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A B S T R A C T   

The modelling of fracture initiation and propagation is a nontrivial problem in computational mechanics. 
However, it is an area that is extremely important in engineering applications, requiring accurate and robust 
numerical methods that can be applied to a variety of materials. This paper presents the development of a new 
numerical modelling approach, which combines material, or configurational, forces and the material point 
method (MPM), for finite deformation crack modelling of linear elastic solids in two dimensions. The combi-
nation of these numerical methods offers a number of advantages relating to the flexibility of the MPM in terms 
of decoupling the material deformation from the computational grid and the general nature of configurational 
force theory in terms of being applicable across different material behaviour. In the method presented in this 
paper, the MPM forms the basis of the mechanical response of the underlying material, while the configurational 
force theory provides a fracture criterion for crack modelling through a post-processing procedure. The devel-
oped modelling framework is applied to a number of benchmark problems for linear elastic solids in 2D. All 
simulations show good agreement with the results in the literature, which demonstrates that the combined 
configuration force-material point framework is a promising numerical tool for fracture modelling.   

1. Introduction 

Failure of engineering structures is usually accompanied by cracking 
of solid materials, which is strongly affected by geometrical character-
istics and material properties of specimens as well as the loading con-
ditions. Therefore, crack modelling in solid materials is of great 
importance, both in terms of understanding fracture behaviour and in 
ensuring the safety of engineering structures [1]. However, there are a 
number of numerical challenges that manifest themselves when 
modelling fracture mechanics problems linked to the numerical plat-
form adopted for stress analysis and the selected crack propagation 
criteria. Generally, computation modelling of fracture in solid materials 
can be classified into three categories, namely: continuum-based ap-
proaches, block-based methods and discrete crack approaches [2]. 

Continuum-based approaches e.g. smeared crack methods are widely 
used in engineering problems due to their easy implementation into 

commercial software [3]. These approaches introduce a characteristic 
length scale and spread the discrete crack over a finite-sized domain [4]. 
No real cracks are modelled, instead, crack opening and crack sliding are 
replaced by crack strain [5], and the stiffness degradation process 
around the fractures is represented by strain softening. These methods 
are good candidates when global responses are of interest but not suit-
able for applications where detailed information around a crack tip is of 
interest [6]. Previous research has also shown some long-standing 
problems, such as mesh-size dependency, and limited deformation 
modes of standard continuum elements when modelling softening 
behaviour [5,7,8]. Nonlocal [e.g. [9,10]] and gradient approaches [e.g. 
[11–13]] have been proposed successfully to remedy the severe mesh 
sensitivity that results from the introduction of strain-softening, but 
some open issues persist such as the determination of the additional 
material parameters and the physical nature of the additional boundary 
conditions required for such methods [5]. 
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The Block-Based Methods (BBMs) model the material or structure 
through interaction/contact of an assembly of blocks and the most 
popular block-based method is the Discrete Element Method (DEM) 
[14]. The main principle behind this approach is to bound an assembly 
of blocks to each other using cohesion at the contact surfaces between 
adjacent blocks [2]. The BBM possess inherent advantages in accom-
modating crack-induced discontinuities. However, the method’s ability 
to model continuum and partially damaged phases of solid materials is 
dependent on the equivalent description of the continuum properties 
through contact surfaces, which is difficult to generalize for different 
stress conditions [15]. In addition, the computational cost of these 
methods is high as a large number of underlying block interactions are 
required to be resolved during each calculation step. 

Discrete cracks can be modelled within the Finite Element Method 
(FEM) by introducing cohesive interface elements between adjacent 
elements [16–18]. However, these methods can only allow cracks to 
develop along existing inter-element edges, which makes the simulation 
results depend not only on the mesh size but also on the mesh bias [18]. 
An alternative is the Embedded Finite Element Method (EFEM) or the 
eXtended Finite Element Method (XFEM), in which knowledge about the 
solution around the fractures is introduced into the solution field and 
additional degrees of freedoms are condensed at an element or nodal 
level. The enrichment of the displacement field in these methods allows 
displacement jump within elements to be captured and crack propaga-
tion is possible without remeshing [19,20]. However, it has been re-
ported in the literature that EFEM and XFEM are only suitable for 
problems with a few number of cracks [2]. For complex fractures pat-
terns, they may introduce some inaccuracies including stress locking, 
violation of traction continuity and/or potential inaccuracies in the 
representation of the displacement field [21]. 

More recently, advanced numerical approaches, for example, phase- 
field [22,23] and thick level set [22,23] approaches are also used for 
crack propagation modelling. The advantage of these approaches is that 
it is not necessary to track the complex evolution cracking surface, 
making them much more suitable for complex fracture patterns such as 
crack branching, coalescence, deflection and nucleation, especially in 
3D problems. 

The meshfree methods are also suitable for discrete crack modelling 
due to the absence of a mesh and depending on the target application, 
different approaches in the meshfree methods can be adopted. A simple 
and efficient method to deal with fractures in the meshfree methods is 
the Cracking Particles Method (CPM) [24–26]. The CPM treats the crack 
as a set of crack segments and does not require crack path continuity. 
Therefore, it is particularly useful for complex crack patterns such as 
branched cracks. Recently, a novel non-local extension form of contin-
uum mechanics, called Peri Dynamics (PD) [27], has been attractive to 
researchers for crack modelling. Unlike classical approaches incorpo-
rating partial derivatives, PD utilises integral expressions in the gov-
erning equations such that cracks and any other discontinuities in 
materials and structures can be treated naturally without special tech-
niques [28,29]. However, this method is still in its infancy and several 
challenges remain, e.g. incorporating complex constitutive models and 
verification towards experimental results [30]. In addition, the vast 
majority of PD formulations require a uniform discretization and have 
non-local support which leads to high computational cost [31]. 

Another effective and simple semi-meshfree method to model frac-
ture is the Material Point Method (MPM) [32]. MPM has been found to 
offer significant computational advantages when compared with purely 
meshless methods since it does not require time-consuming neighbour 
searching [33]. The main difference between MPM and meshfree par-
ticle methods (e.g. SPH, EFG) is that in MPM, the equations of motion 
are solved on the background grid and material points are used as the 
quadrature points to approximate nodal forces and nodal masses, while 
in the meshfree methods the equations of motion are solved on the 
meshfree points and a background mesh is often constructed to integrate 
the governing equations. MPM has potential advantages over FEM for 

modelling of crack propagation because there is no need for cracks to 
follow grid lines. In MPM, the background grid is only used as a tool to 
solve the equations of motion, and not used to describe the object or the 
crack [34]. In other words, the crack is not constrained by grid lines and 
is free to be oriented and to propagate in any direction as the back-
ground mesh can the redefined to coincide with the appropriate crack 
propagation path. Additional advantages of MPM in solving the crack 
propagation compared with FEM include that the sharp discontinuities 
in the displacement field can be naturally treated, as the response is 
monitored at material points that move within a background Eulerian 
grid [35]. Thus, no re-meshing or enrichment of the underlying finite 
element mesh is required when cracks propagate as the latter is relieved 
from the detrimental effects of mesh distortion. The MPM also naturally 
handles history-dependent material behaviour, such as elastoplasticity 
or damage, without remapping of state variables when the background 
mesh is adapted as the state variables live at the material points. This is 
not the case with the standard FEM where the integration points are 
intimately tied to their parent element, and when the mesh is adapted 
the state variables of the old parent element need to be mapped to the 
new parent element. Successful implementation of MPM for crack 
propagation can be found in the published literature [e.g. [36–38]]. In 
these studies, contact and cohesion mechanisms have been used and 
crack propagations are treated as decohesion between neighbour ma-
terial points. However, this kind of fracture simulation is computation-
ally expensive and prohibitive for large scale simulations. In the present 
study, a simpler method in which cracks are introduced in the back-
ground grid is adopted. Crack propagation is achieved by a stepwise 
release of segments of the background computational grids at a pre-
scribed load. 

The challenge of modelling fractures in engineering materials also 
relies on a suitable fracture criterion. The fracture criteria in numerical 
modelling are used to determine whether or not a crack will propagate 
or nucleate. Moreover, appropriate fracture criteria should provide the 
orientation and the ‘length’ of crack propagations [3]. In numerical 
simulations, the prediction of the crack propagation direction has a 
significant effect on the modelling results, as a small perturbation in the 
crack propagation direction can result in a completely different crack 
pattern and global force–displacement response. Several crack propa-
gation criteria have been proposed, e.g. critical stress intensity factor K, 
the energy release rate G, the crack tip opening displacement CTOD, etc. 
However, each criterion has associated issues. The critical stress in-
tensity factor approach is only suitable for problems with small-yielding 
assumptions [39]. The CTOD criteria have the limitation that it is not 
suitable for predicting the crack deflection or kinking from the original 
crack direction under mixed-mode loading conditions [40]. In addition, 
it is difficult to determine experimentally as measurements are required 
to be taken in the interior of a specimen [41]. 

In addition to selecting a crack propagation direction criterion, nu-
merical modelling approaches also require a method to determine the 
crack tip information that can be used to determine if a crack will 
propagate. The J-integral possesses the computationally attractive 
property of integration-path independence and is widely used on prob-
lems without material inhomogeneities [42]. However, the J-integral 
approach presumes deformation plasticity and treats elastic–plastic 
material as non-linear elastic. For a growing crack in a real elastoplastic 
material, the J-integral based on deformation plasticity assumption loses 
its role as a crack driving force [43]. Moreover, the definition of J- 
integration restricts its application to cases of monotonic loading. An 
alternative is to use fracture criteria based on configurational force 
theory, which was first proposed by Eshelby [44], has been successfully 
used for crack propagation in numerical simulations [42]. According to 
its definition, the configurational force can be considered as the ther-
modynamic force which is responsible for the motion of cracks in ma-
terials. One of the advantages of using the configurational force 
approach is that it can be adapted to all kinds of material models [43] 
(elastic, finite elastic, visco-elastic, plastic, coupled mechanics, etc.) 
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without making any assumptions. Applications of this method can be 
found in brittle crack modelling [45,46], elastoplastic materials [42,43], 
3D cracks [1,47], dislocations [48,49], crystal plasticity [50] and crack 
branching in dynamics [51]. However, most of these studies were 
limited only to the finite element framework. The implementation of this 
criterion into more advanced numerical approaches, such as MPM, is 
very rare in the literature. 

This paper presents an implementation of the configurational force 
theory for crack propagation modelling in an MPM framework. MPM 
forms the basis of the mechanical model while the configurational force 
theory provides a fracture criterion for the crack propagation. To the 
best of the authors’ knowledge, this is the first time that the configu-
rational force criterion has been combined with an MPM framework. 
The combination of these two approaches provides a powerful frame-
work for modelling fracture in general materials. However, this paper is 
focused on linear elastic materials within a large deformation frame-
work to provide the essential basis for future extensions. 

2. Material point method 

The MPM has received increased traction in commercial applications 
in recent years due to its outstanding performances in large de-
formations [52–54] as well as crack propagation [35]. The method uses 
two discretizations of the material domain. One is based on a compu-
tational grid and the other one is based on a collection of material points. 
Fig. 1(a) shows a graphical illustration of the discretization in MPM. The 
background gird is used to determine incremental displacements by 
solving the governing equations while all the material state variables 
including stress, strain, history-dependent plastic information, are car-
ried by material points. The deformation of the material is modelled by 
moving material points through the mesh. At each time step, the ob-
tained displacements from grid nodes are transferred back to the cor-
responding material points such that all material state variables can be 
updated accordingly. At this point, MPM is identical to FEM in which the 
material points are served as integration points and the background grid 
serves as a finite element mesh. However, in MPM the deformed back-
ground grid is discarded i.e., it is reset to the initial configuration (un-
deformed) after each time step. This is the distinctive advantage of MPM 

over FEM and makes this method ideal for modelling large deformation 
problems while avoiding mesh distortion [52–54]. Fig. 1(b) presents 
general steps of the deformation process in the MPM. 

MPM can be considered as the updated Lagrangian finite element 
method in which material points perform as integration points but are 
uncoupled from the background computational grid. From the authors’ 
perspective, the key difference between the FEM and MPM is that these 
integration points move accordingly with the background grid rather 
than being directly coupled to the position of the computational grid 
nodes. Therefore, it is necessary to track the movement of the material 
points and to know the computational grids that they belong to at each 
time step. 

2.1. Updated Lagrangian mechanics 

In this section, a quasi-static implicit finite deformation MPM based 
on an updated Lagrangian formulation is presented. The weak statement 
of equilibrium is expressed as 
∫

φt(Ω)

(
σij(∇xη)ij − biηi

)
dv −

∫

φt(∂Ω)

(tiηi)ds = 0, (1)  

where φt is the motion of the material body with domain, Ω, which is 
subjected to tractions, ti, on the boundary of the domain (with the sur-
face, s), ∂Ω, and body force, bi, acting over the volume, v, of the domain. 
These external loads lead to a Cauchy stress field, σij, through the body. 
The weak form is expressed in the current frame with the assumption of 
a field of admissible virtual displacements, ηi. However, MPMs are un-
usual in that they are not ideally suited to the traditional total or 
updated Lagrangian formulations of continuum mechanics [51]. This is 
due to the fact that their basis functions are normally based on material 
point positions at the start of a load step and assume that calculations 
take place on the undeformed grid. This means that care must be taken 
when implementing an updated Lagrangian material point method in 
terms of the spatial derivatives of the basis functions to ensure that they 
correctly satisfy the weak form of the governing equations [52]. The 
formulation present in this section is essentially the same as that used in 
[52] and available in the open-source AMPLE code [55]. 

A combination of logarithmic strain with Kirchhoff stress is used in 

Fig. 1. Sketch of material point method: (a) discretization of material domain; (b) moving material points through background mesh.  
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the present study to allow the use of conventional small strain consti-
tutive models within a finite deformation framework. This formulation 
is one of the most straightforward ways to implement large strain within 
a finite element framework [54]. At each material point, stress and 
strain are expressed with an exponential map of the plastic flow equa-
tion so that the stress integration algorithm used in the plasticity model 
can be the same with a small strain problem. Although linear elastic 
solids are considered in the present study only, the extension of the 
current code to elastoplasticity is straightforward and will be reported in 
a separate paper. In order to obtain the updated stress state for the 
current deformation gradient, the adopted constitutive model requires 
trial stress to act as the elastic strain state. In this approach, the trial 
elastic Cauchy-Green strain and logarithmic strain is obtained from 

(
be

t

)
ij = ΔFik

(
be

n

)
klΔFjl , and

(
εe

t

)
ij =

1
2

In
(
be

t

)
ij, (2)  

where ΔFik is the increment in the deformation gradient over the current 
load step and the subscript t and n denote trial and previously converged 
states, respectively. 

2.2. Discrete material point formulation 

By introducing the element approximation for the displacements at a 
point within a finite element, the Galerkin form of the weak statement of 
equilibrium over one element in the background mesh, E, can be ob-
tained as 

{
f R
E

}
=

∫

φt(E)

[
∇xSvp

]T{σ}dv −
∫

φt(E)

[
Svp

]T{b}dv −
∫

φt(∂E)

[
Svp

]T{t}ds = {0},

(3)  

where 
[
∇xSvp

]
is the strain–displacement matrix containing derivatives 

of the basis (or shape) functions that link the material points (subscript 
p) with the nodes or vertices of the background grid (subscript v) with 
respect to the updated coordinates, and 

[
Svp

]
is the matrix form of the 

basis functions. In order to keep the implementation similar to FEM as 
much as possible, the same basis functions in FEM are also used in the 
present study for MPM. The basis functions and their spatial derivatives 
for the standard MPM are 

Svp = Sv
( {

xp
} )

and ∇Svp = ∇Sv
( {

xp
} )

, (4)  

where Sv is the standard FEM basis function of the node v and xp are the 
coordinates of material point p. The internal force within one element is 
approximated in the first term in Eq. (3) while the external force vector 
is combined by the second term (body forces) and the third term 
(tractions). 

In MPM the physical domain is discretised by a number of material 
points, it is more convenient to express the global equilibrium Eq. (3) in 
terms of material point contribution, rather than element, contribution. 

In this context, the global residual vector, 
{

fR
}

, can be assembled 

through 
{

f R} =
{

f int} − {f ext}, (5)  

where 
{

f int
}

and 
{
f ext} are the global internal and external force vec-

tors. They can be respectively obtained as 

{
f int} =

∏

∀P

{[
∇xSvp

]T{σ}VP

}
, {f ext} =

∏

∀P

([
Svp

]T{b}Vp

)
+

∫

φt(∂E)

[
Svp

]T{t}ds,

(6)  

where VP is the current volume associated with the material point and 
∏

is the standard assembly operator. For the standard MPM which is 
adopted in the present study, the VP is updated after each load step 
through 

Vp = det(Fij)V0
p = det(ΔFij)Vn

p , (7)  

where V0
p and Vn

p are the volumes associated with the material point in 
the initial configuration and the previously converged state, and n de-
notes the load step number. Within the discrete formulation of the MPM, 
the increment of the deformation gradient, ΔFij in Eq. (7) can be ob-
tained from the derivatives of the basis functions based on the config-
uration at the start of the load step: 

ΔFij = δij +
∂Δui

∂X̃j
= δij +

∑N

v=1
(Δuv)i

⎧
⎨

⎩

∂Svp

∂X̃j

⎫
⎬

⎭
T , (8)  

where Δuv is the displacement increment of a background grid node v 
within the current load step and N is the number of nodes that influence 
the material point. Eq. (8) allows the determination of the increment in 
the deformation gradient based on the initial (undeformed) computa-
tional grid. However, in order to calculate the internal force in Eq. (6), it 
is necessary to obtain the derivatives of the shape functions with respect 
to the current coordinate, xi, consistent with the updated Lagrangian 
formulation [52]. According to the chain rule, the spatial derivative of 
the basis functions can be calculated as [52] 

∂Svp

∂xj
=

∂Svp

∂X̃i

∂X̃i

∂xj
=

∂Svp

∂X̃i

(
ΔFij

)
− 1. (9) 

Assuming that the applied body force and surface tractions are in-
dependent of the nodal displacement, the global stiffness matrix, [K], can 
then be obtained by linearizing the internal force in Eq. (6) as 

[K] =
∏

∀P

{[
∇xSvp

]T [a]
[
∇xSvp

]
Vp

}
. (10)  

Here, [a] is spatial consistent tangent modulus matrix for a material point 
and can be given by 

aijkl =
1
2J

Dalg
ijmnLmnpqBpqkl − Tijkl, (11)  

where 

Lmnpq =
∂In

(
be

mn

)

∂be
pq

, Bpqkl = δpkbe
ql + δqkbe

pl, Tijkl = σilδjk, (12)  

and Dalg
ijmn is the small-strain algorithm tangent obtained from the 

constitutive model. The use of this tangent allows for asymptotic 
quadratic convergency of the global residual in Eq. (5), see details in 
[56]. 

Eq. (5) is non-linear in terms of the unknown nodal displacements 
and can be efficiently solved using the standard Newton-Raphson (NR) 
procedure. The nodal displacement increments within a load step, {Δd}, 
can be obtained by iteratively updating the nodal displacement in-
crements until Eq. (5) is satisfied within a given tolerance using 

{δd}k+1 = [K]− 1{f R}
k, (13)  

where k + 1 denotes the current iteration number, {δd}k+1 are the 

iterative nodal displacements, 
{

fR
}

k is the global residual out-of- 

balance vector in Eq. (5) from the kth iteration. The displacement in-
crements in a load step then can be obtained by summing the iterative 
increments within the load step, that is {Δd} =

∑k+1
it=1{δd}it , where it 

refers to the iteration number. 
Once equilibrium has been obtained, the material point positions and 

volumes should be updated. The positions of material points are updated 
through 
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(xp)i = (X̃p)i +(Δup)i = (X̃p)i +
∑N

v=1
Svp(Δuv)i, (14)  

where (Δup)i and (Δuv)i are the displacement increments for material 
point and the corresponding background mesh grid node, respectively. 
The volume at each material point, as discussed above, can be updated 
through Eq. (7). 

2.3. Background mesh and basis functions 

Most MPM implementations adopted a uniform Cartesian grid which 
consists of lines in 1D, squares in 2D and cubes in 3D. However, some 
implementations utilizing an unstructured mesh as the background 
computational grid. In the present study, triangular background 
computational grids are preferred so that the detailed crack paths could 
be simulated more realistically [18]. However, it should be noted that 
contrary to the Cartesian grid, the search for which computational grid 
contains a given material point can be a challenge in an unstructured 
mesh. In this study, a subroutine based on checking the relative position 
of material points for all the computational triangle grids is developed to 
solve this problem. The algorithm is based on checking the number of 
points in the convex hull of the vertices of the triangle adjoined with the 
material point in question. If the hull has three vertices, the material 
point lies in the triangle’s interior; if it is four, it lies outside the triangle. 

In this paper, two triangle elements, namely 3-node and 6-node (see 
Fig. 2) are used to discrete the background space. As stated earlier, the 
same basis functions in a local coordinate system used in FEM are 
adopted in MPM in the present study. The use of local coordinate sys-
tems makes the derivation of the shape functions much easier and they 
are common across all background elements. 

Unlike the Gauss integration points in traditional FEM, the relative 
position of a material point within an individual background grid keeps 
moving during the loading process. Therefore, it is not necessary to 
couple the initial material point position with the background compu-
tational grid in MPM. One can freely distribute material points within 
the material domain, especially for the case with structured background 
meshes. In the present study, to simplify the procedure but without loss 
of accuracy [57], only one MP within the 3-node computational grid is 
considered and its initial position is located at the centre of the triangle 
(see Fig. 2(a)) while three MPs within the 6-node triangle are considered 
and they are initially located at the centre of small triangles Δ146,
Δ426 and Δ653, respectively, as shown in Fig. 2(b). Understandingly, 

6-node triangles will increase the computational cost when solving crack 
propagation problems. 

3. Configurational force theory 

3.1. Concept of configurational force 

The general theory of configurational force mechanics can be traced 

back to the work of Eshelby [44], in which it is defined as a generalized 
force acting on ‘defects’ such as inclusion, vacancy, dislocation, crack 
and so on. The variation of the free energy associated with a variation of 
the configuration defines a configurational force (CF), which, in its turn, 
drives the configuration change of the structure [58]. Contrary to 
physical forces, configurational forces (CF) act on the material space and 
it generally can be interpreted as the representation of the negative 
gradient of the strain energy function with respect to the position of a 
‘defect’ [44]: 

CFi = −
∂ψ(α,X)

∂Xi
, (15)  

where ψ refers to the total energy and it can be written as a function of 
several quantities, αi, and the position in the material space, Xi. 

Following the work by Esheby in [44], the energy change associated 
with an infinitesimal movement of the ‘defect’, δξ, can be expressed as 

δψ = − δξi

∫

Γ
ΣijnjdΓ, (16)  

in which nj is the outward unit normal to the surface of the ‘defect’, Γ, 
and Σij is the Eshelby stress tensor. Considering the energy change, δψ, as 
a scalar product of the configurational force CFi with the infinitesimal 
displacement, δξ, Eq. (16) can be recast into the form: 

δψ = δξ(CF). (17) 

The configurational force, CFi is obtained correspondingly, as 

CFi = −

∫

Γ
ΣijnjdΓ, (18) 

In the present study, constitutive models adopt a fully implicit stress 
integration algorithm. Therefore, although the framework is for finite 
deformation problems, the deformation within each step can be still 
considered to small. Then the Eshelby stress tensor is defined as 

Σij = ψδik − uj,iσjk, (19)  

where ψ is the internal strain energy of the solid, 

ψ =
1
2
σijui,j, (20)  

ui,j is the gradient of the displacement field. Considering a closed-form 
‘defect’, Eq. (18) can be converted to a domain integral using Green’s 
theorem, as 

CFi = −

∫

Γ
ΣijnjdΓ = −

∫

Ωc

(
Σji,j

)
dΩc, (21)  

in which Ωc is the domain of the ‘defect’ encircled by the contour Γ. Eq. 
(21) indicates that the configurational force at a position is determined 
by the divergence of the configurational stress in a region around the 
point – parallels can be drawn between this and the conventional 

Fig. 2. Triangle elements and initial material point distribution: (a) 3-node element; (b) 6-node element.  
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definition of the internal force at a node via integration of the Cauchy 
stress in the elements attached to a node. 

For linear elastic materials, the strain energy may be expressed as 

ψ = ψ(εij,Xi) (22)  

and is only dependent on the strain εij and the position of the material 
point X. Therefore, the gradient of the assumed strain energy yields: 

∇ψ = ∇ψ(εij,Xi) = σjkuji,k − (ψδik),k, (23)  

where (ψδik),k denotes the explicit dependence of ψ on position X. 
Additionally, using differentiation by part on σij∇ψ(εij), a local energy 
momentum balance can be obtained as 

∇⋅
(
Σij

)
= 0, (24)  

in which Σij is the Eshelby stress tensor defined in Eq. (19). Integrating 
Eq. (24) over a simply connected domain and using Green’s divergence 
theorem, the resultant of the Eshlby stress for a contour path Γ encircling 
a closed-form domain must vanish, as 
∮

Γ
ΣijnjdΓ = 0, (25)  

where nj is the outward normal to Γ. For the problem domain containing 
defects or cracks, as is the case in the present study, if boundaries of the 
specimen and crack surfaces are included to form a closed-form, the 
balance of energy momentum can be still achieved [41,59,60], i.e. the 
resultant from Eq. (24) and (25) is zero. 

3.2. Implementation of configurational force in the MPM 

Numerical implementation of configurational force as the crack 
driving force in the FEM framework for elastic solids can be found in the 
work of Miehe et al. [45,46] and Denzer et al. [61]. Miehe et al. [46] 
gave an expression of the configurational force at the crack tip, CFtip, 

CFtip = −
∏aelem

e=1

∫

Ωe
Σij

∂Svp

∂Xj
dΩ, (26)  

where aelem is the number of elements attached to the crack-tip node. 
However, a more accurate form based on a domain surrounding the 
crack tip is proposed by Denzer et al. [61] 

CFdomain = −
∑Nnp

N=1

∏Nelem

e=1

∫

Ωe
Σij

∂Svp

∂Xj
dΩ, (27)  

where the crack driving force can be deemed as the resultant of all 
configurational force vectors in elements over the specific domain Ω, 
surrounding the crack tip in the numerical evaluation. In Eq. (27), Nnp 

and Nelem refer to the number of nodes and elements within the specified 

domain Ω, respectively. 
As stated in previous sections, MPM and FEM share several common 

aspects and the material points can be considered as moving integration 
points in FEM. Therefore, the method proposed by Denzer et al. [61] can 
be used in the present MPM framework without much additional effort. 
The stress and displacement fields are still calculated and updated 
within the MPM framework, following the algorithm stated in Section 2. 
The CF is calculated through a post-processing procedure on the nodes of 
the background grids. 

4. Crack propagation and computational framework 

4.1. Algorithm for crack propagation in elastic solids 

In the present study, the crack propagation is assumed to occur 
stepwise by a successive release of segments of the background 
computational grids at a prescribed load. When a crack propagates it 
results in the release of segments between elements and is accompanied 
by a node doubling of the critical node when the magnitude of the 
configurational force is over a threshold value. Full details of the 
segment release for crack propagation modelling can be found in Miehe 
and Gurses [46], in which a similar algorithm is implemented in a FEM 
framework. The general step of the algorithm for crack propagation is 
visualized for a simple background mesh in Fig. 3. 

However, there are some differences between FEM and MPM in 
solving problems involving crack propagation. As shown in Fig. 3(c), 
after alignment of the critical segment in direction of the configurational 
force, the shape of triangles that are attached to the critical segment will 
change accordingly. In conventional FEM, associated with this kind of 
element shape change, the integration points within these elements will 
also move to their relative positions. However, this is not the case in 
MPM, as shown in Fig. 3(c) and (d), the MPs within the triangles which 
have the critical segments are not moving during this process. It is the 
key point that distinguishes the current approach in the MPM frame-
work from the method proposed by Miehe and Gurse [46]. Actually, it is 
also believed that this is the advantage of MPM in solving crack prop-
agation problems through segment release and node doubling, espe-
cially for the elastoplastic materials in which several history-dependent 
variables are carried at integration points. If integration points move 
during the calculation process as they do in FEM, history-dependent 
variables need to be remapped to the new integration point positions, 
which will affect the final simulation results. However, this problem is 
prevented by the MPM framework, making the proposed method ideal 
for modelling elastoplastic problems. 

However, it should be noted that the CF is implemented into the 
MPM framework for crack propagation modelling in linear elastic solids 
only in the present study. The crack propagation for elastoplastic 
problems requires additional computational procedures, which are 
beyond the scope current study and therefore is left for a future 
publication. 

Fig. 3. Crack propagation procedure in MPM framework: (a) identification of the critical node and its corresponding segments; (b) identification of the critical 
segments according to the configurational force vector CFI; (c) Alignment of the critical segment in direction of the configurational force CFI and node doubling; (d) 
crack propagation through segment release. 

R. Zhou et al.                                                                                                                                                                                                                                    



Theoretical and Applied Fracture Mechanics 117 (2022) 103186

7

4.2. Computational framework 

In this paper, an implicit quasi-static formulation of MPM provides 
the computational platform for the deformation simulation, while the CF 
calculation and the crack propagation modelling are implemented 
through a post-processing procedure after obtaining convergence results 
for each load increment step. The configurational force vector is calcu-
lated on a stationary crack and then implemented as the fracture criteria 
for the crack propagation in linear elastic solids. The complete proced-
ure of the computational framework is summarised as follows:  

1. At the very beginning, the numerical MPM problem needs to be set 
up, which includes background computational grid generation, 
initial material points distribution and initial material point volume 
V0

P , etc. And then the applied external forces or displacements are 
split into a number of load steps, and for each of these steps, the 
following steps are undertaken;  

2. For each MP, find influence elements of MP in the background mesh 
and evaluation of basis functions Svp and their spatial derivatives 
∇Svp for all the nodes v of the influence elements;  

3. Calculate the stiffness contribution, [kp], of all the MPs and assemble 
the individual contribution of each material point into the global 
stiffness matrix, [K], through Eq. (10);  

4. Calculate the internal force contribution, 
{

f int
}

, of all the MPs and 

assemble the contributions into the global force vector through Eq. 
(6);  

5. Increment the external traction and/or body force in Eq. (6) and 
solve for the nodal displacements within a load step using the N-R 
process (see Eq. (13)) until the out-of-balance force reaching a 
specified convergence value (repeating steps 3 and 4 and updating 

the spatial derivatives from step 2 to determine the current stiffness 
and internal force).  

6. Update the material point positions, volume through interpolation 
from the incremental nodal displacements (See Eqs. (7) and (14)); 

7. Calculate the configurational force vector CF for the domain sur-
rounding the crack tip through Eq. (27). The configurational force is 
calculated as a post-processing procedure after obtaining the stress 
and displacement field for MPs.  

8. Check whether the crack criterion is violated. If it is, then releases the 
crack segment by doubling the critical nodes and update the back-
ground computational grids following the procedure described in 
Section 4.1.  

9. Reset the background grid. 

5. Numerical examples 

In this section, several numerical examples are presented to 
demonstrate MPM combining the configurational force theory in solving 
fracture mechanics problems. The analysed problems cover tension, 
shear and three-point bending with single and multiple cracks. Some 
examples with complex crack patterns are also tested to show the per-
formance of the proposed methodology. 

5.1. Single edge stationary crack test 

In order to estimate the accuracy of the material point method in 
predicting the configurational force vectors, we first consider the sta-
tionary crack problem in a single edge body with a simple linear elastic 
material behaviour under model-I loading. The benchmark is taken from 
the work of Miehe et al. [45]. The geometry of the problem is shown in 

Fig. 4. Tensile test of single edge stationary crack problem. (a) Geometry and loading and different discretizations with (b) 384, (c) 790, (d) 1530 and (e) 2584 
material points with 3-node background mesh. 
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Fig. 5. Effect of discretization on both domain evaluation and crack-tip evaluation: (a) magnitude of configurational force; (b) potential crack propagation angle.  

Fig. 6. Effect of the domain evaluation: (a) norm of configurational force and crack propagation angle for the discretization with 25; (b) configurational force 
distribution; 
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Fig. 4, with height h = 1000 mm, width w = 500 mm and crack length a0 
= 100 mm. Furthermore, a linear elastic material model is used by 
defining two parameters Young’s modulus E = 210 GPa and Poisson’s 
ratio v = 0.3. A plane strain condition is assumed in the out-of-plane 
direction. For this stationary crack problem, traction with a tensile 
stress of 10 MPa is applied on top and bottom surfaces (shown in Fig. 4 
(a)). 

Similar to the work in Miehe et al. [45], we first extracted the 

configurational force vector-only at the crack tip. Seven different dis-
cretizations, namely 384, 790, 1530, 2584, 5042, 8068 and 15,320 
material points, are used for the solution of the physical problem and 
calculation of the configurational force vector. Fig. 4(b) through (e) 
show the first four of the material point distributions and their corre-
sponding background mesh. The results for the norm of the configura-
tional force vector and the potential crack propagation angles with the 
different discretizations are shown in Fig. 5(a) and (b), respectively. As 
shown, the results from the crack tip cannot provide uniform conver-
gence values for both the norm of the configurational force vector and 
the propagation angle (due to the mode I nature of the problem the crack 
should propagate horizontally – a propagation angle of zero). Instead, 
the results are oscillating between the subsequent discretizations. Thus, 
an improvement method proposed by Denzer et al. [61] is also imple-
mented in the present study. The key improvement of this method is that 
it calculates a resultant configurational force vector of an influence 
domain surrounding the crack tip instead of the configurational force at 
the crack tip. To this end, a domain with radius R = 50 mm around the 
crack tip was defined (the impact of the radius size is discussed later in 
this section). The corresponding results in terms of the norm of config-
urational force and the crack propagation angle are also presented for 
comparison in Fig. 5 (a) and (b) respectively. Clearly, results obtained 
from this domain evaluation yield a better convergence behaviour than 
those obtained from the above only crack-tip evaluation. However, there 
is still a discrepancy between analytical and computational results. And 
this discrepancy can be traced back to the background grid being dis-
cretised with constant strain triangles. Improvement may be sought via a 
higher-order triangle element (e.g. linear strain triangle element, such as 
6-node triangles), which will be discussed later. The results from the 

Fig. 7. Effect of type of computational grid on both norm of configurational force vector and crack propagation angle.  

Fig. 8. Configurational forces under large deformation and comparisons with 
analytical solution [62]. 

Fig. 9. Crack propagation in single edge crack sample.  
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present simulation are also compared with the FEM in [45] where 
constant strain triangles are used for the discretization. Fig. 5(c) and (d) 
show the corresponding FEM results in terms of the norm of configu-
rational force and the crack propagation angle, respectively. It can be 
clearly observed that the FEM can generally obtain better results for the 
norm of configurational force with coarse grids; however, when the 
grids are refined, two methods predict similar results which are very 
close to the analytical solution, especially for the domain evaluation. 
Regarding the crack propagation angle, the MPM can generally obtain a 
quicker convergence than the FEM, especially for the tip evaluation. 
From the comparison, it is reasonable to believe that the accuracy of the 
present simulation is acceptable and can be used for further crack 
propagation problems. 

In order to obtain a convergence result regarding the size of the 
selected domain radius. Several different radii of the domain are defined 
to investigate the effect of the domain size on the evaluation of the 
resultant configurational force vector based on the background mesh 

with 2584 elements and material points. The results for the norm of the 
configurational force vector and the potential crack propagation angles 
are depicted in Fig. 6(a). As shown, the results show an almost constant 
value/direction of the configurational force regardless of the domain 
size after a critical domain radius (around 50 mm in terms of the angle of 
propagation). Thus, a domain with a radius R = 50 mm surrounding the 
crack tip is considered for this case. This size is equivalent to one- 
twentieth of the length of the original crack. Therefore, the domain 
size is set as around one-twentieth of the length of the initial crack in the 
remainder of this paper. It has been demonstrated that there is a rela-
tionship between the configurational force and the traditional J-integral 
in fracture mechanics [24,41,42]. The J-integral can be regarded as the 
projection of the configurational force to the crack extension. Therefore, 
the configurational force obtained should be path-dependent for a linear 
elastic material model. However, the accuracy of the numerical evalu-
ation of the configurational force strongly depends on the accuracy of 
the Eshelby stress in the vicinity of the crack tip. Owing to the singular 

Fig. 10. Crack propagation trajectories during the loading process for two different discretizations (the red arrows show the crack propagation path): (a) 790 
material point; (b) 2584 material points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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behavior of the spatial motion stresses and strain near the crack tip, the 
accuracy of Eshelby stress is often insufficient within a finite element 
setting. For an improvement, a domain evaluation is needed to get a 
convergence value for the Eshelby stress. Therefore, the physical 
meaning of the critical domain radius is actually the critical domain 
beyond which the numerically obtained configurational force is size– 
independent (J-integral path-independent). 

Fig. 6(b) presents the distribution of the configurational force within 
the specimen. It is observed that the configurational force vectors appear 
mostly at the crack-tip node and almost vanish with a distance less than 
20 mm from the crack tip. It further confirms that the resultant 
configurational vector can achieve a convergence when a reasonable 

domain is chosen (radius R > 20 mm). It should be pointed out here that 
the directions of configurational forces are depicted coincide with the 
direction of crack propagation in the present study, which may be 
different from other published literature [41,43]. The direction shown 
in this way can give a direct impression that the configurational force 
can be considered as the crack driving force. 

It should be mentioned here that a convergent domain size depends 
on the mesh size. As it is shown in Fig. 6, a finer discretization can 
generally reach convergence with a smaller domain size. By specifically, 
the norm of configurational force and the potential crack propagation 
angle are convergent beyond a domain radius of 20 mm for the dis-
cretization with 2584 material points while they can get convergence 

Fig. 11. Single edge crack under shear test and the corresponding background mesh.  

Fig. 12. Crack propagation trajectory of single edge cracked plate under shear test: (a) propagation steps = 3; (b) propagation steps = 10; (c) propagation steps = 15; 
(d) final crack pattern from FEM prediction [40]. 
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with a domain radius around 10 mm for the discretization with 8068 
material points. According to the FEM results in [45], for the mesh with 
7258 elements, results including the configurational force and the po-
tential angle reach convergence with a domain radius around 15 mm. In 
addition, it can be observed from the distribution of the configurational 
force in Fig. 6(b) and (d) that the configurational force vectors appear 
mostly within 3 to 4 layers of elements around the crack tip and vanish 
outside this domain, which is consistent with the FEM results in [61]. 
Therefore, it is reasonable to conclude that the MPM can present similar 
results with FEM regarding the size of the selected domain radius. 

As stated in Section 2.3, two kinds of triangular elements, namely the 
constant strain triangle element and the linear strain triangle element 
are mostly used in the mesh-based numerical simulations. It is generally 

recognised that the 3-node triangle element may give low accurate re-
sults due to its low order basis functions. To this end, the 6-node triangle 
is also included in the present study for comparison. As shown in Fig. 2, 
the number of material points has increased by three times with such a 
computational grid. The results in terms of the configurational force 
vectors, including the magnitude and potential propagation angle, of 
these two kinds of elements, are shown in Fig. 7. As shown, the 3-node 
triangle element can generally give similar results with 6-node triangles 
for both the magnitude of the configurational force and the propagation 
angle, although more accurate results may be achieved by 6-node tri-
angles. Both results become very close to the analytical values (256 N for 
configurational force and 0◦ for propagation angle) when the dis-
cretization is fine enough. In consideration of the computational cost 

Fig. 13. Geometry and loading of tensile test.  

Fig. 14. Crack propagation trajectories comparison: material point method from the current study (left) and finite element method (right) from [45].  
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and additional effort in the 6-node triangle element in achieving crack 
propagation by releasing segments, the computational results with the 
3-node triangle grid can be considered to be acceptable. This is further 
underlined by the subsequent examples which demonstrate the predic-
tive capabilities of the formulation to capture experimentally observed 
curved crack trajectories. Therefore, the 3-node triangle computational 
grid will be adopted, hereafter. 

It should be emphasized here that the most attractive point of MPM 
in commercial application in recent years is its application in large 
deformation. To show the performance of the current framework in 
large deformation, the approach proposed in the present study is also 
used to simulate the stationary single edge crack under large tensile 
deformation. Large tensile stresses vary from 104 to 105 MPa are applied 
on the top boundary of the specimen which would produce large tensile 
engineering strains around 5–50%. The norm of the configurational 
force is calculated accordingly for each case. Fig. 8 shows the compar-
isons of numerical predictions from the present framework and the 
analytical solution in [62]. As it can be clearly observed, the MPM 
predictions agree very well with the analytical solutions even under 
large deformations up to 50% strain. Beyond this value, the standard 
MPM framework may suffer a nonphysical numerical fracture problem 
from our preliminary simulations. CPDI MPM approaches [33,63] may 
be used to solve this numerical fracture problem, but it is beyond of the 
scope of current research. On the other hand, the numerical example 
with the same background mesh is also modelled with a commercial 
FEM software ANSYS [64]. From our preliminary simulations, the 
maximum strain can be simulated with ANSYS is up to around 32% 
beyond which it would stop with errors due to serious distortion of el-
ements near the crack tip. Therefore, it is reasonable to believe the 
approach proposed in the present study is ready for large deformation 
crack modelling and has certain advantages over conventional FEM. In 
addition, it should be also noted that the strain to failure for typical 
engineering materials is much less than that which will produce nu-
merical fracture. Therefore, it is more necessary to employ a softening 
and/or damage model that degrades the strength and/or stiffness of the 
material so that the deformation beyond the physical failure strain is 
well predicted. And this will be incorporated into the MPM framework 
for modelling the fracture behaviour of elastoplastic materials, which 
will be reported in a future publication. 

5.2. Crack propagation under tension 

In this section, the crack propagation for the singe edge notched 
specimen is simulated. To this end, the same specimen as described in 
Section 5.1 but with a displacement control on the upper and bottom 
boundary is considered. The computation of the configurational force is 

based on the domain evaluation with R = 50 mm in discretization with 
2584 material points in a 3-node triangle background mesh. The critical 
release energy release rate (i.e. the criteria for crack propagation) is set 
to be gc = 1N/mm. The rest of the material properties are the same as in 
Section 5.1. 

Fig. 9 shows the crack propagation angle over the full crack length 
for two discretizations, namely 790 material points and 2584 material 
points, respectively. As it can be observed, the predicted propagation 
angles show no uniform convergence behaviour and are oscillating for 
these two discretizations. Generally, fine discretization can give more 
accurate results. As shown, the angles determined from 790 material 
points oscillate around the expected value of 0◦ in a range between 
− 1.5◦ and 1.5◦. For the discretization with 2580 material points, the 
oscillation is observed to reduce between − 1.2◦ and 1◦, see Fig. 9. 
However, concerning an average of the crack propagation angles, the 
results from both two discretizations are very close to the expected value 
of 0◦. This is further demonstrated in Fig. 9, where the crack propagation 
path is shown for these two discretizations. The crack almost propagates 
along the centre line during all the loading process, nearly no deviation 
can be observed for two discretizations. This demonstrates the successful 
implementation of the configurational force fracture criteria in the MPM 
framework for predicting the crack propagation in linear elastic solids. It 
should be noted that each crack propagation step in Fig. 10 is associated 
with a critical segment release at the crack tip as described in Section 
4.1. 

5.3. Crack propagation under shear 

This case corresponds to the crack propagation of an edge crack in a 
plate under shear loading. The geometrical dimensions are shown in 
Fig. 11, where the width, height and the initial crack length of the plate 
are 70, 160 and 35 mm respectively. The plate is fixed at the bottom 
while shear stress, τ = 100 N/mm, is applied along the top edge. The 
material properties of the plate are E = 206.8 GPa and v = 0.25. The 
plate is discretized with 1418 material points as shown in Fig. 12, much 
more intensive material points distribution is around the crack tip. The 
problem is solved in 15 steps. The crack propagation trajectory in 3, 10 
and 15 steps are shown in Fig. 12(a) to (c) while the final crack pattern 
from FEM in [40] is shown in Fig. 12(d). As shown, the predicted crack 
propagates downward at the beginning and then tends to parallel to the 
horizontal line gradually which agrees well with the results from FEM 
[40] 

5.4. Crack propagation with holes 

In this part, a problem containing two propagating cracks is studied. 

Fig. 15. Cracked beam with three holes under three-point bending (all dimensions in mm).  

R. Zhou et al.                                                                                                                                                                                                                                    



Theoretical and Applied Fracture Mechanics 117 (2022) 103186

14

The benchmark for this problem is taken from Bouchard et al. [65], in 
which a pre-cracked body with two holes and two cracks under tensile 
test was studied. The detailed geometrical dimension of this model is l =
20, h = 10, a = 1, h0 = 2.85, R = 2 and d = 3 mm, as shown in Fig. 13. 
The material with the elasticity modulus E = 20.8 GPa, Poisson’s ratio v 
= 0.3 and the critical energy release rate gc = 1 N/mm is adopted here. 
Displacement loadings were applied on the top and bottom boundaries 
with u = 2 mm. 

Different from the single crack propagation problem discussed 
above, we need to consider the two crack propagations separately in this 
example. Therefore, after each loading step, one has to compute inde-
pendently the configurational force vector of each crack tip. And then 
the crack propagations at the two crack tips are treated one after the 
other, according to their corresponding configurational force vectors. 

The resulting crack propagation trajectories are shown in Fig. 14. 

Both cracks first show a tendency to propagate towards the hole and 
then reorient themselves horizontally once they passed the holes. These 
simulations are in good agreement with the results reported in [45,65], 
where the traditional finite element method was used, and demonstrate 
the method’s ability to simulate multiple propagating cracks. 

It is also interesting to find that although the phase-field approach is 
considered to be a power full tool in solving crack propagation prob-
lems, it fails to obtain satisfied crack paths with holes according to Wu 
et al. [23]. However, this is not the case in the present study, which 
further demonstrates the great advantages of the combined MPM and CF 
approach in predicting the crack propagation path. 

5.5. Crack propagation under three-point bending 

This example corresponds to a cracked beam with three holes under 

Fig. 16. Comparison of the final crack paths between numerical predictions and experimental results [66]: (a) case I; (b) case II.  
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three-point bending. The geometrical dimensions and initial boundary 
conditions are illustrated in Fig. 15. Two test cases, I and II, which have 
different initial crack lengths and crack offset values (as shown a and b in 
Fig. 15) have been considered. Both beams are loaded through a 
concentrated force, P = 50 N at the middle of the top edge. The exper-
imental tests for these two examples with polymethylmethacrylate can 
be found in [66] and numerical tests are also available in published 
literature (e.g. [23,40,67]). 

In the present simulations, the material properties, E = 3.3 GPa and v 
= 0.35 are taken from [66]. Similar discretizations (around 3500 ma-
terial points) are used for the two different cases. 

The final numerical predicted crack patterns for the two different 
cases are compared with experimental results in Fig. 16. It can be 
observed that the numerical predicted crack propagation paths are 
consistent with experimental observations in both cases. By specifically, 
in case I, where the initial crack and holes are not close enough, the 
crack passes towards the bottom hole and deflects to the opposite side 
when it is close to the bottom hole and finally arrives at the right hand of 
the middle hole; while in the case II, where the initial crack is close to the 
holes, the crack propagation path is attracted by the bottom hole and 
eventually arrested by it. The above phenomenon is well captured by the 
proposed model, which demonstrates its ability in predicting fracture 
propagation interacting with holes. 

6. Conclusions 

This paper has presented the development of a new platform to 
coupling the material force and MPM for crack modelling in 2D and 
takes advantage of both the material force approach and the MPM. 
Basically, an implicit quasi-static formulation of the MPM provides the 
computational platform for the deformation simulation, while the CF 
calculation and the crack propagation modelling are implemented 
through a post-processing procedure after obtaining convergence results 
for stress and displacement field at each load increment step. 

In terms of the numerical results, the CF vector was first calculated 
on a stationary crack problem. Evaluations at the crack-tip node and 
within domains were presented. Results show that the domain approach 
can generally provide better accuracy than the crack-tip node only 
method. After comparing the results from two background computa-
tional grids, i.e. 3-node and 6-node triangles, 3-node triangle back-
ground computational grid is chosen for the present study considering 
the computational cost the complexity that the 6-node triangle may 
bring in crack propagations. The domain-based configurational force 
vector evaluation was then implemented in the MPM framework as the 
fracture criteria for the crack propagation in linear elastic solids. Crack 
propagation was achieved by segment release and node doubling in the 
background grids. Several examples, including the single edge cracked 
plate under tension, shear and multiple cracks as well as a cracked beam 
with three holes under three-point bending, were simulated with the 
proposed combined model. All simulated results in terms of the crack 
propagation path resemble favourably the corresponding observations 
from the literature, which demonstrates the abilities of the proposed 
model in predicting the crack propagation in linear-elastic solids. 

At present, the numerical platform has been realised in the 2D model. 
In principle, the algorithm can be easily extended to 3D, and by doing so 
the full advantages of material force criterion and the material point 
method in solving crack propagation problems over finite element 
method can be accommodated in a unified framework. Of course, such a 
complete 3D model will pose much-increased demand in terms of 
computational cost, and in this respect enhancement in the computa-
tional efficiency will require dedicated research. In addition, the crack 
propagation problems for elastic–plastic materials, which require addi-
tional efforts in dealing with dynamic varying fracture criteria, are not 
presented in the current paper. This topic is considered to be significant 
enough to be the focus of a future study and will be reported in a 
separate paper. 

CRediT authorship contribution statement 

Rongxin Zhou: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Resources, Software, Validation, Visuali-
zation, Writing – original draft, Writing – review & editing. William M. 
Coombs: Conceptualization, Funding acquisition, Methodology, Project 
administration, Resources, Software, Supervision, Validation, Visuali-
zation, Writing – review & editing. Yang Xu: Conceptualization, 
Methodology, Software, Validation, Visualization, Writing – original 
draft, Writing – review & editing. Ping Zhang: Methodology, Software, 
Validation, Visualization, Writing – review & editing. Li-Ge Wang: 
Methodology, Software, Validation, Visualization, Writing – review & 
editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This work was supported by the Engineering and Physical Sciences 
Research Council [grant numbers EP/M017494/1]. All data created 
during this research are openly available at collections.durham.ac.uk/ 
(specific doi to be confirmed if/when the paper is accepted). 

References 

[1] E. Gürses, C. Miehe, A computational framework of three-dimensional 
configurational-force-driven brittle crack propagation, Comput. Methods Appl. 
Mech. Eng. 198 (15-16) (2009) 1413–1428, https://doi.org/10.1016/j. 
cma.2008.12.028. 

[2] A. Jenabidehkordi, Computational methods for fracture in rock: a review and 
recent advances, Front Struct. Civ. Eng. 13 (2) (2019) 273–287, https://doi.org/ 
10.1007/s11709-018-0459-5. 

[3] T. Rabczuk, Computational methods for fracture in brittle and quasi-brittle solids: 
state-of-the-art review and future perspectives, ISRN Appl Math 2013 (2013) 1–38, 
https://doi.org/10.1155/2013/849231. 

[4] R. Zhou, Z. Song, Y. Lu, 3D mesoscale finite element modelling of concrete, 
Comput. Struct. 192 (2017) 96–113. 

[5] R. Zhou, H.-M. Chen, Mesoscopic investigation of size effect in notched concrete 
beams: the role of fracture process zone, Eng. Fract. Mech. 212 (2019) 136–152, 
https://doi.org/10.1016/J.ENGFRACMECH.2019.03.028. 

[6] R.d. Borst, J.J.C. Remmers, A. Needleman, M.-A. Abellan, Discrete vs smeared 
crack models for concrete fracture: Bridging the gap, Int. J. Numer. Anal. Meth. 
Geomech. 28 (78) (2004) 583–607, https://doi.org/10.1002/(ISSN)1096- 
985310.1002/nag.v28:7/810.1002/nag.374. 

[7] M. Cervera, M. Chiumenti, R. Codina, Mixed stabilized finite element methods in 
nonlinear solid mechanics. Part II: Strain localization, Comput. Methods Appl. 
Mech. Eng. 199 (37-40) (2010) 2571–2589, https://doi.org/10.1016/j. 
cma.2010.04.005. 

[8] M. Cervera, M. Chiumenti, Mesh objective tensile cracking via a local continuum 
damage model and a crack tracking technique, Comput. Methods Appl. Mech. Eng. 
196 (1-3) (2006) 304–320, https://doi.org/10.1016/j.cma.2006.04.008. 

[9] S. Kruch, Nonlocal damage theory, Am. Soc. Mech. Eng. Appl. Mech. Div. AMD 142 
(1992) 83–96. Publ by ASME. 
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