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Abstract. Saint Raymond asked whether continuously differentiable maps
with isolated critical points are necessarily open in infinite dimensional
(Hilbert) spaces. We answer this question negatively by constructing
counterexamples in various settings including all weakly separable spaces.
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1. Introduction

It is well known [1, 5, 17] that C1 (continuously differentiable) maps without
critical points between Banach spaces are open. Saint Raymond [22] asked
whether such phenomenon still occurs if the given maps are relaxed to having
isolated critical points in infinite dimensional (Hilbert) spaces. The purpose
of the paper is to answer this question negatively by constructing counterex-
amples in various real Banach spaces including all weakly separable ones.

Back to finite dimensional spaces, Saint Raymond [22] proved that C1

vector fields with countably many critical points are open provided that the
dimension of the ambient space is higher than 1. This result was rediscovered
by the second-listed author [14] and is implied by Theorem 1 or 2 in [24]
by Titus and Young. Furthermore, the second-listed author [15] showed that
C1 vector fields with isolated critical points are local homeomorphisms given
that the dimension of the ambient space is higher than 2. For the interest
of readers, we refer to [2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 18, 20, 21, 23] for some
relevant works in Euclidean spaces.

Throughout the paper Banach spaces are assumed to be over the field R
of real numbers, and differentiability always means Fréchet differentiability.
Our main result reads as follows.
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Theorem 1.1. Suppose that on the ambient space X0 of some Banach space
X = (X0, ‖ · ‖), there exists another norm µ strictly weaker than ‖ · ‖ such
that

x ∈ X\{0} 7→ µ(x) ∈ R
is everywhere differentiable. Then for any s ≥ 1, the map

x 7→ x · µ(x)s

defined on X is C1, non-open, and has 0 as its only critical point.

To be precise, a map F from an open subset U of X to another Banach
space Y is said to be differentiable at some point x0 ∈ U if there exists a
bounded linear operator JF (x0) : X → Y , called the Jacobian or Fréchet
derivative of F at x0, such that

F (x0 + h) = F (x0) + JF (x0)h+ o(‖h‖) (h→ 0),

and x0 is said to be a regular point of F if the inverse of JF (x0) exists as a
bounded linear map from Y to X, otherwise x0 is called a critical point of
F . Moreover, F is said to be C1 if x 7→ JF (x) is well defined on U and it is
continuous from U to the space of all bounded linear maps from X to Y .

As an immediate application of Theorem 1.1, on the square-summable
sequence space l2 one can first set another norm

µ((xk)∞k=1) :=

( ∞∑
k=1

x2k
k

) 1
2

,

then apply Theorem 1.1 to answer Saint Raymond’s question negatively in
the current setting of infinite dimensional real separable Hilbert spaces. More
examples will be given in the last section of the paper.

2. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. In the following we denote
the given map x 7→ x · µ(x)s on X by F .

(i) Continuous differentiability . We first point out that the norm µ on

X0 actually is a C1 function on X\{0}, which should be a standard result
and follows essentially from [19, Thm. 2(c)]. A short proof of this fact will
be included in the appendix for the sake of completeness. With this property
available, we can easily deduce from Differential Calculus (see e.g. [5, 17])
that F is a C1 map on X\{0} with Jacobian explicitly given by

JF (x)y = y · µ(x)s + x · sµ(x)s−1 · Jµ(x)y, (2.1)

where x ∈ X\{0}, y ∈ X. Note then for any x ∈ X\{0}, one has

‖Jµ(x)‖ ≤ lim sup
‖y‖→0

|µ(x+ y)− µ(x)|
‖y‖

≤ sup
y 6=0

µ(y)

‖y‖
<∞,
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where the finiteness of the supremum, denoted by β, is due to the fact that
the norm µ on X0 is weaker than ‖ · ‖. Thus for any x ∈ X\{0}, we have

‖JF (x)‖ ≤ µ(x)s + ‖x‖ · sµ(x)s−1 · β
≤ (β‖x‖)s + ‖x‖ · s(β‖x‖)s−1 · β
= (1 + s)βs · ‖x‖s,

where the second inequality is due to s ≥ 1. On the other hand, it is easy
to see that F is differentiable at the origin with JF (0) = 0, hence the recent
upper bound for ‖JF (x)‖ implies that x 7→ JF (x) is continuous at the origin
as well. Thus we have proved that F is a C1 map on X.

(ii) Non-openness. We argue by contradiction and suppose F is an open
map. Since F (0) = 0, one can fix a δ ∈ (0, 1) such that for any y in the unit
sphere of X, there exists an element xy in the unit open ball of X satisfying
δy = F (xy), or equivalently

δy = xy · µ(xy)s. (2.2)

Obviously, xy must be of the form xy = ryy for some ry ∈ (0, 1). Thus taking
‖ · ‖-norm on both sides of (2.2) yields

δ = ry · µ(ryy)s ≤ µ(y)s, (2.3)

where the last inequality is due to ry ∈ (0, 1). Note then (2.3) contradicts the
assumption that µ is strictly weaker than ‖ · ‖. Therefore, F is not an open
map on X.

(iii) Unique critical point . It is known in part (i) that 0 is a critical point
of F . In the rest part we let x be an arbitrary non-zero element of X0, and
are going to prove that JF (x) is bijective on X0. If so, one can then deduce
from Banach’s isomorphism theorem that the inverse of JF (x) is a bounded
linear operator on X, or equivalently x is a regular point of F . To establish
the bijectivity of JF (x), we need to show that there exists a unique element
y ∈ X0 depending on an arbitrarily prescribed z ∈ X0 such that JF (x)y = z,
which, in terms of (2.1), is equivalent to

y · µ(x)s + x · sµ(x)s−1 · Jµ(x)y = z. (2.4)

Considering µ(x)s 6= 0, we see that y must be a linear combination of x and
z. Actually, y is of the form

y =
z

µ(x)s
+ γx (2.5)

for some γ ∈ R. By substituting (2.5) into (2.4) and recalling the well-known
fact Jµ(x)x = µ(x), we get

x ·
(
γµ(x)s + sµ(x)s−1 ·

[Jµ(x)z

µ(x)s
+ γµ(x)

])
= 0,

or equivalently

γ(1 + s)µ(x)s + s · Jµ(x)z

µ(x)
= 0 (2.6)
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because x is a non-zero element of X0. Hence the solution γ to (2.6) exists
and is uniquely given by

γ = − s · Jµ(x)z

(s+ 1)µ(x)s+1
. (2.7)

Consequently, the solution y to (2.4) exists and is uniquely given by

y =
z

µ(x)s
− s · Jµ(x)z

(s+ 1)µ(x)s+1
· x. (2.8)

This finishes the proof of the bijectivity claim, and thus concludes the proof
of the whole theorem.

3. Examples

In this section we construct two examples so as to apply Theorem 1.1.
(i) lp spaces. For any p ∈ (1,∞), let lp = (lp, ‖ · ‖p) denote the standard

p-summable sequence space. It is known [16, 25] that

x = (xk)∞k=1 ∈ lp\{0} 7→ ‖x‖p ∈ R
is a differentiable function. Let J : lp 7→ lp be the bounded linear map

(xk)∞k=1 7→ (
xk
k

)∞k=1,

and define µ : lp → R as µ(x) = ‖J(x)‖p. It is straightforward to see that µ
is a strictly weaker norm than ‖ · ‖p on lp, and the function

x ∈ lp\{0} 7→ ‖J(x)‖p ∈ R
is everywhere differentiable because of the composition rule. Thus for any
s ≥ 1, we can deduce from Theorem 1.1 that the map x 7→ x · ‖J(x)‖sp
defined on lp is C1, non-open, and has 0 as its only critical point.

(ii) Weakly separable spaces. We call an infinite dimensional real Banach
space X = (X, ‖ · ‖) weakly separable if there exists a sequence of continuous
linear functionals {lk ∈ X∗}∞k=1 such that

x = 0 in X ⇐⇒ lk(x) = 0 for all k ∈ N. (3.1)

Given such a space, we may assume without loss of generality that ‖lk‖X∗ = 1
for all k ∈ N. Then it is straightforward to verify that

µ : x ∈ X 7→

( ∞∑
k=1

lk(x)2

2k

) 1
2

∈ R

is another norm on X, and x 7→ µ(x)2 is a C1 function on X with Jacobian
explicitly given by

Jµ2(x)y =

∞∑
k=1

lk(x)lk(y)

2k−1
,

where x, y ∈ X. Note that the latter fact implies that

x ∈ X\{0} 7→ µ(x) ∈ R
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is a C1 function as well. For each q ∈ N,

Xq :=

q⋂
k=1

{
x ∈ X : lk(x) = 0

}
is a closed subspace of (X, ‖ · ‖) with codimension ≤ q. Since X is infinite
dimensional, one can pick a non-zero element xq of Xq for each q ∈ N. We
then note

µ(xq) =
( ∞∑
k=q+1

lk(xq)
2

2k

) 1
2 ≤ ‖xq‖√

2q
(q ∈ N),

which implies that µ is strictly weaker than ‖ · ‖ on X. Thus for any s ≥ 1,
we can deduce from Theorem 1.1 that the map

x ∈ X 7→ x · µ(x)s ∈ X
is C1, non-open, and has 0 as its only critical point. Typical weakly separable
spaces include all infinite dimensional real separable Banach spaces and their
dual spaces1, thus lp and Lp(Rd) (d ∈ N) spaces are weakly separable for all
p ∈ [1,∞].

Appendix

In this appendix we provide an elementary proof of the following proposition.
Proposition: Suppose that on the ambient space X0 of some normed space
X = (X0, ‖ · ‖), there exists another norm µ such that it is everywhere
differentiable on X\{0}. Then µ is a C1 function on X\{0}.

Proof: Let x ∈ X\{0} and ε > 0 be arbitrary. Since µ is differentiable
at x (in the normed space X), there exists a δ ∈ (0, ‖x‖) such that

|µ(x+ h)− µ(x)− Jµ(x)h| ≤ ε‖h‖

for all h ∈ X with ‖h‖ < δ. Thus fixing any y, z ∈ X with ‖y‖ < ‖z‖ = δ
2

gives

µ(x+ y + z)− µ(x) ≤ Jµ(x)(y + z) + ε‖y + z‖. (3.2)

Considering t ∈ [0, 1] 7→ µ(x + ty) is a differentiable convex function whose
derivative at t = 0 is Jµ(x)y, we get (see e.g. [10, (3.18.5)])

Jµ(x)y ≤ µ(x+ y)− µ(x). (3.3)

In much the same way, we have

Jµ(x+ y)z ≤ µ(x+ y + z)− µ(x+ y). (3.4)

Adding the last three inequalities together yields

Jµ(x+ y)z − Jµ(x)z ≤ ε‖y + z‖.
By symmetry we should also have

Jµ(x)z − Jµ(x+ y)z ≤ ε‖z − y‖.

1Since a proof of this claim can be obtained by applying the Hahn-Banach theorem suitably,

we intend to leave the details to the interested reader. Hint: for separable Banach spaces,
apply Corollary 7 in [1, p.51]; while for their dual spaces, use Theorem 10 in [1, p.52].
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Combining the last two inequalities and recalling ‖y‖ < ‖z‖ = δ
2 , we get

‖Jµ(x+ y)− Jµ(x)‖ ≤ 2ε

for all y ∈ X with ‖y‖ < δ
2 . This suffices to prove the proposition.
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