
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:12
https://doi.org/10.1007/s41781-021-00055-1

ORIGINAL ARTICLE

Challenges in Monte Carlo Event Generator Software
for High‑Luminosity LHC

The HSF Physics Event Generator WG · Andrea Valassi1 · Efe Yazgan2 · Josh McFayden1,3,4 · Simone Amoroso5 ·
Joshua Bendavid1 · Andy Buckley6 · Matteo Cacciari7,8 · Taylor Childers9 · Vitaliano Ciulli10 · Rikkert Frederix11 ·
Stefano Frixione12 · Francesco Giuli13 · Alexander Grohsjean5 · Christian Gütschow14 · Stefan Höche15 ·
Walter Hopkins9 · Philip Ilten16,17 · Dmitri Konstantinov18 · Frank Krauss19 · Qiang Li20 · Leif Lönnblad11 ·
Fabio Maltoni21,22 · Michelangelo Mangano1 · Zach Marshall3 · Olivier Mattelaer22 · Javier Fernandez Menendez23 ·
Stephen Mrenna15 · Servesh Muralidharan1,9 · Tobias Neumann14,24 · Simon Plätzer25 · Stefan Prestel11 ·
Stefan Roiser1 · Marek Schönherr19 · Holger Schulz17 · Markus Schulz1 · Elizabeth Sexton‑Kennedy15 ·
Frank Siegert26 · Andrzej Siódmok27 · Graeme A. Stewart1

Received: 18 May 2020 / Accepted: 2 March 2021
© The Author(s) 2021

Abstract
We review the main software and computing challenges for the Monte Carlo physics event generators used by the LHC
experiments, in view of the High-Luminosity LHC (HL-LHC) physics programme. This paper has been prepared by the
HEP Software Foundation (HSF) Physics Event Generator Working Group as an input to the LHCC review of HL-LHC
computing, which has started in May 2020.

Keywords Monte Carlo · Physics event generator · LHC experiments · WLCG · High-luminosity LHC

Andrea Valassi, Efe Yazgan and Josh McFayden: Editors.

 * Andrea Valassi
 andrea.valassi@cern.ch

 Efe Yazgan
 efe.yazgan@cern.ch

 Josh McFayden
 mcfayden@cern.ch

1 CERN, Geneva, Switzerland
2 National Taiwan University, Taipei, Taiwan
3 Lawrence Berkeley National Laboratory, Berkeley, USA
4 University of Sussex, Brighton, UK
5 DESY, Hamburg, Germany
6 University of Glasgow, Glasgow, UK
7 LPTHE, Sorbonne Université and CNRS, Paris, France
8 Université de Paris, Paris, France
9 Argonne National Laboratory, Lemont, USA
10 INFN and Università di Firenze, Florence, Italy
11 Lund University, Lund, Sweden
12 INFN and Università di Genova, Genoa, Italy

13 INFN and Università Tor Vergata, Roma, Italy
14 University College London, London, UK
15 Fermi National Accelerator Laboratory, Batavia, USA
16 University of Birmingham, Birmingham, UK
17 University of Cincinnati, Cincinnati, USA
18 NRC “Kurchatov Institute”-IHEP, Protvino, Russia
19 University of Durham, Durham, UK
20 Peking University, Beijing, China
21 Università di Bologna, Bologna, Italy
22 Université Catholique de Louvain, Louvain-la-Neuve,

Belgium
23 Universidad de Oviedo, Oviedo, Spain
24 Illinois Institute of Technology, Chicago, USA
25 University of Vienna, Vienna, Austria
26 Technische Universität, Dresden, Germany
27 IFJ PAN and Jagiellonian University, Krakow, Poland

http://orcid.org/0000-0001-9322-9565
http://orcid.org/0000-0001-5732-7950
http://orcid.org/0000-0001-9273-2564
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00055-1&domain=pdf

 Computing and Software for Big Science (2021) 5:12

1 3

 12 Page 2 of 19

Introduction

Physics event generators are one of the computational pil-
lars of any High Energy Physics (HEP) experiment, and
in particular of the Large Hadron Collider (LHC) experi-
ments. In this paper, we review the main software and
computing challenges for the physics event generators
used by the ATLAS [1] and CMS [2] experiments, in view
of the high-luminosity running phase of the LHC experi-
mental programme (HL-LHC), which should be opera-
tional from the end of 2027 [3]. This document has been
prepared by the Physics Event Generators Working Group
(WG) [4] of the HEP Software Foundation (HSF), as an
input to the review of the HL-LHC computing strategy by
the LHC Experiments Committee (LHCC) [5], which has
started in May 2020 [6], as previously planned [7–10].
As is the case for the LHCC review, this paper focuses
on ATLAS and CMS, but it also contains important con-
siderations for ALICE [11] and LHCb [12]. The HSF has
also prepared a more general document [13] for the LHCC,
which covers the status and challenges in the broader area
of common tools and community software.

This paper gives an overview of the many challenges
in the generator area, and of the work that can be done to
address them. Its outline is the following. Section "The
HSF Physics Event Generator WG" gives an overview of
the role and challenges of physics event generators in LHC
computing, summarising the steps which led to the crea-
tion of the HSF generator WG, and its current activities.
Section "Collaborative Challenges" describes the collabo-
rative challenges in the development, use and maintenance
of generator software for LHC physics. Section "Technical
Challenges" gives more details about the computational
anatomy of physics event generators, and the technical
challenges in their development and performance opti-
mization. Section "Physics Challenges (Increasing Preci-
sion)" summarizes some of the main open questions about
the required physics accuracy of event generators at HL-
LHC, and their impact on computational costs. Finally, in
section "Conclusions" we compile a list of high-priority
items on which we propose that the R&D on the computa-
tional aspects of generators (and in particular the activities
of the HSF generator WG) should focus, in view of the
more in-depth LHCC review of HL-LHC software that is
currently scheduled for Q3 2021 [10].

It should be stressed that this paper focuses on the soft-
ware and computing aspects of event generators, rather
than on the underlying physics. To be able to describe the
overall computational goals and structure of these soft-
ware applications and put them in context, many of the
relevant physics concepts are in any case mentioned and
briefly explained. This is done using a language that tries

to be somewhat accessible also to software engineers and
computing experts with no background in particle physics,
even if the resulting text is not meant to be an exhaustive
overview of these complex issues from a theoretical point
of view.

One should also note that, to some extent, some of the
issues described in this paper, such as the collaborative chal-
lenges and human resource concerns related to the develop-
ment and support of generator software, have already been
raised in previous community efforts. These include, in
particular, the HSF Community White Paper (CWP) [14]
and the document [15] that was submitted as an input to the
Open Symposium [16] on the Update of European Strategy
for Particle Physics.

The HSF Physics Event Generator WG

Physics event generators are an essential component of the
data processing and analysis chain of the LHC experiments,
and a large consumer of resources in the Worldwide LHC
Computing Grid (WLCG) [17]. All of the scientific results
of the LHC experiments, such as precision measurements
of physics parameters and searches for new physics, depend
significantly on the comparison of experimental measure-
ments to theoretical predictions, in most cases computed
using generator software.

Using Monte Carlo (MC) techniques, generators allow
both the calculation of differential and total cross sections
and the generation of weighted or unweighted events for
experimental studies (this is explained in more detail in sec-
tion "Computational Anatomy of a MC Event Generator",
where these concepts are briefly defined). Within the experi-
ments, generators are used primarily to produce large sam-
ples of (mostly unweighted) events: this is the first step in
the production chain for simulating LHC collisions, which is
followed by detector simulation and event reconstruction. In
each of the two general purpose LHC experiments, ATLAS
and CMS, the overall number of events that are generated by
the central production teams and passed through full detec-
tor simulation and event reconstruction, across all relevant
physics processes, is of the order of magnitude of O(1010)
events for every year of LHC data taking. Typically, the sizes
of these samples of simulated events are approximately a
factor of 3 larger than the overall number of data events
collected during the corresponding time range. These large-
scale event generation campaigns have a computational cost,
mainly in terms of the “compute” (i.e. CPU) resources used,
the majority of which are provided by the WLCG infrastruc-
ture. The limited size of the simulated samples that can be
produced under resource constraints is a source of major
uncertainty in many analyses (for example, in Higgs boson
measurements of both ATLAS [18] and CMS [19]). This

Computing and Software for Big Science (2021) 5:12

1 3

Page 3 of 19 12

is an issue which is limiting the potential physics output
of the LHC programme, and may get significantly worse
at HL-LHC, where the projected computing needs of the
experiments exceed the resources that are expected to be
available [14], despite the fact that the most aggressive HL-
LHC physics projections [20–23] assume no uncertainty due
to the limited size of simulated samples.

When the HEP Software Foundation prepared its CWP
[14] in 2017, the fraction of the ATLAS CPU resources
in WLCG used for event generation was estimated [24] at
around 20%. Beyond the existing projections, which assume
the same level of theoretical precision as in the current event
generation campaigns, concern was also raised that event
generation would become computationally more expensive
at the HL-LHC, where more complex calculations (e.g.
beyond next-to-leading-order or with higher jet multiplici-
ties) will be needed [25]. It was thus clear that speedups in
generator software are needed to address the overall com-
puting resource problem expected at the HL-LHC. This is
of course also the case for the other big consumers of CPU
(detector simulation and reconstruction), but until now these
areas have had more focus, and significant speedups are
already expected on the HL-LHC timescales, which has not
been the case for generators. Other issues in the generator
area, both technical and non-technical (e.g. funding, training
and careers) also became obvious while preparing the CWP.

For these reasons, the HSF organised a three-day Work-
shop [26, 27] at the end of 2018 to focus on the software
and computing aspects of event generators. Their usage in
the experiments was reviewed, revealing a large discrepancy
in the CPU budgets quoted by ATLAS and CMS, 14% and
1%, respectively, for 2017 [28]. This was attributed, at least
partly, to the different packages and parameter settings used
by the two experiments, but it was clear that further studies
were needed.

A Working Group of the HSF on Physics Event Gen-
erators [4] was therefore set up at the beginning of 2019.
The main focus of the WG so far has been to get a bet-
ter understanding of the current usage of generators in the
experiments, and to identify and prioritise the areas where
computing costs can be reduced. In particular, the ATLAS
and CMS compute budgets have been analysed in detail: cur-
rently, it is estimated that the fractions of WLCG compute
allocations used for generation today are around 12% for
ATLAS and 5% for CMS. In terms of absolute CPU time
spent for event generation, the ratio between ATLAS and
CMS is actually larger, as the overall ATLAS budget for
compute resources is larger than that of CMS. To understand
what causes this difference, detailed benchmarking of the
computational costs of Sherpa [29] and MadGraph5_aMC@
NLO [30] (in the following abbreviated as MG5_aMC) have
also started [31, 32], as these are the two generators used for
some of the most expensive event generation productions

in ATLAS and CMS, respectively. The WG has also been
active in other areas, such as in discussing the possible
sharing of common parton-level samples by ATLAS and
CMS [33], and in reviewing and supporting the efforts for
porting generators to modern architectures, notably GPUs.
This last activity is particularly important, as it has become
increasingly clear that being able to run compute-intensive
WLCG software workloads on GPUs [34] would allow the
exploitation of modern GPU-based supercomputers at High
Performance Computing (HPC) centers, and generators look
like a natural candidate for this, as discussed later on in sec-
tion "Modernisation of Generator Software".

Looking forward, the WG plans to continue its activi-
ties in the areas described above, but also to expand it in a
few other directions. One of the goals of this paper is that
of dissecting and analysing the many different challenges,
both technical and non-technical, in the generator domain,
to identify the specific areas where work is most urgently
needed, or where the largest improvements are expected to
be possible to reduce the gap between required and avail-
able computing resources at the time of HL-LHC. It should
also be pointed out that the role of the WG in this context is
mainly that of providing a forum for information exchange,
and possibly supporting and coordinating common activities
involving the collaboration of several teams or the compari-
son of their results, but most of the concrete work is gener-
ally expected to be done by the individual experiments or
theoretical physicist teams.

Collaborative Challenges

In this section, we give an overview of the collaboration
challenges in the development, use and maintenance of
generator software for LHC. By and large, these are mainly
non-technical challenges that concern human resources, i.e.
actual people, and their organisation, training and motiva-
tion, rather than computing resources, software modules or
theoretical physics models.

A Very Diverse Software Landscape

The landscape of generator software is extremely varied,
even more than in detector simulation, event reconstruction
or analysis workloads. For a review, see for instance Refs.
[15, 35–37]. Different generators (Sherpa, MG5_aMC, the
POWHEG BOX [38], Pythia [39], Herwig [40–42], Alpgen
[43], etc.) are used in the community, mainly for two rea-
sons: firstly, one needs multiple independent calculations
with potentially different approximations to cross-check one
another; and secondly, the different generators vary in their
features (for example, some might simulate only a subset of
the physics processes of interest). A given process may be

 Computing and Software for Big Science (2021) 5:12

1 3

 12 Page 4 of 19

simulated with a different physics precision, e.g. leading-
order (LO), next-to-leading-order (NLO), or next-to-next-
to-leading-order (NNLO) in a power series expansion in the
strong-force “coupling constant”. Generating a sample also
involves choices of hadronization and parton shower (PS)
models (Pythia [39], Herwig [40–42], Ariadne [44], etc.),
underlying event tunes [45–48], prescriptions for matching/
merging1 (MC@NLO [50], POWHEG [51], KrkNLO [52],
CKKW [53], CKKW-L [54], MLM [55, 56], MEPS@NLO
[57], MINLO [58], FxFx [49], UNLOPS [59], Herwig7
Matchbox [60–62], etc.), “afterburner” tools for simulating
particle decays and quantum electrodynamics (QED) radia-
tive corrections (EvtGen [63], Tauola [64], Photos [65],
etc.), and other input parameters such as parton distribution
functions (PDFs) [66], primarily via the LHAPDF library
[67].

Various combinations of software libraries are thus possi-
ble, often written by different authors and some dating back
many years, reflecting theoretical research within different
teams. For a given process, the LHC experiments often use
different software packages and settings from one another,
and a single experiment can generate events using more than
one choice. Many different packages and configurations may
therefore need to be studied and improved to get cumulative
CPU cost reductions. The large number of packages also
complicates their long-term maintenance and integration in
the experiments software and workflows, sometimes lead-
ing to Grid job failures and computing inefficiencies. Other
packages are also absolutely critical for the whole generator
community and must be maintained, even if their CPU cost
is relatively low (Rivet [68], Professor [69], HepMC [70,
71], FastJet [72], etc.).

A Very Diverse Human Environment

A broad spectrum of skills and profiles are needed for the
development and support of event generators: theorists (who
create fundamental physics models, and design, develop and
optimize most generator code); experimentalists working on
research (who determine which types of event samples are
required, and of which size); experimentalists working on
computing (who implement, monitor and account execution
of workflows on computing resources); software engineers
and system performance experts (who may help to analyse
and improve the efficiency of software applications and
deployment models). This is a richness and opportunity, as
some technical problems are best addressed by people with
specific skills, but it also poses some challenges as these

technical problems are best addressed by bringing all these
people together. Facilitating this cross-collaboration is one
of the main goals of the WG.

Training challenges. Theorists and experimentalists often
lack formal training in software development and optimiza-
tion. Software engineers, but also many experimentalists, are
not experts in the theoretical physics models implemented
in MC codes.

Communication challenges. It is difficult to find a shared
terminology and set of concepts to understand one another:
notions and practices that are taken for granted in one
domain may be obscure for others. An example: there are
many articles about the physics in generators, but software
engineers would need papers describing the main software
modules and overall data and control flow. Similarly, there
are only very few articles where the experiments describe
the software and computing workflows of their large scale
MC productions (Ref. [73] is one such example for LHCb).

Career challenges. Those working in the development,
optimization and execution of generator software provide
essential contributions to the success of the HL-LHC phys-
ics programme and it is critical that they get the right rec-
ognition and motivation. However, theorists, in general, get
recognition from the papers they publish and from the cita-
tions on these, and they may not be motivated to work on
software optimizations that do not have enough theoretical
physics content to advance their careers. Generator support
tasks in the experiments may also not be valued enough to
secure jobs or funding to experimentalists pursuing a career
in research.

Mismatch in usage patterns and in optimization focus.
The way generators are built and used by their authors is
often different from the way in which they are deployed and
integrated by the experiments in their software frameworks
and computing infrastructure. The goals and metrics of
software optimization work may also differ, as discussed
more in detail in section "Technical Challenges". Theorists,
who typically work with weighted events and fast detector
parameterizations if any, are mainly interested in calculat-
ing cross sections and focus on minimising the phase space
integration time for a given statistical precision. The LHC
experiments typically run large scale productions for gener-
ating fully exclusive events, which are mostly unweighted as
they must be processed through expensive detector simula-
tion and event reconstruction steps: therefore, they need to
maximize the throughput of events generated per unit time
on a given computing system.

Programming languages. Attracting collaborators with a
computer science background to work on generators, espe-
cially students, may also be complicated by the fact that
critical components of some generator packages are written
in Fortran, which is rarely used in industry and less popular
among developers than other programming languages. Some

1 In this paper, we use the definitions of matching and merging given
in Ref. [49], which are briefly hinted at in section "Inefficiencies in
Unweighted Event Generation".

Computing and Software for Big Science (2021) 5:12

1 3

Page 5 of 19 12

of the generators also do not use industry standard version
control systems, making it harder to contribute code.

Technical Challenges

In this section, we give more details about the technical
challenges in the software development and performance
optimization of MC physics event generator codes. To this
end, it is useful to first give a brief, high-level, reminder of
their computational goals and internal data flows, and of
the typical production workflows used by the experiments.

Computational Anatomy of a MC Event Generator

Particle physics is based on quantum mechanics, whose
description of Nature is intrinsically probabilistic. The pre-
dictions of HEP theoretical models that are numerically
computed in event generators (through a combination of
quantum field theory methodologies and phenomenologi-
cal approximations), and which can be compared to experi-
mental measurements, ultimately consist of probabilities and
probability density functions.

In particular, the probability that a collision “event” with
a given “final state”, i.e. including n particles of given types,
is observed in the collision of the LHC proton beams, is
expressed in HEP in terms of the concept of a “cross sec-
tion”. In general terms, a cross section � represents the num-
ber of events Nexp=�L that are expected per unit “integrated
luminosity” L of the colliding beams (a parameter that
depends on their intensities and geometries, and on the over-
all duration of data-taking time). More in detail, a differen-
tial cross section, d�

dO
 , with respect to an observable O (such

as a rapidity or a transverse momentum), refers to the obser-
vation of the desired final state at different points dO of the
observable “phase space”; conversely, its integral
�=∫

ΩO

d�

dO
dO is referred to as the total cross section, if over

the entire phase space, or as a fiducial cross section, if over
a well delimited region ΩO of the phase space (the so-called
acceptance).

In this context, the computational core of a physics event
generator is the code that numerically calculates, from first
principles, the fully differential cross section d�

dΦn

(�) for the
“hard scattering” process that leads to the desired n-particle
final state; this is computed as a function of the complete
kinematical configuration � of the elementary particles, or
“partons”, involved in this “hard interaction” for an indi-
vidual collision event. In the majority of cases, the calcula-
tion of d�

dΦn

 is implemented by identifying all Feynman dia-
grams contributing to this process, and calculating the
“invariant amplitude” or “matrix element” (ME) for all of
these diagrams combined (although there are also generators

where matrix elements are computed using algorithms not
based on Feynman diagrams [43, 74]).

For LHC processes, the kinematical configuration
�={x1, x2,Φn} of a collision event essentially consists of a
vector Φn , including four real numbers (related to their
energy, mass and directions) for each of the n outgoing (final
state) partons, and of two real numbers x1 and x2 represent-
ing the momentum fractions of the two incoming (initial
state) partons. As described later on in Eq. 1, d�

dΦn

(�) is,
together with two parton distribution functions p(x1) and
p(x2) , the central ingredient in the computation of a function
f (�) , which essentially describes the probability distribution
in the space of all possible kinematical configurations � , and
from whose integral in this space other relevant cross sec-
tions may be computed, �=∫ f (�)d�.

Integration and unweighted event generation. Given the
function f (�) , physics event generators are commonly used
in HEP to solve two types of computational problems, which
are related to each other and generally addressed within a
same execution of the software, as discussed more in detail
later on. The first goal (“phase space integration”) is to com-
pute a cross section as the integral of f (�) over the relevant
phase space region. The second goal (“unweighted event
generation”) is to draw random samples of events whose
kinematical configurations � are distributed according to the
theoretical prediction f (�).

Both of these goals are achieved using Monte Carlo (MC)
methods (see Refs. [75, 76] for early reviews of this tech-
nique in HEP). The distinctive feature of MC methods is
their reliance on the generation of random numbers (or, more
precisely, of “pseudo-random” [77] numbers).2 In particular,
the starting point of both MC phase space integration and
MC unweighted event generation is the calculation of f (�)
for a large sample of events �i∈{�1,… , �N} , drawn at ran-
dom from a known probability density function g(�) . More
specifically:

2 As discussed in Ref. [78], phase space integration may also be per-
formed using classical numerical methods (which do not belong to
the MC category), or “quasi-MC” methods based on “quasi-random”
numbers [76, 79]. The classical methods, such as Newton-Cotes for-
mulas and Gaussian quadrature rules (one example is the Gauss-Kro-
nrod algorithm which is used for numerical integration in the TOP++
[80] program), work well for one-dimensional problems, but tend to
be inefficient for multi-dimensional integrals, where MC methods
using pseudo-random numbers converge much faster, and quasi-
MC methods using quasi-random numbers even faster. Unlike phase
space integration, however, unweighted event generation can only be
addressed by MC methods using pseudo-random numbers, as neither
of the other approaches is applicable: classical integration methods
because they do not involve random numbers, and quasi-MC tech-
niques because quasi-random numbers in a sample are highly corre-
lated to one another.

 Computing and Software for Big Science (2021) 5:12

1 3

 12 Page 6 of 19

1. MC phase space integration consists in drawing a ran-
dom sample of events �i from the sampling function
g(�) , and in numerically calculating an estimator of the
integral �=∫ f (�)d� , as the average of the “weight”
wi=w(�i)= f (�i)∕g(�i) for all the events �i in the sam-
ple. It should be noted that this is not a deterministic
approach, in the sense that the result of the calculation
may change if a different random sample is used: it is
easy to show, however, that the estimator is unbiased,
and that its variance decreases as 1/N if the number of
events N in the sample is increased. From a software
point of view, the output of MC phase space integration3
is essentially only one number, the estimate of the inte-
gral �=∫ f (�)d� over the acceptance ΩO ; alternatively,
several numbers may also be calculated, representing the
values of d�

dO
 computed as the MC integrals of f (�) over

different regions of phase space within ΩO.
2. MC unweighted event generation consists in drawing a

random sample of events �i from the sampling function
g(�) , and in randomly rejecting some of them depending
on the ratio of w(�i) to the maximum weight wmax over
the phase space. For each event, an accept-or-reject (or
“hit-or-miss”) decision is taken by drawing a random
number R uniformly distributed between 0 and 1: the
event is accepted if R<w(�i)∕wmax , and rejected oth-
erwise. The resulting events, whose distribution is now
described by f (�) rather than by g(�) , are referred to as
“unweighted” in the sense that they all have the same
weight, which by convention is equal to 1. A special
case of unweighting, producing events whose weights
can be either + 1 or − 1, exists for calculations leading
to events with negative weights: this is described later
on. From a software point of view, the output of MC
unweighted event generation is a sample of events, i.e.
essentially a sample of vectors �i.

The choice of the sampling algorithm (e.g. VEGAS [81,
82]), or equivalently of the function g(�) , is very important.
The closer g(�) is to f (�) , that is to say the more constant
the weight f (�)∕g(�) is over the entire phase space, the more
precise is the integration (i.e. the lower the variance on the
result) for a given sample size, and the more efficient is the
unweighting procedure (i.e. the lower the fraction of events
rejected).

It should be noted that the experiments also do physics
analysis with samples of weighted events, which they pro-
duce for instance through “biasing” techniques, as discussed
in section "Inefficiencies in Unweighted Event Generation".
Wherever possible, however, unweighted events (and in par-
ticular events with a positive weight +1) are preferred, as
smaller event samples are required than when using events
with non-uniform weights, resulting in overall savings of
compute and storage resources.

Internal software workflow. Schematically, the internal
software workflow of a typical generator is the following:
first, when necessary (i.e. when the process is too complex
to be manually hardcoded in advance), the source code to
compute the differential cross section d�

dΦn

 of the hard process,
which is needed to derive f (�) , is produced through auto-
matic code generation, after identifying the relevant Feyn-
man diagrams; a “phase space integration” step follows,
where event samples are iteratively drawn not only to pro-
vide a first coarse estimate of the relevant cross sections, but
also to optimize the sampling function g(�) and to estimate
the maximum weight wmax ; parton-level unweighted events
are then generated using the final, frozen, g(�) and wmax ;
parton showers, hadronization and hadron decays to stable
particles are finally applied on top of those “parton-level”
events. During the unweighted event generation step, “merg-
ing” prescriptions (described in more detail in section "Inef-
ficiencies in Unweighted Event Generation") may also need
to be applied, after parton showers and before hadronization;
experiment-level filters and other techniques such as forced
decays or forced fragmentation may also be applied [83, 84],
for instance to produce event samples containing specific
decays of B hadrons.

The internal workflow of a generator application is actu-
ally more complex than described above, because many
different hard interactions may contribute to the simulated
process. To start with, for hadron colliders like the LHC,
the hard interactions take place not between two protons,
but between two of the partons in their internal substructure
(quarks of different flavors, and gluons): this implies that
separate integrals for all possible types of initial state par-
tons, using different sets of diagrams and of functions f (�) ,
must be considered. Using the factorisation theorem [85],
which allows separating perturbative (i.e. ME) and non-
perturbative (parton distribution function) calculations in
quantum chromodynamics (QCD), the total cross section
may be written [35] as

i.e. as the convolution, by the appropriate parton distribution
functions pa(x1) and pb(x2) , of the differential cross section
d�ab

dΦn

 for the production of n final state particles with proper-

(1)�=
∑

a,b
∫ dx1pa(x1)∫ dx2pb(x2)∫ dΦn

d�ab

dΦn

(x1, x2,Φn),

3 To avoid misunderstandings, it should be noted that, in an incon-
sistent way, the term “phase space integration” is also commonly
used to indicate the computational step in the software before
unweighted event generation, which is needed not only to compute a
first coarse estimate of cross sections, but also to iteratively optimize
the sampling algorithm (i.e. the choice of the sampling function g(�)),
and to compute the maximum value w

max
 of w(�) over the relevant

region of phase space. This is further discussed below.

Computing and Software for Big Science (2021) 5:12

1 3

Page 7 of 19 12

ties Φn , in the hard interaction of two partons of types a and
b with momentum fractions x1 and x2 , respectively.

In addition, NLO calculations imply the need to compute
two separate classes of integrals, which involve two different
classes of Feynman diagrams and of functions f (�) , because
matrix elements need to be separately computed for standard
“ �-events” and hard “ ℍ-events” [50], i.e. for final states with
n body kinematics Φn (at tree level and one loop) and n + 1
body kinematics Φn+1 (at tree level), respectively; “match-
ing” prescriptions are then needed to ensure that parton
showers are used appropriately in both types of events (see
also for instance Refs. [86–88] for detailed presentations
that include a graphical representation of these issues). In
NNLO calculations, the situation is similar to that of NLO
calculations, and even more complex.

Experiment production workflows. Phase space integra-
tion (i.e. the optimization of the phase space sampling algo-
rithm) is a resource intensive step, but in many cases it is
only executed once in a given experiment production; this
is known as the creation of “gridpacks” in MG5_aMC and
POWHEG, or “sherpacks” or “integration grids” in Sherpa4.
For instance, creating a typical MG5_aMC gridpack for
V+jets (i.e. a W or Z vector boson produced in association
with quarks or gluons) at NLO may take up to several weeks
on one multi-core node, or up to several days in a typical
cluster usage scenario; see also Ref. [92] for further details
about how gridpacks are used in CMS. The generation of
unweighted event samples, conversely, is where the LHC
experiments spend essentially all of their yearly generator
CPU budgets: when pre-computed integration grids are
available, this typically involves many Grid jobs submit-
ted in parallel with different random number seeds and thus
unrelated to one another, all of them reading the same inte-
gration grids as an input and storing events on their own out-
put files. In principle, every Grid job could also go through
the whole event generation chain, including both phase
space integration and unweighted event generation, but this
is an inefficient workflow which the experiments only use in
specific cases, e.g. for productions involving simple physics
processes or few events, where phase space integration is
relatively fast and inexpensive and where the overhead from

repeating it in each Grid job is negligible with respect to the
overall CPU cost of the production, or for generators lacking
the option to create integration grids. It should be noted, in
any case, that also the workflows involving one gridpack
creation and several unweighted event generation jobs can be
somewhat inefficient, if the initialisation phase of each Grid
job is not negligible with respect to its overall duration; this
may happen, for example, if the pre-computed integration
grids are very large and take a long time to load [93].

Computational costs. The computational cost of a MC
application roughly scales with the number of points � where
the function f (�) is computed. This is true both for gridpack
creation, where the cost scales with the number of events
sampled during phase space integration (itself a function
of the accuracy required for this step), and for unweighted
event generation, where the cost scales with the overall num-
ber of events drawn prior to rejection by the unweighting
algorithm. As a consequence, the most obvious approach to
reduce the overall computational cost of event generation is
simply to try and decrease the number of points � for which
f (�) is computed. This is described in detail in section "Inef-
ficiencies in Unweighted Event Generation", where the pos-
sible reduction of many large inefficiencies in unweighted
event generation is discussed, as well as possible strategies
for reusing events for more than one goal.

In addition, the intrinsic cost per event of computing
f (�) approximately scales itself with the number of Fey-
nman diagrams contributing to that process. In particular,
with respect to LO calculations for a given process, NLO
and especially NNLO calculations for the same process
involve much higher numbers of diagrams, some of which
(“loop diagrams”) are also intrinsically more complex to
compute. Matrix element calculations are in fact performed
as a power series expansion in terms of the strong-force
coupling constant �s (which is smaller than 1); the differ-
ence between LO, NLO and NNLO calculations is primarily
that of considering the following level in this power series
expansion, which leads to a roughly factorial increase in
computational complexity. It should be pointed out, nev-
ertheless, that NLO calculations for simple processes with
low final state multiplicities may be computationally cheaper
than LO calculations for complex processes with high final
state multiplicities. In summary, it would thus seem that the
intrinsic cost per event � of computing f (�) is to some extent
incompressible, because of the relatively fixed amount of
arithmetic calculations that this involves. One of the only
obvious strategies for reducing this cost consists in improv-
ing the efficiency with which these arithmetic operations
are performed on modern computing systems, for instance
through the use of parallel programming techniques such
as vectorization or GPU programming, as discussed later
in section “Modernisation of Generator Software”. In addi-
tion, radically new approaches are also being worked on,

4 While “gridpacks” and “integration grids” serve essentially the
same purpose in different generators and contain similar information
(the parametrization of an optimized and frozen tuning of the sam-
pling algorithm, as well as an estimate of the maximum event weight
over the phase space), it should be noted that the word “grid” in these
two terms alludes to two very different concepts. The term gridpacks
[89, 90], or “Grid packages” refers in MG5_aMC to packages suit-
able to be sent over for event generation on Grid nodes (e.g. on the
nodes provided by WLCG computing sites). The term “integration
grid”, conversely, refers to the partitioning of multi-dimensional
phase space into hypercubes in the VEGAS adaptive sampling algo-
rithm, which is used by default in Sherpa [82, 91].

 Computing and Software for Big Science (2021) 5:12

1 3

 12 Page 8 of 19

involving for example the approximation of matrix element
calculations using Machine Learning (ML) regression meth-
ods [94, 95].

Inefficiencies in Unweighted Event Generation

The complex workflow described above presents several
challenges and opportunities for improvement. To start with,
there are many sources of inefficiency in unweighted event
generation, as discussed in the following.

Phase space sampling inefficiency. The algorithm used
for phase space sampling is the most critical ingredient for
efficient unweighted event generation. Some basic tech-
niques, such as stratified sampling, which essentially consists
in binning the phase space, and importance sampling, which
is often implemented as a change of variables to parametrize
the phase space, date back to more than 40 years ago [76].
Many algorithms, most notably VEGAS [81, 82] or MISER
[96], are adaptive, i.e. recursive, in that their parameters are
tuned iteratively as the shape of f (�) is learnt by randomly
drawing more and more phase space points. Adaptive multi-
channel algorithms [97, 98] are often used to address the
complex peaking structures of LHC processes, by defining
the sampling function g(�) as a weighted sum of functions,
each of which essentially describes a different peak. Many
generic sampling algorithms exist, including very simple
ones like RAMBO [99], others derived from VEGAS such
as BASES/SPRING [100, 101] or MINT [102], and cellular
algorithms like FOAM [103]. Other sampling algorithms
have been developed specifically for a given generator:
examples include MadEvent [104] and VAMP [105], which
are based on modified versions of VEGAS and are used in
the MG5_aMC and WHIZARD [106] generators, respec-
tively, as well as COMIX [107], which is used in Sherpa.

In general, the larger the dimensionality of the phase
space, the lower the unweighting efficiency that can be
achieved: in W+jets at LO, for instance, the Sherpa effi-
ciency [108] is 30% for W + 0 jets and 0.1% for W + 4 jets.
This is an area where research is very active, and should be
actively encouraged, as significant cost reductions in WLCG
compute budgets could be achieved. Improvements in this
area can only start from physics-motivated approaches based
on the knowledge of phase space peaks, but they can be
complemented by brute-force ML algorithmic methods
[108–113], therefore people with different profiles can
contribute to this area. The use of one of these ML tools,
Generative Adversarial Networks (GAN), is being investi-
gated [114] not only as a way to provide a more efficient
phase space sampling, but also as a possible replacement for
unweighted event generation altogether, for example when
complemented with maximum mean discrepancy methods
[115].

In this context, it is useful to point out that maximizing
the efficiency of unweighted event generation and minimiz-
ing the variance on total cross section predictions by MC
integration represent two different, even if closely related,
strategies for the optimization of the phase space sampling
algorithm. The two strategies imply the use of different loss
metrics during the learning phase of an algorithm, and result
in different weight distributions. This is discussed in detail
in Ref. [103], and to some extent also in Ref. [105]. A com-
pletely different optimization strategy [116] for the sampling
algorithm has also been recently proposed, where the goal
is that of giving priority to populating the regions of phase
space which are most sensitive to the presence of a signal or
to the value of a parameter.

There are several reasons for the very large set of sam-
pling codes. Many of them represent evolutions of VEGAS,
others are completely different algorithms (like FOAM), and
many of the modern ones are based on ML techniques. Some
of these codes exist for historical reasons, because of the
different choices adopted over time by each time. Possible
work on a “common” integrator is sometimes mentioned in
the community. Another possible way forward would con-
sist in trying to harmonise the software interfaces of these
packages, so that each generator could plug in different sam-
pling algorithms and implementations. Discussions in this
direction have already started in the context of the ongoing
developments on GPU ports and on ML algorithms.

Slicing and biasing. A further issue [117], somewhat
related to sampling inefficiencies, is that jet production
cross sections fall very sharply as the transverse momenta
(pT) of the leading jets increase, and generating events with
uniform weight generally fails to give a reasonable yield in
the high-pT regions of phase space. One approach to solving
this problem (“slicing”) is to produce several independent
samples of events, using different generation cuts in each
one, in order to populate all the regions of interest. An addi-
tional approach (“biasing” or “enhancement”), available for
instance in POWHEG [117], MG5_aMC [118, 119], Sherpa
[120], Pythia8 [121] and Herwig7.1 [42], consists in gener-
ating samples of events with non uniform weights, the shape
of whose distribution can however be controlled by user-
defined suppression factors. Both approaches are used in
practice by the LHC experiments, as each has its pros and
cons, and both reduce the resources required to populate the
low-statistics tails of distributions. With additional work,
these methods could help reduce the overall event generation
resource requirements at HL-LHC.

Merging inefficiency. Merging prescriptions (e.g. MLM,
CKKW-L at LO, and FxFx, MEPS@NLO at NLO) imply
the rejection of some events to avoid double counting,
between events produced with n+1 jets in the matrix ele-
ment, and events produced with n jets in the matrix element
and one jet from the parton shower [56]. This is only needed

Computing and Software for Big Science (2021) 5:12

1 3

Page 9 of 19 12

if the required final state includes a variable number of jets
njets between 0 and n, i.e. for so-called “merged” or “multi-
leg” setups. The resulting inefficiencies can be relatively low
depending on the process, but they are unavoidable in the
algorithmic strategy used by the underlying physics mod-
eling. The merging efficiency of the MLM prescription, for
instance, is discussed in in Ref. [122], which shows how this
can be improved using a method like shower-kT MLM.

Filtering inefficiency. An additional large source of inef-
ficiency is due to the way the experiments simulate some
processes, where they generate large inclusive event sam-
ples, which are then filtered on final-state criteria to decide
which events are passed on to detector simulation and recon-
struction (e.g. CMS simulations of specific ΛB decays have a
0.01% efficiency, and ATLAS B-hadron filtering in a V+jets
sample has ∼10% efficiency [123]). This inefficiency could
be reduced by developing filtering tools within the genera-
tors themselves, designed for compatibility with the require-
ments of the experiments. A particularly wasteful example
is where events are separated into orthogonal subsamples
by filtering, in which case the same large inclusive sam-
ple is generated many times, once for each filtering stream:
allowing a single inclusive event generation to be filtered
into several orthogonal output streams would improve effi-
ciency. Filtering is an area where the LHCb collaboration
has a lot of experience [83] and has already obtained signifi-
cant speedups through various techniques. In this context,
one should also note that the speed of color reconnection
algorithms [124, 125] is a limiting factor for simulating rare
hadron decays in LHCb.

Sample sharing. In addition to removing inefficiencies,
other ways could be explored to make maximal use of the
CPU spent for generation by reusing samples for more than
one purpose. Sharing parton-level, or even particle-level,
samples between ATLAS and CMS is being discussed for
some physics analyses. However, the implications of the sta-
tistical correlations that this would introduce need further
investigation in the context of combinations of results across
experiments.

Sample reweighting. Another way to re-use samples is
through event reweighting. Recently, there have been major
improvements in available tools in this area [30, 126–130],
which have made it possible to obtain systematic uncer-
tainty variations as well as reweighting to alternative model
parameters. The latter may be useful for example in new
physics searches, but also in the optimization of experimen-
tal measurements of model parameters [131]. This machin-
ery is particularly important because in the past obtaining
these variations would have required multiple samples to
go through detector simulation and reconstruction, whereas
the reweighting only requires this overhead for a single
sample that can then be reused in multiple ways. This sig-
nificantly reduces the CPU and storage requirements for the

same end result. However, this issue can still be explored
further as in some areas there are limitations to the valid-
ity of these reweighting schemes [128–130, 132, 133]. In
addition, some systematic uncertainty variations, such as
merging scale variations, are not yet available as weights but
there is work ongoing. There are also systematic variations
such as changes of the hadronization model which are not
well suited to the type of event reweighting discussed here,
but for which alternative approaches using ML techniques
to train an ad-hoc reweighting between samples are under
investigation [134–138].

Negative weights. In NLO calculations, matching pre-
scriptions (e.g. MC@NLO, POWHEG, etc.) are required to
avoid double counting between phase space configurations
that may come both from ℍ-events and from �-events with
parton showers. The solution of this issue becomes tech-
nically even more complex at the NNLO. A widely used
NLO matching prescription, MC@NLO [50], is imple-
mented by using a “modified subtraction method” that may
lead to the appearance of events with negative weights. A
MC unweighting procedure is still applied, but the result-
ing events are “unweighted” in the sense that their weight
can only be + 1 or − 1. This is a source of (possibly large)
inefficiency, as larger event samples must be generated and
passed through the experiment simulation, reconstruction
and analysis software, increasing the compute and storage
requirements. For a fraction r of events with weight − 1, the
number of events to generate increases by a factor 1/(1-2r)2 ,
because the statistical error on MC predictions is a factor 1/
(1-2r) higher; for a more detailed explanation of these for-
mulas, see for instance Ref. [139]. For example, negative
weight fractions equal to r=25% and r=40%, which may be
regarded as worst-case scenarios occurring in tt̄ and H bb̄
production [139], respectively, imply the need to generate
4 times and 25 times as many events to achieve the same
statistical precision on MC predictions.

Negative weights can instead be almost completely
avoided, by design, in another popular NLO matching pre-
scription, POWHEG [51], which however is only available
for a limited number of processes. POWHEG describes the
relevant physics in a different way with respect to MC@
NLO, so that predictions which have formally the same level
of accuracy may visibly differ in the two codes, and are asso-
ciated with different systematics (see Ref. [139] for an in-
depth discussion). Negative weights can also be avoided in
the KrkNLO [52] matching prescription, which is based on
a very different approach from those used by MC@NLO
and POWHEG; this method however is only available for a
limited number of processes, and so far has been rarely used
in practice by the LHC experiments.

Progress in this area at the fundamental physics level
can only be achieved by theorists, and research is active
in this area. For instance, a modified MC@NLO matching

 Computing and Software for Big Science (2021) 5:12

1 3

 12 Page 10 of 19

procedure with reduced negative weights, known as MC@
NLO-Δ , has recently been proposed [139]. Similarly, tech-
niques to significantly reduce the negative weight fraction
are also available in Sherpa [95]. Negative weights also exist
for NNLO calculations, for instance in the UN2LOPS pre-
scription [140].

It should be stressed that negative weights due to match-
ing are absent in LO calculations. One possibility for avoid-
ing negative weights, while possibly still achieving a preci-
sion beyond LO, could then be to generate LO multi-leg
setups and reweight them to higher order predictions; a care-
ful evaluation of the theoretical accuracy of this procedure
would however be needed in this case. In addition, negative
weights can also happen at LO because of not-positive-
definite parton distribution function sets and interference
terms, which is particularly relevant for effective field theory
calculations.

One should also note that developments to incorporate
contributions in parton shower algorithms beyond the cur-
rently adopted approximations, see e.g. Refs. [141–143],
very often necessitate weighted evolution algorithms. In the
future, this may represent another mechanism leading to the
appearance of events with negative weights, in addition to
and distinct from NLO matching prescriptions. Overcom-
ing the prohibitively broad weight distributions is subject
to an ongoing development and might necessitate structural
changes in the event generation workflow. An example is
the resampling approach proposed in Ref. [144], which also
contains a useful historical review of sampling/importance
resampling [145] techniques in the broader context of Monte
Carlo simulations.

The term resampling has also been used to indicate the
unrelated technique of positive resampling [146], which has
recently been proposed as a new approach for reducing the
impact of negative weights introduced by NLO matching
prescriptions. The idea behind this method, which addresses
negative weights as a statistics problem without looking at
the underlying theoretical physics, is to remove negative
weights using a quasi-local weight rebalancing scheme.
While positive resampling uses histograms to determine
bin-by-bin reweighting factors, a neural resampling [147]
approach has later been proposed as an extension of this
method, using neural networks to determine reweighting fac-
tors in the unbinned high-dimensional phase space.

Accounting of Compute Budgets for Generators

While progress has been made in the HSF generator WG to
better understand which areas of generator software have
the highest computational cost, more detailed accounting
of the experiment workloads and profiling of the main gen-
erator software packages would help to further refine R&D
priorities.

Accounting of CPU budgets in ATLAS/CMS. Thanks to a
large effort from the generator teams in both experiments, a
lot of insight into the settings used to support each experi-
ment’s physics programme was gained within the WG. It
is now clear that the fraction of CPU that ATLAS spends
for event generation is somewhat higher than that in CMS,
although the difference is lower than previously thought:
the latest preliminary estimates of these numbers are 12%
and 5%, respectively. A more detailed study of the different
strategies is ongoing, in particular by analysing individually
the CPU costs of the main processes simulated (notably,
V+jets, tt̄ , diboson and multijet). This effort aims at provid-
ing these figures also as absolute numbers in normalized
HEP-SPEC06 (HS06) seconds [148, 149], to allow a more
meaningful comparison of the compute budgets for event
generation in ATLAS and CMS.

A practical issue is that these figures had to be harvested
from logs and production system databases a posteriori.
Deriving precise numbers for CMS has been particularly
difficult, requiring significant person hours to extract the
required information, as until recently the event generation
(GEN) and detector simulation (SIM) steps were mixed
in a single software application, and no separate account-
ing figures for GEN and SIM could be recovered from
past job logs, therefore Grid costs had to be extrapolated
from ad-hoc local tests. CMS is now also using workflows
including GEN-only applications, like that used in ATLAS,
which makes GEN CPU accounting easier. In addition, job
monitoring information in CMS is presently kept for only
18 months, which complicates the analysis of past produc-
tions, and does not always include reliable HEP-SPEC06
metrics. For the future, it would be important to establish
better mechanisms to collect all this information, to allow
for an easy comparison between different experiments. It
would also help if the various types of efficiencies described
above (sampling, merging and filtering) could be more easily
retrieved for all simulated processes.

Profiling of generators using production setups. Another
area where the WG has been active, but more work is
needed, is the definition and profiling of standard generator
setups, reproducing those used in production. This has been
used to compare the speeds of Sherpa and MG5_aMC in the
configurations used by ATLAS and CMS, respectively. For
instance, Sherpa was found to be 3 to 8 times slower than
MG5_aMC in the generation of NLO W + (0 − 2) jets, but
the exact ratio depends on some of the model parameters
used in Sherpa, e.g. the dynamical scale choice of Sherpa,
which results in taking about 50% of the total CPU time
for generation: when modifying Sherpa to use an equivalent
scale to MG5_aMC, the CPU consumption for this process
was reduced by over a factor of two. The choice of a scale,
however, has important consequences not only on compu-
tational costs, but also on physics accuracy: an in-depth

Computing and Software for Big Science (2021) 5:12

1 3

Page 11 of 19 12

discussion of this important issue, which has been described
in many research papers by different teams of theorists (see,
for instance, Refs. [53, 54, 139, 150, 151]), is beyond the
scope of this paper, but the WG will continue to investigate
the computing and physics implications of such choices.

Detailed profiling of different generator setups has also
already helped to assess the CPU cost of external PDF librar-
ies, and to optimise their use [152, 153]. The profiling of the
memory footprint of the software would also be very useful,
and may motivate in some cases a move to multithreading or
multiprocessing approaches.

Modernisation of Generator Software

More generally, as is the case for many software packages
in other areas of HEP, some R&D on generators would
certainly be needed to modernise the software and make it
more efficient, or even port it to more modern computing
architectures (see also the discussion of these issues in the
Snowmass 2013 report [154] and in the HSF CWP [14]).

Data parallelism, GPUs and vectorization. The data flow
of an MC generator, where the same function f (�) , corre-
sponding to the matrix element for the simulated HEP pro-
cess, has to be computed over and over again at many phase
space points �i (i.e. for many different events), should, in
principle, lend itself naturally to the data parallel approaches
found in GPU compute kernels, and possibly to some extent
in CPU vectorized code. In other words, event-level paral-
lelism looks like an appropriate approach to try and exploit
efficiently these architectures [155]. In this respect, genera-
tors should be somewhat easier to reengineer efficiently for
GPUs than detector simulation software (notably Geant4
[156]), where the abundance of conditional branching of a
stochastic nature may lead to “thread divergence” and poor
software performance (see, for examples, Refs. [157–162]).

Porting and optimizing generators on GPUs is especially
important to be able to exploit modern GPU-based HPCs
(such as SUMMIT [163], where 95% of the compute capac-
ity comes from GPUs [164]). Some work in this direction
was done in the past on MG5_aMC, including both a port
to GPUs (HEGET [165–167]) of the library that was used
in MG5_aMC, before ALOHA [168] was introduced, for the
automatic generation of matrix element code (HELAS [169,
170]), and a port to GPUs of VEGAS and BASES (gVEGAS
and gBASES [171, 172]). This effort, which unfortunately
never reached production quality, is now being revamped
by the WG [155, 173], in collaboration with the MG5_aMC
team, and represents one of the main R&D priorities of the
WG. This work is presently focusing on Nvidia CUDA, but
abstraction libraries like Alpaka [174, 175] or oneAPI [176]
will also be investigated.

GPUs may also be relevant to the ML-based phase space
sampling algorithms discussed in section "Inefficiencies in

Unweighted Event Generation"; some recent work in this
area has targeted GPUs explicitly [177, 178]. Similar tech-
niques involving ML techniques on GPUs have recently been
used for the computation of parton distribution functions
[179], which are another essential building block of the
event generator software chain for LHC processes. Finally,
work is also ongoing [180] on the efficient exploitation of
GPUs in the pseudo-random number generation libraries
that are used in all MC generators (see Ref. [77] for a recent
review of these components).

Task parallelism, multithreading, multiprocessing. The
use of concurrency mechanisms based on multiprocessing
(MP) or multithreading (MT) within event generators has
increased in recent years, but it is not yet a common practice.
Most often, the use of single-threaded (ST), single-process
(SP), executables is not a problem, as the memory footprint
of event generation is small and usually fits within the 2 GB
per core available on WLCG nodes, which makes it possible
to exploit all of the available cores by running many inde-
pendent applications in parallel. However, there are cases
(e.g. diboson production, or Z and Z �+jets production with
electroweak corrections, all with up to 4 additional jets)
where more than 2 GB of memory, and even as much as 4
GB, may be needed; this leads to inefficiencies as some CPU
cores remain unused, which could be avoided using MT or
MP approaches to reduce memory footprints. Very often,
the experiments do not use generators as standalone applica-
tions, but instead embed them in their own event processing
frameworks, which may themselves implement MP or MT
approaches. For MT frameworks, the fact that some genera-
tor packages (such as EvtGen [181]) are not thread safe may
also lead to inefficiencies, as this often implies that access
to these components must be locked and their methods can
only be used by one thread at a time. Many different use
cases and approaches exist in the various experiments, as
described more in detail below.

In ATLAS, the most commonly used workflow for event
generation currently consists in executing several independ-
ent ST/SP applications based on the experiment’s event pro-
cessing framework, Athena [182], each running as an inde-
pendent Grid job on a different CPU core. Less frequently,
ATLAS also uses multi-core jobs, using either ad-hoc fea-
tures in Athena or, in the specific case of MG5_aMC, the
internal concurrency mechanism provided by this generator;
neither of these options, however, leads to an overall reduc-
tion in memory footprint, as they both ultimately consist in
spawning several independent ST applications on the avail-
able cores. The ATLAS event processing framework, Athena
[182], does have a MP extension based on forking and copy-
on-write, AthenaMP [183, 184], which is routinely used to
reduce per-core memory footprints of the ATLAS simulation
and reconstruction workflows, but currently this is not used
for any GEN workflows. ATLAS is also making progress in

 Computing and Software for Big Science (2021) 5:12

1 3

 12 Page 12 of 19

the development of a fully multi-threaded event processing
framework, AthenaMT [185], but this effort is also mainly
focusing on simulation [186] and reconstruction workflows
rather than on event generation. In particular, as in the simi-
lar MT developments in LHCb and CMS, described below,
one of the main aims of this work is the integration into the
experiment’s workflows of the recent multi-threaded version
of the Geant4 detector simulation toolkit, Geant4-MT [187].

In LHCb, event generation currently proceeds only via
ST/SP Grid jobs. A notable difference with respect to the
ATLAS GEN-only jobs is that LHCb uses a GEN-SIM
workflow where the same application, Gauss [188], based on
the Gaudi [189, 190] event processing framework, performs
both the event generation and detector simulation steps. To
improve the efficiency of these workflows, LHCb is gradu-
ally moving away from ST/SP Gauss. An MP framework
using forking and copy-on-write as in AthenaMP, GaussMP,
was recently used for some MC productions, but this was
only a temporary ad-hoc solution for the low-memory many-
core Intel Knights Landing (KNL) CPUs deployed on the
Marconi HPC system at CINECA [191]. In the future, LHCb
plans to replace its current SP/ST application by a fully
multi-threaded version of Gauss based on an experiment-
independent GEN-SIM framework, Gaussino [192], which
is built directly on Gaudi and is interfaced to Geant4-MT.
Gaussino, whose development is making rapid progress,
has the potential for a much better optimization of memory
usage, especially in the SIM step. To achieve thread safety,
Gaussino uses a single-threaded locking instance of Evt-
Gen to handle decays; special care is also taken in the way
Gaussino is interfaced to Pythia8, as described in Ref. [192].

In CMS, event generation is embedded within the multi-
threaded C++ event processing framework, CMSSW
[193–195]. All CMS workflows for event generation involve
multi-core Grid jobs (either GEN-SIM or, more recently,
GEN-only), where a single instance of the CMSSW appli-
cation simultaneously uses several CPU cores. One of the
primary motivations for CMS to use a MT framework is to
reduce the amount of memory used per CPU core [194], a
goal that is particularly important, and has been achieved in
production (also thanks to the use of the new GEANT4-MT),
for GEN-SIM workflows [196]. Some examples of the inte-
gration of event generators in the CMS worflow, and more
particularly in the MT CMSSW framework, are described in
Refs. [197, 198]. The simplest use case is that where a gen-
eral-purpose generator (like Pythia8, Herwig7, or Sherpa)
is used both for the generation of parton-level events and
for their hadronization and decay. In this case, the CMSSW
main thread starts many separate worker processes on the
available CPU cores, ensuring that each worker receives the
appropriate random numbers to process the event assigned
to it (a mechanism which has some similarities to that used
in GaussMP by LHCb). A second important use case is that

where event generation is split into two steps, the genera-
tion of parton-level events in the Les Houches Event File
(LHEF) format [199, 200] using a matrix-element generator
(like MG5_aMC or POWHEG), and the hadronization and
decay to stable particles of those parton-level events using
other tools (like Pythia8, Herwig7, EvtGen or Tauola). To
execute the LHEF event generation step concurrently on
the available cores, CMSSW provides a generic mechanism
where several independent processes are spawned on the
available cores; in the case of MG5_aMC, its internal con-
currency mode may also be used, but this also consists in
spawning several ST applications, as already mentioned. The
concurrent execution of the hadronization and decay step,
conversely, is always handled by CMSSW using its internal
multi-threading: the main challenge in this context is that
decayers like EvtGen and Tauola are not thread-safe and may
only be used to process one event at a time [198].

Multiprocessing approaches involving several nodes may
also be useful to speed up the integration and optimization
step for complex high-dimensional final states. In particular,
Sherpa workflows based on the Message Passing Interface
(MPI) [201], which have been available for quite a long time,
have been found very useful by ATLAS and CMS to speed
up the preparation of integration grids on local batch clus-
ters. A lot of work has also been done in recent years to
implement and benchmark MPI-based workflows on HPC
systems. For instance, the Sherpa LO-based generation of
merged many-jet samples has been successfully tested [202]
on the Cori [203] system at NERSC, both on traditional
Intel Haswell CPUs and on many-core Intel KNL CPUs.
This work has used a technique similar to that previously
developed [204] for testing and benchmarking the scal-
ing of the parallel execution of Alpgen on Mira [205] at
ALCF, a supercomputer based on IBM PowerPC CPUs. New
event formats, migrating LHEF to HDF5, have also been
instrumental in enabling the execution of the Sherpa tests
at Cori. MPI integration has also been completed for MG5_
aMC [206]. In this context, one should note that, although
HPCs offer very high-speed inter-node connectivity, HPC
resources can be exploited efficiently even without using
this connectivity: in particular, WLCG workflows, includ-
ing generators, generally use these systems as clusters of
unrelated nodes, because the computational workflow can
be split up into independent tasks on those nodes.

Hybrid parallelization approaches are also possible,
where multithreading or multiprocessing techniques are used
internally on a single multi-core node, while the MPI proto-
col is used to manage the communication between distinct
computing nodes. This approach is implemented for example
in the WHIZARD [105] and MCFM [207] codes, both of
which combine OpenMP [208] multithreading on individual
multi-core nodes with MPI message passing between them.

Computing and Software for Big Science (2021) 5:12

1 3

Page 13 of 19 12

Generic code optimizations. A speedup of generators
may also be achievable by more generic optimizations, not
involving concurrency. For instance, one could study if dif-
ferent compilers and build strategies [206] may lead to any
improvements. Another possible strategy is to search for
redundant calculations, i.e. to investigate if some numeri-
cal results can be reused more than once, for instance via
data caching. Recent studies [152] on the way LHAPDF6 is
used in Pythia8 have indeed resulted in significant speedups
through better data caching, and similar studies are in pro-
gress for Sherpa [153]. Ongoing studies [209] on MG5_aMC
have similarly shown that important speedups may obtained
through “helicity recycling”, i.e. by avoiding the recomputa-
tion of some building blocks of Feynman diagrams which
are needed in more than one matrix element calculation.

Physics Challenges (Increasing Precision)

In addition to software issues, important physics questions
should also be addressed about more accurate theoretical
predictions, above all NNLO QCD calculations, but also
electroweak (EW) corrections, and their potential impact
on the computational cost of event generators at HL-LHC.
For a recent review of these issues, see for example Ref.
[25]. Some specific NNLO calculations are already avail-
able and used today by the LHC experiments in their data
analysis. For example, the measurements of fiducial tt̄ cross
sections, extrapolated to the full phase space, are compared
to the predictions of TOP++ [80], accurate to NNLO: this
program, however, does not use MC methods and cannot
be used to generate unweighted events. Research on NNLO
matching has also made significant progress, for example
on the NNLOPS [210], GENEVA [211], UN2LOPS [140]
and MINNLOPS [212, 213] prescriptions. In addition, sam-
ples of unweighted events are routinely generated for Higgs
boson final states using the POWHEG/MINLO NNLOPS
approach [210, 214]. With a view to HL-LHC times, how-
ever, some open questions remain to be answered, as dis-
cussed below.

NNLO: status of theoretical physics research. The first
question is for which processes QCD NNLO precision will
be available at the time of the HL-LHC. For example, first
results for triphoton results at NNLO have recently been
published [215]: when would NNLO be expected for other
2 → 3 processes or even higher multiplicity final states?
Also, for final states such as tt̄ , differential NNLO predic-
tions exist [216, 217] and the first matched computation
for NNLO+PS was very recently achieved [213], but the
software for generating unweighted NNLO+PS events
using the latter is not yet publicly available for use in the
experiments, when can this be expected? In particular, it
would be important to clarify which are the theoretical

and more practical challenges in these calculations, and
the corresponding computational strategies and predicted
impact on CPU time needs (e.g. more complex defini-
tion of matching procedures, higher fraction of negative
weights, and more complex 2-loop MEs?).

The accuracy of shower generators is also important in
this context. Current shower generators rely on first order
splitting kernels, together with an appropriate scheme to
handle soft emissions. Recent work aims at improving par-
ton showers by increasing their accuracy either by devel-
oping novel shower schemes within the standard parton or
dipole branching, such as DIRE [218] and Vincia [219] or
by going beyond the typical probabilistic approach [220]
and by incorporating higher order splitting functions [52,
141, 221, 222]. In addition, very recently, significant theo-
retical advance opening the way to showers with next-to-
leading logarithmic (NLL) accuracy has been achieved
[223].

To match NNLO accuracy in QCD, EW corrections must
also be included. Recently, much progress has been achieved
on the automation of the computation of EW corrections
[224–227], to the point that fixed-order NLO QCD and EW
corrections are readily available for any process of interest at
the LHC. A general interface of these calculations to shower
generators that correctly account for QED radiation for these
computations, however, is not yet available.

An additional concern, in general but especially in
higher-order phenomenology, is the control of numerical
and methodological errors at the sub-percent level. This is
relevant for processes where high-precision measurements
and predictions are available, but also to efficiently and pre-
cisely test the input parameter dependence (PDFs, �s , etc.).
These issues, and the way in which they are addressed in
the MCFM parton-level code, are discussed in detail in Ref.
[207]. A key component of this code is a fully parallelized
phase space integration, using both OpenMP and MPI on
multi-core machines and cluster setups, where technical
cutoffs can be controlled at the required level of precision.

NNLO: experimental requirements at HL-LHC. The sec-
ond question is for which final states unweighted event gen-
eration with NNLO precision would actually be required (tt̄
production is a clear candidate), and how many events would
be needed. One should also ask if reweighting LO event
samples to NNLO would not be an acceptable cheaper alter-
native to address the experimental needs, and what would be
the theoretical accuracy reached by this procedure.

Size of unweighted event samples required at HL-LHC.
Another question to be asked, unrelated to NNLO, is in
which regions of phase space the number of unweighted
events must be strictly proportional to the luminosity. For
example, in the bulk (low pT) regions of W boson produc-
tion it is probably impossible to keep up with the data, due
to the huge cross section. Alternative techniques could be

 Computing and Software for Big Science (2021) 5:12

1 3

 12 Page 14 of 19

investigated, to avoid the generation of huge samples of
unweighted events.

Conclusions

This paper has been prepared by the HSF Physics Event
Generator Working Group as an input to the LHCC review
of HL-LHC computing, which has started in May 2020.
We have reviewed the main software and computing chal-
lenges for the Monte Carlo physics event generators used
by the LHC experiments, in view of the HL-LHC physics
programme.

Out of the many issues that we have described, we
have identified the following five as the main priorities on
which the R&D on the computational aspects of genera-
tors, and in particular the activities of our WG, should
focus:

1. Gain a more detailed understanding of the current CPU
costs by accounting and profiling.

2. Survey generator codes to understand the best way to
move to GPUs and vectorized code, and prototype the
port of the software to GPUs using data-parallel para-
digms.

3. Support efforts to optimize phase space sampling and
integration algorithms, including the use of Machine
Learning techniques such as neural networks.

4. Promote research on how to reduce the cost associated
with negative weight events, using new theoretical or
experimental approaches.

5. Promote collaboration, training, funding and career
opportunities in the generator area.

Additional material about these and the other issues
described in this paper, including detailed plots and dia-
grams, may be found in the recent presentation by the HSF
Generator WG to the LHCC [155]. We plan to report about
the progress in these areas during the more in-depth LHCC
review of HL-LHC software, which is currently scheduled
in Q3 2021, and reassess the WG priorities for future activi-
ties at that point in time.

Acknowledgements This work received funding from the European
Union’s Horizon 2020 research and innovation programme as part of
the Marie Skłodowska-Curie Innovative Training Network MCnetITN3
(grant agreement no. 722104). This research used resources of the
Fermi National Accelerator Laboratory (Fermilab), a U.S. Department
of Energy, Office of Science, HEP User Facility. Fermilab is managed
by Fermi Research Alliance, LLC (FRA), acting under Contract No.
DE–AC02–07CH11359. This work was supported by the Laboratory
Directed Research and Development Program of Lawrence Berkeley
National Laboratory under U.S. Department of Energy Contract No.
DE-AC02-05CH11231. The work at Argonne National Laboratory
was supported by the U.S. Department of Energy, Office of Science,

High Energy Physics Center for Computational Excellence (HEP-CCE)
program under Award Number 0000249313. F. Krauss acknowledges
funding as Royal Society Wolfson Research fellow. M. Schönherr is
funded by the Royal Society through a University Research Fellowship.
E. Yazgan acknowledges funding from National Taiwan University
grant NTU 109L104019. A. Siódmok acknowledges support from the
National Science Centre, Poland Grant No. 2019/34/E/ST2/00457.

Funding Open Access funding provided by CERN.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. ATLAS Collaboration (2008) The ATLAS experiment at the
CERN Large Hadron Collider. J Instrum 3:S08003. https:// doi.
org/ 10. 1088/ 1748- 0221/3/ 08/ S08003

 2. CMS Collaboration (2008) The CMS experiment at the CERN
LHC. J Instrum 3:S08004. https:// doi. org/ 10. 1088/ 1748- 0221/3/
08/ S08004

 3. High-Luminosity Large Hadron Collider (HL-LHC). https://
home. cern/ scien ce/ accel erato rs/ high- lumin osity- lhc

 4. HSF Physics Event Generator Working Group. https:// hepso ftwar
efoun dation. org/ worki nggro ups/ gener ators. html

 5. LHC Experiments Committee. https:// commi ttees. web. cern. ch/
lhcc

 6. A. Boehnlein et al. (2020) HL-LHC Software and Computing
Review Panel, 1st Report, CERN-LHCC-2020-012. https:// cds.
cern. ch/ record/ 27254 87

 7. Minutes of the 136th Meeting of the LHCC, CERN-
LHCC-2018-033. https:// cds. cern. ch/ record/ 26492 42

 8. Minutes of the 139th Meeting of the LHCC, CERN-
LHCC-2019-010. https:// cds. cern. ch/ record/ 26894 43

 9. Minutes of the 140th Meeting of the LHCC, CERN-
LHCC-2019-016. https:// cds. cern. ch/ record/ 27027 45

 10. Minutes of the 141st Meeting of the LHCC, CERN-
LHCC-2020-003. https:// cds. cern. ch/ record/ 27114 32

 11. ALICE Collaboration (2008) The ALICE experiment at the
CERN LHC. J Instrum 3:S08002. https:// doi. org/ 10. 1088/ 1748-
0221/3/ 08/ S08002

 12. LHCb Collaboration (2008) The LHCb detector at the LHC.
J Instrum 3:S08005. https:// doi. org/ 10. 1088/ 1748- 0221/3/ 08/
S08005

 13. HEP Software Foundation (2020) Common Tools and Commu-
nity Software, input for the LHCC review of HL-LHC comput-
ing, HSF-DOC-2020-1. https:// doi. org/ 10. 5281/ zenodo. 37792 49

 14. HEP Software Foundation (2019) A roadmap for HEP software
and computing R&D for the 2020s. Comput Softw Big Sci 3:7.
https:// doi. org/ 10. 1007/ s41781- 018- 0018-8

 15. Buckley A, et al. (2019) Monte Carlo event generators for high
energy particle physics event simulation, MCnet-19-02. arxiv:
1902. 01674

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08004
https://home.cern/science/accelerators/high-luminosity-lhc
https://home.cern/science/accelerators/high-luminosity-lhc
https://hepsoftwarefoundation.org/workinggroups/generators.html
https://hepsoftwarefoundation.org/workinggroups/generators.html
https://committees.web.cern.ch/lhcc
https://committees.web.cern.ch/lhcc
https://cds.cern.ch/record/2725487
https://cds.cern.ch/record/2725487
https://cds.cern.ch/record/2649242
https://cds.cern.ch/record/2689443
https://cds.cern.ch/record/2702745
https://cds.cern.ch/record/2711432
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.5281/zenodo.3779249
https://doi.org/10.1007/s41781-018-0018-8
http://arxiv.org/abs/1902.01674
http://arxiv.org/abs/1902.01674

Computing and Software for Big Science (2021) 5:12

1 3

Page 15 of 19 12

 16. CERN Council Open Symposium on the Update of European
Strategy for Particle Physics (2019) Granada. https:// cafpe. ugr.
es/ eppsu 2019

 17. Worldwide LHC Computing Grid. https:// wlcg. web. cern. ch
 18. ATLAS Collaboration (2020) Combined measurements of Higgs

boson production and decay using up to 80 fb−1 of proton-proton
collision data at

√

s = 13 TeV collected with the ATLAS experi-
ment. Phys Rev D 101:12002. https:// doi. org/ 10. 1103/ PhysR evD.
101. 012002

 19. CMS Collaboration (2018) Observation of Higgs boson decay
to bottom quarks. Phys Rev Lett 121:121801. https:// doi. org/ 10.
1103/ PhysR evLett. 121. 121801

 20. Azzi P, et al. (2018) Report from Working Group 1: Stand-
ard Model Physics at the HL-LHC and HE-LHC, CERN-
LPCC-2018-03, HL/HE-LHC Workshop, CERN. arxiv: 1902.
04070

 21. Cepeda M, et al. (2018) Report from Working Group 2: Higgs
physics at the HL-LHC and HE-LHC, CERN-LPCC-2018-04,
HL/HE-LHC Workshop, CERN. arxiv: 1902. 00134

 22. Cid Vidal X, et al. (2018) Report from Working Group 3: Beyond
the Standard Model Physics at the HL-LHC and HE-LHC,
CERN-LPCC-2018-05, HL/HE-LHC Workshop, CERN. arxiv:
1812. 07831

 23. Cerri A, et al. (2018) Report from Working Group 4: Opportu-
nities in Flavour Physics at the HL-LHC and HE-LHC, CERN-
LPCC-2018-06, HL/HE-LHC Workshop, CERN. arxiv: 1812.
07638

 24. Boughezal R, et al. (2017) Generator and Theory Working Group
Chapter for CWP, unpublished draft. https:// github. com/ HSF/
docum ents/ tree/ master/ CWP/ papers/ HSF- CWP- 2017- 11_ gener
ators

 25. Maltoni F, Schönherr M, Nason P. Monte Carlo generators, in
Ref. [20]

 26. HSF Physics Event Generator Computing Workshop (2018).
CERN. https:// indico. cern. ch/ event/ 751693

 27. Buckley A (2020) Computational challenges for MC event
generation. In: Proc. ACAT2019, Saas Fee. J Phys Conf Ser
1525:012023. https:// doi. org/ 10. 1088/ 1742- 6596/ 1525/1/ 012023

 28. Sexton-Kennedy L, Stewart G. CWP challenges and workshop
aims, in Ref. [26]. https:// indico. cern. ch/ event/ 751693/ contr ibuti
ons/ 31829 27

 29. Bothmann E, et al. (2019) Event generation with Sherpa 2.2.
SciPost Phys 7:34. https:// doi. org/ 10. 21468/ SciPo stPhys. 7.3. 034

 30. Alwall J, et al. (2014) The automated computation of tree-level
and next-to-leading order differential cross sections, and their
matching to parton shower simulations, JHEP07(2014)079.
https:// doi. org/ 10. 1007/ JHEP0 7(2014) 079

 31. McFayden J. ATLAS needs and concerns, in Ref. [26]. https://
indico. cern. ch/ event/ 751693/ contr ibuti ons/ 31829 32

 32. Yazgan E. CMS needs and concerns, in Ref. [26]. https:// indico.
cern. ch/ event/ 751693/ contr ibuti ons/ 31829 36

 33. ATLAS and CMS Collaborations (2019) Comparison of ATLAS
and CMS nominal tt̄ Monte Carlo simulation for Run 2, CMS-
DP-2019-011, CERN. https:// cds. cern. ch/ record/ 26789 59

 34. Valassi A (2019) Overview of the GPU efforts for WLCG pro-
duction workloads, Pre-GDB on benchmarking, CERN. https://
indico. cern. ch/ event/ 739897/ contr ibuti ons/ 35591 34

 35. Buckley A et al. (2011) General-purpose event generators for
LHC physics. Phys Rep 504:145. https:// doi. org/ 10. 1016/j. physr
ep. 2011. 03. 005

 36. Sjöstrand T (2012) Introduction to Monte Carlo techniques in
High Energy Physics, CERN Summer Student Lectures. https://
indico. cern. ch/ event/ 190076

 37. Sjöstrand T (2016) Status and developments of event generators,
Fourth LHC Physics Conference (LHCP2016), Lund. arxiv: 1608.
06425

 38. Alioli S, et al. (2010) A general framework for implementing
NLO calculations in shower Monte Carlo programs: the POW-
HEG BOX, JHEP06(2010)043. https:// doi. org/ 10. 1007/ JHEP0
6(2010) 043

 39. Sjöstrand T, et al. (2015) An introduction to PYTHIA 8.2. Com-
put Phys Comm 191:159. https:// doi. org/ 10. 1016/j. cpc. 2015. 01.
024

 40. Bähr M et al. (2008) Herwig++ physics and manual. Eur Phys J
C 58:639. https:// doi. org/ 10. 1140/ epjc/ s10052- 008- 0798-9

 41. Bellm J et al. (2016) HERWIG 7.0/HERWIG++ 3.0 release-
note, Eur Phys J C 76:196. https:// doi. org/ 10. 1140/ epjc/
s10052- 016- 4018-8

 42. Bellm J, et al. (2017) Herwig 7.1 Release Note CERN-PH-
TH-2017-109. arxiv: 1705. 06919

 43. Mangano ML, et al. (2003) Alpgen, a generator for hard mul-
tiparton processes in hadronic collisions, JHEP07(2003)001.
https:// doi. org/ 10. 1088/ 1126- 6708/ 2003/ 07/ 001

 44. Lönnblad L (1992) Ariadne version 4: a program for simula-
tion of QCD cascades implementing the colour dipole model.
Comp Phys Comm 71:15. https:// doi. org/ 10. 1016/ 0010- 4655(92)
90068-A

 45. ATLAS Collaboration (2012) Summary of ATLAS Pythia 8
tunes, ATL-PHYS-PUB-2012-003. https:// cds. cern. ch/ record/
14741 07

 46. CMS Collaboration (2020) Extraction and validation of a new set
of CMS Pythia8 tunes from underlying-event measurements. Eur
Phys J C 80:4. https:// doi. org/ 10. 1140/ epjc/ s10052- 019- 7499-4

 47. Ju X, et al. A novel workflow of generator tunings in HPC for
LHC new physics searches, in Ref. [26]. https:// indico. cern. ch/
event/ 751693/ contr ibuti ons/ 31830 27

 48. Bellm J, Gellersen L (2020) High dimensional parameter tuning
for event generators. Eur Phys J C 80:54. https:// doi. org/ 10. 1140/
epjc/ s10052- 019- 7579-5

 49. Frederix R, Frixione S (2012) Merging meets matching in MC@
NLO. JHEP12(2012)061. https:// doi. org/ 10. 1007/ JHEP1 2(2012)
061

 50. Frixione S, Webber BR (2002) Matching NLO. QCD computa-
tions and parton shower simulations. JHEP06(2002)029. https://
doi. org/ 10. 1088/ 1126- 6708/ 2002/ 06/ 029

 51. Frixione S, Nason P, Oleari C (2007) Matching NLO QCD com-
putations with parton shower simulations: the POWHEG method.
JHEP11(2007)070. https:// doi. org/ 10. 1088/ 1126- 6708/ 2007/ 11/
070

 52. Jadach S, et al. (2015) Matching NLO QCD with parton shower in
Monte Carlo scheme—the KrkNLO method. JHEP10(2015)052.
https:// doi. org/ 10. 1007/ JHEP1 0(2015) 052

 53. Catani S, Krauss F, Kuhn R, Webber BR (2001) QCD matrix
elements + parton showers. JHEP11(2001)063. https:// doi. org/
10. 1088/ 1126- 6708/ 2001/ 11/ 063

 54. Lönnblad L (2002) Correcting the colour-dipole cascade model
with fixed order matrix elements. JHEP05(2002)046. https:// doi.
org/ 10. 1088/ 1126- 6708/ 2002/ 05/ 046

 55. Mangano ML, Moretti M, Pittau R (2002) Multijet matrix ele-
ments and shower evolution in hadronic collisions: Wbb̄ + n-jets
as a case study. Nucl Phys B 632:343. https:// doi. org/ 10. 1016/
S0550- 3213(02) 00249-3

 56. Alwall J et al. (2008) Comparative study of various algorithms
for the merging of parton showers and matrix elements in had-
ronic collisions. Eur Phys J C 53:473. https:// doi. org/ 10. 1140/
epjc/ s10052- 007- 0490-5

 57. Höche S, Krauss F, Schönherr M (2014) Uncertainties in
MEPS@NLO calculations of h+jets. Phys Rev D 90:014012.
https:// doi. org/ 10. 1103/ PhysR evD. 90. 014012

 58. Hamilton K, Nason P, Zanderighi G (2012) MINLO: multi-scale
improved NLO. JHEP10(2012)155. https:// doi. org/ 10. 1007/
JHEP1 0(2012) 155

https://cafpe.ugr.es/eppsu2019
https://cafpe.ugr.es/eppsu2019
https://wlcg.web.cern.ch
https://doi.org/10.1103/PhysRevD.101.012002
https://doi.org/10.1103/PhysRevD.101.012002
https://doi.org/10.1103/PhysRevLett.121.121801
https://doi.org/10.1103/PhysRevLett.121.121801
http://arxiv.org/abs/1902.04070
http://arxiv.org/abs/1902.04070
http://arxiv.org/abs/1902.00134
http://arxiv.org/abs/1812.07831
http://arxiv.org/abs/1812.07831
http://arxiv.org/abs/1812.07638
http://arxiv.org/abs/1812.07638
https://github.com/HSF/documents/tree/master/CWP/papers/HSF-CWP-2017-11_generators
https://github.com/HSF/documents/tree/master/CWP/papers/HSF-CWP-2017-11_generators
https://github.com/HSF/documents/tree/master/CWP/papers/HSF-CWP-2017-11_generators
https://indico.cern.ch/event/751693
https://doi.org/10.1088/1742-6596/1525/1/012023
https://indico.cern.ch/event/751693/contributions/3182927
https://indico.cern.ch/event/751693/contributions/3182927
https://doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.1007/JHEP07(2014)079
https://indico.cern.ch/event/751693/contributions/3182932
https://indico.cern.ch/event/751693/contributions/3182932
https://indico.cern.ch/event/751693/contributions/3182936
https://indico.cern.ch/event/751693/contributions/3182936
https://cds.cern.ch/record/2678959
https://indico.cern.ch/event/739897/contributions/3559134
https://indico.cern.ch/event/739897/contributions/3559134
https://doi.org/10.1016/j.physrep.2011.03.005
https://doi.org/10.1016/j.physrep.2011.03.005
https://indico.cern.ch/event/190076
https://indico.cern.ch/event/190076
http://arxiv.org/abs/1608.06425
http://arxiv.org/abs/1608.06425
https://doi.org/10.1007/JHEP06(2010)043
https://doi.org/10.1007/JHEP06(2010)043
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1140/epjc/s10052-008-0798-9
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://doi.org/10.1140/epjc/s10052-016-4018-8
http://arxiv.org/abs/1705.06919
https://doi.org/10.1088/1126-6708/2003/07/001
https://doi.org/10.1016/0010-4655(92)90068-A
https://doi.org/10.1016/0010-4655(92)90068-A
https://cds.cern.ch/record/1474107
https://cds.cern.ch/record/1474107
https://doi.org/10.1140/epjc/s10052-019-7499-4
https://indico.cern.ch/event/751693/contributions/3183027
https://indico.cern.ch/event/751693/contributions/3183027
https://doi.org/10.1140/epjc/s10052-019-7579-5
https://doi.org/10.1140/epjc/s10052-019-7579-5
https://doi.org/10.1007/JHEP12(2012)061
https://doi.org/10.1007/JHEP12(2012)061
https://doi.org/10.1088/1126-6708/2002/06/029
https://doi.org/10.1088/1126-6708/2002/06/029
https://doi.org/10.1088/1126-6708/2007/11/070
https://doi.org/10.1088/1126-6708/2007/11/070
https://doi.org/10.1007/JHEP10(2015)052
https://doi.org/10.1088/1126-6708/2001/11/063
https://doi.org/10.1088/1126-6708/2001/11/063
https://doi.org/10.1088/1126-6708/2002/05/046
https://doi.org/10.1088/1126-6708/2002/05/046
https://doi.org/10.1016/S0550-3213(02)00249-3
https://doi.org/10.1016/S0550-3213(02)00249-3
https://doi.org/10.1140/epjc/s10052-007-0490-5
https://doi.org/10.1140/epjc/s10052-007-0490-5
https://doi.org/10.1103/PhysRevD.90.014012
https://doi.org/10.1007/JHEP10(2012)155
https://doi.org/10.1007/JHEP10(2012)155

 Computing and Software for Big Science (2021) 5:12

1 3

 12 Page 16 of 19

 59. Lönnblad L, Prestel S (2013) Merging multi-leg NLO matrix
elements with parton showers. JHEP03(2013)166. https:// doi.
org/ 10. 1007/ JHEP0 3(2013) 166

 60. Plätzer S, Gieseke S (2012) Dipole showers and automated NLO
matching in Herwig++. Eur Phys J C 72:2187. https:// doi. org/
10. 1140/ epjc/ s10052- 012- 2187-7

 61. Plätzer S (2013) Controlling inclusive cross sections in parton
shower + matrix element merging, JHEP08(2013)114. https://
doi. org/ 10. 1007/ JHEP0 8(2013) 114

 62. Bellm J, Gieseke S, Plätzer S (2018) Merging NLO multi-jet
calculations with improved unitarization. Eur Phys J C 78:244.
https:// doi. org/ 10. 1140/ epjc/ s10052- 018- 5723-2

 63. Lange DJ (2001) The EvtGen particle decay simulation package.
Nucl Instrum Meth A 462:152. https:// doi. org/ 10. 1016/ S0168-
9002(01) 00089-4

 64. Jadach S, Was Z, Decker R, Kühn JH (1993) The �
decay library TAUOLA, version 2.4. Comp Phys Comm 76:361.
https:// doi. org/ 10. 1016/ 0010- 4655(93) 90061-G

 65. Golonka P, Was Z (2006) PHOTOS Monte Carlo: a precision
tool for QED corrections in Z and W decays. Eur Phys J C 45:97.
https:// doi. org/ 10. 1140/ epjc/ s2005- 02396-4

 66. Botje M (2011) The PDF4LHC Working Group Interim Recom-
mendations. arxiv: 1101. 0538v1

 67. Buckley A et al. (2015) LHAPDF6: parton density access in the
LHC precision era. Eur Phys J C 75:132. https:// doi. org/ 10. 1140/
epjc/ s10052- 015- 3318-8

 68. Buckley A et al. (2013) Rivet user manual. Comp Phys Comm
184:2803. https:// doi. org/ 10. 1016/j. cpc. 2013. 05. 021

 69. Buckley A et al. (2010) Systematic event generator tuning for
the LHC. Eur Phys J C 65:331. https:// doi. org/ 10. 1140/ epjc/
s10052- 009- 1196-7

 70. Dobbs M, Hansen JB (2001) The HepMC C++ Monte Carlo
event record for High Energy Physics. Comp Phys Comm 134:41.
https:// doi. org/ 10. 1016/ S0010- 4655(00) 00189-2

 71. Buckley A et al. (2021) The HepMC3 event record library for
Monte Carlo event generators. Comp Phys Comm 260:107310.
https:// doi. org/ 10. 1016/j. cpc. 2020. 107310

 72. Cacciari M, Salam GP, Soyez G (2012) FastJet user man-
ual. Eur Phys J C 72:1896. https:// doi. org/ 10. 1140/ epjc/
s10052- 012- 1896-2

 73. Roiser S, et al. (2015) The LHCb Distributed Computing Model
and Operations during LHC Runs 1, 2 and 3, Proc. ISGC2015,
Taipei. https:// doi. org/ 10. 22323/1. 239. 0005

 74. Caravaglios F, Moretti M (1995) An algorithm to compute Born
scattering amplitudes without Feynman graphs. Phys Lett B
358:332. https:// doi. org/ 10. 1016/ 0370- 2693(95) 00971-M

 75. James F (1968) Monte Carlo phase space, CERN Yellow Report
CERN-68-15. https:// doi. org/ 10. 5170/ CERN- 1968- 015

 76. James F (1980) Monte Carlo theory and practice. Rep Progr Phys
43:1145. https:// doi. org/ 10. 1088/ 0034- 4885/ 43/9/ 002

 77. James F, Moneta L (2020) Review of high-quality random num-
ber generators. Comput Softw Big Sci 4:2. https:// doi. org/ 10.
1007/ s41781- 019- 0034-3

 78. Weinzierl S (2000) Introduction to Monte Carlo methods,
NIKHEF-00-012. arxiv: hep- ph/ 00062 69

 79. James F, Hoogland J, Kleiss R (1997) Multidimensional sam-
pling for simulation and integration: measures, discrepancies,
and quasi-random numbers. Comp Phys Comm 99:180. https://
doi. org/ 10. 1016/ S0010- 4655(96) 00108-7

 80. Czakon M, Mitov A (2014) Top++: A program for the calcula-
tion of the top-pair cross-section at hadron colliders. Comp Phys
Comm 185:2930. https:// doi. org/ 10. 1016/j. cpc. 2014. 06. 021

 81. Lepage GP (1978) A new algorithm for adaptive multidimen-
sional integration. J Comp Phys 27:192. https:// doi. org/ 10. 1016/
0021- 9991(78) 90004-9

 82. Lepage GP (1980) VEGAS: an adaptive multi-dimensional inte-
gration program, Cornell report CLNS-447. https:// cds. cern. ch/
record/ 123074

 83. Ilten P. LHCb needs and concerns, in Ref. [26]. https:// indico.
cern. ch/ event/ 751693/ contr ibuti ons/ 31829 38

 84. Davis A (2020) Fast Simulation in LHCb, Workshop in Effi-
cient Computing for High Energy Physics (ECHEP), Edinburgh.
https:// indico. ph. ed. ac. uk/ event/ 66/ contr ibuti ons/ 844

 85. Collins J, Soper D, Sterman G (1989) Factorization of Hard
Processes in QCD. Adv Ser Direct High Energy Phys 5:1 arxiv:
hep- ph/ 04093 13v1

 86. Weinzierl S (2012) NLO Calculations, Monte Carlo School,
Hamburg. https:// indico. desy. de/ indico/ event/ 5064/ sessi on/8

 87. Zaro M (2015) MadGraph5_aMC@NLO tutorial, QCD and event
simulation for the LHC lectures, Pavia. https:// cp3. irmp. ucl. ac.
be/ proje cts/ madgr aph/ wiki/ Pavia 2015

 88. Luisoni G (2017) An introduction to POWHEG, Dartmouth-UW
Experimental/Theory discussion. https:// indico. cern. ch/ event/
602457/ contr ibuti ons/ 24354 08

 89. Alwall J, et al. (2009) New Developments in MadGraph/MadE-
vent, Proc. SUSY08, Seoul. AIP Conf Proc 1078:84. https:// doi.
org/ 10. 1063/1. 30520 56

 90. MadGraph, Technical details for setting up and running the
Grid Package. https:// cp3. irmp. ucl. ac. be/ proje cts/ madgr aph/
wiki/ GridD evelo pment

 91. Sherpa Integration, Sherpa 2.0.0 Manual (2013) https:// sherpa.
hepfo rge. org/ doc/ SHERPA- MC-2. 0.0. html# Integ ration

 92. Yazgan E (2018) Event Generators in CMS, CMS Heavy Fla-
vor Tagging Workshop, Brussels. https:// indico. cern. ch/ event/
695320/ contr ibuti ons/ 28509 50

 93. Lange D. Practical computing considerations, in Ref. [26].
https:// indico. cern. ch/ event/ 751693/ contr ibuti ons/ 31829 40

 94. Bishara F, Montull M (2019) (Machine) Learning amplitudes
for faster event generation, DESY 19-232. arxiv: 1912. 11055

 95. Danziger K (2020) Efficiency Improvements in Monte Carlo
Algorithms for High-Multiplicity Processes, Master-Arbeit
Thesis, TU Dresden, CERN-THESIS-2020-024. https:// cds.
cern. ch/ record/ 27157 27

 96. Press WH, Farrar GR (1990) Recursive stratified sampling
for multidimensional Monte Carlo Integration. Comput Phys
4:190. https:// doi. org/ 10. 1063/1. 48228 99

 97. Kleiss R, Pittau R (1994) Weight optimization in multichannel
Monte Carlo. Comput Phys Comm 83:141. https:// doi. org/ 10.
1016/ 0010- 4655(94) 90043-4

 98. Ohl T (1999) Vegas revisited: adaptive Monte Carlo integration
beyond factorization. Comput Phys Comm 120:13. https:// doi.
org/ 10. 1016/ S0010- 4655(99) 00209-X

 99. Kleiss RH, Stirling WJ, Ellis SD (1986) A new Monte Carlo
treatment of multiparticle phase space at high energies. Com-
put Phys Comm 40:359. https:// doi. org/ 10. 1016/ 0010- 4655(86)
90119-0

 100. Kawabata S (1986) A new Monte Carlo event generator for high
energy physics. Comput Phys Comm 41:127. https:// doi. org/ 10.
1016/ 0010- 4655(86) 90025-1

 101. Kawabata S (1995) A new version of the multi-dimensional inte-
gration and event generation package BASES/SPRING. Com-
put Phys Comm 88:309. https:// doi. org/ 10. 1016/ 0010- 4655(95)
00028-E

 102. Nason P (2007) MINT: a Computer Program for Adaptive Monte
Carlo Integration and Generation of Unweighted Distributions.
Bicocca-FT-07-13. arxiv: 0709. 2085

 103. Jadach S (2003) Foam: a general-purpose cellular Monte Carlo
event generator. Comput Phys Comm 152:55. https:// doi. org/ 10.
1016/ S0010- 4655(02) 00755-5

https://doi.org/10.1007/JHEP03(2013)166
https://doi.org/10.1007/JHEP03(2013)166
https://doi.org/10.1140/epjc/s10052-012-2187-7
https://doi.org/10.1140/epjc/s10052-012-2187-7
https://doi.org/10.1007/JHEP08(2013)114
https://doi.org/10.1007/JHEP08(2013)114
https://doi.org/10.1140/epjc/s10052-018-5723-2
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1016/0010-4655(93)90061-G
https://doi.org/10.1140/epjc/s2005-02396-4
http://arxiv.org/abs/1101.0538v1
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1016/j.cpc.2013.05.021
https://doi.org/10.1140/epjc/s10052-009-1196-7
https://doi.org/10.1140/epjc/s10052-009-1196-7
https://doi.org/10.1016/S0010-4655(00)00189-2
https://doi.org/10.1016/j.cpc.2020.107310
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.22323/1.239.0005
https://doi.org/10.1016/0370-2693(95)00971-M
https://doi.org/10.5170/CERN-1968-015
https://doi.org/10.1088/0034-4885/43/9/002
https://doi.org/10.1007/s41781-019-0034-3
https://doi.org/10.1007/s41781-019-0034-3
http://arxiv.org/abs/hep-ph/0006269
https://doi.org/10.1016/S0010-4655(96)00108-7
https://doi.org/10.1016/S0010-4655(96)00108-7
https://doi.org/10.1016/j.cpc.2014.06.021
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/0021-9991(78)90004-9
https://cds.cern.ch/record/123074
https://cds.cern.ch/record/123074
https://indico.cern.ch/event/751693/contributions/3182938
https://indico.cern.ch/event/751693/contributions/3182938
https://indico.ph.ed.ac.uk/event/66/contributions/844
http://arxiv.org/abs/hep-ph/0409313v1
http://arxiv.org/abs/hep-ph/0409313v1
https://indico.desy.de/indico/event/5064/session/8
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Pavia2015
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Pavia2015
https://indico.cern.ch/event/602457/contributions/2435408
https://indico.cern.ch/event/602457/contributions/2435408
https://doi.org/10.1063/1.3052056
https://doi.org/10.1063/1.3052056
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/GridDevelopment
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/GridDevelopment
https://sherpa.hepforge.org/doc/SHERPA-MC-2.0.0.html#Integration
https://sherpa.hepforge.org/doc/SHERPA-MC-2.0.0.html#Integration
https://indico.cern.ch/event/695320/contributions/2850950
https://indico.cern.ch/event/695320/contributions/2850950
https://indico.cern.ch/event/751693/contributions/3182940
http://arxiv.org/abs/1912.11055
https://cds.cern.ch/record/2715727
https://cds.cern.ch/record/2715727
https://doi.org/10.1063/1.4822899
https://doi.org/10.1016/0010-4655(94)90043-4
https://doi.org/10.1016/0010-4655(94)90043-4
https://doi.org/10.1016/S0010-4655(99)00209-X
https://doi.org/10.1016/S0010-4655(99)00209-X
https://doi.org/10.1016/0010-4655(86)90119-0
https://doi.org/10.1016/0010-4655(86)90119-0
https://doi.org/10.1016/0010-4655(86)90025-1
https://doi.org/10.1016/0010-4655(86)90025-1
https://doi.org/10.1016/0010-4655(95)00028-E
https://doi.org/10.1016/0010-4655(95)00028-E
http://arxiv.org/abs/0709.2085
https://doi.org/10.1016/S0010-4655(02)00755-5
https://doi.org/10.1016/S0010-4655(02)00755-5

Computing and Software for Big Science (2021) 5:12

1 3

Page 17 of 19 12

 104. Maltoni F, Stelzer T (2003) MadEvent: automatic event genera-
tion with MadGraph, JHEP02(2003)027. https:// doi. org/ 10. 1088/
1126- 6708/ 2003/ 02/ 027

 105. Brass S, Kilian W, Reuter J (2019) Parallel adaptive Monte Carlo
integration with the event Generator WHIZARD. Eur Phys J C
79:344. https:// doi. org/ 10. 1140/ epjc/ s10052- 019- 6840-2

 106. Kilian W, Ohl T, Reuter J (2011) WHIZARD: simulating multi-
particle processes at LHC and ILC. Eur Phys J C 71:1742. https://
doi. org/ 10. 1140/ epjc/ s10052- 011- 1742-y

 107. Gleisberg T, Höche S (2008) Comix, a new matrix element gen-
erator, JHEP12(2008)039. https:// doi. org/ 10. 1088/ 1126- 6708/
2008/ 12/ 039

 108. Gao C et al. (2020) Event generation with normalizing flows.
Phys Rev D 101:076002. https:// doi. org/ 10. 1103/ PhysR evD. 101.
076002

 109. Gao C, et al. (2020) i-flow: High-dimensional Integration and
Sampling with Normalizing Flows. Mach Learn 1:045023.
https:// doi. org/ 10. 1088/ 2632- 2153/ abab62

 110. Bendavid J (2017) Efficient Monte Carlo integration using
boosted decision trees and generative deep neural networks.
arxiv: 1707. 00028

 111. Klimek MD, Perelstein M (2020) Neural network-based approach
to phase space integration. SciPost Phys 9:53. https:// doi. org/ 10.
21468/ SciPo stPhys. 9.4. 053

 112. Gleyzer S, Seyfert P, Schramm S (eds.) et al. (2019) Machine
Learning in High Energy Physics Community White Paper.
arxiv: 1807. 02876

 113. Bothmann E, et al. (2020) Exploring phase space with Neural
Importance Sampling. SciPost Phys 8:69. https:// doi. org/ 10.
21468/ SciPo stPhys. 8.4. 069

 114. Generative Models session, ML4Jets2020 workshop, NYU.
https:// indico. cern. ch/ event/ 809820/ sessi ons/ 329213

 115. Butter A, Plehn T, Winterhalder R (2019) How to GAN LHC
events. SciPost Phys 7:075. https:// doi. org/ 10. 21468/ SciPo
stPhys. 7.6. 075

 116. Matchev KT, Shyamsundar P (2020) OASIS: optimal analysis-
specific importance sampling for event generation. arxiv: 2006.
16972

 117. Alioli S, et al. (2011) Jet pair production in POWHEG,
JHEP04(2011)081. https:// doi. org/ 10. 1007/ JHEP0 4(2011) 081

 118. MadGraph, Biasing the generation of unweighted partonic events
at LO, https:// cp3. irmp. ucl. ac. be/ proje cts/ madgr aph/ wiki/ LOEve
ntGen erati onBias

 119. Frederix et al. (2016) Heavy-quark mass effects in Higgs plus jets
production. JHEP08(2016)006. https:// doi. org/ 10. 1007/ JHEP0
8(2016) 006

 120. Sherpa Enhance_Function, Sherpa 2.0.0 Manual (2013). https://
sherpa. hepfo rge. org/ doc/ SHERPA- MC-2. 0.0. html# Enhan ce_
005fF uncti on

 121. Pythia8 Sample Main Programs, http:// home. thep. lu. se/ ~torbj
orn/ pythi a81ht ml/ Sampl eMain Progr ams. html

 122. Alwall J, de Visscher S, Maltoni F (2009) QCD radiation
in the production of heavy colored particles at the LHC.
JHEP02(2009)017. https:// doi. org/ 10. 1088/ 1126- 6708/ 2009/
02/ 017

 123. ATLAS Collaboration (2017) ATLAS simulation of boson plus
jets processes in Run 2, ATL-PHYS-PUB-2017-006. http:// cds.
cern. ch/ record/ 22619 37

 124. Gieseke S, Röhr C, Siódmok A (2012) Colour reconnections in
Herwig++. Eur Phys J C 72:2225. https:// doi. org/ 10. 1140/ epjc/
s10052- 012- 2225-5

 125. Gieseke S, et al. (2018) Colour reconnection from soft gluon
evolution. JHEP11(2018)149. https:// doi. org/ 10. 1007/ JHEP1
1(2018) 149

 126. Gainer JS, et al. (2014) Exploring theory space with Monte Carlo
reweighting. JHEP10(2014)78. https:// doi. org/ 10. 1007/ JHEP1
0(2014) 078

 127. Mrenna S, Skands P (2016) Automated parton-shower varia-
tions in Pythia8. Phys Rev D 94:074005. https:// doi. org/ 10. 1103/
PhysR evD. 94. 074005

 128. Mattelaer O (2016) On the maximal use of Monte Carlo sam-
ples: re-weighting events at NLO accuracy. Eur Phys J C 76:674.
https:// doi. org/ 10. 1140/ epjc/ s10052- 016- 4533-7

 129. Bothmann E, Schönherr M, Schumann S (2016) Reweighting
QCD matrix-element and parton-shower calculations. Eur Phys
J C 76:590. https:// doi. org/ 10. 1140/ epjc/ s10052- 016- 4430-0

 130. Bendavid J, et al. (2017) Les Houches 2017: Physics at TeV
Colliders Standard Model Working Group Report. Proc Les
Houches. arxiv: 1803. 07977

 131. Valassi A (2020) Optimising HEP parameter fits via Monte Carlo
weight derivative regression, Proc. CHEP2019, Adelaide. EPJ
Web of Conf 245:6038. https:// doi. org/ 10. 1051/ epjco nf/ 20202
45060 38

 132. Bellm J et al. (2016) Reweighting parton showers. Phys Rev D
94:034028. https:// doi. org/ 10. 1103/ PhysR evD. 94. 034028

 133. Bellm J et al. (2016) Parton-shower uncertainties with Herwig
7: benchmarks at leading order. Eur Phys J C 76:665. https:// doi.
org/ 10. 1140/ epjc/ s10052- 016- 4506-x

 134. ATLAS collaboration (2020) Measurements of WH and ZH
production in the H → bb̄ decay channel in pp collisions at 13
TeV with the ATLAS detector, ATLAS-CONF-2020-006. http://
cdsweb. cern. ch/ record/ 27148 85

 135. Cranmer K, Pavez J, Louppe G (2015) Approximating Likeli-
hood Ratios with Calibrated Discriminative Classifiers. arxiv:
1506. 02169

 136. Andreassen A, Nachman B (2020) Neural networks for full
phase-space reweighting and parameter tuning. Phys Rev D
101:091901. https:// doi. org/ 10. 1103/ PhysR evD. 101. 091901

 137. Peyré G, Cuturi M (2019) Computational optimal transport
foundations and trends in machine. Learning 11:355. arxiv:
1803. 00567

 138. Rogozhnikov A (2015) Reweighting with Boosted Decision
Trees. http:// arogo zhnik ov. github. io/ 2015/ 10/ 09/ gradi ent- boost
ed- rewei ghter. html

 139. Frederix R, Frixione S, Prestel S. Torrielli P (2020) On the
reduction of negative weights in MC@NLO-type matching
procedures. JHEP07(2020)238. https:// doi. org/ 10. 1007/ JHEP0
7(2020) 238

 140. Höche S, Li Y, Prestel S (2015) Drell-Yan lepton pair pro-
duction at NNLO QCD with parton showers. Phys Rev D
91:074015. https:// doi. org/ 10. 1103/ PhysR evD. 91. 074015

 141. Höche S, Prestel S (2017) Triple collinear emissions in par-
ton showers. Phys Rev D 96:074017. https:// doi. org/ 10. 1103/
PhysR evD. 96. 074017

 142. Plätzer S, Sjodahl M, Thorén J (2018) Color matrix element
corrections for parton showers. JHEP11(2018)009. https:// doi.
org/ 10. 1007/ JHEP1 1(2018) 009

 143. Á. Martínez R, et al. (2018) Soft gluon evolution and non-
global logarithms. JHEP05(2018)044. https:// doi. org/ 10. 1007/
JHEP0 5(2018) 044

 144. Olsson J, Plätzer S, Sjodahl M (2020) Resampling algorithms
for high energy physics simulations. Eur Phys J C 80:934.
https:// doi. org/ 10. 1140/ epjc/ s10052- 020- 08500-y

 145. Rubin DB (1987) A noniterative sampling/importance resam-
pling alternative to the data augmentation algorithm for creat-
ing a few imputations when the fraction of missing information
is modest: the SIR algorithm (comment on an article by Tan-
ner and Wong). J Am Statist Assoc 82:543. https:// doi. org/ 10.
2307/ 22894 60

https://doi.org/10.1088/1126-6708/2003/02/027
https://doi.org/10.1088/1126-6708/2003/02/027
https://doi.org/10.1140/epjc/s10052-019-6840-2
https://doi.org/10.1140/epjc/s10052-011-1742-y
https://doi.org/10.1140/epjc/s10052-011-1742-y
https://doi.org/10.1088/1126-6708/2008/12/039
https://doi.org/10.1088/1126-6708/2008/12/039
https://doi.org/10.1103/PhysRevD.101.076002
https://doi.org/10.1103/PhysRevD.101.076002
https://doi.org/10.1088/2632-2153/abab62
http://arxiv.org/abs/1707.00028
https://doi.org/10.21468/SciPostPhys.9.4.053
https://doi.org/10.21468/SciPostPhys.9.4.053
http://arxiv.org/abs/1807.02876
https://doi.org/10.21468/SciPostPhys.8.4.069
https://doi.org/10.21468/SciPostPhys.8.4.069
https://indico.cern.ch/event/809820/sessions/329213
https://doi.org/10.21468/SciPostPhys.7.6.075
https://doi.org/10.21468/SciPostPhys.7.6.075
http://arxiv.org/abs/2006.16972
http://arxiv.org/abs/2006.16972
https://doi.org/10.1007/JHEP04(2011)081
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/LOEventGenerationBias
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/LOEventGenerationBias
https://doi.org/10.1007/JHEP08(2016)006
https://doi.org/10.1007/JHEP08(2016)006
https://sherpa.hepforge.org/doc/SHERPA-MC-2.0.0.html#Enhance_005fFunction
https://sherpa.hepforge.org/doc/SHERPA-MC-2.0.0.html#Enhance_005fFunction
https://sherpa.hepforge.org/doc/SHERPA-MC-2.0.0.html#Enhance_005fFunction
http://home.thep.lu.se/%7etorbjorn/pythia81html/SampleMainPrograms.html
http://home.thep.lu.se/%7etorbjorn/pythia81html/SampleMainPrograms.html
https://doi.org/10.1088/1126-6708/2009/02/017
https://doi.org/10.1088/1126-6708/2009/02/017
http://cds.cern.ch/record/2261937
http://cds.cern.ch/record/2261937
https://doi.org/10.1140/epjc/s10052-012-2225-5
https://doi.org/10.1140/epjc/s10052-012-2225-5
https://doi.org/10.1007/JHEP11(2018)149
https://doi.org/10.1007/JHEP11(2018)149
https://doi.org/10.1007/JHEP10(2014)078
https://doi.org/10.1007/JHEP10(2014)078
https://doi.org/10.1103/PhysRevD.94.074005
https://doi.org/10.1103/PhysRevD.94.074005
https://doi.org/10.1140/epjc/s10052-016-4533-7
https://doi.org/10.1140/epjc/s10052-016-4430-0
http://arxiv.org/abs/1803.07977
https://doi.org/10.1051/epjconf/202024506038
https://doi.org/10.1051/epjconf/202024506038
https://doi.org/10.1103/PhysRevD.94.034028
https://doi.org/10.1140/epjc/s10052-016-4506-x
https://doi.org/10.1140/epjc/s10052-016-4506-x
http://cdsweb.cern.ch/record/2714885
http://cdsweb.cern.ch/record/2714885
http://arxiv.org/abs/1506.02169
http://arxiv.org/abs/1506.02169
https://doi.org/10.1103/PhysRevD.101.091901
http://arxiv.org/abs/1803.00567
http://arxiv.org/abs/1803.00567
http://arogozhnikov.github.io/2015/10/09/gradient-boosted-reweighter.html
http://arogozhnikov.github.io/2015/10/09/gradient-boosted-reweighter.html
https://doi.org/10.1007/JHEP07(2020)238
https://doi.org/10.1007/JHEP07(2020)238
https://doi.org/10.1103/PhysRevD.91.074015
https://doi.org/10.1103/PhysRevD.96.074017
https://doi.org/10.1103/PhysRevD.96.074017
https://doi.org/10.1007/JHEP11(2018)009
https://doi.org/10.1007/JHEP11(2018)009
https://doi.org/10.1007/JHEP05(2018)044
https://doi.org/10.1007/JHEP05(2018)044
https://doi.org/10.1140/epjc/s10052-020-08500-y
https://doi.org/10.2307/2289460
https://doi.org/10.2307/2289460

 Computing and Software for Big Science (2021) 5:12

1 3

 12 Page 18 of 19

 146. Andersen JR, Gutschow C, Maier A, Prestel S (2020) A
positive resampler for Monte Carlo Events with negative
weights. Eur Phys JC 80:1007. https:// doi. org/ 10. 1140/ epjc/
s10052- 020- 08548-w

 147. Nachman B, Thaler J (2020) A neural resampler for Monte
Carlo reweighting with preserved uncertainties. Phys Rev D
102:076004. https:// doi. org/ 10. 1103/ PhysR evD. 102. 076004

 148. Michelotto M, et al. (2010) A comparison of HEP code
with SPEC benchmarks on multi-core worker nodes, Proc.
CHEP2009, Prague. J Phys Conf Ser 219:052009. https:// doi.
org/ 10. 1088/ 1742- 6596/ 219/5/ 052009

 149. Valassi A, et al. (2020) Using HEP experiment workflows
for the benchmarking and accounting of WLCG comput-
ing resources. Proc CHEP2019, Adelaide, EPJ Web of Conf
245:07035. https:// doi. org/ 10. 1051/ epjco nf/ 20202 45070 35

 150. Höche S, et al. (2012) A critical appraisal of NLO+PS match-
ing methods. JHEP09(2012)049. https:// doi. org/ 10. 1007/
JHEP0 9(2012) 049

 151. Höche S, et al. (2013) QCD matrix elements + parton show-
ers: the NLO case. JHEP04(2013)027. https:// doi. org/ 10. 1007/
JHEP0 4(2013) 027

 152. Konstantinov D (2020) Optimization of Pythia8, EP-SFT group
meeting, CERN. https:// indico. cern. ch/ event/ 890670

 153. Martin T (2020) Computational bottlenecks, ECHEP/ Excali-
bur Workshop. https:// indico. cern. ch/ event/ 928965/ contr ibuti
ons/ 39332 34

 154. Bauer C, et al. (2013) Computing for perturbative QCD: a Snow-
mass White Paper SLAC-PUB-15740. arxiv: 1309. 3598

 155. Valassi A, Yazgan E, McFayden J (2020) Monte Carlo generators
challenges and strategy towards HL-LHC. WLCG Meeting with
LHCC Referees. https:// doi. org/ 10. 5281/ zenodo. 40288 34

 156. Agostinelli S et al. (2003) Geant4—a simulation toolkit. Nucl
Instr Meth A 506:250. https:// doi. org/ 10. 1016/ S0168- 9002(03)
01368-8

 157. Seiskari O, Kommeri J, Niemi T (2012) GPU in physics compu-
tation: case Geant4 navigation. arxiv: 1209. 5235

 158. Murakami K, et al. (2013) Geant4 based simulation of radiation
dosimetry in CUDA. Proc IEEE NSS/MIC, Seoul. https:// doi.
org/ 10. 1109/ NSSMIC. 2013. 68294 52

 159. Corti G, et al. (2016) HEP software community meeting on
GeantV R&D Panel Report. https:// hepso ftwar efoun dation. org/
assets/ Geant VPane lRepo rt201 61107. pdf

 160. Canal P (2019) Geant Exascale Pilot Project, Geant4 R&D Meet-
ing, CERN. https:// indico. cern. ch/ event/ 809393/ contr ibuti ons/
34411 14

 161. Gheata A (2019) Design, implementation and performance
results of the GeantV prototype, Outcome of the GeantV proto-
type HSF meeting, CERN. https:// indico. cern. ch/ event/ 818702/
contr ibuti ons/ 35591 24

 162. Amadio G, et al. (2020) GeantV: results from the prototype of
concurrent vector particle transport simulation in HEP. arxiv:
2005. 00949

 163. Oak Ridge Leadership Computing Facility, Summit. https:// www.
olcf. ornl. gov/ summit

 164. Feldman M (2018) New GPU-Accelerated Supercomputers
Change the Balance of Power on the TOP500, Top500 news.
https:// www. top500. org/ news/ new- gpu- accel erated- super compu
ters- change- the- balan ce- of- power- on- the- top500

 165. Hagiwara K et al. (2010) Fast calculation of HELAS amplitudes
using graphics processing unit (GPU). Eur Phys J C 66:477.
https:// doi. org/ 10. 1140/ epjc/ s10052- 010- 1276-8

 166. Hagiwara K et al. (2010) Calculation of HELAS amplitudes for
QCD processes using graphics processing unit (GPU). Eur Phys
J C 70:513. https:// doi. org/ 10. 1140/ epjc/ s10052- 010- 1465-5

 167. Hagiwara K et al. (2013) Fast computation of MadGraph ampli-
tudes on graphics processing unit (GPU). Eur Phys J C 73:2608.
https:// doi. org/ 10. 1140/ epjc/ s10052- 013- 2608-2

 168. de Aquino P, Link W, Maltoni F, Mattelaer O, Stelzer T (2012)
ALOHA: Automatic libraries of helicity amplitudes for Feynman
diagram computations. Comput Phys Comm 183:2254. https://
doi. org/ 10. 1016/j. cpc. 2012. 05. 004

 169. Murayama H, Watanabe I, Hagiwara K (1992) HELAS: HELic-
ity Amplitude Subroutines for Feynman Diagram Evaluations,
KEK-Report 91-11. https:// lib- extopc. kek. jp/ prepr ints/ PDF/
1991/ 9124/ 91240 11. pdf

 170. Watanabe I, Murayama H, Hagiwara K (1992) Evaluating Cross
Sections at TeV Energy Scale by HELAS, KEK preprint 92-39.
https:// lib- extopc. kek. jp/ prepr ints/ PDF/ 1992/ 9227/ 92270 39. pdf

 171. Kanzaki J (2011) Monte Carlo integration on GPU. Eur Phys J
C 71:1559. https:// doi. org/ 10. 1140/ epjc/ s10052- 011- 1559-8

 172. Kanzaki J (2011) Application of graphics processing unit (GPU)
to software in elementary particle/high energy physics field. Proc
Comput Sci 4:869. https:// doi. org/ 10. 1016/j. procs. 2011. 04. 092

 173. Roiser S (2020) Progress on porting MadGraph5_aMC@NLO
to GPUs, HSF/WLCG Virtual Workshop. https:// indico. cern. ch/
event/ 941278/ contr ibuti ons/ 41017 93

 174. Zenker E, et al. (2016) Alpaka—An Abstraction Library for Par-
allel Kernel Acceleration, Proc. IEEE IPDPSW 2016, Chicago.
https:// doi. org/ 10. 1109/ IPDPSW. 2016. 50

 175. Alpaka—Abstraction Library for Parallel Kernel Acceleration.
https:// github. com/ alpaka- group/ alpaka

 176. Intel oneAPI Toolkits (Beta). https:// softw are. intel. com/ en- us/
oneapi

 177. Wu H-Z, Zhang J-J, Pang L-G, Wang Q (2019) ZMCintegral:
a package for multi-dimensional Monte Carlo integration on
multi-GPUs. Comput Phys Comm 248:106962. https:// doi. org/
10. 1016/j. cpc. 2019. 106962

 178. Carrazza S, Cruz-Martinez JM (2020) VegasFlow: accelerating
Monte Carlo simulation across multiple hardware platforms.
Comput Phys Comm 254:107376. https:// doi. org/ 10. 1016/j. cpc.
2020. 107376

 179. Carrazza S, Cruz-Martinez JM, Rossi M (2020) PDFFlow: parton
distribution functions on GPU. arxiv: 2009. 06635

 180. Jun SY, et al. (2019) Vectorization of random number genera-
tion and reproducibility of concurrent particle transport simula-
tion. Proc ACAT2019, Saas Fee. https:// inspi rehep. net/ liter ature/
17544 23

 181. Kreps M. EvtGen status and plans, in Ref. [26]. https:// indico.
cern. ch/ event/ 751693/ contr ibuti ons/ 31829 56

 182. Calafiura P, et al. (2004) The Athena Control Framework in
Production, New Developments and Lessons Learned. Proc
CHEP2004, Interlaken. https:// doi. org/ 10. 5170/ CERN- 2005-
002. 456

 183. Calafiura P, et al. (2015) Running ATLAS workloads within
massively parallel distributed applications using Athena Multi-
Process framework (AthenaMP). J Phys Conf Ser 664:072050.
https:// doi. org/ 10. 1088/ 1742- 6596/ 664/7/ 072050

 184. Elmsheuser J, et al. (2019) ATLAS Grid Workflow Perfor-
mance Optimization, Proc. CHEP2018, Sofia. EPJ Web of Conf
214:3021. https:// doi. org/ 10. 1051/ epjco nf/ 20192 14030 21

 185. Leggett C, et al. (2017) AthenaMT: upgrading the ATLAS soft-
ware framework for the many-core world with multi-threading,
Proc. CHEP2016, San Francisco. J Phys Conf Ser 898:042009.
https:// doi. org/ 10. 1088/ 1742- 6596/ 898/4/ 042009

 186. Bandieramonte M, et al. (2020) Multi-threaded simulation for
ATLAS: challenges and validation strategy, Proc. CHEP2019,
Adelaide. EPJ Web of Conf 245:02001. https:// doi. org/ 10. 1051/
epjco nf/ 20202 45020 01

https://doi.org/10.1140/epjc/s10052-020-08548-w
https://doi.org/10.1140/epjc/s10052-020-08548-w
https://doi.org/10.1103/PhysRevD.102.076004
https://doi.org/10.1088/1742-6596/219/5/052009
https://doi.org/10.1088/1742-6596/219/5/052009
https://doi.org/10.1051/epjconf/202024507035
https://doi.org/10.1007/JHEP09(2012)049
https://doi.org/10.1007/JHEP09(2012)049
https://doi.org/10.1007/JHEP04(2013)027
https://doi.org/10.1007/JHEP04(2013)027
https://indico.cern.ch/event/890670
https://indico.cern.ch/event/928965/contributions/3933234
https://indico.cern.ch/event/928965/contributions/3933234
http://arxiv.org/abs/1309.3598
https://doi.org/10.5281/zenodo.4028834
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
http://arxiv.org/abs/1209.5235
https://doi.org/10.1109/NSSMIC.2013.6829452
https://doi.org/10.1109/NSSMIC.2013.6829452
https://hepsoftwarefoundation.org/assets/GeantVPanelReport20161107.pdf
https://hepsoftwarefoundation.org/assets/GeantVPanelReport20161107.pdf
https://indico.cern.ch/event/809393/contributions/3441114
https://indico.cern.ch/event/809393/contributions/3441114
https://indico.cern.ch/event/818702/contributions/3559124
https://indico.cern.ch/event/818702/contributions/3559124
http://arxiv.org/abs/2005.00949
http://arxiv.org/abs/2005.00949
https://www.olcf.ornl.gov/summit
https://www.olcf.ornl.gov/summit
https://www.top500.org/news/new-gpu-accelerated-supercomputers-change-the-balance-of-power-on-the-top500
https://www.top500.org/news/new-gpu-accelerated-supercomputers-change-the-balance-of-power-on-the-top500
https://doi.org/10.1140/epjc/s10052-010-1276-8
https://doi.org/10.1140/epjc/s10052-010-1465-5
https://doi.org/10.1140/epjc/s10052-013-2608-2
https://doi.org/10.1016/j.cpc.2012.05.004
https://doi.org/10.1016/j.cpc.2012.05.004
https://lib-extopc.kek.jp/preprints/PDF/1991/9124/9124011.pdf
https://lib-extopc.kek.jp/preprints/PDF/1991/9124/9124011.pdf
https://lib-extopc.kek.jp/preprints/PDF/1992/9227/9227039.pdf
https://doi.org/10.1140/epjc/s10052-011-1559-8
https://doi.org/10.1016/j.procs.2011.04.092
https://indico.cern.ch/event/941278/contributions/4101793
https://indico.cern.ch/event/941278/contributions/4101793
https://doi.org/10.1109/IPDPSW.2016.50
https://github.com/alpaka-group/alpaka
https://software.intel.com/en-us/oneapi
https://software.intel.com/en-us/oneapi
https://doi.org/10.1016/j.cpc.2019.106962
https://doi.org/10.1016/j.cpc.2019.106962
https://doi.org/10.1016/j.cpc.2020.107376
https://doi.org/10.1016/j.cpc.2020.107376
http://arxiv.org/abs/2009.06635
https://inspirehep.net/literature/1754423
https://inspirehep.net/literature/1754423
https://indico.cern.ch/event/751693/contributions/3182956
https://indico.cern.ch/event/751693/contributions/3182956
https://doi.org/10.5170/CERN-2005-002.456
https://doi.org/10.5170/CERN-2005-002.456
https://doi.org/10.1088/1742-6596/664/7/072050
https://doi.org/10.1051/epjconf/201921403021
https://doi.org/10.1088/1742-6596/898/4/042009
https://doi.org/10.1051/epjconf/202024502001
https://doi.org/10.1051/epjconf/202024502001

Computing and Software for Big Science (2021) 5:12

1 3

Page 19 of 19 12

 187. Allison J et al. (2016) Recent developments in Geant4. Nucl Instr
Meth A 835:186. https:// doi. org/ 10. 1016/j. nima. 2016. 06. 125

 188. Clemencic M, et al. (2011) The LHCb Simulation Application,
Gauss: Design, Evolution and Experience, Proc. CHEP2010,
Taipei. J Phys Conf Ser 331:032023. https:// doi. org/ 10. 1088/
1742- 6596/ 331/3/ 032023

 189. Barrand G et al. (2001) GAUDI—A software architecture and
framework for building HEP data processing applications. Com-
put Phys Comm 140:45. https:// doi. org/ 10. 1016/ S0010- 4655(01)
00254-5

 190. Clemencic M, et al. (2010) Recent developments in the LHCb
software framework Gaudi, Proc. CHEP2009, Prague. J Phys
Conf Ser 219:042006. https:// doi. org/ 10. 1088/ 1742- 6596/ 219/4/
042006

 191. Stagni F, Valassi A, Romanovskiy V (2020) Integrating LHCb
workflows on HPC resources: status and strategies, Proc.
CHEP2019, Adelaide. EPJ Web of Conf 245:09002. https:// doi.
org/ 10. 1051/ epjco nf/ 20202 45090 02

 192. Siddi BG, Müller D (2019) Gaussino—a Gaudi-Based Core
Simulation Framework. Proc IEEE NSS/MIC 2019, Manchester.
https:// doi. org/ 10. 1109/ NSS/ MIC42 101. 2019. 90600 74

 193. Sexton-Kennedy E, Gartung P, Jones CD, Lange D (2015) Imple-
mentation of a Multi-threaded Framework for Large-scale Sci-
entific Applications, Proc. ACAT2014, Prague. J Phys Conf Ser
608:012034. https:// doi. org/ 10. 1088/ 1742- 6596/ 608/1/ 012034

 194. Jones CD, et al. (2015) Using the CMS threaded framework in
a production environment. J Phys Conf Ser 664:072026. https://
doi. org/ 10. 1088/ 1742- 6596/ 664/7/ 072026

 195. Jones CD (2017) CMS event processing multi-core efficiency
status, Proc. CHEP2016, San Francisco. J Phys Conf Ser
898:042008. https:// doi. org/ 10. 1088/ 1742- 6596/ 898/4/ 042008

 196. Hildreth M, Ivanchenko VN, Lange DJ (2017) Upgrades for
the CMS simulation, Proc. CHEP2016, San Francisco. J Phys
Conf Ser 898:042040. https:// doi. org/ 10. 1088/ 1742- 6596/ 898/4/
042040

 197. Bendavid J (2016) CMS experience with current generators,
Argonne and Fermilab Workshop on Beyond Leading Order
Calculations on HPCs, Fermilab. https:// indico. cern. ch/ event/
557731/ contr ibuti ons/ 23094 58

 198. Li C (2021) The CMS Offline WorkBook: multithreading in gen-
erators, CMS Public Web. https:// twiki. cern. ch/ twiki/ bin/ view/
CMSPu blic/ WorkB ookGe nMult ithre ad

 199. Boos E et al. (2001) Generic user process interface for event gen-
erators. Proc. Physics at TeV colliders Workshop, Les Houches
arxiv: hep- ph/ 01090 68

 200. Alwall J et al. (2007) A standard format for Les Houches Event
Files. Comput Phys Comm 176:300. https:// doi. org/ 10. 1016/j.
cpc. 2006. 11. 010

 201. Dongarra JJ et al. (1996) A message passing standard for MPP
and workstations. Comm ACM. https:// doi. org/ 10. 1145/ 233977.
234000

 202. Höche S, Prestel S, Schulz H (2019) Simulation of vector boson
plus many final jets at the high luminosity LHC. Phys Rev D
100:0140124. https:// doi. org/ 10. 1103/ PhysR evD. 100. 014024

 203. NERSC, Cori. https:// docs. nersc. gov/ syste ms/ cori
 204. Childers JT et al. (2017) Adapting the serial Alpgen parton-

interaction generator to simulate LHC collisions on millions of
parallel threads. Comp Phys Comm 210:54. https:// doi. org/ 10.
1016/j. cpc. 2016. 09. 013

 205. Argonne Leadership Computing Facility, Mira. https:// www. alcf.
anl. gov/ alcf- resou rces/ mira

 206. Mattelaer O. MG5aMC status and plans, in Ref. [26]. https://
indico. cern. ch/ event/ 751693/ contr ibuti ons/ 31829 51

 207. Campbell J, Neumann T (2019) Precision phenomenology with
MCFM, JHEP12(2019)034. https:// doi. org/ 10. 1007/ JHEP1
2(2019) 034

 208. The OpenMP API specification for parallel programming, https://
www. openmp. org

 209. Mattelaer O, Ostrolenk K (2021) Speeding up MadGraph5_
aMC@NLO, MCNET-21-01. arxiv: 2102. 00773

 210. Hamilton K, et al. (2013) Merging H/W/Z + 0 and 1 jet at NLO
with no merging scale: a path to parton shower + NNLO match-
ing. JHEP05(2013)082. https:// doi. org/ 10. 1007/ JHEP0 5(2013)
082

 211. Alioli S, et al. (2014) Matching fully differential NNLO calcula-
tions and parton showers. JHEP06(2014)089. https:// doi. org/ 10.
1007/ JHEP0 6(2014) 089

 212. Monni PF, et al. (2020) MiNNLOPS: A new method to match
NNLO QCD to parton showers. JHEP05(2020)143. https:// doi.
org/ 10. 1007/ JHEP0 5(2020) 143

 213. Mazzitelli J, et al. (2020) Next-to-next-to-leading order event
generation for top-quark pair production, CERN-TH-2020-219.
arxiv: 2012. 14267

 214. Hamilton K, et al. (2013) NNLOPS simulation of Higgs boson
production. JHEP10(2013)222. https:// doi. org/ 10. 1007/ JHEP1
0(2013) 222

 215. Chawdhry HA, et al. (2020) NNLO QCD corrections to three-
photon production at the LHC. JHEP02(2020)57. https:// doi. org/
10. 1007/ JHEP0 2(2020) 057

 216. Czakon M, Fiedler P, Heymes D, Mitov A (2016) NNLO QCD
predictions for fully-differential top-quark pair production at the
Tevatron. JHEP05(2016)034. https:// doi. org/ 10. 1007/ JHEP0
5(2016) 034

 217. Catani S, et al. (2019) Top-quark pair production at the LHC:
fully differential QCD predictions at NNLO. JHEP07(2019)100.
https:// doi. org/ 10. 1007/ JHEP0 7(2019) 100

 218. Höche S, Prestel S (2015) The midpoint between dipole and par-
ton showers. Eur Phys J C 75:461. https:// doi. org/ 10. 1140/ epjc/
s10052- 015- 3684-2

 219. Fischer N, Prestel S, Ritzmann M, Skands P (2016) VINCIA for
hadron colliders. Eur Phys J C 76:589. https:// doi. org/ 10. 1140/
epjc/ s10052- 016- 4429-6

 220. Nagy Z, Soper DE (2018) Jets and threshold summation in
deductor. Phys Rev D 98:014035. https:// doi. org/ 10. 1103/ PhysR
evD. 98. 014035

 221. Höche S, Krauss F, Prestel S (2017) Implementing NLO DGLAP
evolution in parton showers. JHEP10(2017)093. https:// doi. org/
10. 1007/ JHEP1 0(2017) 093

 222. Dulat F, Höche S, Prestel S (2018) Leading-color fully differen-
tial two-loop soft corrections to QCD dipole showers. Phys Rev
D 98:074013. https:// doi. org/ 10. 1103/ PhysR evD. 98. 074013

 223. Dasgupta M et al. (2020) Parton showers beyond leading loga-
rithmic accuracy. Phys Rev Lett 125:052002. https:// doi. org/ 10.
1103/ PhysR evLett. 125. 052002

 224. Actis S, et al. (2013) Recursive generation of one-loop ampli-
tudes in the Standard Model. JHEP04(2013)037. https:// doi. org/
10. 1007/ JHEP0 4(2013) 037

 225. Kallweit S, et al. (2015) NLO electroweak automation and
precise predictions for W+multijet production at the LHC.
JHEP04(2015)012. https:// doi. org/ 10. 1007/ JHEP0 4(2015) 012

 226. Schönherr M (2018) An automated subtraction of NLO EW
infrared divergences. Eur Phys J C 78:119. https:// doi. org/ 10.
1140/ epjc/ s10052- 018- 5600-z

 227. Frederix R, et al. (2018) The automation of next-to-leading order
electroweak calculations. JHEP07(2018)185. https:// doi. org/ 10.
1007/ JHEP0 7(2018) 185

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1088/1742-6596/331/3/032023
https://doi.org/10.1088/1742-6596/331/3/032023
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1088/1742-6596/219/4/042006
https://doi.org/10.1088/1742-6596/219/4/042006
https://doi.org/10.1051/epjconf/202024509002
https://doi.org/10.1051/epjconf/202024509002
https://doi.org/10.1109/NSS/MIC42101.2019.9060074
https://doi.org/10.1088/1742-6596/608/1/012034
https://doi.org/10.1088/1742-6596/664/7/072026
https://doi.org/10.1088/1742-6596/664/7/072026
https://doi.org/10.1088/1742-6596/898/4/042008
https://doi.org/10.1088/1742-6596/898/4/042040
https://doi.org/10.1088/1742-6596/898/4/042040
https://indico.cern.ch/event/557731/contributions/2309458
https://indico.cern.ch/event/557731/contributions/2309458
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookGenMultithread
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookGenMultithread
http://arxiv.org/abs/hep-ph/0109068
https://doi.org/10.1016/j.cpc.2006.11.010
https://doi.org/10.1016/j.cpc.2006.11.010
https://doi.org/10.1145/233977.234000
https://doi.org/10.1145/233977.234000
https://doi.org/10.1103/PhysRevD.100.014024
https://docs.nersc.gov/systems/cori
https://doi.org/10.1016/j.cpc.2016.09.013
https://doi.org/10.1016/j.cpc.2016.09.013
https://www.alcf.anl.gov/alcf-resources/mira
https://www.alcf.anl.gov/alcf-resources/mira
https://indico.cern.ch/event/751693/contributions/3182951
https://indico.cern.ch/event/751693/contributions/3182951
https://doi.org/10.1007/JHEP12(2019)034
https://doi.org/10.1007/JHEP12(2019)034
https://www.openmp.org
https://www.openmp.org
http://arxiv.org/abs/2102.00773
https://doi.org/10.1007/JHEP05(2013)082
https://doi.org/10.1007/JHEP05(2013)082
https://doi.org/10.1007/JHEP06(2014)089
https://doi.org/10.1007/JHEP06(2014)089
https://doi.org/10.1007/JHEP05(2020)143
https://doi.org/10.1007/JHEP05(2020)143
http://arxiv.org/abs/2012.14267
https://doi.org/10.1007/JHEP10(2013)222
https://doi.org/10.1007/JHEP10(2013)222
https://doi.org/10.1007/JHEP02(2020)057
https://doi.org/10.1007/JHEP02(2020)057
https://doi.org/10.1007/JHEP05(2016)034
https://doi.org/10.1007/JHEP05(2016)034
https://doi.org/10.1007/JHEP07(2019)100
https://doi.org/10.1140/epjc/s10052-015-3684-2
https://doi.org/10.1140/epjc/s10052-015-3684-2
https://doi.org/10.1140/epjc/s10052-016-4429-6
https://doi.org/10.1140/epjc/s10052-016-4429-6
https://doi.org/10.1103/PhysRevD.98.014035
https://doi.org/10.1103/PhysRevD.98.014035
https://doi.org/10.1007/JHEP10(2017)093
https://doi.org/10.1007/JHEP10(2017)093
https://doi.org/10.1103/PhysRevD.98.074013
https://doi.org/10.1103/PhysRevLett.125.052002
https://doi.org/10.1103/PhysRevLett.125.052002
https://doi.org/10.1007/JHEP04(2013)037
https://doi.org/10.1007/JHEP04(2013)037
https://doi.org/10.1007/JHEP04(2015)012
https://doi.org/10.1140/epjc/s10052-018-5600-z
https://doi.org/10.1140/epjc/s10052-018-5600-z
https://doi.org/10.1007/JHEP07(2018)185
https://doi.org/10.1007/JHEP07(2018)185

	Challenges in Monte Carlo Event Generator Software for High-Luminosity LHC
	Abstract
	Introduction
	The HSF Physics Event Generator WG
	Collaborative Challenges
	A Very Diverse Software Landscape
	A Very Diverse Human Environment

	Technical Challenges
	Computational Anatomy of a MC Event Generator
	Inefficiencies in Unweighted Event Generation
	Accounting of Compute Budgets for Generators
	Modernisation of Generator Software

	Physics Challenges (Increasing Precision)
	Conclusions
	Acknowledgements
	References

