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The new measurement of the muon’s anomalous magnetic moment released by the Muon g-2 experiment 
at Fermilab sets strong constraints on the properties of many new particles. Using an effective field theory 
approach to the interactions of higher-spin fields, we evaluate the contribution of an electrically neutral 
and colour singlet spin-3/2 fermion to (g − 2)μ and derive the corresponding constraints on its mass 
and couplings. These constraints are then compared with the ones on spin-1/2 fermions, such as the 
vector-like leptons that are predicted by various extensions of the Standard Model, the excited leptons 
which appear in composite models, as well as the charginos and neutralinos of supersymmetric theories. 
Unlike these new spin-1/2 fermions, the spin-3/2 particles generate only small contributions to the muon 
anomalous magnetic moment unless the effective new physics scale is very close to the electroweak scale.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Muon g − 2 collaboration at Fermilab has released [1,2] the long awaited new measurement of the anomalous magnetic moment 
of the muon, aμ = 1

2 (g −2)μ . The result of the previous Brookhaven E821 muon g −2 experiment was [3] aE821
μ = 116592089(63) ×10−11, 

and had a deviation of about 3.7σ , �aE821
μ = aE821

μ − aSM
μ = (279 ± 76) × 10−11 when compared with the recent worldwide consensus of 

the Standard Model (SM) contribution [4]

aSM
μ = (116591810 ± 43) × 10−11, (1.1)

giving rise to hopes for the presence of new physics contributions. The new result from the Fermilab experiment is [1,2]

aFL
μ = (116592040 ± 54) × 10−11, (1.2)

which, by itself, represents a 3.3σ deviation from the SM prediction. When combined with the previous Brookhaven result one obtains [1,
2]

aEXP
μ = (116592061 ± 41) × 10−11, (1.3)

which implies a 4.2σ deviation from the SM prediction, �aμ = aEXP
μ − aSM

μ = (251 ± 59) × 10−11. This result essentially confirms the 
previous Brookhaven (g − 2)μ measurement but with higher statistics. It is tempting to attribute the discrepancy �aμ to new physics 
beyond the SM, but it could be due to still unknown theoretical and experimental uncertainties.1 In the latter case, the new measurement 
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could serve to constrain new physics parameters in a way that is complementary to the intensive direct searches performed in the high-
energy frontier at the Large Hadron Collider (LHC) experiments.

In this paper, we confront the new (g − 2)μ result with the predictions coming from models beyond the SM, which contain new 
fermions. In particular, we consider the case of a massive electrically neutral and colourless spin-3/2 particle which was recently dis-
cussed [6,7] but, to our knowledge, not in the context of lepton magnetic moments. We use the new measurement to derive constraints 
on the properties of these particles and compare these constraints with the existing ones on other spin-1/2 fermions appearing in various 
supersymmetric and non-supersymmetric theories beyond the SM.

Massive higher-spin particles, in particular spin-3/2 fermions in addition to spin-2 bosons are present in many supersymmetric ex-
tensions of gravity [8–11], and are also predicted in string-theoretical frameworks [12,13]. Furthermore, they are of interest on purely 
phenomenological grounds as, for instance, they may constitute dark matter (DM) [6,14–17], or appear in the form of non-conventional 
experimental signatures at the LHC and future colliders [7]. As presently there is no well-motivated paradigm for searching for new phe-
nomena beyond the SM, all possible directions must be pursued in the search for new physics and thus, considering the possibility of 
higher-spin fields is certainly worthwhile.

In the past, phenomenological studies of generic higher-spin particles have had severe problems related to non-physical degrees of 
freedom in their representations which must be eliminated. For instance, spin-3/2 fermions described by Rarita-Schwinger fields [18]
possess several pathologies, including causality and perturbative unitarity violation [19,20], unless identified with the supersymmetric 
partners of the graviton, the gravitino [21,22].

These difficulties are circumvented in the recently developed effective field theory (EFT) approach to generic higher-spin particles [6,7]. 
This approach considers only the physical degrees of freedom of the higher-spin fields, and thus, although not admitting a Lagrangian 
description [6,23], allows for a consistent calculation of physical observables. It was successfully applied to study the DM [6] and high-
energy collider phenomenology [7] of electrically neutral and colour singlet higher-spin particles, with emphasis on spin-3/2 fermions and 
spin-2 bosons. While in this approach, the spin-2 particles couple only to gauge bosons, spin-3/2 particles have interactions with fermions, 
thus generating contributions to the lepton anomalous magnetic moments that have not been considered in the literature so far. This work 
fills this gap and provides the first example of a loop computation in this effective theory.

For completeness, we will compare our results with models containing new spin-1/2 fermions, the existence of which is predicted by 
many extensions of the SM. Such states can have the usual lepton and baryon quantum numbers with exotic SU(2)L × U(1)Y assignments. 
A prominent example is given by vector–like fermions, with both the left- and right-handed fermions appearing in the same electroweak 
multiplets, allowing for a consistent generation of their masses without invoking the Higgs mechanism. These often emerge in grand 
unified theories [24] and can be used to explain the SM flavour hierarchies [25–27]. One can have sequential fermions, such as a fourth 
family, or mirror fermions that have chiral properties opposite to those of ordinary fermions. However, it is necessary to alter the Higgs 
sector of the SM in order to evade the stringent constraints from the measurements of the Higgs properties at the LHC [28–31]. The 
mixing of the new and the SM fermions with the same U(1)Q and SU(3)C assignments then gives rise to new interactions [24,32]. These 
interactions allow for the decays of the heavy states into the lighter ones and to contributions that could be observed in high-precision 
experiments.

Another type of new states are the excited fermions. Their appearance is a characteristic signature of substructure in the matter sector, 
which is used to explain patterns in the mass spectrum. Ordinary fermions may then correspond to the ground states of the spectrum 
containing excited states that can decay to the former via a magnetic type de-excitation. In the simplest scenarios, the excited fermions 
are assumed to have spin and isospin 1/2, and the transition between the excited and the fundamental states can be described by an 
SU(3)C × SU(2)L × U(1)Y invariant effective interaction of the magnetic type [24,33]. Thus, besides the full couplings to gauge bosons, the 
excited states have couplings to the known fermions and gauge bosons which are inversely proportional to the compositeness scale �. 
These couplings determine the decay and production pattern of the excited states and induce contributions to the (g − 2)μ among other 
observables.

Finally, we will very briefly discuss the case of supersymmetric theories (in their minimal version), in which the superpartners of the 
gauge and Higgs bosons, the spin-1/2 charginos and neutralinos, could also contribute to the (g − 2)μ along with their scalar partners, 
the smuons and their associated sneutrinos. These particles have long been sought for in order to provide an explanation to the previous 
discrepancy in the measurement.

The rest of the paper is organized as follows. In the next section, we present relevant details of the effective theory for a generic 
spin-3/2 fermion, perform the calculation for its contribution to the muon anomalous magnetic moment and confront the result with the 
new measurement. In section 3, we present for comparison the corresponding results for the spin-1/2 fermions: vector-like, excited and 
supersymmetric. We conclude in Section 4. Technical details relevant are presented in Appendix A.

2. Muon’s g-2 in a spin-3/2 effective framework

2.1. Spin-3/2 fermions in an effective field theory

For a charge and colour neutral SM singlet spin-3/2 field in the Lorentz representation (3/2, 0) ⊗ (0, 3/2) [6], that we will denote by 
ψ3/2, there are 6 independent linear dimension-7 operators that allow to describe its interaction with the SM fields [7],

−Hlinear = 1

�3
ψabc

3/2

[
ci jk

q ε I J K ui∗
R Iad j∗

R Jbdk∗
R K c + ci jk

l (LiT
LaεL j

Lb)ek∗
Rc + ci jk

lq (Q iT
LIaεL j

Lb)d
kI∗
Rc

+ cφ

i σ
μν
ab (Dμφ̃)† Dν Li

Lc + cB
i φ̃†σ

μν
ab Bμν Li

Lc + cW
i φ̃†σ

μν
ab σn W n

μν Li
Lc

]
+ h.c.,

(2.1)

where a, b, c are two-spinor indices, I and J are the colour indices, i, j, k the flavour indices, and n is the SU(2)-triplet index. The 
coefficient ci jk

q is symmetric in jk, while ci jk
l is symmetric in i j. Li

a and Q i
a are the left-handed lepton and quark doublets Li

La = (ν i
La, e

i
La)

and Q i = (ui , di ), while ei , ui and di are the right-handed lepton and quark singlets. Bμν and Wμν denote the U(1)Y and SU(2)L
L Ia L Ia L Ia R R R
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Fig. 1. Generic Feynman diagrams that can contribute to g − 2 and the EDM of the muon. The crosses denote the chirality flip on the external leg.

field strengths and φ is the SM Higgs doublet. In the unitary gauge, φ = (0, H + v)/
√

2, where v is the vacuum expectation value v = 246
GeV and H the physical Higgs boson produced at the LHC [34,35]. We define Daȧ = σ

μ
aȧ Dμ , with Dμ being the usual 4-vector covariant 

derivative, and σμ
aȧ given in terms of the identity matrix σ 0 and Pauli σ 1,2,3 matrices (σμν)a

b ≡ i(σμ

aḃ
σ̄ νḃb − σν

aḃ
σ̄ μḃb)/4.

The advantage of this effective framework is that, unlike the Rarita-Schwinger field, the spin-3/2 field in Eq. (2.1) carries only physical 
degrees of freedom [6]. This allows us to consistently study the physics of a generic massive spin-3/2 particle.

In this work, we concentrate on the muon anomalous magnetic moment for which the relevant effective Hamiltonian reads

−Hlinear = 1

�3
ψabc

3/2

[
cμ(L2T

La εL2
Lb)μ

∗
Rc + cφσ

μν
ab (Dμφ̃)† Dν L2

Lc

+cB φ̃†σ
μν
ab Bμν L2

Lc + cW φ̃†σ
μν
ab σn W n

μν L2
Lc

]
+ h.c.,

(2.2)

where we have kept only the ψ3/2 couplings to the second generation leptons. In the following, we will set the coupling cφ to zero 
because the corresponding operator does not contribute to the dipole moments. As we will show briefly, the contribution of cμ operator 
to the electromagnetic dipole moments vanishes on-shell, and thus, the relevant phenomenology will be dictated by the last two operators 
in Eq. (2.2). The Feynman rules for the various interactions of the spin-3/2 field, as well as the other details of our EFT of higher-spin, are 
listed in the appendices of Ref. [7].

2.2. Estimating muon’s g-2 from spin 3/2-fields

The anomalous magnetic and electric dipole moment (EDM) of the muon, aμ ≡ 1
2 (g − 2)μ and dμ respectively, are defined through the 

amplitude [36]

〈μ(p)| Aμ(q) |μ(p + q)〉 = eF1(q
2)γμ + ie

2mμ
F2(q

2)σμνqν + ie

2mμ
F3(q

2)σμνγ5qν, (2.3)

where |μ(p)〉 denotes the muon state with momentum p, mμ is the muon mass, e the electromagnetic coupling constant, and σμν =
i
2 [γμ, γν ]. Then, aμ ≡ F2(0), dμ ≡ − e

2mμ
F3(0) and F1(0) = 1. In the low-energy EFT with only the SM fields, the leading order contribution 

to these form factors is generated by the operators

Lg−2,EDM = − e

4mμ
âμ μ̄σμνμ F μν − i

2
d̂μ μ̄σμνγ5μ F μν, (2.4)

with F μν being the electromagnetic field strength tensor. In terms of their coefficients, we have

aμ = âμ(μ = mμ), dμ = d̂μ(μ = mμ), (2.5)

where μ is the renormalization scale.
The dipole operators in Eq. (2.4) are written in terms of Dirac spinors, while the EFT formalism for spin-3/2 particle utilizes the 

2-spinor formalism [37]. It is therefore convenient to write the dipole operators in terms of two-component spinors as

Lg−2,EDM = − 1

2

(
e

2mμ
âμ + id̂μ

)
(μ

†a
R σμνa

bμLb)F μν + h.c. . (2.6)

One can see that the dipole operators are necessarily chirality changing.
The diagrams that contribute to the anomalous magnetic moment must change the chirality of the incoming and outgoing muons. 

This chirality flip can take place inside the loop or on the external leg. At the one-loop level, there are three types of diagrams that can 
contribute to the dipole moments, depicted in Fig. 1 (the conjugate diagrams are not shown).

The contribution from diagram (a) in Fig. 1 is proportional to the square of the photon’s momentum q2 and thus vanishes on-shell.2

Thus, only the diagrams (b) and (c) will contribute to muon’s g − 2 and EDM. They read

âψ
μ = m2

μv2m2
3/2

8π2�6

[
|cW |2 f1(m3/2) + Re(c∗

W cγ )

sin(θW )
f2(m3/2)

]
,

d̂ψ
μ = mμv2m2

3/2 g2

16π2�6
Im(c∗

W cγ ) f2(m3/2),

(2.7)

2 By Lorentz invariance, the loop integral connecting the two vertices in Fig. 1a can only be proportional to qȧaqḃb + qḃaqȧb which implies that the induced form factors 
must be proportional to q2.
3
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Fig. 2. Left: aψ
μ for different m3/2 and cγ values while the other parameters are fixed as � = 1 TeV, μ = 250 GeV, cW = 1 and cφ = 0. The solid and dashed lines correspond 

to aψ
μ > 0 and aψ

μ < 0, respectively. The light grey region represents the 1σ band of the Fermilab measurement. Right: The production cross section of ψ3/2 particles at the 
LHC as a function m3/2 in the process pp → ψ3/2μ + X at √s = 14 TeV. The production cross section is independent of cγ .

where cγ ≡ −cB cos θW + cW sin θW is the γ νψ3/2 coupling, θW is the Weinberg angle and the functions f1, f2 are given in Appendix A. 
The loops are divergent, and we use dimensional regularization to regularize the integrals. When m3/2 	 mW , the M S-scheme renormal-
ized contributions are approximately

f1 = −13

27
+ 7

18
log

(
μ2

m2
3/2

)
, f2 = 2

3
log

(
μ2

m2
3/2

)
, (2.8)

where μ is the renormalization scale.
We remark that the contribution to the muon magnetic moment in Eq. (2.7) is of the order �−6 while, by naive power counting 

arguments, the UV-physics responsible for the effective Hamiltonian (2.2) could generate the dimension-5 SM dipole operators (2.4)
already at the order �−1 in the EFT. However, depending on the UV completion, the dipole operators and ψ3/2 interactions may be 
generated at very different scales. For example, if ψ3/2 is composite, then � may be associated with its compositeness scale. If the UV-
physics responsible for a composite ψ3/2 does not generate magnetic moments directly, then the latter will be suppressed by some scale 
higher than �. So, the contribution (2.7) from the loops in Fig. 1 can be the leading one.

The magnetic moment in Eq. (2.7) is evaluated at some high scale. To run its value down to the muon mass scale, we closely follow 
Ref. [38], in which the running and matching from several scales to low energies relevant for the muon dipole moments has been 
computed. We assume that m3/2 is sufficiently close to 250 GeV, so that we can fix the renormalization scale μ to this value. Then,

aψ
μ = 0.89 âψ

μ(μ = 250 GeV). (2.9)

The contribution to (g − 2)μ from the higher-spin field as a function of its mass m3/2 and for different values of cγ is shown in the 
left-panel of Fig. 2 for a renormalization scale μ = 250 GeV and a new physics scale � = 1 TeV. The results can be roughly summarized 
as

|aψ
μ| � 2 × 10−11

[
�

TeV

]−6 [m3/2

TeV

]2
, (2.10)

when cW , cγ < 1 as expected in the EFT approach. This contribution to (g − 2)μ is consistent with the SM unless the EFT scale is close to 
the EW scale, � � 250GeV, in which case the validity of the EFT approach is questionable. Also, note that Fig. 2 mildly violates Eq. (2.10)
for masses close to the EFT scale. This behaviour is just an artefact of the large logarithm log(m3/2/μ). Moreover, aψ

μ is negative when 
cγ = 0. A positive aψ

μ may be obtained for specific values of the model parameters, that is, for sufficiently low m3/2 when cγ > 0, or for 
high enough m3/2 when cγ < 0.

As can be seen, for � = 1 TeV, the spin-3/2 contribution to (g −2)μ is typically of order 10−11, more than an order of magnitude below 
the experimental sensitivity in the most favourable case. For a particle with such mass and couplings, the production cross section at the 
LHC in the process pp → qq̄′ → W ∗ → ψ3/2μ + X , as calculated in Ref. [7], is shown in the right panel of Fig. 2. It is rather significant, 
reaching a level of 10 fb at very high masses, a rate that should be sufficient to observe the particle (which could mainly decay into a 
clear signature consisting, e.g., of a W boson and a muon) at the next LHC runs with expected integrated luminosities of several 100 fb−1

to several ab−1.
Nevertheless, one can obtain an anomalous ψ3/2 contribution close to the measured (g − 2)μ value if both the effective scale � and 

the mass m3/2 are close to the weak scale, O(300 GeV). These values are at the boundary of validity of the EFT and, in addition, lead to a 
ψ3/2 cross section at the LHC that is large enough to rule out this possibility.

Finally, ψ3/2 may induce an EDM for the electron and the muon. These are subject to the following bounds [39]

de < 0.87 × 10−28 e cm, dμ < 1.8 × 10−19 e cm, (2.11)

which translate into bounds on the imaginary parts of the couplings cW and cγ as

Im
[

ce∗
W ce

γ

]
< 1.6 × 10−14 log

(
μ2

m2
3/2

)
�6

m2
3/2 GeV4

,

Im
[
cμ∗

W cμ
γ

]
< 1.7 × 10−8 log

(
μ2

m2

)
�6

m2 GeV4
.

(2.12)
3/2 3/2
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In particular, for the choice of parameters used above, μ = 250 GeV, m3/2 = 200 GeV and � = 1000 GeV, the constraints read

Im
[

ce∗
W ce

γ

]
< 0.88, Im

[
cμ∗

W cμ
γ

]
< 8.8 × 106. (2.13)

Thus, current observations easily allow for O(1) imaginary parts of cμ
W , cμ

γ but can be mildly constraining in the case of the electron.

3. Comparison with new spin-1/2 fermions

3.1. Vector-like leptons

For charged heavy leptons with exotic SU(2)L × U(1)Y quantum numbers, except for singlet neutrinos without electromagnetic or weak 
charges, the couplings to the photon, W and Z bosons are unsuppressed. The new states mix with the SM leptons in a model-dependent 
and a possibly rather complicated way, especially if different generations can mix.

In the following, we will consider as an example the case of vector-like leptons that have been introduced in Ref. [25] in order to 
explain flavour hierarchies in the SM; see also Refs. [26,27] for similar studies. Two doublets LL , LR and two singlets E L, E R are introduced 
with the Lagrangian3 [25]

L ∝ ME Ē L E R + ML L̄R LL + mE Ē LeR + mL L̄R�L + λLE L̄L E R� + λ̄LE L̄R E L�
† + h.c., (3.1)

with the LL, E R and LR , E L states having, respectively, the same and opposite quantum numbers as the SM leptons �L , eR ; � is the SM 
Higgs doublet defined before. The mass eigenstates are obtained by diagonalizing the mass mixing in L through 2 × 2 unitary matrices, 
where the mixing angles are tan θL = mL/ML and tan θR = mE/ME . Upon rotating the fields, the previous Lagrangian becomes

L ∝
√

M2
E + m2

E Ē L E R +
√

M2
L + m2

L L̄R LL + λ̄LE L̄R E L�
†

+ λLE
(
sθL sθR �̄LeR + cθL sθR L̄LeR + sθL cθR �̄L E R + cθL cθR L̄L E R

)
� + h.c. ,

where sθ ≡ sin θ and cθ ≡ cos θ . After symmetry breaking, the spectrum will consist of two heavy leptons with masses 
√

M2
L + m2

L and √
M2

E + m2
E and light leptons with masses given approximately by m�i � λLE si

θL
si
θR

v +O(v2/M2
L,E), where i is the generation index.

The heavy charged and neutral leptons contribute to the anomalous magnetic moment through Feynman diagrams that are similar to 
those of (b) and (c) depicted in Fig. 1. They involve the exchange of two W bosons with the neutral lepton and the exchange of two 
charged states with a Z or Higgs boson. Here, as are simply making a rough comparison with the spin-3/2 case, we again simply follow 
Ref. [25] and give the contributions4 to aμ in the limit of small mixing angles, retaining only terms of order v2/M2

L,E

�aμ � 1

16π2

m2
μ

ML ME
Re(λLE λ̄LE) ≈ 10−9 Re(λLE λ̄LE)

(
300 GeV√

ML ME

)2

. (3.2)

Hence, for ML, ME of the order of the electroweak symmetry breaking scale v and for large Yukawa couplings to the muon λLE , ̄λLE , the 
contributions to aμ can be significant.

3.2. Excited leptons

In the case of the excited leptons that we will denote by �� , we assume for simplicity that they have spin and isospin 1/2. Besides 
the ����V interaction with the V = γ , W , Z , gauge bosons, there is a magnetic-type coupling between the excited leptons, the ordinary 
leptons and the gauge bosons ���V which allows for the decays of the heavy states, �� → V � [33]. This coupling induces a contribution 
to the anomalous magnetic moment of the lepton via diagrams similar to (b) and (c) in Fig. 1 (upon replacing the ψ3/2νW loop by the 
μ�μ� loop along with the Z boson and the photon, as well as diagrams in which the magnetic transition occurs at the γμ�μ vertex). 
The Lagrangian describing this transition should respect a chiral symmetry in order to not induce excessively large contributions to these 
moments. Consequently, only the left- or the right-handed component of the excited lepton takes part in the generalized magnetic de-
excitation. The Lagrangian thus reads

L���γ = eκL/R√
2�

�̄�σμν�L/R Fμν + h.c. . (3.3)

This could be generalized to the SU(2)L × UY(1) case where the photon field strength is extended to the Wμν and Bμν ones. In the 
equation above, � is the compositeness scale that we equate to 1 TeV. We will set all the weight factors for the field strengths to κL/R to 
simplify the analysis and to ensure that the excited neutrino has no tree-level electromagnetic couplings [33]. Thus, apart from the masses 
of the excited leptons that we will also equate: m�� = mν�

�
, the only free parameter will be the strength κL,R/� of the de-excitation that 

involves either a left-handed or a right-handed fermion.
The contribution aμ of the excited muon μ� and its neutrino partner ν�

μ to the muon magnetic moment has been calculated long ago 
[48–52] and the result in the case where the simplifications above are made, assuming m�� = mν�

�
= � 	 mW , which we anticipate to be 

a good approximation, is simply given by [51]

3 The Yukawa couplings have been assumed to be zero and are generated after electroweak symmetry breaking through the mixing between light and heavy fermions, 
once the latter are integrated out.

4 Heavy exotic fermion contributions to leptonic (g − 2) have been also discussed and evaluated in Refs. [26,27,40–47].
5
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Fig. 3. Contributions to the (g − 2)μ from various spin-1/2 particles as functions of the relevant mass scale M: vector-like leptons for λLE = λLE = 1 and M = √
ML ME (green 

line), excited leptons with κL,R = 1 and M = � for the two cases cL ≈ 10 (dotted red line) and cR ≈ 5.3 (solid red line) and supersymmetric particles for M = m̃ for the two 
cases of tanβ = 3 (solid blue line) and tanβ = 30 (dotted blue line). The light grey band shows the 1σ region of the Fermilab measurement.

�aμ = α

π

κ2
L,R

�2
m2

μcL/R , (3.4)

where the numerical values in these limits are cL � 10 and cR � 5.3, respectively for left-handed V μ�μL and right-handed V μ�μR
transitions.

3.3. Supersymmetric particles

For the sake of completeness, we will briefly discuss the contributions to aμ of the superparticles in the minimal supersymmetric 
extension of the SM [53], namely the one with the chargino-sneutrino and neutralino-smuon loops. These have been calculated by several 
authors [54–62] and the approximate result, taking into account only the chargino-sneutrino loop contribution which is an order of 
magnitude larger than that of the neutralino-smuon loop, is rather simple and accurate5 [62]

�aμ � α

8π s2
W

tanβ × m2
μ

m̃2
≈ 1.5 × 10−11 tanβ

[
m̃

TeV

]−2

, (3.5)

where tanβ is the ratio of vacuum expectation values of the two doublet Higgs fields that break the electroweak symmetry, 1 � tan β �
mt/mb ≈ 60 and m̃ is a supersymmetric scale given by the largest mass among the chargino and the sneutrino states m̃ = max(mν̃ , mχ+

1
). 

Thus, a large SUSY contribution to aμ can be generated for high enough tan β values and small chargino and second generation slepton 
masses, of the order of few hundred GeV.

3.4. Constraints

Our numerical results for the three cases of exotic spin-1/2 fermions discussed in the previous subsections are collected in Fig. 3
where we present the typical predictions for their contributions to (g − 2)μ as functions of their representative mass scales. In the case 
of vector-like fermions, the M scale is defined as M = √

ML ME which, along with the assumption that the Yukawa couplings are given 
by λLE = λLE = 1, leads to the curve depicted in green in Fig. 3. For excited leptons, the scale M is defined as M = � = mμ∗ = mν∗

μ
, and 

we have considered two situations, κL = 1 and κR = 1, which lead to the coefficients cL = 10 and cR = 5.3 respectively. The resulting 
contributions to aμ are presented in the figure in red. Finally, in the supersymmetric case, the scale is simply M = m̃, and we have chosen 
tan β = 3 and tan β = 30 to illustrate our results. The resulting typical contributions to aμ are shown by the blue curves in Fig. 3. The 
results of the new Fermilab (g − 2)μ measurement at 1σ are presented by the grey band.

Comparison of the predicted results with the new (g − 2)μ measurement indicates that all the considered spin-1/2 scenarios could 
explain the discrepancy with respect to the SM prediction for new particle masses in the vicinity of a few hundred GeV. In turn, if 
the latter discrepancy is to be attributed to additional theoretical errors for instance, the models would be severely constrained by the 
experiment and, typically, the scale of new physics would be constrained to be above several hundred GeV.

4. Discussion and conclusions

In this work, we have computed the contribution of a generic massive SM singlet spin-3/2 fermion to the muon anomalous magnetic 
moment (g − 2)μ and to the muon electric dipole moment dμ . We have used an effective field theory to describe the higher-spin fermion 
interactions which involve only the physical degrees of freedom, allowing us to compute physical observables in a consistent way. This is 
in sharp contrast with the situation of the Rarita-Schwinger spin-3/2 field, for which interactions can excite unphysical degrees of freedom 
unless the field is identified with the gravitino of supergravity.

Our results show that the spin-3/2 induced left-right chirality flipping operators to the (g − 2)μ . In particular, the ones that are 
expected to lead to enhanced contributions to (g − 2)μ vanish in the limit of an on-shell photon, q2 = 0. The leading non-vanishing 

5 Note that the sign of the SUSY contribution is equal to the sign of the higgsino parameter μ, �aμ ∝ (α/π) ×tan β(μM2)/m̃4 with M2 the gaugino (wino) mass parameter.
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contributions, therefore, are suppressed by the chirality flip on the external muon leg and cannot compete with the SM contributions. As 
a consequence, spin-3/2 particles could explain the new experimental result from Fermilab in Eq. (1.2), if the discrepancy with the SM 
result is indeed real, only for masses and effective scale close to the electroweak scale, a range which is at the boundary of validity of 
the effective field theory approach that we are following here. If the discrepancy is due to, instead, to additional theoretical uncertainties, 
the new result will not impose significant constraints on the properties of the spin-3/2 particle and would leave open the possibility of 
producing such particles at the next LHC runs. The corresponding numerical results are presented in Fig. 2 which reports the predicted 
values for (g − 2)μ as well as the corresponding ψ3/2 production cross section at the LHC. The latter can reach values of order 100 fb. 
Therefore, direct searches at colliders would remain the most powerful tool for discovering the higher-spin particles.

For the sake of comparison and completeness, we have briefly considered various hypothetical spin-1/2 fermion contributions to the 
(g − 2)μ , such as the ones of new leptons with exotic SU(2)L × U(1)Y quantum numbers, excited leptons of composite models and 
supersymmetric particles, namely the combined contributions of neutralinos/charginos with smuons and their associated sneutrinos. Our 
results for these exotic spin-1/2 fermions are summarised in Fig. 3. All these particles give large contributions to (g − 2)μ which, when 
confronted with the latest experimental measurement, imply masses much below the TeV scale for these states, should they explain the 
discrepancy from the SM expectation.
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Appendix A. Spin-3/2 loop functions

We use dimensional regularization and the MS–renormalization scheme to extract the finite component of the loop integrals. All 
expressions are given up to the leading term in mμ .

The W W ψ3/2 loop gives

aW W ψ
μ = m2

μv2m2
3/2

8π2�6
|cW |2 f1(m3/2), dW W ψ

μ = 0, (A.1)

where

f1(m) =
1∫

0

dx
�

6m2

[
−10 + 5x + 7x − 4x(11 − 15x) ln(�/μ2))

]

= 1

108m2(m2 − m2
W )3

[
− 52m8 + 55m6m2

W − 36m4m4
W + 25m2m6

W + 8m8
W

+ 6m6(−7m2 + 22m2
W ) log

(
m2

m2
W

)
+ 6(m2 − m2

W )3(7m2 − m2
W ) log

(
μ2

m2
W

)]
,

(A.2)

and � = m2
3/2 + x2m2

μ − (m2
3/2 + m2

μ − m2
W )x. In the limiting case m3/2 	 mW , we have that

f1(m) = −13

26
+ 7

18
log

(
μ2

m2

)
+O(m2

W /m2). (A.3)

The W νψ3/2 loop gives

aψνW
μ = m2

μv2m2
3/2

8π2�6 sin(θW )
Re

[
c∗

W cγ

]
f2(m3/2),

dψνW
μ = mμv2m2

3/2 g2

16π2�6
Im

[
c∗

W cγ

]
f2(m3/2),

(A.4)

where cγ ≡ −cB cos θW + cW sin θW ,
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f2(m) =
1∫

0

dx

x∫
0

dy
4�

m3/2

[
−1 − y/3 − 4y ln(�/μ2)

]

= 2

3m2(m2 − m2
W )2

[
m4m2

W − m2m4
W − m6 log

(
m2

m2
W

)

+ (m2 − m2
W )2(m2 + 2m2

W ) log

(
μ2

m2
W

)]
,

(A.5)

and � = m2
μ y2 + m2

3/2(1 − x) + (m2
W − m2

μ)y. In the limiting case m3/2 	 mW ,

f2(m) = 2

3
log

(
μ2

m2

)
+O(m2

W /m2). (A.6)
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