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Background: p53 mutations give rise to a mutant p53 protein that acquires novel pro-oncogenic functions.
Results: Mutant p53 inhibits Dicer to promote receptor recycling, which is required for invasion and scattering.
Conclusion: Dicer is inhibited by mutant p53 via two mechanisms: TAp63-dependent and TAp63-independent.
Significance: Our findings contribute to a better understanding of the proinvasive functions of mutant p53.

The control and processing of microRNAs (miRs) is critical in
the regulation of all cellular responses. Previous studies have
suggested that a reduction in the expression of certain miRs, or
an overall decrease in miR processing through the partial deple-
tion of Dicer, can promote enhanced metastatic potential. We
show here that Dicer depletion can promote the invasive behav-
ior of cells that is reflected in enhanced recycling and activation
of the growth factor receptors Met and EGF receptor. These
responses are also seen in response to the expression of tumor-
derived mutant p53s, and we show that mutant p53 can down-
regulate Dicer expression through both direct inhibition of the
TAp63-mediated transcriptional activation of Dicer and a
TAp63-independent control of Dicer protein expression. Our
results delineate a clear relationship between mutant p53,
TAp63, and Dicer that might contribute to the metastatic func-
tion of mutant p53 but, interestingly, also reveal TAp63-inde-
pendent functions of mutant p53 in controlling Dicer activity.

MicroRNAs (miRs)2 are short hairpin RNA structures that
are transcribed from DNA as primary (pri)-miRs and then
cleaved by Drosha to generate precursor (pre)-miRs. These pre-
miRs are further processed by Dicer to generate mature miRs
that can either block translation or promote the degradation of
target mRNA (1). In the last decade, several studies have dem-
onstrated an important role for miRs in various diseases,
including cancer, where miRs can act as oncogenes or tumor
suppressors (2). MicroRNA profiling studies demonstrated a
decreased global expression of mature miRs in human and
murine cancers (3), sometimes caused by decreased expression

of miR biogenesis enzymes (4). In general, therefore, a failure to
properly express or process miRs, for example in response to
decreased Dicer expression, is associated with various aspects
of malignant progression.

The p53-related proteins (comprising p53, p63, and p73) are
transcription factors that regulate the expression of a large vari-
ety of miRs. p53 binding elements are present in the promoters
of several microRNA processing proteins, including Dicer (5).
Furthermore, murine Dicer has been shown to be a transcrip-
tional target of TAp63 (6). p63 exists as multiple isoforms,
including a full-length form with a complete transactivation
(TA) domain and an N-terminally truncated form (�N). Stud-
ies in TA domain- or �N-specific knockout mice have identi-
fied distinct and separate roles for each isoform, with embry-
onic lethality of �Np63�/� mice because of severe skin defects
(7). TAp63�/� mice are viable but display signs of obesity,
aging, and a potential to form metastatic cancers (6, 8 –10).
Interestingly, loss of TAp63 coincided with decreased Dicer
expression and a concomitant decrease in the expression of
mature miRs (6). Similar results were observed in cell systems
where decreased Dicer expression resulted in a down-regula-
tion of mature miRs with a consequent promotion of extracel-
lular matrix and invasion (11, 12).

In addition to decreased Dicer expression, many metastatic
cancers acquire mutations in the tumor suppressor p53, leading
to the loss of p53 or the expression of a mutant p53 protein.
Mutant p53 proteins may exert a dominant negative function
over wild-type p53 but also acquire novel functions to promote
tumorigenesis. Although the mechanisms through which
mutant p53 functions are still under investigation, some of the
tumor-associated mutations promote the binding of mutant
p53 to proteins such as transcription factors, transcription
enhancers, or kinases. These interactions are not always seen
with wild-type p53, and they allow mutant p53 to acquire an
oncogenic role (13–15). Various mutant p53s can promote
invasion and metastasis by interfering with TAp63 function
(16, 17), although the mechanisms underlying this interference
are complex. Although most p53 mutants inhibit TAp63-de-
pendent gene expression to some extent, this does not simply
correlate with the efficiency of binding of mutant p53 to TAp63
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(16 –22). We showed previously that the inhibition of TAp63
activity by two different p53 mutants (175H and 273H) pro-
moted Rab coupling protein (RCP)-dependent recycling of
integrins and growth factor receptors from intracellular vesi-
cles back to the plasma membrane (16). This enhanced recy-
cling resulted in an increase in growth factor receptor-medi-
ated signaling and facilitated random motility, invasion, and
scattering of cells (16, 23).

Various reports suggest that mutant p53 can regulate the
expression of certain miRs (24 –27). Notably, although some of
these were regulated by mutant p53 in a p63-dependent man-
ner (e.g. miR-155 and miR-205), the regulation of others (such
as miR-130b) was p63-independent. Here, we explore the func-
tion of Dicer in mutant p53-driven invasion and scattering and
examine the contribution of TAp63 to these activities.

EXPERIMENTAL PROCEDURES

Cell Culture and Constructs—H1299, HT29, MDA MB 231,
and A431 cells were all purchased from the ATCC and cultured
in DMEM containing 10% FBS, 1% penicillin/streptomycin,
and 1% glutamine at 37 °C and 5% CO2. The generation of stable
mutant p53 expressing H1299 cells has been described before
(16). GFP and Cherry constructs were purchased from Clon-
tech and cotransfected with an empty vector or mutant p53
following the same selection procedure. Doxycycline-inducible
H1299 cells were generated as described before (28).

The generation of GFP-RCP, 273H, and 273H �347 has been
described before (16, 29). The GNL 273H p53 construct was
generated by mutagenesis using the following oligos: 5�-ACA
CTG GAA GAC TCC AGT GGG AAC CTA CTG GGA CGG
AAC AGC TTT-3� (forward) and 5�-TCA AAG CTG TTC
CGT CCC AGT AGG TTC CCA CTG GAG TCT TCC AGT-3�
(reverse).

Transfection Procedures—Knockdown in H1299 and MDA
MB231 was achieved by transfection of siRNA using Hiperfect
(Qiagen) according to the protocol of the manufacturer, and
constructs were expressed using Genejuice (Merck-Millipore)
according to the protocol of the manufacturer. Knockdown
and overexpression in HT29 and A431 cells were achieved by
transfection of siRNA or plasmids using the AMAXA
nucleofection method, solution V, and protocols X-001 and
X-005, respectively.

The following siRNA oligos were used: control siRNA 1,
5�-GCAACGGCAUUCCACCUUU(TT)-3�; control siRNA 2
control pool of four siRNAs (Dharmacon, catalog no. D-
001810-10�20); RCP (SMARTpool of four siRNAs (Dharmacon,
catalog no. L-015968-00-0005); p53, 5�-GACUCCAGUG-
GUAAUCUAC(TT)-3�; p63 1, 5�-UGAACAGCAUGAACAA-
GCU(TT)-3�; p63 2, 5�-UGACUUCAACUUUGACAUG(TT)-
3�; and MET (SMARTpool of four siRNAs (Dharmacon, catalog
no. L-003156-00-0005); Dicer 1, 5�-GCU CGA AAU CUU ACG
CAA A (TT)-3�; and Dicer 2, 5�-CCA CAC AUC UUC AAG
ACU U (TT)-3�. All siRNA oligos were used as a combination of
two or four siRNAs, and each individual siRNA was tested for
efficiency of knockdown and off-target effects.

For siRNA rescue experiments, MDA MB231 and HT29 cells
were transfected with the AMAXA nucleofection method,
solution V, and protocols X-001 and X-005 using a combina-

tion of 2 �g of plasmid and 120 pmol of p53 siRNA for 8 � 106

cells.
Western Blot and Immunoprecipitation—For RCP immuno-

precipitations, H1299 cells were transfected using AMAXA
nucleofection (solution V and protocol X-001), and cells were
lysed in IP lysis buffer (200 mM NaCl, 75 mM Tris-HCl (pH 7), 15
mM NaF, 1.5 mM Na3VO4, 7.5 mM EDTA, 7.5 mM EGTA, 0.15%
Tween 20, 50 �g/ml leupeptin, 50 �g/ml aprotinin, and 1 mM

4-(2-aminoethyl)-benzenesulfonyl fluoride. RCP was immuno-
precipitated as described previously using a GFP antibody
(Roche) and magnetic protein G beads (30). Integrin immuno-
precipitation was quantified from scanned films using ImageJ.

For all other Western blot procedures, cells were harvested in
Nonidet P-40 lysis buffer (150 mM NaCl, 50 mM Tric-HCl (pH
8.0), and 1% Nonidet P-40) supplemented with a complete pro-
tease inhibitor tablet (Roche) and incubated for 15 min on ice.
Cell debris was spun down at 4 °C for 15 min (maximum speed),
and the supernatant was combined with sample buffer, boiled
for 5 min at 95 °C, and run on an SDS-PAGE gel. For MET and
EGFR activation assays, cells were immediately harvested in
sample buffer after the indicated EGF or HGF incubation times
and sheared using an insulin needle. The following primary
antibodies were used: p53 DO-1 (1:5000, monoclonal (31), p53
1801 (1:5000), and pMET (Y1234/5, Cell Signaling Technol-
ogy), MET (1:250, R&D Systems), pEGFR (1:1000, Sigma),
EGFR (1:1000, Cell Signaling Technology), �5 integrin (1:1000,
BD Biosciences), RCP (1:2000, Sigma), Rab11 (1:1000, Invitro-
gen), GFP (1:2000, Roche), GCN5 (1:2500, Santa Cruz Biotech-
nology), Dicer (1:250, Abcam), actin (1:5000, Millipore), and
p63 (BC4A4, 1:500, Santa Cruz Biotechnology). Western blot
analyses were quantified using Li-Cor image studio software.

Invasion Assays—Invasion assays were performed as described
previously (16). Briefly, Matrigel (BD Biosciences) was diluted
in PBS to a protein concentration of 6 mg/ml, supplemented
with 25 ng/ml fibronectin (Sigma), and polymerized in tran-
swell inserts. After polymerization, the transwells were
inverted, and 2.5 � 104 (H1299) or 3.5 � 104 (MDA MB 231)
cells were seeded on the membrane. After settling for 4 – 6 h,
the transwells were placed in serum-free medium, and the
upper chamber was filled with 100 �l of medium supplemented
with 10% FBS and EGF (25 ng/ml) or HGF (10 ng/ml for H1299
and 30 ng/ml for MDA MB231). Invasion was monitored by
staining the cells with 4 nM calcein and was visualized by con-
focal microscopy (Leica 2) in serial sections of 15 �m through-
out the Matrigel plug. Invasion was quantified using ImageJ and
the plugin area calculation, in which the total intensity of all
slides beyond 30 �m was determined as a percentage of inva-
sion in all slides.

Scattering—Scatter assays were performed as described pre-
viously (23). Cells were seeded sparsely and transfected as
described elsewhere. After 6 h, H1299 cells were washed and
allowed to form colonies for 48 h. HT29 cells were washed after
6 h and incubated in HGF for 72 h to induce scattering. Phase-
contrast images of scattered cells were taken with an Olympus
CKX41 microscope, and lysates were harvested to verify knock-
down. Scattering was quantified by counting the number of
“scattered” or “unscattered” cells per image in each experiment
using the ImageJ plugin “cell counter,” and the proportion of
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scattered cells was plotted. Scattered H1299 cells were defined
as cells that were growing in colonies of four cells or less. In
HT29 cells, cells were defined as scattered if they were only
touching one other neighboring cell.

Immunofluorescence—H1299 cells were grown on glass cov-
erslips, fixed in 4% paraformaldehyde for 10 min at 4 °C, and
permeabilized in 0.2% Triton X-100 in PBS for 15 min at room
temperature. Cells were blocked in 1% BSA in PBS, followed by
incubation in Dicer (1:50, Abcam) and ZO-1 (1:75, Cell Signal-
ing Technology) antibodies for 1 h at room temperature. After
three PBS washes, cells were incubated in secondary mouse
Alexa Fluor 488 antibody for 1 h at room temperature and sup-
plemented with DAPI (Sigma, 0.5 �g/ml). Cells were washed
five times with PBS and mounted on microscope slides. Confo-
cal images were made using a Zeiss 710 microscope.

Recycling Assays—Recycling assays were performed as
described previously (23, 30, 32). Briefly, cells were serum-
starved and biotinylated for 45 min. Biotinylated receptors were
allowed to recycle back to the plasma membrane for 0, 15, or 30
min, after which the percentage of intracellular biotinylated
receptors was determined using capture enzyme-linked immu-
nosorbent assays.

Mature miR, Pri-miR, and mRNA Expression—RNA for
detection of miR, pri-miR, or mRNA was isolated using TRIzol
according to the protocol of the manufacturer. For mRNA and
pri-miR detection, cDNA was generated using oligo(dT) and a
first-strand synthesis kit (Invitrogen) according to the instruc-
tions of the manufacturer. For the RT-PCR reaction, 5 �l of the
40�-diluted cDNA was used in combination with 10 ml of
SYBR Green Master Mix (Thermo Scientific), 1 �l of each oligo
(10 �M), and 3 �l of H2O with the following PCR conditions:
94 °C annealing for 2 min, 40 cycles of 30 s at 94 °C, 30 s at 60 °C,
and 1 min at 72 °C, followed by a 10-min 72 °C incubation. A
melting curve was then generated to check for specificity of the
oligos. mRNA expression of GAPDH was used as a reference.
The oligos used were as follows: GAPDH, 5�-GCA GAG ATG
ATG ACC CTT TTG GCT-3� (forward) and 5�-TGA AGC
TCG GAG TCA ACG GAT TTG GT-3� (reverse); p63, 5�-TTC
TTA GCG AGG TTG GGC TG-3� (forward) and 5�-GAT CGC
ATG TCG AAA TTG CTC-3� (reverse); Dicer, 5� AGC TGT
CCT ATC AGA TCA GGG-3� (forward) and 5�-CAT TCA
AGG CGA CAT AGC AAG T-3� (reverse); pri-miR-130b,
5�-CCT GTT GCA CTA CTA TAG GCC G-3� (forward) and
5�-TGC CCT TTT AAC ATT GCA CTG-3� (reverse); and
pri-miR-206, 5�-ACA TGC TTC TTT ATA TCC CCA-3� (for-
ward) and 5�-AAA CCA CAC ACT TCC TTA CAT TC-3�
(reverse).

For the detection of mature miRs, miR-specific oligos were
ordered from Applied Biosystems, and mature miR expression
was determined using the 7500 fast real-time PCR machine
according to the protocol of the manufacturer (Applied
Biosystems).

RESULTS

Dicer Depletion Drives Invasion and Scattering through RCP-
dependent MET and EGFR Activation—Several studies have
demonstrated a role for Dicer in limiting tumorigenesis, with a
decrease in Dicer resulting in increased invasion (11, 12, 33). We

found a similar effect following incomplete siRNA-mediated
depletion of Dicer in H1299 cells, which showed enhanced inva-
sion toward HGF in response to partial Dicer depletion (Fig. 1a).
As shown previously, this invasive capacity was lost following a
more efficient knockdown of Dicer (Fig. 1a), probably because of
sensitization of cells to apoptosis or cell death (11). To avoid arti-
facts caused by cell death, all experiments hereafter were per-
formed with 15 pmol siRNA of Dicer.

Enhanced invasion of H1299 cells toward HGF following
Dicer depletion was dependent on the HGF receptor MET, as
invasion was opposed by simultaneous transfection of MET
siRNA with siRNAs targeting Dicer (Fig. 1b). MET signaling
can drive cell scattering, and we found that a siRNA-mediated
reduction in Dicer expression promoted scattering in a MET-
dependent manner (Fig. 1c). Concomitant with scattering, loss
of ZO-1 from the cell-cell junctions was apparent after knock-
down of Dicer (Fig. 1d). Our previous studies showed expres-
sion of mutant p53 in H1299 cells that do not express any p53
protein endogenously, enhanced scattering and invasion by
promoting MET receptor recycling that is driven by �5�1
integrin and the Rab11 effector protein RCP (23). Depletion of
RCP in Dicer knockdown cells prevented invasion (Fig. 1b) and
scattering (c), indicating that RCP is important in mediating
invasion and scattering after reduced Dicer expression. To
investigate whether Dicer can play a role in regulating RCP-
driven recycling, we initially investigated the interaction
between RCP and �5 integrin. Knockdown of Dicer enhanced
the association between RCP and �5 integrin, whereas the
known interaction between RCP and Rab11 remained
unchanged (Fig. 2a). Mutant p53 expression also increased the
RCP-�5 integrin association, consistent with our previous
results (16) (Fig. 2a). Furthermore, we also observed enhanced
recycling of �5 integrin, MET, and EGFR after knockdown of
Dicer (Fig. 2b).

Enhanced recycling of MET results in increased activity (23),
so we examined the effect of Dicer depletion on MET phosphor-
ylation (as an indication of activation) in response to HGF stim-
ulation (Fig. 2c). Although Dicer knockdown did not induce
MET signaling in the absence of HGF, a reduced expression of
Dicer sensitized cells so that they signaled more rapidly in
response to stimulation with low levels of HGF. As seen with
mutant p53-induced receptor recycling (16), the effect of Dicer
depletion was not confined to MET but also resulted in
enhanced recycling of the EGFR (Fig. 2c) and promoted a more
robust EGFR activation upon ligand (EGF) stimulation (Fig.
2d). Together, these data demonstrate a role for Dicer in limit-
ing receptor recycling to restrain downstream signaling, cell
invasion, and scattering.

Mutant p53 Decreases Dicer Expression through TAp63
Inhibition—A number of mechanisms regulate Dicer expres-
sion, including the transcription factor TAp63. Several p63
binding sites were identified within the Dicer promoter, and
TAp63 can drive the expression of Dicer to suppress metastasis
in mice (6, 34). Although many cancer cells predominantly
express the �Np63 isoform, only TAp63 is expressed in H1299
cells, making them a good model to examine the role of TAp63
in the regulation of Dicer expression in human cells. Depletion
of TAp63 resulted in a reduction in Dicer expression (Fig. 3a).
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However, overexpression of TAp63� did not further increase
Dicer expression (Fig. 3b), suggesting that although TAp63 may
be required, it is not sufficient to promote enhanced Dicer lev-
els in these cells. Depletion of TAp63 resulted in cell scattering
similar to that seen following Dicer depletion (Fig. 3c). Because
mutant p53 can function by inhibiting TAp63, we explored the

possibility that mutant p53 might, via p63, reduce Dicer expres-
sion to drive invasion and scattering. Transient expression of
mutant p53 273H in H1299 cells led to a dose-dependent
decrease in the expression of endogenous Dicer protein and
mRNA (Fig. 3d). Previously, we reported a role for the C termi-
nus of mutant p53 in p63 inhibition (16), and a C-terminally

FIGURE 1. Dicer knockdown promotes cell invasion and scattering. a, H1299 cells were transfected with increasing amounts of Dicer siRNA, and invasion
was measured in Matrigel invasion assays (left panel). Values are mean � S.E. of five experiments. Knockdown of Dicer was verified by Western blot analysis, and
a representative Western blot of one of the experiments in the graph is shown. GCN5 was used as loading control (right panel). See also Fig. 4d. b and c, H1299
cells were transfected with Dicer, MET, and/or RCP siRNA and monitored for invasion (b) or scattering (c). c, invasion is quantified in the right panels, and
scattering is quantified in the top panel. Error bars indicate S.E. of three experiments. Scale bars � 50 �m. ctr, control. d, H1299 cells were transfected with Dicer
siRNA, and Dicer expression (left panel, green) and ZO-1 (right panel, green) localization was determined by immunofluorescence. DAPI is shown in blue. Scale
bars � 10 �m.
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truncated mutant p53 construct (d347) repressed Dicer expres-
sion to a lesser extent (Fig. 3e). These data suggest that mutant
p53 can act at least partially through TAp63 to regulate Dicer
expression. Despite the reproducibility of the effect of mutant
p53 on Dicer levels, we noted that this response required the
transient expression of mutant p53 to levels higher than those
seen in the stable cell lines (Fig. 3a) or endogenous mutant p53
expression (Figs. 5 and 6). Dicer is induced in response to stress
(35, 36), and these observations may therefore reflect a com-
pensatory stress-induced increase in Dicer expression follow-
ing the transient transfection of mutant p53.

Dicer and/or TAp63 have been shown to regulate several
miRs that play a role in invasion, including miR-31, miR-203,
miR-130b, and miR-206 (6, 24). As expected, loss of Dicer
decreased the expression of these mature miRs (Fig. 4a). A sim-
ilar decrease was found in mutant p53 273H-expressing cells
(Fig. 4a) and in H1299 cells that inducibly expressed another
TAp63-inhibiting p53 mutant, 175H (c). Moreover, decreased
Dicer expression in mutant p53-expressing cells did not further
suppress the expression of miRs (Fig. 4a), and the expression of
primary miRs was not affected by mutant p53 expression (b).
Notably, many of these miRs are not exclusively regulated by

FIGURE 2. Dicer knockdown promotes MET and EGFR recycling and signaling. a, H1299 empty vector (EV) or mutant p53-expressing cells (273H) were
transfected with Dicer siRNA and GFP-RCP or a GFP control. Lysates were immunoprecipitated (IP) with a GFP antibody, and proteins were detected by Western
blot analysis using antibodies to detect � 5 integrin, GFP, or Rab11 expression. Input levels are shown in the right panel, and � 5 levels in the immunoprecipi-
tates were quantified with respect to the levels of GFP-RCP present in the same samples. The quantification is shown below the blot in which � 5 levels in EV
cells transfected with control siRNA were set to 1. b, recycling of � 5 integrin, MET, and EGFR was determined in H1299 cells transfected with Dicer siRNA. Dicer
knockdown was verified by Western blot analysis using actin as loading control (ctr). c and d, H1299 cells were transfected with Dicer siRNA and treated with
10 ng/ml HGF (c) or 10 ng/ml EGF (d) for the indicated times. Phosphorylation was detected using phospho-specific antibodies for MET and EGFR, and total MET,
EGFR, and actin antibodies were used as loading controls. pEGFR and pMET expression were quantified and corrected for EGFR or MET expression levels, as
shown under each panel.
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TAp63 (e.g. miR-206 can be regulated by NRF2 and miR-31 by
Runx2) (37, 38), possibly explaining the lack of further down-
regulation of miR-206 after mutant p53 expression or the slight
up-regulation of some miRs in mutant p53 cells after knock-
down of Dicer. Together, these results support the hypothesis

that mutant p53 prevents the maturation of pre-miRs by inhib-
iting Dicer expression.

We next investigated the effects of the loss of Dicer on inva-
sion and scattering of mutant p53 cells. Loss of Dicer in mutant
p53 cells did not further promote invasion (Figs. 4d and 1a), and

FIGURE 3. Mutant p53 decreases Dicer expression. a, H1299 cells were transfected with p63 siRNA, control siRNA (si ctr), an empty vector (ctr), or mutant p53
273H and monitored for Dicer expression using Western blot analysis. Actin was used as a loading control. Dicer expression levels were quantified and
corrected for actin expression. Quantification is shown under the blot, and expression of Dicer in empty vector-transfected cells was set to 1. p63 knockdown
was confirmed using qRT-PCR (right panel). Values are mean � S.D. of the p63 levels corresponding to the experiment shown in the Western blot. b, H1299 cells
were transfected with TAp63�, and Dicer and p63 expression was determined by Western blot analysis. Actin was used as a loading control. c, H1299 cells were
transfected with Dicer or p63 siRNA and monitored for scattering (left panel). Scattering was quantified, and values are mean � S.E. of three experiments (right
panel). d and e, Dicer protein and mRNA expression were determined after overexpression of mutant p53 (273H) or a mutant p53 deletion construct (273H
�347) in H1299 cells. The left panels show Dicer and p53 protein expression in a Western blot analysis with actin as a loading control. The right panels show
relative Dicer mRNA expression. The bottom panels show the quantification of Dicer protein expression in three independent experiments corrected for actin
expression with Dicer levels in control-transfected cells set to 1. Error bars indicate the S.E. of three experiments.
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overexpression of Dicer decreased the invasion of doxycycline-
induced mutant p53 cells (Fig. 4e). These data indicate that
mutant p53 acts through Dicer to promote invasion. Notably,
invasion of mutant p53 cells showed a dose-dependent
decrease in invasion upon Dicer knockdown, reflecting the
threshold effect of Dicer expression required for invasion as
described for Fig. 1a. Furthermore, coculturing Cherry-tagged
control H1299 cells with GFP-tagged mutant p53-expressing
H1299 cells showed clearly that control cells grow in colonies,
whereas the expression of mutant p53 promoted a more dis-
persed growth pattern (Fig. 4f). Partial loss of Dicer resulted in

a scattering of control cells but did not noticeably influence the
dispersed pattern of mutant p53 cells (Fig. 4f).

Endogenous Mutant p53 Regulates TAp63 and Dicer in MDA
MB231 Cells—To confirm our results, we used MDA MB231
tumor cells, which express both TAp63 and endogenous
mutant p53. Depletion of TAp63 reduced Dicer levels (Fig. 5a),
whereas, conversely, siRNA knockdown of mutant p53 resulted
in an increase in Dicer expression at the protein and mRNA
levels (Fig. 5, b and c). MDA MB231 cells also invaded toward
HGF and EGF in a mutant p53-dependent manner (Fig. 5d).
Although depletion of Dicer resulted in a slight reduction of

FIGURE 4. Mutant p53 regulates the expression of mature miRs. a, relative expression of mature miRs measured using qRT-PCR in control (EV) or mutant
p53-expressing (273H) H1299 cells transfected with control or Dicer siRNA. Values are mean � S.E. of three experiments. b, expression of the indicated pri-miRs
was measured using qRT PCR in control or mutant p53-expressing H1299 cells. Values are mean � S.E. of three experiments. c, relative expression of mature
miRs was measured in time using qRT-PCR in control or doxycycline (Dox)-induced mutant p53 175H H1299 cells (left panel). Values are mean � S.E. of three
experiments. Dicer and p53 expression were verified by Western blot analysis with actin as a loading control (right panel). d, stable H1299 mutant p53 273H cells
were transfected with increasing amounts of Dicer siRNA, and invasion was measured in Matrigel invasion assays (left panel). Values are mean � S.E. of five
experiments. Knockdown of Dicer was verified by Western blot analysis, and a representative Western blot of one of the experiments in the graph is shown.
GCN5 was used as a loading control (bottom row). Also shown are the results from the control EV H1299 cells shown in Fig. 1a to allow for easy comparison with
p53 273H H1299 results. * indicates statistical significant changes (p � 0.05 in a Student’s t test). e, invasion of doxycycline-induced mutant p53 175H H1299
cells after overexpression of HA-Dicer or a vector control (pcDNA). Values are mean � S.E. of three experiments. HA-Dicer expression was verified by Western
blot analysis with actin as a loading control (left panel). f, control (red) or mutant p53 (green) cells were transfected with control or Dicer siRNA. Microscopic
fluorescent images were taken to show scattering. Scale bars � 50 �m.
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invasion (Fig. 5d), knockdown of Dicer and mutant p53 rescued
the loss of invasion seen following mutant p53 depletion (d).
These results support a model in which the ability of mutant
p53 to promote invasion reflects a p63-dependent regulation of
Dicer.

Endogenous Mutant p53 Regulates Dicer in a TAp63-inde-
pendent Manner in HT29 Cells—Although TAp63 appears to
play a role in the regulation of Dicer expression, many cancer
cells express either barely detectable levels of p63 (such as
HT29 cells) or predominantly express �Np63 (such as A431
cells). Because both HT29 and A431 cells also express mutant
p53 (273H), we explored the role of mutant p53 in regulating
Dicer protein expression in these cells. Despite the lack of
detectable TAp63 expression, knockdown of mutant p53 in
either HT29 or A431 cells resulted in an increase in Dicer levels
(Fig. 6a). In HT29 cells, this increase in Dicer levels could be
prevented by ectopic expression of siRNA-resistant mutant p53
(GNL273H) showing siRNA specificity (Fig. 6b). HT29 cells
grew in colonies under normal tissue culture conditions but
scattered in response to HGF treatment (Fig. 6c). Depletion of
the endogenous mutant p53 prevented this scattering, indicat-
ing that, in these cells, mutant p53 also sensitizes cells to HGF-
induced scattering. Interestingly, depletion of Dicer by siRNA

rescued the ability of HGF to drive scattering in mutant p53
knockdown cells (Fig. 6c). These data suggest TAp63-inde-
pendent effects of mutant p53 on Dicer expression and are con-
sistent with our previous studies showing that depletion of p63
did not change the sensitivity of either A431 or HT29 cells to
scattering and did not reverse the inhibition of scattering seen
upon depletion of mutant p53 (23). Interestingly, the changes in
Dicer protein levels were accompanied by an increased expres-
sion of miR-130b and miR-206, although there was no change
in Dicer mRNA expression (Fig. 6d), suggesting that the
TAp63-independent effects of mutant p53 on Dicer expression
are not mediated by transcriptional regulation.

DISCUSSION

Our data demonstrate a role for Dicer in limiting invasion
and scattering through the regulation of RCP-dependent recy-
cling of integrins, EGFR, and MET. A partial loss of Dicer
increased the recycling of these receptors, promoted RCP
recruitment to �-5 integrin, and induced a more pronounced
activation of EGFR and MET upon ligand stimulation. Taken
together, these data point to a central role for miRs in program-
ming the function of receptor recycling to drive invasive migra-
tion. There are many components of the endocytic transport
and sorting machinery that are targets of miRs (39 – 42), and
future work will be necessary to determine how the microRNA
products of Dicer can specifically control trafficking of integrin
and receptor tyrosine kinases (RTKs) to promote invasion.

In accordance with various recent publications, we could also
demonstrate a role for mutant p53 in regulating miR expression
(24 –27). Interestingly, the majority of the published mutant
p53-regulated miRs are down-regulated, supporting our obser-
vation that mutant p53 can inhibit Dicer function. In addition,
Suzuki et al. (43) showed a role for wild-type p53 in promoting
the maturation of miRs via interaction with the microRNA
processing complex, DDR8/Drosha. In concordance with our
results, the authors demonstrated a decrease in the maturation
of miRs after mutant p53 expression, which coincided with a
loss in the ability of mutant p53 to interact with DDR8/Drosha,
although the precise mechanisms underlying the mutant p53-
dependent deregulation of miRs were not investigated (43).
These results suggest that both wild-type and mutant p53 have
prominent but opposing roles at various levels in the process of
miR maturation.

Many important biological processes are regulated through
different but parallel mechanisms in mammalian cells. Our
results show for the first time that mutant p53 can function
through at least two different mechanisms to interfere with
Dicer function: in a transcriptional manner through TAp63
and in a transcription- and TAp63-independent manner.
Interestingly, recent data by Shen et al. (44) are suggestive of
a possible third regulatory mechanism. The authors show
that EGFR can interact with a microRNA machinery compo-
nent, AGO2, in response to hypoxia (44), a condition that
causes a retention in EGFR in endocytic trafficking compart-
ments (45). Binding of EGFR to AGO2 reduced the binding
of AGO2 to Dicer, resulting in reduced miR maturation (44).
As mutant p53 enhances EGFR trafficking and signaling (16),

FIGURE 5. Endogenous mutant p53 inhibits Dicer to promote invasion. a,
MDA MB231 cells were transfected with p63 siRNA, and Dicer expression was
assessed by Western blot analysis using actin as a loading control (ctr). b and
c, Dicer protein expression (b) or mRNA expression (c) of MDA MB231 cells
transfected with p53 siRNA was monitored by Western blot analysis or qRT-
PCR. Actin was used as a loading control. Values are mean � S.E. of three
experiments. d, the invasion of MDA MB231 cells toward HGF (left panel) and
EGF (right panel) was determined. Values are mean � S.E. of three
experiments.
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it will be interesting to see whether mutant p53-induced
EGFR activation can also interfere with Dicer function and
miR maturation.

Besides regulating invasion and metastasis, mutant p53 pro-
motes various other processes. Some of these are dependent on
the inhibition of TAp63, but others reflect the ability of mutant
p53 to regulate other proteins and transcription factors such as
SREBPs, NF-Y, SP-1, or VDR (20, 46 – 48), through which
mutant p53 can promote cell proliferation, chemoresistance,
cholesterol metabolism, and various other tumor-promoting
processes. A large number of genes that regulate these pro-
cesses are targets of miRs. Loss of Dicer has been associated

with decreased chemosensitivity and cell proliferation in ovar-
ian cancers (49) but, conversely, also with increased cisplatin
sensitivity and cell proliferation in MCF-7 breast cancer cells
(50). This discrepancy could suggest tumor-specific Dicer func-
tions but could also be a reflection of a threshold effect of Dicer
concentration, as was observed by us (Figs. 1a and 4d) and oth-
ers (11), in which an optimal concentration of Dicer was
required for the promotion of invasion. As p53 is among the
most frequently mutated proteins in cancer, it will be important
to explore the role of mutant p53-dependent (and p63-inde-
pendent) Dicer regulation in all gain-of-function activities of
mutant p53.

FIGURE 6. Endogenous mutant p53 can inhibit Dicer in a p63-independent manner to promote scattering. a, A431 or HT29 cells were transfected with p53
siRNA and monitored for Dicer and p53 expression by Western blot analysis. Actin was used as loading control (ctr). b, HT29 cells were transfected with an siRNA
resistant mutant p53 (GNL 273H) construct in combination with p53 siRNA. Expression of Dicer and p53 was determined by Western blot analysis using actin
as a loading control. c, scattering of HT29 cells transfected with p53 and/or Dicer siRNA in response to 10 ng/ml HGF (top panels). Scattering was quantified, and
values are mean � S.E. of three experiments (bottom left panel). Knockdown of p53 and Dicer was verified by Western blot analysis with actin as a loading
control (bottom right panel). Scale bars � 50 �m. d, HT29 cells were transfected with control or p53 siRNA, and Dicer protein (left panel) or mRNA (center panel)
expression was determined using Western blot analysis or qRT-PCR. p53 knockdown was verified by Western blot analysis, and actin was used as a loading
control (left panel). Relative miR expression was determined using qRT-PCR (right panel). Values are mean � S.E. of three experiments.
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