 5 px patch is
beneficial for classification at the glacier front where small
areas of shadow can impact front prediction at the scale of
a few pixels. Overall, for marine-terminating glacier classi-
fication, we suggest that the patch-based technique be used
instead of pixel-based methods.

5 Conclusions

We develop and evaluate a workflow for novel multi-
class image classification of seasonally variable marine-
terminating outlet glacier scenes using deep learning. The
development of deep learning methods for automated clas-
sification of outlet glaciers is an important step towards
monitoring processes at high temporal and spatial resolution
(e.g. changes in frontal position, mélange extent, and calving
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events) over several years. While still in its infancy in glacial
settings, image classification using deep learning provides
clear potential to reduce the labour-intensive nature of man-
ual methods and facilitate automated analysis in an era of the
burgeoning availability of satellite imagery. Our two-phase
workflow, termed CNN-Supervised Classification, is adapted
for classification of medium-resolution Sentinel-2 imagery
of outlet glaciers in Greenland. In phase one, the application
of a well-established, pre-trained CNN called VGG16 repli-
cates the way a human operator would interpret an image,
rapidly producing training labels for a second image-specific
model in phase two. Application of the phase two model pro-
duces pixel-level classifications according to seven seman-
tic classes characteristic of complex outlet glacier settings in
Greenland.

Alongside an evaluation of input parameters and train-
ing methods on model performance, we apply and test the
workflow on 27 seasonally variable unseen images. The
test dataset is composed of nine images from the training
area of Helheim Glacier (in-sample) and 18 images from
Jakobshavn and Store glaciers which represent landscapes
not previously seen during training (out-of-sample). Result-
ing pixel-level classifications produce high F1 scores for
both in- and out-of-sample imagery. Similarly, the calving
front detection method built into the CSC workflow predicts
fronts with a mean error of 56.17 m (5.6 px) and median er-
ror of 24.7 m (2.5 px). Overall, this demonstrates that the
CSC workflow has good spatial and temporal transferability
to unseen marine-terminating glaciers in Greenland. More-
over, the method can be used to classify entire landscapes
and produce secondary datasets (such as calving front data)
with a good level of accuracy. The simplicity of data pre-
processing and the low computational costs of CSC make it
a useful tool which can be accessed and used without having
specialised knowledge of deep learning or the need for time-
consuming generation of substantial new training data. From
a wider perspective, the results of this study strengthen the
foothold of deep learning in the realm of automated process-
ing of freely available medium-resolution satellite imagery,
especially building on the growing body of research using
deep learning in glaciology (Baumhoer et al., 2019; Moha-
jerani et al., 2019; Zhang et al., 2019; Xie et al., 2020; Cheng
et al., 2021).

Code and data availability. Sentinel-2 imagery is available from
the Copernicus Open Access Hub (2020, available at https:
//scihub.copernicus.eu/dhus/#/home, last access: 20 July 2020).
The Python scripts for the full deep learning workflow
and instructions on how to apply them are available at
https://doi.org/10.5281/zenodo.4081095 and can be cited as Car-
bonneau and Marochov (2020). The most up-to-date Python scripts
for the full deep learning workflow and instructions on how to apply
them are available at https://github.com/PCdurham/SEE_ICE (last
access: 24 October 2021), (Carbonneau and Marochov, 2020). Con-

tact patrice.carbonneau@durham.ac.uk for further queries about
code and the availability of pre-trained phase one CNNs. The
original code for the CSC workflow for classification of flu-
vial scenes was created by Patrice Carbonneau and James Di-
etrich (https://doi.org/10.5281/zenodo.3928808, Carbonneau and
Dietrich, 2020) and is available at https://github.com/geojames/
CNN-Supervised-Classification (last access: 24 October 2021).

Supplement. The supplement includes descriptions for each of
the seven semantic classes (Table S1), the Sentinel-2 acquisi-
tions used for training and testing the classification workflow (Ta-
ble S2), a flow chart of the methodology used to produce calv-
ing fronts (Fig. S1), phase one F1 scores (Table S3), calving
front error for the joint approach (Fig. S2), example outputs us-
ing joint training (Figs. S3 to S5), confusion matrices (Figs. S6 and
S7), and an example of CSC applied to a whole Sentinel-2 image
(Fig. S8). The supplement related to this article is available online
at: https://doi.org/10.5194/tc-15-5041-2021-supplement.
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