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ABSTRACT
We present a Markov chain Monte Carlo pipeline that can be used for robust and unbiased constraints of f(R) gravity using
galaxy cluster number counts. This pipeline makes use of a detailed modelling of the halo mass function in f(R) gravity, which
is based on the spherical collapse model and calibrated by simulations, and fully accounts for the effects of the fifth force on
the dynamical mass, the halo concentration, and the observable–mass scaling relations. Using a set of mock cluster catalogues
observed through the thermal Sunyaev–Zel’dovich effect, we demonstrate that this pipeline, which constrains the present-day
background scalar field fR0, performs very well for both Lambda cold dark matter (�CDM) and f(R) fiducial cosmologies. We
find that using an incomplete treatment of the scaling relation, which could deviate from the usual power-law behaviour in
f(R) gravity, can lead to imprecise and biased constraints. We also find that various degeneracies between the modified gravity,
cosmological, and scaling relation parameters can significantly affect the constraints, and show how this can be rectified by using
tighter priors and better knowledge of the cosmological and scaling relation parameters. Our pipeline can be easily extended
to other modified gravity models, to test gravity on large scales using galaxy cluster catalogues from ongoing and upcoming
surveys.
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1 IN T RO D U C T I O N

Galaxy clusters are the largest virialized objects in the Universe to
have been observed, and are believed to trace the highest peaks of the
primordial density fluctuations. Their abundance is highly sensitive
to the values of a number of cosmological parameters, including
the matter density parameter �M and the linear density fluctuation
σ 8, which both affect the formation of large-scale structure. They
are also sensitive to the strength of gravity on large scales, and can
therefore be used to constrain modified gravity (MG) theories (e.g.
Koyama 2016) which have been proposed in order to explain the late-
time accelerated cosmic expansion. Various ongoing and upcoming
astronomical surveys are generating vast cluster catalogues using
all means of detection, including the clustering of galaxies (e.g.
Lawrence et al. 2007; LSST Science Collaboration 2009; Laureijs
et al. 2011; DESI Collaboration 2016), distortions of the cosmic
microwave background (CMB) by the Sunyaev–Zel’dovich (SZ)
effect (e.g. Hasselfield et al. 2013; Abazajian et al. 2016; Ade
et al. 2016, 2019), and X-ray emission from the hot intracluster
gas (Weisskopf et al. 2000; Jansen et al. 2001; Merloni et al. 2012).
These will be many times larger than previous catalogues, and will
significantly advance our understanding of gravity at the largest
scales.

Before we can use this data, it is necessary to prepare robust
theoretical predictions that can be combined with the observations
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to make constraints. In particular, special care should be given to
potential sources of bias. For example, many MG theories predict
a strengthened gravitational force in certain regimes (e.g. Dvali,
Gabadadze & Porrati 2000; Hu & Sawicki 2007). In addition
to enhancing the abundance of clusters, this can affect internal
properties including the density profile and the temperature of the
intracluster gas. A consequence of this is that observable-mass
scaling relations Y(M), which can be used to relate the cluster mass
M to some observable Y, can deviate from General Relativity (GR)
predictions (see e.g. He & Li 2016). Scaling relations are a vital
ingredient for cluster cosmology: for example, they are used to
relate the observational mass function, with the form dn/dY, to the
theoretical mass function dn/dM, and to infer cluster observables
in mock catalogues. They have therefore been widely studied both
theoretically with numerical simulations (e.g. Fabjan et al. 2011;
Truong et al. 2018) and with observations (e.g. Ade et al. 2014).
Understanding how they are affected by a strengthened gravity is
crucial in order to prevent biased estimates of the cluster mass.

Great advances have been made in recent years in the development
of subgrid models for baryonic processes including star formation,
cooling, and stellar and black-hole feedback (e.g. Schaye et al. 2015;
Weinberger et al. 2017; Pillepich et al. 2018a). By including these
in cosmological simulations, it has become possible to simulate
populations of galaxies whose gaseous and stellar properties closely
match real observations (e.g. Vogelsberger et al. 2014). It is important
to include these ‘full physics’ models in MG simulations (e.g. Arnold,
Leo & Li 2019; Hernández-Aguayo et al. 2021) in order to understand
the full impact of MG forces on the thermal properties of clusters.
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Figure 1. Flow chart outlining our general framework for constraining the present-day background scalar field, fR0, of f(R) gravity using the cluster abundance.
We use our model for the halo concentration, calibrated in Mitchell et al. (2019) (blue dotted box), to convert the theoretical prediction of the HMF in f(R)
gravity, which is based on the model by Cataneo et al. (2016), from mass definition M300m to M500. We model the f(R) observable-mass scaling relation (green
dotted box) by rescaling a GR power-law relation using our model for the ratio of the dynamical mass to the true mass, calibrated in Mitchell et al. (2018)
(red dotted box); this method has been tested and verified using f(R) simulations that include full baryonic physics (Mitchell, Arnold & Li 2021d). The scaling
relation is used to relate the observational form of the mass function, dn/dYobs, to the theoretical form dn/dM500. In this work, we test our MCMC pipeline for
constraining fR0 (brown dotted box) using the theoretical HMF and data from mock cluster catalogues.

This can pave the way for a complete treatment of the scaling relations
in constraint pipelines, which can then be used to infer unbiased
large-scale constraints of gravity.

The f(R) gravity model (e.g. Buchdahl 1970; De Felice & Tsu-
jikawa 2010; Sotiriou & Faraoni 2010) is a particularly popular and
well-studied MG model that can provide an alternative explanation
for the late-time accelerated expansion, but, more importantly, can
be employed to study the viability of modifications to GR. This
includes an additional ‘fifth force’ which enhances the total strength
of gravity. The fifth force leaves numerous observational signatures
in large-scale structure, and the theory can be tested using a variety of
probes, including cluster number counts (e.g. Cataneo et al. 2015; Liu
et al. 2016; Peirone et al. 2017), redshift-space distortions (e.g. Bose
& Koyama 2017; He et al. 2018; Hernández-Aguayo et al. 2019),
the cluster gas mass fraction (e.g. Li, He & Gao 2016), the clustering
of clusters (Arnalte-Mur, Hellwing & Norberg 2017), the cluster SZ
profile (De Martino 2016), the SZ angular power spectrum (Mitchell
et al. 2021c), and weak lensing by voids (Cautun et al. 2018). As
described above, the fifth force affects the observable-mass scaling
relations of clusters, which can themselves be used to probe gravity
(see e.g. Hammami & Mota 2017; Del Popolo, Pace & Mota 2019).
The fifth force also causes the dynamical mass of clusters to become
enhanced with respect to the lensing mass (Arnold, Puchwein &
Springel 2014). This has been used to probe the theory by comparing
weak lensing measurements of clusters with thermal observations
(e.g. Terukina et al. 2014; Wilcox et al. 2015).

This paper is part of a series of works which are aimed at
developing a general framework for unbiased cluster constraints of
gravity. So far, we have modelled the effects of the f(R) gravity
fifth force on the cluster dynamical mass and the halo concentration
using a suite of dark matter-only simulations (Mitchell et al. 2018,
2019), and we recently used the first simulations that simultane-

ously incorporate full physics and f(R) gravity to study the effect
on observable-mass scaling relations (Mitchell et al. 2021d). Our
framework is designed to be extended beyond f(R) gravity to other
MG theories; indeed, we recently modelled cluster properties and the
halo mass function (HMF) in the normal-branch Dvali–Gabadadze–
Porrati model (nDGP; Mitchell et al. 2021a).

Fig. 1 gives a broad overview of our proposed framework for
f(R) constraints using cluster number counts: our model for the
enhancement of the concentration (blue-dotted box) can be used
for conversions between cluster mass definitions, which is required
if, for example, the theoretical predictions and observations use
different spherical overdensities; our model for the dynamical mass
enhancement (red-dotted box) can be used to predict the f(R) scaling
relation (green-dotted box) given a GR counterpart relation, and this
can be used to relate dn/dY to dn/dM; finally, the observations and
theoretical predictions are combined to constrain the present-day
background scalar field using Markov chain Monte Carlo (MCMC)
sampling (brown dotted box). In this work, we test this pipeline using
mock cluster catalogues generated for both GR and f(R) fiducial
cosmologies. In doing so, we can assess the importance of using
a complete modelling of the scaling relation, which behaves as a
broken power law in f(R) gravity. We also consider other potential
sources of bias which can arise from degeneracies among model
parameters.

This paper is arranged as follows: in Section 2, we provide an
overview of the f(R) gravity theory and our models for the effects of
the fifth force on the cluster properties; in Section 3, we describe
our MCMC constraint pipeline, including the calculation of the
log-likelihood and the generation of the mocks; in Section 4, we
present constraints using the GR and f(R) mocks; then, in Section 5,
we highlight potential sources of bias in our pipeline; finally, we
summarize our main findings in Section 6.
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Throughout this work, we denote background quantities with
overbars (x̄), Greek indices can take values 0, 1, 2, and 3, and we use
the unit convention c = 1 for the speed of light. This paper will use
different spherical mass definitions for dark matter haloes, based on
the following rule: M� means the mass enclosed by halo radius R�,
within which the mean matter density is � times the critical density
at the halo redshift. We will mostly use 3 values of �:200, 500, and
300�M(z), with �M(z) the matter density parameter at redshift z;
for the first two the mass is, respectively, written as M200 and M500,
while for the last the notation is M300m.

2 BAC K G RO U N D

In Section 2.1, we describe the underlying theory of f(R) gravity.
Then, in Section 2.2, we outline the effects of f(R) gravity on the
properties of galaxy clusters.

2.1 Theory

In the f(R) gravity model, the gravitational action is given by

S =
∫

d4x
√−g

[
R + f (R)

16πG
+ LM

]
, (1)

where g is the determinant of the metric tensor gαβ , R is the Ricci
scalar curvature, G is Newton’s gravitational constant, and LM is the
Lagrangian matter density. The extra non-linear curvature-dependent
function f(R) represents a modification to the Einstein–Hilbert action
of GR. This leads to the modified Einstein field equations:

Gαβ + Xαβ = 8πGTαβ, (2)

where Gαβ is the Einstein tensor and Tαβ is the stress–energy tensor.
The extra tensor Xαβ encapsulates the modifications to GR, and is
given by

Xαβ = fRRαβ −
(

f

2
− �fR

)
gαβ − ∇α∇βfR, (3)

where Rαβ is the Ricci curvature tensor, � ≡ ∇α∇α is the d’Alembert
operator (using Einstein’s summation convention) and ∇α represents
the covariant derivative with respect to coordinate α ∈ {0, 1, 2, 3}
associated with the metric. The quantity fR ≡ df(R)/dR represents the
extra scalar degree of freedom of the theory, and is referred to as the
scalar (or ‘scalaron’) field. This mediates a fifth force which, when
able to act, enhances the total strength of gravity by up to a factor of
4/3. The fifth force can only act on scales smaller than the Compton
wavelength:

λC = a−1

(
3

dfR

dR

) 1
2

, (4)

where a is the cosmic scale factor.
The f(R) model features a screening mechanism which can help

to ensure consistency with Solar system tests (Will 2014). This is
achieved by giving the scalaron an environment-dependent effec-
tive mass which becomes larger in dense regions, suppressing its
gravitational interaction. Consequently, the fifth force can only act
in sufficiently low-density regions which can include, for example,
cosmic voids, low-mass haloes, and the outer regions of galaxy
clusters, where the gravitational potential well is not too deep.
The masking of the fifth force in f(R) gravity, which is achieved
through the non-linear total interaction potential that appears in the
Lagrangian of the scalaron, is an example of the chameleon screening
mechanism (e.g. Khoury & Weltman 2004a,b; Mota & Shaw 2007).

The Hu & Sawicki (2007) model of f(R) gravity assumes the
following prescription for the function f(R):

f (R) = −m2 c1

(−R/m2
)n

c2

(−R/m2
)n + 1

, (5)

where n, c1, and c2 are the free parameters of the model. The quantity
m2 is equivalent to 8πGρ̄M,0/3 = H 2

0 �M, where ρ̄M,0 is the present-
day mean matter density and H0 is the present-day Hubble parameter.
By choosing c1/c2 = 6��/�M and assuming the inequality −R̄ �
m2 for the background curvature, it can be shown that f(R) behaves
as a cosmological constant in background cosmology (Hu & Sawicki
2007).

Assuming the above inequality, we obtain the following approxi-
mation for the background scalar field:

f̄R ≈ −n
c1

c2
2

(
m2

−R̄

)n+1

. (6)

The background curvature is given by

− R̄ = 3m2

(
a−3 + 4

��

�M

)
, (7)

where �� = 1 − �M. The parameter combination c1/c
2
2 can then be

rewritten as

c1

c2
2

= − 1

n

[
3

(
1 + 4

��

�M

)]n+1

fR0, (8)

where fR0 is the present-day value of the background scalar field (we
will omit the overbar for this quantity throughout this work). From
equation (7), we see that the inequality −R̄ � m2 is valid for realistic
values of �M. Using this approximation, we have reformulated
the original 3-parameter model into a form that has just two free
parameters: n and fR0. In this work, we will set n = 1, which is
a common choice in literature. Therefore, fR0 is the parameter that
we aim to probe with our f(R) gravity constraint pipeline. From
equations (6) and (7), we see that the background scalar field has a
greater amplitude at later times, therefore |fR0| represents the highest
amplitude in cosmic history. In f(R) models with a higher |fR0|, the
fifth force can be felt by haloes with a greater mass. These models
therefore represent a greater departure from GR. In this work, we
will use the naming convention F6.5, F6, F5.5,..., F4 when referring
to models with |fR0| = 10−6.5, 10−6, 10−5.5,..., 10−4 (in order from
weakest to strongest).

In the following subsections, we will summarize the effects of the
f(R) fifth force on the properties of haloes.

2.2 Galaxy clusters in f(R) gravity

In this section, we summarize the main effects of f(R) gravity on
the properties of galaxy clusters. We present our models for the
enhancements of the dynamical mass and halo concentration in
Sections 2.2.1 and 2.2.2. Then, in Section 2.2.3, we show how
our model for the dynamical mass enhancement can be used to
map between scaling relations in f(R) gravity and GR. Finally, in
Section 2.2.4, we outline the modelling by Cataneo et al. (2016) for
the f(R) enhancement of the HMF.

2.2.1 Dynamical mass enhancement and its scatters

Throughout this work, we will refer to two mass definitions that are
applicable to, but not exclusive to, haloes. We define the ‘dynamical’
mass as the mass that is felt by a nearby massive test particle:
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this can be inferred from observations related to the gravitational
potential of the halo, including the gas temperature and the virial
velocities of galaxies (e.g. Farahi et al. 2016). Meanwhile, we define
the ‘true’ mass as the intrinsic mass: in simulations this is equivalent
to the summed mass of the halo particles, while in observations
this would be inferred using lensing data (photons hardly feel the
fifth force for viable f(R) models). When the fifth force is able to
act, the dynamical mass of a halo is enhanced relative to the true
mass: M

f (R)
true ≤ M

f (R)
dyn ≤ (4/3)Mf (R)

true . Meanwhile, the two masses
are expected to be equal in GR: MGR

true = MGR
dyn = MGR.

In Mitchell et al. (2018), we used a suite of dark matter-only
simulations, which span a wide range of resolutions and box sizes,
to calibrate a general formula for the ratio R of the dynamical mass
to the true mass:

R = M
f (R)
dyn

M
f (R)
true

= 7

6
− 1

6
tanh

(
p1

[
log10

(
M

f (R)
true M−1


 h
)

− p2

])
, (9)

where h = H0/(100 km s−1Mpc−1), and p1 and p2 are the model
parameters. We found that p1 is approximately constant, with best-
fitting value 2.21 ± 0.01, while the parameter p2 closely follows the
following physically motivated linear relation:

p2 = (1.503 ± 0.006) log10

( |f̄R(z)|
1 + z

)
+ (21.64 ± 0.03). (10)

Physically, p2 represents the logarithmic mass above which haloes are
mostly screened and below which haloes are mostly unscreened. This
model can accurately reproduce the dynamical mass enhancement
for haloes in the mass range 1011 h−1M
 � M500 � 1015 h−1M
 with
redshifts 0 ≤ z ≤ 1, for models with present-day field strengths 10−6.5

≤ |fR0| ≤ 10−4.
For this work, we have again used the data from Mitchell et al.

(2018) to model the root-mean-square scatter of the dynamical mass
enhancement, σR. Our model is shown by the solid line in Fig. 2 (we
provide a detailed description of this model and our fitting proce-
dure in Appendix A). The rescaled mass, log10(M500M

−1

 h) − p2 ≡

log10(M500/10p2 ), is expected to take positive values for haloes that
are screened and negative values for haloes that are unscreened.
The scatter peaks for haloes that are partially screened, with
log10(M500M

−1

 h) ∼ p2, whereas it falls to roughly zero for lower

and higher masses. Physically, this makes sense: at sufficiently high
masses where all haloes are screened and have R ≈ 1, it follows that
the scatter σR is very small, and a similar argument can be applied for
haloes deep in the unscreened regime. Between these two regimes,
the physics is more complicated, giving rise to greater dispersion
in the chameleon screening; for example, haloes that do not have a
high enough mass to be self-screened can still be environmentally
screened by nearby massive haloes.

2.2.2 Halo concentration

The halo concentration, c, is a parameter of the universal Navarro–
Frenk–White (NFW) density profile of dark matter haloes (Navarro,
Frenk & White 1997). For a given halo mass definition, such as
M200 or M500, if the mass (or radius) of a halo is known, then the
concentration is the only parameter required to describe the halo
density profile. In Mitchell et al. (2019), we used an extensive
suite of dark matter-only simulations to study the effects of the
fifth force on the concentration in f(R) gravity. There are a range of
behaviours, depending on the level of screening: the concentration of
recently unscreened haloes can be enhanced by up to ∼ 40 per cent
as particles concentrate at the inner regions; however, for haloes with

Figure 2. Root-mean-square scatter in the dynamical mass enhancement
as a function of the rescaled halo mass log10(M500/10p2 ), where p2 is
given by equation (10). The data points, which correspond to mass bins
spanning 1011 h−1M
 � M500 � 1015 h−1M
, have been generated using the
dark matter-only simulations Crystal (squares), Jade (circles), and Diamond
(diamonds), which are described in Mitchell et al. (2018). The data spans
redshifts 0 ≤ z ≤ 1 and includes present-day scalar field amplitudes |fR0| =
10−6.5 (grey), 10−6 (blue), 10−5.5 (magenta), 10−5 (green), 10−4.5 (orange),
and 10−4 (red). The solid line represents our best-fitting model, which is
given by equation (A1).

lower masses that have been unscreened for longer, the enhancement
of the concentration drops over time as the halo particles whose
kinetic energy is boosted gradually migrate away from, or manage to
stay away from, the halo centre. And at higher masses, where haloes
are only unscreened at the outermost regions, the concentration can
be suppressed by up to ∼ 5 per cent. We modelled this behaviour
using the rescaled logarithmic mass x = log10(M500/10p2 ) defined
in Section 2.2.1, and found excellent agreement with the following
formula:

log10

∣∣∣∣ c

cGR

∣∣∣∣
200

= 1

2

(
λ

ωs
φ(x ′)

[
1 + erf

(
αx′
√

2

)]
+ γ

)

× (1 − tanh (ωt [x + ξt])) , (11)

where c200 denotes the concentration of haloes with mass definition
M200. This is a product of a skewed normal distribution and a tanh
formula, where x

′ = (x − ξ s)/ωs, φ(x
′
) is the normal distribution and

erf(αx′/
√

2) is the error function. The parameters have best-fitting
values λ = 0.55, ωs = 1.7, ξ s = −0.27, α = −6.5, γ = −0.07, ωt =
1.3, and ξ t = 0.1.

2.2.3 Observable-mass scaling relations

The thermal properties of the intracluster gas are intrinsically related
to the gravitational potential of the halo (e.g. Kaiser 1986; Voit
2005). This is because, during cluster formation, the initial potential
energy of nearby gas gets converted into thermal energy through
shock heating as it is accreted by the halo. As a result, various cluster
observables – including the gas temperature Tgas, the Compton Y-
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parameter of the SZ effect (YSZ) and the X-ray analogue of the Y-
parameter (YX) – have one-to-one (for an ideal situation) mappings
with the cluster mass. As discussed in Section 1, these scaling
relations are a vital ingredient for cluster cosmology.

In Mitchell et al. (2021d), we used cosmological simulations
which incorporate full baryonic physics to verify a set of mappings,
originally proposed by He & Li (2016), between the f(R) scaling
relations and their GR power-law counterparts. The mapping for the
YSZ observable is given by

M
f (R)
dyn

M
f (R)
true

Y
f (R)
SZ

(
M

f (R)
dyn

)
≈ Y GR

SZ

(
MGR = M

f (R)
dyn

)
. (12)

This says that the YSZ parameter of an f(R) halo with dynamical
mass M

f (R)
dyn differs by a factor of M

f (R)
dyn /M

f (R)
true compared to a GR

halo with the same mass MGR = M
f (R)
dyn . The temperatures of these

two haloes are the same, since they have the same total gravitational
potential (including the fifth force contribution):

T f (R)
gas

(
M

f (R)
dyn

)
= T GR

gas

(
MGR = M

f (R)
dyn

)
. (13)

However, the gas density is higher in the GR halo compared to the
f(R) halo. This is because clusters form from matter found in an
initially large region, such that the baryonic mass (mainly in the
form of hot intracluster gas) and the total mass will follow the ratio
between the cosmic baryonic and matter densities (e.g. White et al.
1993); because the GR halo above has a higher intrinsic (true) mass
than the F5 halo, it then follows that it also has a larger gas density.
This gives rise to the M

f (R)
dyn /M

f (R)
true factor in equation (12), which

can be predicted using equation (9). The same mapping is predicted
for the YX parameter, and a different mapping works for the cluster
X-ray luminosity which will not be shown here. We showed that
these mappings hold for halo masses M500 � 1013.5 M
.

We also tested the following mapping for haloes in f(R) gravity
and GR that have the same true mass, M

f (R)
true = MGR:

Y
f (R)
SZ

(
M

f (R)
true

)
≈ M

f (R)
dyn

M
f (R)
true

Y GR
SZ

(
MGR = M

f (R)
true

)
. (14)

In this case, the total gravitational potential of the f(R) haloes is
enhanced by a factor of M

f (R)
dyn /M

f (R)
true compared to the GR haloes.

The temperature is then enhanced by the same factor:

T f (R)
gas

(
M

f (R)
true

)
= M

f (R)
dyn

M
f (R)
true

T GR
gas

(
MGR = M

f (R)
true

)
. (15)

This gives rise to the M
f (R)
dyn /M

f (R)
true factor in equation (14), and the

same mapping is predicted for the YX parameter as well. We again
showed that this mapping holds for halo masses M500 � 1013.5 M
.

2.2.4 Halo mass function

In this section, we will outline the Cataneo et al. (2016) model for
the f(R) enhancement of the HMF, which we have adopted for our
constraint pipeline. This is computed using the Sheth & Tormen
(1999) prescription of the HMF:

nST ≡ dn

d ln M
= ρ̄M

M

d ln ν

d ln M
νf (ν), (16)

where the multiplicity function νf(ν) is given by

νf (ν) = A

√
2

π
aν2

[
1 + (aν2)−p exp

(
−aν2

2

)]
. (17)

For the parameters A, a and p, Cataneo et al. (2016) used the fits
by Despali et al. (2016), which extend the Sheth & Tormen (1999)

HMF to be a function of generic halo overdensity �. For the latter,
Cataneo et al. (2016) used value 300�M(z) (i.e. here the halo mass
M is M300m). The peak height ν is given by

ν = δc

σ (M, z)
, (18)

where δc is the linearly extrapolated threshold density for spherical
collapse and σ (M, z) is the linear root-mean-square fluctuation of
the matter density within spheres of mass M containing an average
density of ρ̄M(z). The latter can be computed using the �CDM linear
power spectrum (for both GR and f(R) gravity) with the publicly
available code CAMB (Lewis, Challinor & Lasenby 2000).

The f(R) effects are incorporated through δc: in GR, this is given
by

δGR
c (z) ≈ 3

20
(12π )

2
3
[
1 + 0.0123 log10 �M(z)

]
, (19)

while in f(R) gravity it can be expressed as

δeff
c (M, z) ≡ ε(M, z) × δf (R)

c (M, z). (20)

The function δf (R)
c (M, z) is the prediction of the linearly extrapolated

threshold density for spherical collapse in f(R) gravity. This treats
haloes and their surrounding environment as co-centred spherically
symmetric top-hat overdensities (note the environment can be
underdensities) which are co-evolved from an initial time to the
time of collapse. This procedure, which is based on the method
developed by Li & Efstathiou (2012) and Lombriser et al. (2013),
takes into account both the mass-dependent self-screening and the
environmental screening of the fifth force. However, while giving
qualitatively correct predictions, the method is unable to very
accurately capture the complex non-linear dynamics of structure
formation in f(R) gravity. This limitation is accounted for using the
correction factor ε(M, z), which Cataneo et al. (2016) modelled and
fitted using dark matter-only simulations. Their best-fitting model can
accurately reproduce the f(R) enhancement of the HMF for redshifts
0.0 ≤ z ≤ 0.5 and field strengths 10−6 ≤ |fR0| ≤ 10−4.

For this work, we have evaluated δf (R)
c on a grid of M, z, �M, σ 8,

and fR0, and obtained the relation δf (R)
c (M, z, �M, σ8, fR0) using 5D

interpolation. For a given set of cosmological and f(R) parameters,
we can use this to predict δf (R)

c (M, z), which can then be used to
predict δeff

c (M, z) using the model for ε(M, z) taken from Cataneo
et al. (2016). The f(R) enhancement of the HMF is given by the ratio
between nST|f(R) and nST|GR, which are evaluated using δc = δeff

c and
δc = δGR

c , respectively.
For illustrative purposes, we show, in Fig. 3, our predictions of

the HMF enhancement as a function of the halo mass for F6, F5,
and F4 at redshifts 0.0 and 0.5. We also show the predictions from
Cataneo et al. (2016) as a comparison. Both sets of predictions
assume the 9-yr WMAP cosmological parameter estimates (Hinshaw
et al. 2013). There are some small differences between the two sets
of predictions, which are likely caused by subtle differences in the
calculations of δf (R)

c . The largest difference is observed at M300m

� 1015 h−1M
 for F5 at z = 0.5. We note that the enhancement
is expected to drop to zero at high masses where haloes become
completely screened, therefore the behaviour of the solid lines here
appears to be physically reasonable. We also note that we set the
enhancement to zero wherever our calculations predict a negative
(unphysical) enhancement. This is the case for M300m � 1015 h−1M

for F6 at z = 0.5.
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4162 M. A. Mitchell, C. Arnold and B. Li

Figure 3. Halo mass function enhancement, �n/nGR = nf(R)/nGR − 1, in f(R)
gravity with respect to GR as a function of the halo mass. The solid lines show
the predictions from our 5D interpolation of δ

f (R)
c (see Section 2.2.4) and the

dashed lines show the results from Cataneo et al. (2016). The predictions have
been generated using the WMAP9 cosmological parameters and f(R) models
F4 (top row), F5 (middle row), and F6 (bottom row), at redshifts 0 (blue lines)
and 0.5 (green lines).

3 ME T H O D S

In this section, we describe the main components of our constraint
pipeline, including the mass function predictions (Section 3.1), the
observable-mass scaling relation (Section 3.2), the mock cluster
catalogues (Section 3.3) and the MCMC sampling (Section 3.4).

3.1 Theoretical mass function

In order to make constraints using cluster number counts, it is
necessary to have a parameter-dependent theoretical model for the
HMF. For this work, we start with a GR HMF and apply the f(R)
enhancement using:

nf (R) = nGR × nST|f (R)

nST|GR
, (21)

where the ratio is computed using the Sheth & Tormen (1999)
prescription, as described in Section 2.2.4, and we have chosen the
Tinker et al. (2008) calibration for nGR.

Before equation (21) can be applied, the halo mass definition
must be considered. As mentioned in Section 2.2.4, the model for
the ratio in equation (21) was calibrated by Cataneo et al. (2016)
using overdensity � = 300�M(z); however, with the framework
in Fig. 1, we hope to use data from SZ and X-ray surveys, which
often measure cluster properties with overdensity 500. Therefore,
it is necessary to convert the HMF between these two defini-
tions.

Figure 4. Halo mass function in GR (solid lines) and F5 (dashed lines),
with the mass defined using spherical overdensities 500 (green lines) and
300�M(z) (dashed lines). The mass conversions and f(R) enhancement have
been applied as described in Section 3.1; the green dotted line shows the F5
HMF prediction that results from neglecting the f(R) enhancement of the halo
concentration in the mass conversion 300�M(z) → 500.

In Fig. 4, we show each step of the mass conversion procedure
for the F5 model at z = 0. We start with the Tinker et al. (2008)
HMF with overdensity 500 (nGR

500), which we compute using the
PYTHON package HMF (Murray, Power & Robotham 2013), and
convert this to overdensity 300�M(z) (nGR

300m) using the Duffy et al.
(2008) concentration–mass-redshift relation. We then apply the f(R)
enhancement using equation (21) to get nf (R)

300m. Finally, to convert this
back to overdensity 500 (nf (R)

500 ), we use the f(R) concentration–mass-
redshift relation, which is computed by applying the concentration
enhancement, given by equation (11), to the Duffy et al. (2008)
relation. We also show, with the dotted green line, the prediction
with the concentration enhancement neglected; the effect here is
quite small, since cluster-size haloes are mostly screened in F5. For
further details of the formulae used to convert the halo mass and
the HMF from one mass definition to another, we refer the reader to
Appendix B.

The final result n
f (R)
500 (M500) provides the theoretical prediction of

the cluster abundance in f(R) gravity. This is computed following the
above steps for each set of parameter values sampled by our MCMC
pipeline. We note that our mass conversions are evaluated assuming
an NFW profile, which has also been used in previous cluster tests
of f(R) gravity (e.g. Cataneo et al. 2015). However, this may not
provide an accurate description for haloes that are not dynamically
relaxed and it does not account for the effects of baryons on the total
mass profile. We plan to investigate the latter effect using clusters
identified from the realistic full hydrodynamical simulations in f(R)
gravity described in Mitchell, Arnold & Li (2021b). However, we
remark here that the main use of the concentration–mass relation
in our pipeline is to perform mass conversions as described above,
and so it would not be strictly needed if a theoretical HMF for
the required mass definition M� (M500 for this paper) is already in
place.
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3.2 Observable-mass scaling relation

As discussed in Section 2.2.3, the f(R) scaling relation can be
computed by simply rescaling a GR relation using our model for
the dynamical mass enhancement. For the GR relation, we adopt the
power-law mapping between YSZ and the halo mass calibrated by the
Planck Collaboration (Ade et al. 2016):

E−β (z)

[
D2

A(z)Ȳ500

10−4 Mpc2

]
= Y�

[
h

0.7

]−2+α [ (1 − b)M500

6 × 1014 M


]α

, (22)

where E(z) = H(z)/H0 and DA(z) is the angular diameter distance.
This includes parameters β for the z-evolution, Y� for the normal-
ization, and α for the power-law slope with respect to the mass. It
also includes a bias parameter (1 − b) which accounts for differences
between the X-ray determined masses used in the calibration, which
are subject to hydrostatic equilibrium bias, and the true mass. Planck
have also provided the following formula for the intrinsic lognormal
scatter of the relation:

P (log Y500) = 1√
2πσlog Y

exp

[
− log2(Y500/Ȳ500)

2σ 2
log Y

]
, (23)

where σ log Y is a fixed spread.
We assume a fixed value of 0.8 for the hydrostatic equilibrium

bias parameter, which is consistent with the range 0.7–1.0 adopted
by Planck, and we treat Y ≡ D2

A(z)YSZ as the cluster SZ observ-
able, rather than YSZ. This leaves four scaling relation parameters
which are allowed to vary in our MCMC sampling. We adopt the
following Gaussian priors from Planck: log Y� = −0.19 ± 0.02, α =
1.79 ± 0.08, β = 0.66 ± 0.50, and σ log Y = 0.075 ± 0.010.

To obtain the f(R) scaling relation Y
f (R)
SZ (M500) from the above

Y GR
SZ (M500) relation, we rescale the right-hand side of equation (22)

by the mass ratioR, which is predicted using equation (9) with scatter
given by equation (A1). This rescaling is based on equation (14),
which means that the mass M500 in the expressions Y

f (R)
SZ (M500) and

Y GR
SZ (M500) above is the true mass; we note that, although the Planck

masses were originally determined using X-ray measurements, the
value (1 − b) = 0.8 assumed for the mass bias is consistent with
weak lensing measurements (e.g. Hoekstra et al. 2015).

Finally, we note that the scaling relation adopted in this work is
intended to be representative of general scaling relations between the
mass and SZ and X-ray observables, not just the Planck YSZ(M500)
relation. This justifies our decision to encapsulate D2

A(z) in the cluster
observable and to fix the hydrostatic equilibrium bias; indeed, scaling
relations for other observables – for example, the SZ significance
and the YX parameter – do not include the function D2

A(z) or a bias
parameter (e.g. de Haan et al. 2016; Bocquet et al. 2019). Regardless
of the observable, the main purpose of this work is to check that
our constraint pipeline can give reasonable constraints of fR0 using
a realistic scaling relation which includes both intrinsic scatter and
the f(R) enhancement. It would be very straightforward to adapt this
pipeline for other cluster observables, or for more than one cluster
observable.

3.3 Mock catalogues

We test our framework (Fig. 1) using mock cluster catalogues in
place of observational data. We have generated mocks for both the
GR and F5 models, using fiducial cosmological parameter values
based on the Planck 2018 CMB constraints (Aghanim et al. 2020):
(�M, σ 8, h, �b, ns) = (0.3153, 0.8111, 0.6736, 0.04931, 0.9649).
For the scaling relation parameters, we assume the central values of
the Gaussian priors listed in Section 3.2.

To generate the mocks, we first compute the predicted count per
unit mass per unit redshift:

dN

dzd ln M
= dn

d ln M
× dVc(z)

dz
, (24)

where Vc(z) is the comoving volume enclosed by the survey area
between redshifts 0 and z and the first term is the theoretical HMF
n

f (R)
500 , which is computed as described in Section 3.1 for the fiducial

cosmology. For this work, we assume a survey area of 5000 deg2

and a maximum redshift of z = 0.5, which is the upper redshift used
to calibrate the f(R) enhancement of the HMF (Section 2.2.4). In the
future, we plan to develop models of the f(R) HMF that work for a
wider redshift range, which will be applicable to real cluster survey
data.

The predicted number of clusters is:

Ntot =
∫ 0.5

0.0
dz

∫ ∞

−∞
d ln M

dN

dzd ln M
. (25)

For each mock, we randomly draw the masses and redshifts of Ntot

clusters using dN/dzdln M, which is effectively a probability density.
For each cluster i, we then draw a mass ratio Ri using a normal
distribution with mean given by equation (9) and standard deviation
given by equation (A1). The intrinsic observable Y ′

i (= D2
AY500,i) of

each cluster is then drawn using the lognormal distribution given
by equation (23), where Ȳ500 is computed using equation (22) and
rescaled by Ri .

We assume a fixed 1σ measurement uncertainty of 10 per cent.
The measured observable Yi is therefore drawn from a normal
distribution with mean Y ′

i and standard deviation 0.1Y ′
i . We note that

this choice of a fixed fractional uncertainty is intended to keep our
calculations simple and general (for example, a more complicated
model may be specific to a particular observational survey). We
have also considered 5 and 20 per cent uncertainties and have found
that the inferred parameter constraints do not significantly differ,
suggesting that this uncertainty is not the dominant source of error in
the constraint pipeline (e.g. compared to the intrinsic scatters in the
cluster scaling relation or the f(R) dynamical mass enhancement).

Finally, we remove all clusters for which Yi is below some
observational flux limit Ycut. For the main results of this work, we use
Ycut = 1.5 × 10−5 Mpc2; however, we will also discuss the effects of
using cuts 10−5, 2 × 10−5, and 2.5 × 10−5 Mpc2. For each mock, we
store only the cluster redshift zi (which is assumed to have no error)
and the measured observable Yi.

An F5 mock with Ycut = 1.5 × 10−5 Mpc2 contains ∼1350 clusters.
Generating a GR mock is more straightforward, since there is no need
to include the f(R) enhancements of the HMF or the scaling relation.
In this case, there are ∼1150 clusters for Ycut = 1.5 × 10−5 Mpc2. For
illustrative purposes, in Fig. 5 we show the measured Y-parameters
of the clusters as a function of the mass M500 for a GR mock with
Ycut = 10−5 Mpc2. Horizontal dashed lines are included to indicate
the four flux thresholds considered in this work, to give an idea of
the mass range of clusters found above each.

3.4 MCMC sampling

For our parameter constraints, we use the unbinned Poisson likeli-
hood (e.g. Artis et al. 2021):

lnL = −
∫

dzdY
dN

dzdY
(z, Y ) +

∑
i

ln
dN

dzdY
(zi, Yi), (26)

where the first term represents the predicted cluster count and the
second term is a summation performed over all mock clusters. The
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4164 M. A. Mitchell, C. Arnold and B. Li

Figure 5. SZ Y-parameter as a function of the halo mass for clusters from
a GR mock catalogue with observational flux limit Ycut = 10−5 Mpc2.
The dashed lines indicate the cuts 10−5, 1.5 × 10−5, 2 × 10−5, and
2.5 × 10−5 Mpc2.

expression dN/dzdY represents the theoretical prediction of the count
per unit z per unit Y.

Since our theoretical HMF is defined in terms of the mass M rather
than the observable Y, it is more convenient to re-express the first
term with an integral over ln M (e.g. de Haan et al. 2016):

−
∫ 0.5

0.0
dz

∫ ∞

Ycut

dY
dN

dzdY
(z, Y )

= −
∫ 0.5

0.0
dz

∫ ∞

−∞
d ln M P (Y > Ycut|M, z)

dN

dzd ln M
(M, z), (27)

where dN/dzdln M can be computed using the equation (24), and the
redshift integral is evaluated between z= 0 and the maximum redshift
z = 0.5 of the mock. P(Y > Ycut|M, z) represents the probability that,
for a given mass and redshift, the measured Y-parameter exceeds the
flux threshold. This depends on both the measurement uncertainty
and the intrinsic lognormal scatter of Y:

P (Y > Ycut|M, z) =
∫ ∞

−∞
d ln Y ′P (Y > Ycut|Y ′)P (Y ′|M, z), (28)

where P(Y > Ycut|Y′
) is the probability that the measured value

Y exceeds Ycut, given an intrinsic value Y
′
, and P(Y

′ |M, z) is the
probability density of a cluster having intrinsic value Y

′
given that it

has mass M and redshift z. As discussed in Section 3.3, the mocks use
a fixed measurement uncertainty of 10 per cent, which means that the
former can be estimated using a normal distribution with mean Y

′

and standard deviation 0.1Y
′
. The probability density P(Y

′ |M, z) is
more complicated, since this depends both on the intrinsic scatter of
the Y(M) scaling relation and the scatter of the mass ratio R:

P (Y ′|M, z) =
∫ 4/3

1
dRP (Y ′|Ȳ (M, z,R))P (R|M, z), (29)

where P (R|M, z) is the probability density of a cluster having mass
ratio R given that it has mass M and redshift z. This is computed
using a normal distribution with mean given by equation (9) and
standard deviation given by equation (A1). The other probability
density, P (Y ′|Ȳ (M, z,R)), is computed using equation (23), with
Ȳ calculated using equation (22) and rescaled by a factor of R.
Together, equations (27)–(29) form a 4D integral, which we compute
using a fixed grid in (ln M, z, ln Y ,R).

For the second term in equation (26), we can again re-express into
a form that depends on dN/(dzdln M) using:

dN

dzdY
(zi, Yi) =

∫
d ln Y ′

∫
d ln M ′

× P (Yi |Y ′)P (Y ′|M ′, zi)
dN

dzd ln M ′ (M ′, zi), (30)

where the probability density functions P(Yj|Y′
) and P(Y

′ |M′
, zi)

represent the measurement uncertainty and intrinsic scatter, respec-
tively. The latter is computed using equation (29), meaning that
equation (30) is really a 3D integral. We compute this for each mock
cluster using a fixed grid in (ln Y ′, ln M ′,R), then evaluate the sum
in equation (26).

We have used the PYTHON package EMCEE (Foreman-Mackey et al.
2013) for the MCMC sampling. For all of the results discussed in this
work, we have used 28 walkers each travelling 2700 steps (we discard
the first 600 steps to ensure that the chains are well converged). At
each step, the log-likelihood is computed for the sampled parameters
as described above. In addition to the fR0 parameter, the cosmological
parameters �M and σ 8 and the four scaling relation parameters Y�,
α, β and σ log Y are sampled. For the cosmological parameters, we
adopt uniform (flat) priors log10|fR0| ∈ [−7, −4] and σ 8 ∈ [0.60,
0.95], and for �M we use either a flat prior �M ∈ [0.15, 0.50] or a
Gaussian prior �M = 0.3153 ± 0.0073 which is based on the Planck
2018 CMB constraints (Aghanim et al. 2020). For the scaling relation
parameters, we adopt the Gaussian priors listed in Section 3.2.

The flat prior [−7, −4] for log10|fR0| extends beyond the range
[−6, −4] used to calibrate the HMF enhancement model (Cataneo
et al. 2016). For sampled values in the range −7 ≤ log10|fR0| ≤
−6, we first calculate the HMF enhancement for log10|fR0| = −6,
then linearly interpolate between |fR0| = 0 (GR) and |fR0| = 10−6

to estimate the enhancement. For example, this means that the
estimated enhancement for |fR0| = 10−7 would be 10 per cent of
the enhancement for |fR0| = 10−6. We note that, because clusters
are expected to be completely screened for this range of log10|fR0|
values, it is not necessary to use a physically accurate method here,
so long as the predicted enhancement lies between GR and F6. We
use a similar approach to estimate the dynamical mass enhancement
for this range of log10|fR0|, where, again, the enhancement is very
close to zero anyway.

4 R ESULTS

In this section, we discuss the main results of this work. In Section 4.1,
we use a GR mock to check that our pipeline can give reasonable
constraints of the �CDM and scaling relation parameters. Then, in
Section 4.2, we use our full pipeline to constrain the fR0 parameter
of f(R) gravity, using a combination of GR and F5 mocks.

4.1 GR pipeline

In order to verify that our pipeline can give reasonable �CDM
constraints and successfully account for the intrinsic scatter of the
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Figure 6. Parameter constraints using our GR pipeline, which does not include f(R) enhancements of the HMF and the scaling relation (see Section 3), using a
GR mock with observational flux threshold Ycut = 1.5 × 10−5 Mpc2. The two sets of constraints are generated using a flat prior [0.15,0.50] (blue) and a Gaussian
prior 0.3153 ± 0.0073 (red) in �M. The dark and light regions of the contours represent 68 and 95 per cent confidences, respectively. The distributions of the
sampled parameter values are shown in the top panels of each column, with the mean and standard deviation of each parameter quoted in Table 1. The fiducial
cosmological parameter values of the GR mock are indicated by the green lines.

Y(M500) relation and measurement uncertainty in the mock, we first
test our ‘GR pipeline’, where the f(R) corrections to the HMF and
scaling relation are excluded. We show the constraints, which have
been inferred using a GR mock with Ycut = 1.5 × 10−5 Mpc2, in
Fig. 6. The blue contours are obtained using the flat prior �M ∈
[0.15, 0.50], while the red contours are obtained using the Gaussian
prior �M = 0.3153 ± 0.0073 from Planck 2018.

For the flat �M prior, the contours are in good agreement with the
fiducial parameter values, which are indicated by the green lines. In
the top panel of each column, we show the marginalized distributions
of each parameter, with the mean and standard deviation quoted in
Table 1. In Table 1, we also show the combination of parameters that
gave the highest log-likelihood during the sampling (Lmax); these
can be thought of as the ‘most likely’ set of values. The distributions
of the scaling relation parameters closely match the Gaussian priors.

Meanwhile, the constraints 0.34 ± 0.04 for �M and 0.79 ± 0.04 for
σ 8 – while still within 1σ agreement – are slightly offset from the
fiducial values, and the same goes for the highest-likelihood values
0.34 and 0.79. As shown by the constraints in red, using a tighter
Gaussian prior in �M results in narrower contours and constraints
�M = 0.316 ± 0.007 and σ 8 = 0.808 ± 0.015 which match the
fiducial values more closely.

The initial offset of the �M and σ 8 constraints from the fiducial
values is caused by a well-known degeneracy between these two
parameters: increasing either of these will boost the predicted am-
plitude of the HMF. Therefore, the effects of increasing (decreasing)
�M and decreasing (increasing) σ 8 on the HMF can roughly cancel
out. This causes the elongated shape of the blue �M–σ 8 contour.

We also observe degeneracies between �M, σ 8, α, and β. One
explanation for this is that α and β can also affect the predicted
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4166 M. A. Mitchell, C. Arnold and B. Li

Table 1. Parameter constraints using our GR pipeline. The mean and standard deviation are quoted (68% range) along with the
parameter combinations giving the highest log-likelihood (Lmax). The constraints correspond to the distributions shown in Fig. 6.

Flat �M prior Gaussian �M prior
Parameter Fiducial value Prior 68% range Lmax 68% range Lmax

�M 0.3153 – 0.34 ± 0.04 0.3384 0.316 ± 0.007 0.3175
σ 8 0.8111 [0.60,0.95] 0.79 ± 0.04 0.7888 0.808 ± 0.015 0.8037
σ log Y 0.075 0.075 ± 0.010 0.076 ± 0.010 0.076 0.076 ± 0.010 0.073
log Y� − 0.19 − 0.19 ± 0.02 − 0.19 ± 0.02 − 0.19 − 0.19 ± 0.02 − 0.19
α 1.79 1.79 ± 0.08 1.80 ± 0.07 1.80 1.77 ± 0.04 1.76
β 0.66 0.66 ± 0.50 0.6 ± 0.4 0.63 0.5 ± 0.3 0.58

HMF. For example, increasing α (i.e. increasing the slope of the Y(M)
scaling relation) will cause the predicted Y-parameter to be reduced
for clusters with 0.8M500 < 6 × 1014 M
 [since (1 − b)−16 × 1014 M

is the pivot mass of the power-law function in Eq. (22)], which
includes the majority of clusters in our mocks (see Fig. 5). This
means that fewer clusters will be predicted to have Y > Ycut, and
therefore the inferred cluster count will be lower, which can be
countered by a larger �M. The effects of changing α, β, �M, and σ 8

may balance out overall, giving rise to the observed degeneracies in
the blue contours of Fig. 6.

By adopting the tighter �M prior, these degeneracies appear
to be mostly eliminated. This shows the importance of accurate
independent measurements of �M in the use of galaxy cluster number
counts to constrain cosmological models and parameters.

4.2 f(R) pipeline

We now test the full f(R) gravity constraint pipeline, which includes
the f(R) effects on the HMF and scaling relation, as described in
Sections 3.1 and 3.2. In Fig. 7, we show the constraints inferred
using GR and F5 mocks with Ycut = 1.5 × 10−5 Mpc2. For these
results, we use the Gaussian prior of �M in order to prevent the
�M–σ 8 degeneracy observed in Fig. 6. As we will show in Section 5,
using a flat prior for �M can otherwise lead to biased constraints of
log10|fR0|.

For the constraints obtained from the GR mock, which are
indicated by the red contours in Fig. 7, the log10|fR0| posterior
distribution is roughly uniform for the range −7 ≤ log10|fR0| �
−5 and drops to zero for log10|fR0| � −5. This rules out f(R) models
stronger than F5, whereas weaker models are difficult to distinguish
from GR for this sample of clusters. We show our constraints of the
parameter values in Table 2. Since the log10|fR0| posterior does not
follow a normal distribution, we quote an upper bound rather than
the mean and standard deviation. In this case, 68 per cent of the
sampled points have log10|fR0| ≤ −5.56. We note that this threshold
may depend on the width of the log10|fR0| prior: for a wider prior (i.e.
extending the lower bound of the prior to some value smaller than −7
while fixing the upper bound of the prior) and a uniform log10|fR0|
posterior, it is reasonable to expect the 68 per cent upper bound to be
lower. Therefore, it is perhaps more useful to look at the combination
of parameter values that give the highest log-likelihood. In this case,
the most likely combination has log10|fR0| = −6.75, which is quite
close to the lower bound of the prior (although we note that, given
the flat posterior distribution of log10|fR0|, the point with Lmax might
not be much more significant than points with only slightly smaller
log-likelihood values). The constraints for the other parameters are
in excellent agreement with the fiducial values. Therefore, the results
suggest that our pipeline can successfully constrain fR0 using cluster
samples in a GR universe.

The constraints for the F5 mock are indicated by the blue contours
in Fig. 7. The log10|fR0| constraints appear to be in good agreement
with the fiducial value −5, which lies within the 68 per cent
confidence region of the contours. This region only extends down
to log10|fR0| ≈ −6.5, clearly favouring f(R) gravity over GR. The
constraints also appear to rule out models with log10|fR0|�−4.5. The
median and 68-percentile range of the sampled values is log |fR0| =
−5.1+0.3

−1.0, while the highest-likelihood parameter combination has
log10|fR0| = −4.92. Both of these results are very close to the fiducial
value of −5. The constraints for the other parameters are again in very
reasonable agreement with the fiducial values. This result suggests
that our pipeline can clearly identify if the underlying universe model
is F5.

Despite this promising agreement, it is interesting to note that the
log10|fR0| posterior distribution has a long tail over the range −7 <

log10|fR0| < −5. Over this range of points, σ 8 appears to have value
0.83–0.84 on average, while α and β have values ∼1.75 and ∼0.0
on average (see the blue contours in Fig. 7). As log10|fR0| is lowered,
the predicted amplitude of the HMF will be reduced. The increased
σ 8 can act against this, as can the lowered α, which, as discussed
in Section 4.1, can increase the predicted cluster count for clusters
with 0.8M500 < 6 × 1014 M
. The latter can also give a scaling
relation that more closely matches the F5 result: this is because
the scaling relation in F5 is enhanced at lower masses, which may
be approximated by the constraint pipeline as a power law with
shallower slope. This degeneracy also comes into play for log10|fR0|
> −5, where σ 8 becomes slightly lower on average and α and β

become higher. Overall, this reduces the precision of the log10|fR0|
constraint, and is perhaps the reason why the log10|fR0| posterior
peaks at a value that is slightly higher than −5. This can also explain
why the β constraints predict a value 0.3 ± 0.4 that is slightly lower
than the fiducial value 0.66. By using tighter priors in σ 8, α or β it
may be possible to eliminate this bias (see Section 5.3 for a detailed
discussion).

We have also tested our pipeline using an F4.5 mock (with
log10|fR0| = −4.5), and in Appendix C we show that this model
is clearly distinguished from F5.

5 POTENTI AL BI ASES IN MODEL
C O N S T R A I N T S

In Section 4, we demonstrated that our framework can give very
reasonable constraints of log10|fR0| for both GR and F5 mocks
(Fig. 7). An important feature of this constraint framework (Fig. 1) is
the inclusion of corrections for the effects of f(R) gravity on the
internal cluster properties, which are expected to prevent biased
constraints. In Section 5.1, we will assess potential sources of
bias in the constraint pipeline, including an incomplete treatment
of the scaling relation. Then, in Section 5.2, we will check the
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Pipeline for f(R) cluster constraints 4167

Figure 7. Parameter constraints using our full f(R) pipeline, as detailed in Section 3, using GR (red) and F5 (blue) mocks with observational flux threshold
Ycut = 1.5 × 10−5 Mpc2. The dark and light regions of the contours represent 68 and 95 per cent confidences, respectively. The distributions of the sampled
parameter values are shown in the top panels of each column, with the mean and standard deviation quoted in Table 2. The fiducial cosmological parameter
values of the mocks are indicated by the green lines, including the value log10|fR0| = −5 for the F5 mock.

effects of the cluster sample, including selection criteria, on the
constraints. Finally, we will demonstrate how the various parameter
degeneracies can be prevented by using tighter parameter priors in
Section 5.3.

For all of the figures in this section, we will only show constraints
for parameters that are either biased or contribute to parameter
degeneracies. Therefore, we exclude the log Y� and σ log Y constraints,
since these always match the Gaussian priors very closely (e.g.
see Figs 6 and 7). For similar reasons, we will also exclude �M

constraints that have been inferred using the Gaussian prior from
Planck 2018.

5.1 Constraint pipeline

5.1.1 Power-law scaling relation

In Fig. 8, we show constraints inferred using the same GR and F5
mocks as used for Fig. 7. However, here the f(R) effects on the SZ
scaling relation (equation 22) have been neglected, i.e. a power-law
scaling relation without f(R) corrections is used in the (incomplete)
f(R) pipeline.

For the GR mock constraints, shown by the red contours in Fig. 8,
the log10|fR0| posterior appears to be uniformly distributed over the
range −7 ≤ log10|fR0| � −4.5. This extends beyond the range −7
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4168 M. A. Mitchell, C. Arnold and B. Li

Table 2. Parameter constraints using our full f(R) pipeline. The 68 per cent range columns show the mean and standard deviation
for all parameters other than log10|fR0|; for the latter, the 68 per cent upper bound is shown for the GR mock constraints and the
median and 68-percentile is shown the F5 mock constraints. The parameter combinations giving the highest log-likelihood (Lmax)
are also shown. The constraints correspond to the distributions shown in Fig. 7.

GR constraints F5 constraints
Parameter Fiducial value Prior 68 per cent range Lmax 68 per cent range Lmax

log10|fR0| – [−7,−4] ≤−5.56 −6.75 −5.1+0.3
−1.0 −4.92

�M 0.3153 0.3153 ± 0.0073 0.316 ± 0.007 0.317 0.316 ± 0.008 0.313
σ 8 0.8111 [0.60,0.95] 0.806 ± 0.015 0.806 0.821 ± 0.019 0.815
σ log Y 0.075 0.075 ± 0.010 0.075 ± 0.010 0.072 0.075 ± 0.010 0.079
log Y� − 0.19 − 0.19 ± 0.02 − 0.19 ± 0.02 − 0.19 − 0.190 ± 0.019 − 0.18
α 1.79 1.79 ± 0.08 1.78 ± 0.04 1.77 1.80 ± 0.07 1.82
β 0.66 0.66 ± 0.50 0.5 ± 0.3 0.51 0.3 ± 0.4 0.44

Figure 8. Parameter constraints generated using the same GR (red) and F5
(blue) mocks as Fig. 7, but with a simplified constraint pipeline in which the
f(R) effects on the observable-mass scaling relation are neglected.

≤ log10|fR0| � −5 observed using the full pipeline in Fig. 7, and the
range log10|fR0| ≤ −5.36 containing 68 per cent of the sampled points
has a higher upper bound than the range ≤−5.56 given in Table 2 for
the full pipeline. Therefore, even though the GR mock is generated
using a power-law scaling relation, it seems that neglecting the f(R)
effects on the scaling relation in the pipeline leads to less precise and
weaker constraints of log10|fR0| overall.

The F5 mock constraints, which are shown by the blue con-
tours, still give a peaked log10|fR0| posterior distribution. However,
there are now a greater proportion of sampled points within the
range −7 ≤ log10|fR0| � −5. This means that the 68 per cent
confidence contours extend to log10|fR0| = −7, indicating that
the pipeline is unable to convincingly rule out GR. There are
also a greater number of sampled points with log10|fR0| � −4.5;
indeed, the highest-likelihood parameter combination has log10|fR0|
= −4.56, which is much higher than the fiducial value −5 and
the value −4.92 when using the full pipeline. The median and
68-percentile range is log10 |fR0| = −5.1+0.5

−1.2, which is less pre-
cise than the constraint log10 |fR0| = −5.1+0.3

−1.0 with the full f(R)
pipeline.

Figure 9. Parameter constraints generated using our constraint pipeline,
where the blue constraints are the same as the F5 mock constraints in Fig. 7
and the red constraints are generated with the scatter of the dynamical mass
enhancement set to zero in both the mock and log-likelihood.

In summary, our constraints for the GR and F5 mocks indicate that
assuming a power-law observable-mass scaling relation can lead to
imprecise and biased constraints of f(R) gravity. This appears to be
linked to parameter degeneracies, where we again observe a lowered
σ 8 and increased α for log10|fR0| � −5, and an increased σ 8 and
lowered α and β at log10|fR0| � −5.

5.1.2 Mass ratio scatter

For our constraints using the F5 mock in Fig. 7, we included the
scatter of the dynamical mass enhancement, given by equation (A1),
in both the mock and the log-likelihood calculation. We now consider
the effect of neglecting this scatter from the mock and the likelihood.
The new result is shown by the red contours in Fig. 9, along with
the previous results in blue. Without this scatter, the observable-
mass scaling relation is less scattered overall; as a result, the f(R)
constraints are more precise, with 68-percentile range log10 |fR0| =
−4.89+0.15

−0.35 as opposed to log10 |fR0| = −5.1+0.3
−1.0. In particular, the

red 68 per cent contours do not feature the tail towards low log10|fR0|.
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Pipeline for f(R) cluster constraints 4169

Figure 10. Parameter constraints generated using our constraint pipeline,
using F5 mocks with observational flux thresholds of 10−5 Mpc2 (red),
2 × 10−5 Mpc2 (blue), and 2.5 × 10−5 Mpc2 (brown).

These results indicate that excluding the scatter could lead to f(R)
constraints with an unrealistically high precision.

5.2 Cluster sample

5.2.1 Flux threshold

In addition to the observational cut Ycut = 1.5 × 10−5 Mpc2 which is
used in the main results of this paper, we have also generated mocks
with cuts 10−5, 2 × 10−5, and 2.5 × 10−5 Mpc2. From Fig. 5, a
cut of 10−5 Mpc2 means that the lowest mass clusters, with M500 ∼
1014 h−1M
, are included in the sample. In the F5 model, the HMF
is more enhanced at these lower halo masses (see Fig. 3), therefore
it is expected that using lower mass objects can give more precise
constraints of log10|fR0|.

In Fig. 10, we show constraints generated from F5 mocks with
these three cuts. For Ycut = 2.5 × 10−5 Mpc2, the sampled log10|fR0|
distribution is quite uniform for −7 < log10|fR0| � −5, indicating
that this high-mass cluster sample cannot be used to distinguish the
F5 model from weaker models, including GR. This is not surprising,
given that higher mass clusters are better-screened in F5, which
means that their number count deviates from the GR prediction less
strongly (see Fig. 3). On the other hand, the constraints for Ycut =
2 × 10−5 Mpc2 clearly favour log10|fR0| values close to −5. However,
the 68 per cent contours still extend to log10|fR0| = −7, which is very
close to GR. This is improved upon with Ycut = 1.5 × 10−5 Mpc2,
which is able to convincingly distinguish the F5 model from GR, as
we showed in Fig. 7.

In Fig. 10, we also show the constraints from the F5 mock with Ycut

= 10−5 Mpc2. Interestingly, despite containing lower mass clusters
than the other mocks, the sampled log10|fR0| values are approximately
evenly distributed over −7 � log10|fR0| � −5. One possible reason is
that this mock catalogue includes many more low-mass, unscreened,
clusters, and the main constraining power comes from different
objects than the previous cases. We note that for these constraints,

Figure 11. Parameter constraints generated using our constraint pipeline,
using GR mocks with observational flux thresholds 10−5 Mpc2 (red) and
1.5 × 10−5 Mpc2 (blue). The latter is a different realization (generated in the
same way) from the GR mock used in Fig. 7, and is included to show the
potential effects of sample variance on the constraints.

the σ 8, α, and β parameters are all biased. As we have already
discussed, these parameters can be varied in such a way that the
predicted theoretical HMF in GR (i.e. with low log10|fR0|) can match
the F5 HMF with the fiducial cosmological parameters. Our results
here show that this can cause biased constraints which appear to
prefer GR over f(R) gravity even though this is an F5 mock, and this
seems to be more relevant for cluster samples that extend to lower
masses. As we will show in Section 5.3, these degeneracies can be
prevented by using tighter parameter priors.

We note that the biased results described above only apply to
an F5 fiducial cosmology. The red contours in Fig. 11 show the
constraints inferred using a GR mock with Ycut = 10−5 Mpc2. These
are consistent with GR, with 68 per cent of the sampled points in the
range log10|fR0| ≤ −5.71, which is even more precise than the log10

≤ −5.56 constraint from Fig. 7. Meanwhile, the constraints for σ 8,
α, and β show an excellent match with the fiducial values. Therefore,
the bias described above may not be an issue for cluster samples in
a GR universe.

5.2.2 Sample variance

In order to check the effect of sample variance on the constraints,
we have generated several GR mocks with Ycut = 1.5 × 10−5 Mpc2,
following the method discussed in Section 3.3. In all cases, the
inferred constraints of log10|fR0| are consistent with GR, with the
68 per cent constraint contours spanning −7 ≤ log10|fR0| � −5 just
like the red contours in Fig. 7.

However, we have occasionally observed peaks in the log10|fR0|
posterior distribution close to −5, which are related to the degenera-
cies between log10|fR0|, σ 8, α and β mentioned above. An example
is shown with the blue contours in Fig. 11. As we have discussed,
in the constraints using the F5 mock in Fig. 7, we can see a ‘rise’ in
the log10|fR0|–α contour at log10|fR0| > −5; there is a similar ‘rise’
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4170 M. A. Mitchell, C. Arnold and B. Li

Figure 12. Parameter constraints generated by our constraint pipeline using: an F5 mock with flux threshold Ycut = 10−5 Mpc2 and a tight Gaussian prior
1.79 ± 0.01 for α (red); and an F5 mock with flux threshold Ycut = 1.5 × 10−5 Mpc2 and a flat prior [0.15, 0.50] for �M (blue).

in the case of the blue contours in Fig. 11. This is because a larger
α, which means a steeper scaling relation and hence underpredicted
cluster number counts, could be compensated by a stronger gravity,
so that to the pipeline, the GR mock would appear to be reasonably
fitted with an f(R) model with slightly larger α. We also see a slight
‘drop’ in the log10|fR0|–σ 8 contour, where the lowered σ 8 can again
counteract the strengthened gravity. These effects can lead to more
points sampled around log10|fR0| = −5, and because even stronger
gravity is disfavoured an artificial peak is formed at −5. While the
peak in log10|fR0| here is smaller than the peak observed for the F5
mock in Fig. 7, it is important to be wary that degeneracies can lead to
a particular value of log10|fR0| being favoured even for a GR fiducial
cosmology. Like the other sources of bias discussed in this work, this
issue can be eliminated by using tighter priors, as we will show in
the next section.

5.3 Tighter priors

For the many of the results discussed in this work, we have observed
degeneracies between log10|fR0|, �M, σ 8, α, and β. Together, these
parameters can vary such that the theoretical GR HMF is consistent
with the F5 mocks, or similarly the theoretical F5 HMF can be made
consistent with the GR mocks. For our main results with the f(R)
constraint pipeline (Fig. 7), we have been using a tight Gaussian �M

prior from Planck 2018. In Fig. 12, the blue constraints have been
generated using the same F5 mock as the blue constraints in Fig. 7;
however, here a flat prior [0.15,0.50] has been adopted for �M. This
gives rise to the degeneracy between �M and σ 8 (observed earlier in
Fig. 6), which leads to a uniform distribution in log10|fR0|. Fig. 13
provides an illustration of this degeneracy: here, the HMF prediction
for F6 with increased �M and reduced σ 8 closely resembles the F5
prediction, particularly at lower masses which dominate the mock
cluster samples. By using the tight �M = 0.3153 ± 0.0073 prior for
our main results in Section 4.2, we have prevented this issue. The
tight prior on �M can potentially be replaced by combining cluster
number counts with other cosmological probes that are sensitive to
�M, such as the CMB.

We have also shown that there is a degeneracy between σ 8 and
the SZ scaling relation parameters α and β. Although we have used
Gaussian priors for the latter, they can still vary enough to cause
biased constraints. In Section 5.2.1, we found that this degeneracy
caused the log10|fR0| constraints using the F5 mock with Ycut =
10−5 Mpc2 to resemble GR (see Fig. 10). In Fig. 12, the red contours
show the log10|fR0| constraints for the same mock, but this time using
a tighter α prior of 1.79 ± 0.01. The log10|fR0| posterior distribution
now peaks close to the fiducial value −5, though the constraints on σ 8

and β are similarly biased as before. In this case, as in Section 5.2.1,
the constrained β value is lower, which means less time evolution;
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Pipeline for f(R) cluster constraints 4171

Figure 13. Predictions of the HMF in F6 (light blue) and F5 (dark green) at redshifts 0.0, 0.2, and 0.5. We show predictions with the fiducial parameter values
�M = 0.3153 and σ 8 = 0.8111 (solid lines), an increased �M (dashed line), a reduced σ 8 (dash–dotted line) and both an increased �M and reduced σ 8 (dotted
line). This figure illustrates not only the well-known degeneracy between �M and σ 8 in determining the HMF, but also their degeneracy with fR0: by tuning the
values of these two parameters, an F6 model can closely mimic the HMF of an F5 model; note that the latter degeneracy may be broken by looking at multiple
redshifts or by having more precise knowledge of �M and/or σ 8.

because the time evolution is normalized at z = 0, this implies that,
for a given cluster mass M500, the measured observable Y at z > 0 is
smaller than the true value, and so fewer detectable clusters would
be predicted. This is compensated by a larger σ 8 (actually a similar
degeneracy can be observed in the GR case, see the σ 8–β contour in
Fig. 6), but one side effect is that smaller log10|fR0| values are more
likely to be allowed, leading to a uniform posterior distribution in
Fig. 10, which is alleviated in Fig. 12 with the tighter prior on α but
nevertheless not completely eliminated. Looking at the red contours
in the left column of Fig. 12, we can see that at log10|fR0| ≈ −5, β

and σ 8 both match their correct values, which suggests that if we can
tighten the prior on either σ 8 or β, the constraint on log10|fR0| can be
further improved.

Therefore, a conclusion from this discussion is that, with better
knowledge of the scaling relation parameters, it is possible to reduce
the effect of these degeneracies. However, we note that it may be
difficult to constrain the scaling relation parameters with even greater
precision. In this case, the degeneracies could be prevented by using
a synergy with weak lensing data, which can estimate the cluster
mass with higher precision. Even if this data is only available for a
subset of the clusters, it can still be incorporated in the log-likelihood
(e.g. Bocquet et al. 2019).

6 SUMMARY, D ISCUSSION, AND
C O N C L U S I O N S

Ongoing and upcoming astronomical surveys (e.g. LSST Science
Collaboration 2009; Merloni et al. 2012; Ade et al. 2019) are expected
to generate vast galaxy cluster catalogues that will be many time
larger than previous data sets. The abundance of clusters is highly
sensitive to the strength of gravity on large scales. Therefore, the
new catalogues will enable us to probe a wide variety of MG theories
which have been proposed to explain the accelerated expansion of
the Universe. This work is the latest of a series that aims to develop a

robust general framework for unbiased cluster constraints of gravity.
So far, we have studied the effects of the fifth forces in Hu–Sawicki
f(R) gravity and the nDGP model on cluster properties, including
the dynamical mass, the halo concentration and the observable-mass
scaling relations. If these effects are not properly accounted for in
cluster tests of gravity, the inferred constraints may be biased.

In this paper, we have combined our models for all the f(R)
effects into an MCMC pipeline for constraining the amplitude of
the present-day background scalar field, |fR0|. We have adopted the
model from Cataneo et al. (2016) for the f(R) enhancement of the
HMF, and used this, along with our model for the enhancement
of the halo concentration, to produce a model-dependent prediction
of the cluster number counts (Section 3.1). We have also used our
model for the enhancement of the dynamical mass in f(R) gravity
to convert a GR power-law observable–mass scaling relation, which
is based on the Planck YSZ(M500) relation (Ade et al. 2016), into a
form consistent with f(R) gravity, where the fifth force enhances the
relation at sufficiently low masses (Section 3.2). These models are all
incorporated in our log-likelihood (Section 3.4), which we have used
to infer parameter constraints using a set of mock cluster catalogues
(Section 3.3).

Using a combination of GR and F5 mocks, we have shown that
our pipeline is able to give reasonable parameter constraints that
are consistent with the fiducial cosmology (Figs 6 and 7). For the
GR mock, the constraints conclusively rule out f(R) models with
log10|fR0| � −5 and favour values in the range −7 ≤ log10|fR0| � −5
where −7 is the lowest value considered by our MCMC sampling.
Meanwhile, the constraints inferred using the F5 mock favour values
close to the fiducial value of −5, with 68 per cent range −5.1+0.3

−1.0

and a ‘most likely’ value of −4.92. We have also shown that the
constraints inferred from both mocks can be imprecise and biased
if the f(R) enhancement of the scaling relation is not accounted for
(Fig. 8). Therefore, this should be properly modelled in future tests of
f(R) gravity in order to prevent biased constraints. This will become
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particularly relevant as cluster catalogues start to enter the galaxy
group regime (e.g. Pillepich et al. 2018b; Lovisari et al. 2021), where
more objects can be unscreened in f(R) gravity.

Throughout this work, the main obstacle to precise and unbiased
constraints has stemmed from degeneracies between fR0, �M, σ 8 and
the scaling relation parameters α and β, all of which can influence
the predicted cluster count. We have shown that the degeneracies
can be prevented by using a tighter Gaussian prior for �M and by
having better knowledge of the scaling relation parameters (Fig. 12).
The latter can potentially be achieved by including lensing data for
a subset of the clusters. If wide or flat parameter priors are used, this
may give rise to biased constraints of log10|fR0|. For example, we have
found that the parameter degeneracies can have a more significant
effect for cluster samples that extend to lower masses (Section 5.2.1).

In the near future, we plan to further improve this pipeline in a
few ways. First, while the HMF model of Cataneo et al. (2016) is
accurate, it only covers the redshift range [0,0.5], and we need an
extended model that works for a larger redshift range, as well as
for wider ranges of other cosmological parameters (not restricted to
the �M and σ 8 parameters as we have focused on here). Calibrating
this model for spherical overdensity � = 500 would also mean
that conversions between halo mass definitions would no longer be
required. Secondly, we plan to run larger hydrodynamical simulations
than those used in Mitchell et al. (2021c), to further study and
calibrate the various cluster scaling relations (not limited to YSZ)
in this gravity model. Thirdly, the MCMC pipeline will be extended
so that we can include independent cluster data, such as weak lensing,
in the model constraint. Once these tasks are completed, we can use
this pipeline to constrain f(R) gravity using observations. It is also
straightforward to extend our framework to other gravity models; we
have already started to do this for the nDGP model (Mitchell et al.
2021a), where we have provided fitting formulae for the HMF and
concentration, and studied the cluster scaling relations, in this model.
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A P P E N D I X A : MO D E L L I N G TH E DY NA M I C A L
MASS SCATTER

In Fig. 2, the data points show the binned mass ratio scatter as a
function of the rescaled logarithmic mass, log10(M500M

−1

 h) − p2 =

log10(M500/10p2 ). To generate this, we have evaluated the difference
between the actual dynamical mass enhancement and the value
predicted by equation (9) for each halo, and measured the root-
mean-square difference within the same mass bins as used to fit
equation (9) in Mitchell et al. (2018). We have modelled this data
using a 6-parameter fitting formula which is made up of two parts. A
skewed normal distribution is used to capture the shape of the peak:
this includes parameters for the normalization λs, the position μs,
and width σ s with respect to the x = log10(M500/10p2 ) axis, and a
parameter α quantifying the skewness. On its own, this distribution
would fall to zero at both low and high x; however, we see from Fig. 2
that the scatter is slightly greater on average at high x than at low x.
To account for this, we add on a tanh function with two parameters:
an amplitude λt and a shift yt along the vertical axis. Our full model
is then given by

σR = λs

σs
φ(x ′)

[
1 + erf

(
αx′
√

2

)]
+ (λt tanh(x) + yt) , (A1)

where x
′ = (x − μs)/σ s. φ(x

′
) represents the normal distribution:

φ(x ′) = 1√
2π

exp

(
−x ′2

2

)
, (A2)

and erf(x
′
) is the error function:

erf(x ′) = 2√
π

∫ x′

0
e−t2

dt . (A3)

Since we have many more data points at higher masses than at lower
masses in Fig. 2, we have used a weighted least-squares approach
which ensures that different parts of the log10(M500/10p2 ) range
have an equal contribution to the fitting of equation (A1). To do
this, we have split the rescaled mass range into 10 equal-width bins
and counted the number, Ni, of data points within each bin i. In

the least-squares fitting, each data point is then weighted by 1/Ni.
This means that points found at lower masses, where there are fewer
data points, are each given a greater weight than points found at
higher masses. The resulting best-fitting parameter values are: λs

= 0.0532 ± 0.0008, σ s = 0.58 ± 0.03, μs = −0.35 ± 0.03, α =
1.09 ± 0.18, λt = 0.0012 ± 0.0003, and yt = 0.0019 ± 0.0002.

APPENDI X B: MASS C ONVERSI ONS

The following formula can be used to convert the HMF from mass
definition M� to a new definition M�′ :

n′(M�′ ) = n(M�(M�′ ))

(
d ln M�′

d ln M�

)−1

, (B1)

where n
′

is the HMF in the new mass definition and n is the HMF
in the old definition. This requires a relation between the mass
definitions. For this, we use the following (Hu & Kravtsov 2003):

M�

M200
= �

200

(
c�

c200

)3

, (B2)

where c� is the concentration with respect to generic overdensity �.
The latter can be computed from c200 using:

1

c�

= x

[
f� = �

200
f

(
1

c200

)]
, (B3)

where the function f(x) is given by

f (x) = x3
[
ln(1 + x−1) − (1 + x)−1

]
, (B4)

equation (B3) is computed using the inverse of this function. Hu &
Kravtsov (2003) provide an analytical formula which can accurately
solve this:

x(f ) =
[
a1f

2p +
(

3

4

)2
]− 1

2

+ 2f , (B5)

where p = a2 + a3ln f + a4(ln f)2 and the parameters have values a1 =
0.5116, a2 = −0.4283, a3 = −3.13 × 10−3, and a4 = −3.52 × 10−5.
The authors state that this formula has ∼ 0.3 per cent accuracy for
galaxy and cluster scales.

APPENDI X C : TEST O F THE CONSTRAINT
PI PELI NE O N A STRONGER f(R) MO D EL

For the main results of this work, we have tested our constraint
pipeline using GR and F5 mocks. For the F5 mock (cf. Fig. 7),
our pipeline produces a marginalized distribution of log10|fR0| which
peaks close to −5, but features a long tail extending to −7, which is
the lowest value of log10|fR0| considered in this work. As discussed in
Section 4.2, this can be explained by parameter degeneracies, which
can make it more difficult to fully distinguish this model from GR.

To check whether our pipeline can successfully distinguish
stronger f(R) models than F5, and whether such models suffer from
the same degeneracies, we show, in Fig. C1, constraints obtained
using an F4.5 (log10|fR0| = −4.5) mock along with the F5 results
from Fig. 7. The F4.5 constraint features smaller contours and a tight
peak at log10|fR0| ≈ −4.5 which does not feature long tails towards
lower or higher values of log10|fR0|. The median and 68 per cent range
is given by −4.47+0.06

−0.07, which is in excellent agreement with the
fiducial value of −4.50. This indicates that our pipeline can clearly
distinguish different values of |fR0| and it provides further evidence
that it can distinguish f(R) models from GR in an unbiased manner.
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Figure C1. Parameter constraints obtained by applying our full f(R) pipeline, as detailed in Section 3, to F4.5 (red) and F5 (blue) mocks, with observational
flux threshold Ycut = 1.5 × 10−5 Mpc2. The dark and light regions of the contours represent 68 and 95 per cent confidences, respectively. The marginalized
distributions of the sampled parameter values are shown in the top panels of each column. The fiducial cosmological parameter values of the F4.5 mock are
indicated by the green lines.
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