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5Université de Strasbourg, CNRS UMR 7550, Observatoire astronomique de Strasbourg, 11 rue de l’Université, 67000 Strasbourg, France
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ABSTRACT

We study the gas kinematics traced by the 21-cm emission of a sample of six H i–rich low surface

brightness galaxies classified as ultra-diffuse galaxies (UDGs). Using the 3D kinematic modelling code
3DBarolo we derive robust circular velocities, revealing a startling feature: H i–rich UDGs are clear

outliers from the baryonic Tully-Fisher relation, with circular velocities much lower than galaxies

with similar baryonic mass. Notably, the baryon fraction of our UDG sample is consistent with the

cosmological value: these UDGs are compatible with having no “missing baryons” within their virial

radii. Moreover, the gravitational potential provided by the baryons is sufficient to account for the

amplitude of the rotation curve out to the outermost measured point, contrary to other galaxies with

similar circular velocities. We speculate that any formation scenario for these objects will require very

inefficient feedback and a broad diversity in their inner dark matter content.

Keywords: galaxies: dwarf — galaxies: formation — galaxies: evolution — galaxies: kinematics and

dynamics — dark matter

1. INTRODUCTION

The baryonic Tully-Fisher relation (BTFR; McGaugh

et al. 2000, 2005) is a tight sequence in the bary-

onic mass–circular velocity plane followed by galaxies

of different types (e.g. den Heijer et al. 2015; Lelli

et al. 2016a; Ponomareva et al. 2017). It has been

of paramount importance and widely used for calibrat-

ing distances to extragalactic objects and to constrain,

for example, semi-analytical and numerical models of

Corresponding author: Pavel E. Mancera Piña

pavel@astro.rug.nl

galaxy formation and evolution (e.g. Governato et al.

2007; Dutton 2012; McGaugh 2012; Sales et al. 2017,

and references therein).

Among the galaxies populating the BTFR, low surface

brightness (LSB) galaxies are of particular interest, and

have been used to investigate the mass distribution and

stellar feedback processes at dwarf galaxy scales (e.g.

Zwaan et al. 1995; de Blok 1997; Dalcanton et al. 1997;

Di Cintio et al. 2019).

Ultra-diffuse galaxies (UDGs; van Dokkum et al.

2015) are an especially notable subset of the LSB galaxy

population due to their extremely low surface bright-

ness values while having effective radii comparable to

L? galaxies. While these galaxies have been known for
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decades (e.g. Sandage & Binggeli 1984; Impey et al.

1988), their recent detection in large numbers in differ-

ent galaxy clusters, groups, and even in isolated envi-

ronments (e.g. Román & Trujillo 2017; Leisman et al.

2017; Mancera Piña et al. 2019), has sparked a renewed

interest in them.

Many UDGs in isolation are H i–rich, opening the pos-

sibility of investigating their gas kinematics. The most

systematic study of H i in UDGs has been carried out

by Leisman et al. (2017), who studied 115 sources1 from

the Arecibo Legacy Fast Arecibo L-band Feed Array

(ALFALFA) catalogue (Giovanelli et al. 2005), as well as

a small subsample of three sources with interferomet-

ric H i data, that meet the optical criteria of having

Re ≥ 1.5 kpc and 〈µ(r,Re)〉 ≥ 24 mag arcsec−2, ac-

cording to Sloan Digital Sky Survey photometry. The

authors reported that such galaxies are H i–rich for their

stellar masses and have low star formation efficiencies,

similar to other gas-dominated dwarfs (e.g. Geha et al.

2006). Perhaps most intriguing, Leisman et al. (2017)

reported that the velocity widths (W50) of the global

H i profiles of their UDGs were significantly narrower

than in other ALFALFA galaxies with similar H i masses.

However, without resolved H i imaging of a significant

sample, this result could be attributed to a very strong

inclination selection effect for their sample, or system-

atics when deriving W50.

Taking all of the above as a starting point, in this

work we undertake 3D–kinematical modeling of resolved

H i synthesis data to study the gas kinematics of six

H i–rich UDGs. The rest of this Letter is organized as

follows: in Section 2 we introduce our sample of galaxies

with their main properties and we describe our strategy

for deriving their kinematics. We present our results

and discussion in Section 3, to then conclude in Section

4. Throughout this work we adopt a ΛCDM cosmology

with Ωm = 0.3, ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1.

2. SAMPLE AND KINEMATICS

Our sample consists of six galaxies identified as H i–

bearing UDGs by Leisman et al. (2017). They have

MHI ∼ 109 M� and are relatively isolated, by requir-

ing that any neighbor with measured redshift within

±500 km s−1 should be at least at 350 kpc away in

projection. Moreover, they have Re > 2 kpc, to ease

optical follow-up.

Our observations were obtained with two interferom-

eters: the data for AGC 122966 and AGC 334315 come

1 H i–rich UDGs represent ∼ 6% of all galaxies with MHI ∼ 108.8

M�, with a cosmic abundance similar to cluster UDGs (Jones et
al. 2018; Mancera Piña et al. 2018).

from the Westerbork Synthesis Radio Telescope (pro-

gram R13B/001; PI Adams) and the rest from the Karl

G. Jansky Very Large Array (programs 14B-243 and

17A-210; PI Leisman). The observations and data re-

duction procedure are described in Leisman et al. (2017)

and more details will be given in Gault et al. (in prep.).

Three more galaxies for which we have data are excluded

from this analysis. AGC 238764 seems to have ordered

rotation of about 20 km s−1, but our data-cube misses

significant flux with respect to the ALFALFA detection.

AGC 749251 shows hints of a velocity gradient but it is

barely resolved and we are not able to constrain its in-

clination better than i . 30◦. AGC 748738 shows signs

of a gradient in velocity but the data are very noisy. We

decide not to consider these three galaxies to keep a re-

liable sample for the kinematic fitting, but more details

on these sources will be given in Gault et al. (in prep.).

We estimate the baryonic mass of our UDGs as

Mbar = 1.33 MHI + M?, with MHI given by:

MHI

M�
= 2.343× 105

(
d

Mpc

)2(
FHI

Jy km s−1

)
(1)

where we assume (Hubble flow) distances as listed in

Leisman et al. (2017), and fluxes derived from the total

H i–maps using the task flux from gipsy (Vogelaar &

Terlouw 2001).

Stellar masses are obtained from the mass-to-light

ratio–color relation of Herrmann et al. (2016) for an ab-

solute magnitude in the g band and a (g − r) color.

In order to derive such measurements we perform aper-

ture photometry following the procedure described in

Marasco et al. (2019) on deep optical data, obtained

with the One Degree Imager of the WIYN 3.5-m tele-

scope at the Kitt Peak National Observatory (Leisman

et al. 2017; Gault et al. in prep.).

We find a mean MHI / M? ≈ 15, confirming that the

baryonic budget is mainly set by the H i content, which

we can robustly measure. Table 1 gives the name, dis-

tance, inclination, baryonic mass, gas-to-stellar mass

ratio, circular velocity, central surface brightness and

color of our galaxies. Figure 1 shows the stellar image,

0th-moment map, major-axis position-velocity (PV) di-

agram, and observed velocity field for a representative

case, AGC 248945. Figure 2 shows the PV diagrams for

the rest of our sample.

Rotation velocities are derived with the software
3DBarolo2 (Di Teodoro & Fraternali 2015), which fits

tilted-ring disc models to the H i data-cubes (e.g. Iorio

2 Version 1.4, http://editeodoro.github.io/Bbarolo/

 http://editeodoro.github.io/Bbarolo/
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Table 1. Name, distance, inclination, baryonic mass, gas-to-stellar mass ratio, circular velocity, central surface
brightness and color of our sample.

Name Distance Inclination log(Mbar/M�) Mgas/M? Vcirc µ(g, 0) g − r

(Mpc) (deg) (km s−1) (mag arcsec−2) (mag)

AGC 114905 76 33 9.21 ± 0.20 7.1+4.9
−2.3 19+6

−4 23.62 ± 0.13 0.30 ± 0.12

AGC 122966 90 34 9.21 ± 0.14 29.1+11.9
−7.0 37+6

−5 25.38 ± 0.23 -0.10 ± 0.22

AGC 219533 96 42 9.36 ± 0.27 19.7+12.2
−8.8 37+5

−6 24.07 ± 0.33 0.12 ± 0.12

AGC 248945 84 66 9.05 ± 0.20 2.4+1.6
−0.8 27+3

−3 23.32 ± 0.35 0.32 ± 0.11

AGC 334315 73 52 9.32 ± 0.14 23.7+9.8
−5.9 26+4

−3 24.52 ± 0.13 -0.08 ± 0.18

AGC 749290 97 39 9.17 ± 0.17 6.1+2.9
−1.7 26+6

−6 24.66 ± 0.30 0.17 ± 0.12

Note—Distances, taken from Leisman et al. (2017), have an uncertainty of ±5 Mpc, while the uncertainty for
the inclination is ±5◦. The central surface brightness is obtained from an exponential fit to the g−band surface
brightness profile.
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Figure 1. A representative galaxy from our sample, AGC 248945. Left : H i contours on top of the r−band image; the contours
are at 0.88, 1.76 and 3.52 × 1020 H i atoms per cm2, the outermost contour corresponds to S/N ≈ 3. The blue ellipse shows the
inclination the galaxy would need to be in the BTFR (see the text for details). Middle: PV-diagram along the kinematic major
axis; black and red contours correspond to data and 3DBarolo best-fit model, respectively; the yellow points show the recovered
rotation velocities. Right : Observed velocity field, at the same scale as the left panel. The grey line shows the kinematic major
axis and the grey ellipse the beam.

et al. 2017; Bacchini et al. 2018). This approach is par-

ticularly suited to deal with our low spatial resolution

data (2− 3 resolution elements per galaxy side) as it is

virtually unaffected by beam-smearing (e.g. Di Teodoro

et al. 2016). While further details about the properties

of our sample and the configuration used in 3DBarolo

will be given in Mancera Piña et al. (in prep.), here we

briefly summarize our methodology.

We give the position angle and inclination to 3DBarolo.

For the former we choose the angle that maximizes the

amplitude of the PV slice along the major axis. The

inclination of each galaxy is derived by minimizing the

residuals between its observed 0th-moment map and

the 0th-moment map of models of the same galaxy

projected at different inclinations between 10◦ − 80◦.

We have tested this method blindly, without a priori

knowledge of the position angle, inclination nor rota-

tion velocity, on a sample of 32 H i–rich dwarfs drawn

from the apostle cosmological hydrodynamical simu-

lations (Fattahi et al. 2016; Sawala et al. 2016), from

which mock data-cubes have been produced at reso-

lution and S/N matching our observations, using the
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Figure 2. PV slices along the major axes of our galaxies. Contours and points as in Figure 1, where AGC 248945 is shown.
The narrowness of the PV diagrams suggests low gas velocity dispersions, as confirmed by 3DBarolo.

martini software3 (Oman et al. 2019). We find that we

can consistently recover the position angle within ±8◦

and the inclination within ±5◦ as long as i & 30◦, with

no systematic trends. These small uncertainties in po-

sition angle and inclination have no significant impact

on the recovered rotation velocities.

We run 3DBarolo with fixed inclination and position

angle, and the rotation velocity and velocity dispersion

as free parameters, for our fiducial inclination i, as well

as for i+5◦ and i−5◦. We find rotation velocities (Vrot)

suggesting flat rotation curves for all our sample. For

calculating Vrot, we use the mean velocity of the rings,

as found with our fiducial inclination. The associated

uncertainties come from the 16th and 84th percentiles

of the velocity distribution obtained when considering

the uncertainty in our inclination. To convert from Vrot

to circular velocity (Vcirc), we correct for pressure sup-

ported motions using 3DBarolo as well (cf. Iorio et al.

2017). As suggested by the narrowness of the PV dia-

grams (Fig. 1 and 2), we find low velocity dispersions

(Mancera Piña et al. in prep.), giving rise to very small

asymmetric drift corrections (. 2 km s−1).

3. RESULTS AND DISCUSSION

In Figure 3 we present the circular velocity–baryonic

mass plane for our H i–rich UDGs, compared with galax-

ies from the SPARC (Lelli et al. 2016b), SHIELD (Mc-

Nichols et al. 2016) and LITTLE THINGS (Iorio et al.

2017) samples. Clearly, all the UDGs studied here lie

significantly above the BTFR.

Our galaxies rotate about 3 times lower than galaxies

with comparable Mbar and effective radius (but higher

surface brightness). Alternatively, they have about 10–

100 times the Mbar of galaxies with similar Vcirc (but

smaller effective radius and higher surface brightness,

on average). These low velocities are consistent with the

3 Version 1.0.2, http://github.com/kyleaoman/martini

observations by Leisman et al. (2017) and Janowiecki et

al. (2019) of H i–rich UDGs having narrower W50 than

galaxies of similar H i mass.

Before discussing the implications of this result we ad-

dress its robustness. The baryonic masses here derived

cannot be substantially overestimated: H i line fluxes

can be measured with good accuracy (and we find fluxes

in agreement with those derived from ALFALFA data by

Leisman et al. 2017), and the distances to the galaxies in

our sample (〈d〉 ∼ 90 Mpc) are large enough to be well

represented by Hubble flow models, so the estimation

of their H i mass is reliable. The H i–rich nature of our

galaxies also implies that the stellar mass and its sys-

tematics play a rather minor role: even M? = 0 would

not move the galaxies significantly in Figure 3.

A severe underestimation of the rotation velocities is

also unlikely. First, the H i emission of the galaxies ex-

tends out to radii ≈ 8–18 kpc, and velocities obtained at

such large radii are expected to be tracing the maximum

of the rotation curve for any plausible dwarf galaxy dark

matter halo (e.g. Oman et al. 2015, their Fig. 2). Sec-

ond, regarding the inclination correction, bringing the

galaxies back to the BTFR would require a nearly face-

on inclination (i ≈ 10◦ − 20◦) for all of them, which

is both unlikely and incompatible with the observed in-

tensity maps, as illustrated in Figure 1, with an ellipse

showing the inclination that the galaxy would need to

be on the BTFR. Third, non-circular motions are not

strong enough to solve the observed discrepancy: re-

gardless of the mode(s), their order, phase or amplitude,

harmonic non-circular motions do not bias Vrot towards

lower values systematically, as long as the viewing an-

gle of the galaxy is random (Oman et al. 2019, their

Fig. 7), and the symmetry of the approaching and re-

ceding sides of our PV-diagrams suggests the absence

of anharmonic components. We also investigated with
3DBarolo the presence of radial motions, but no clear

evidence for this was found, although higher-resolution

observations are needed to further confirm this.

http://github.com/kyleaoman/martini
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Figure 3. Circular velocity versus baryonic mass plane. Galaxies from the SPARC, SHIELD and LITTLE THINGS samples
lie on top of the BTFR. The pink area is the 99% confidence interval of an orthogonal distance regression to the SPARC sample.

H i–rich UDGs are clear outliers of the BTFR, and in a position consistent with having no “missing baryons”.

Finally, it is worth to mention that the observed ve-

locity gradients cannot be attributed to H i winds: in

that case the gas velocity dispersion would be much

higher than observed, and the galaxies would need very

high star formation rate densities, opposite to what is

measured (Leisman et al. 2017).

Previous studies already suggested the existence of out-

liers in the BTFR, or at least an increase in its scatter

at low Vcirc (e.g. Geha et al. 2006). Sometimes, how-

ever, the robustness of the measurements of the rotation

velocities (usually estimated from the global H i profile)

and inclinations of such outliers were unclear (cf. Oman

et al. 2016 and references therein).

Based on the discussion above, we conclude that the

positions of H i–rich UDGs in the Mbar −Vcirc plane

derived here are robust, and our UDGs do not follow

the BTFR4. This suggests that the distribution of late-

type systems in such plane is broader than previously

observed, and may have important implications for the

scatter in the BTFR, which is a strong constraint for

4 It is worth to notice that the two outliers close to our UDGs,
DDO 50 and UGC 7125, also have relatively large effective radii
and/or low surface brightness.

cosmological models. Despite the small scatter previ-

ously reported (e.g. Lelli et al. 2016a; Ponomareva et

al. 2017), our findings open the possibility for a scenario

where the parameter space in the Mbar −Vcirc plane

between the UDGs presented here and the BTFR is

populated by LSB galaxies whose resolved H i kinemat-

ics have not been studied yet, and which are not in our

sample due to sharp selection effects. This may increase

the error budget of the intrinsic scatter of the relation,
but to properly understand the magnitude of this effect

a more complete census of the relative abundances of

these galaxies is required.

A second result emerges when comparing the position

of our galaxies with the curves in Figure 3. The black

dashed curve is the relation between the circular velocity

at the virial radius and the virial mass of dark matter

haloes (Mvir/M� ≈ 4.75 × 105 (Vvir/km s−1)3, for

∆c = 100, cf. McGaugh 2012). If Mvir is multiplied by

the cosmological baryon fraction (fbar ≈ 0.16), this gives

rise to the solid grey curve, indicating the expected po-
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sition for galaxies with a baryon fraction equal to fbar
5.

Unexpectedly, our UDGs lie on top this curve, mean-

ing that they are consistent with having no “missing

baryons”.

Posti et al. (2019) recently discovered that some

massive spirals have virtually no “missing baryons”.

There is, however, a substantial difference between our

UDGs and these massive spirals, as the former are

H i–dominated and have very shallow potential wells

compared to the latter. How, then, is it possible that

they retained all of their gas? One intriguing possibility

is that they have not experienced strong episodes of gas

ejection: feedback processes must have been relatively

weak and the shallow gravitational potentials managed

to retain (or promptly re-accrete) all of their baryons.

We surmise that this could be related to the low gas

velocity dispersions we find for our sample, which sug-

gest a currently weak heating of the gas. This may be

analogous to the “failed feedback problem” of Posti et

al. (2019), although in their case feedback has failed at

limiting the star formation efficiency of massive spiral

galaxies.

Extremely efficient feedback has been invoked to solve

different discrepancies between observations and ΛCDM

predictions (see Tulin & Yu 2018 and Bullock & Boylan-

Kolchin 2017 for a review, including limitations of such

solutions), as well as to explain the formation of UDGs

via feedback-driven outflows resulting from bursty star

formation histories (e.g. Di Cintio et al. 2017). These

new observations seem to present a challenge to these

models.

An alternative scenario could be that our galaxies

reside in haloes with Vcirc ≈ 80 km s−1 but very low

concentration, such that their rotation curves are still

rising at our outermost measured radii. However, this

does not seem feasible since the concentration param-

eter needed for this is c ≈ 1, instead of the expected

c ≈ 10 (Ludlow et al. 2014), making the existence of

such galaxies within the volume of the Universe basi-

cally impossible.

Figure 4 shows the ratio between baryonic and dynam-

ical mass of our UDGs, with a dynamical mass esti-

mated as Mdyn(< Rout) = V2
circ Rout/G, with Rout the

radius of the outermost point of the rotation curve. Both

our sample and LITTLE THINGS galaxies have a mean

Rout/Rd ≈ 4, with Rd the optical disc-scale length.

5 Note that this assumes Vcirc ≈ Vvir, but in general Vcirc tends
to be slightly larger for massive galaxies (Vcirc ≈ 1.5Vvir). This
would flatten the grey curve at high Vcirc values.
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Figure 4. Baryonic to dynamical mass ratio as a function
of the dynamical mass, measured inside ≈ 4 Rd. The solid,
dashed and dotted lines show the position where galaxies
with 0%, 50% and 90% dark matter lie, respectively. LIT-
TLE THINGS galaxies (Iorio et al. 2017) are shown for com-
parison, as well as two estimates for DF–2 (Danieli et al.
2019, D+19 and Trujillo et al. 2019, T+19) and DF–4 van
Dokkum et al. (2019), for which we assume Mbar = M?.

Even if our H i–rich UDGs have a baryon fraction

equal to the cosmological average, their dynamics could

be dark matter-dominated at all radii, as other galax-

ies of similar Vcirc, but this is does not seem to be

the case, since Mbar(R < Rout) ≈ Mdyn(R < Rout). Al-

though more precise values of Mbar and Mdyn should

be determined with better data, Figure 4 indicates that

these galaxies have much less dark matter within the

extent of their discs than other dwarfs and LSB galax-

ies, and that, inside their discs, the baryonic component

dominates.
The dynamical properties here shown resemble those

of tidal dwarf galaxies (Hunter et al. 2000; Lelli et al.

2015). However, given the isolation (mean distance to

nearest neighbor ∼ 1 Mpc) of our UDGs, a tidal dwarf

origin does not seem likely, but this is hard to test with

the current data.

Based on their globular clusters kinematics the UDGs

NGC1052-DF2 (van Dokkum et al. 2018; Danieli et al.

2019) and NGC1052-DF4 (van Dokkum et al. 2019) have

recently been claimed to lack dark matter, although

some concerns exist regarding their distances and envi-

ronments (Trujillo et al. 2019; Monelli & Trujillo 2019).

Our UDGs have robust distances determined from their

recession velocities and avoid dense environments, miti-

gating these concerns. They may be subject to different

systematics, but demonstrate that there may indeed ex-
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ist a previously under-appreciated population of unusu-

ally dark matter-deficient galaxies.

4. CONCLUSIONS

We have analyzed a set of interferometric H i line ob-

servations of gas–dominated UDGs. Using a 3D fitting

technique we obtain robust measurements of their circu-

lar velocities, allowing us to place them in the circular

velocity–baryonic mass plane.

We find that our six galaxies lie well above the BTFR,

with rotation velocities too low given their baryonic

masses. Their position in the circular velocity–baryonic

mass plane implies that they have a baryon fraction

within their virial radius equal or close to the cosmo-

logical value, and we speculate that this could be due to

extremely inefficient feedback, challenging our current

understanding of feedback processes in dwarfs. Addi-

tionally, the dynamics of these galaxies are dominated

by the baryonic component out to the outermost mea-

sured radii, and they have very low dark matter fractions

inside such radii, suggesting a broader distribution in the

dark matter content of galaxies than previously thought.

The fact that galaxies with these properties had not

been reported before is perhaps because interferometric

H i observations are usually targeted based on previous

optical studies. Since UDGs are an extremely optically

faint population, it is not particularly surprising that

this galaxy population has not been identified before.

With the advent of large H i interferometric surveys we

expect this hidden population to come to light.
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