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A B S T R A C T 

Maximizing the information that can be extracted from weak lensing (WL) measurements is a key goal for upcoming stage 
IV surv e ys. This is typically achieved through statistics that are complementary to the cosmic shear two-point correlation 

function, the most well established of which is the WL peak abundance. In this work, we study the clustering of WL peaks, 
and present parameter constraint forecasts for an LSST -like surv e y. We use the cosmo -SLICS wCDM simulations to measure 
the peak two-point correlation function for a range of cosmological parameters, and use the simulation data to train a Gaussian 

process regression emulator that is applied to generate likelihood contours and provide parameter constraint forecasts from 

mock observations. We investigate the dependence of the peak two-point correlation function on the peak height, and find that 
the clustering of low-amplitude peaks is complementary to that of high-amplitude peaks. Consequently, their combination gives 
significantly tighter constraints than the clustering of high peaks alone. The peak two-point correlation function is significantly 

more sensitive to the cosmological parameters h and w 0 than the peak abundance, and when the probes are combined, constraints 
on �m 

, S 8 , h , and w 0 impro v e by at least a factor of 2, relative to the peak abundance alone. Finally, we compare the forecasts 
for WL peaks and voids, and show that the two are also complementary; both probes can offer better constraints on S 8 and w 0 

than the shear correlation function by roughly a factor of 2. 

Key words: gravitational lensing: weak – methods: data analysis – cosmology: theory – large-scale structure of universe. 
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 I N T RO D U C T I O N  

he standard cosmological model, � CDM, consists of matter dom- 
nated by cold dark matter (CDM), and a late-time accelerated 
xpansion that is driven by a positive cosmological constant � . This
odel is highly successful at describing a number of independent 

bservations, which constrain the � CDM parameters with a large 
egree of concordance. Notably, measurements of fluctuations in 
he cosmic microwave background (CMB; Planck Collaboration VI 
018 ) have been used to constrain cosmological parameters including 
he present-day expansion rate of the Universe, H 0 , the matter density
arameter, �m 

, and the matter fluctuation amplitude σ 8 , defined 
s the root-mean-squared matter density perturbations smoothed on 
 h −1 Mpc scales. 
Gravitational lensing is another promising observational probe 

hat can be used to constrain many cosmological parameters, where 
he light of distant source images is distorted by the gravitational 
otentials of the foreground matter. In the weak lensing (WL) regime, 
ight is deflected by the large-scale structure (LSS) of the Universe, 
nd the WL signal is measured through the correlations in distortions
 E-mail: christopherdavies1234@googlemail.com 
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f many source galaxies (Bacon, Refregier & Ellis 2000 ; Kaiser,
ilson & Luppino 2000 ; Van Waerbeke et al. 2000 ; Wittman et al.

000 ). This allows us to probe the total matter distribution of the
niverse on the largest scales (see Bartelmann & Schneider 2001 ;
ilbinger 2015 , for re vie ws), and of fers a po werful method to study

he properties of dark matter and dark energy. 
Recent WL observations that supplement the CMB parameter 
easurements include the Dark Energy Surv e y (DES; DES Collabo-

ation et al. 2021 ), 1 Hyper Supreme-Cam (HSC; Hikage et al. 2019 ), 2 

nd the Kilo-Degree Survey (KiDS; Asgari et al. 2020 ) 3 WL surveys.
ll of these surv e ys measure lower values of σ 8 compared to Planck,
ith a statistically significant disagreement arising between the 
lanck and KiDS constraints. Ho we ver, the more recent results from
ES are statistically compatible with Planck. This is one example 
here different observations point to slightly different values of 

ertain cosmological parameters, which, in more extreme cases, may 
mply the presence of either unaccounted for systematics or new 

hysics that is not modelled. An example of a larger discrepancy,
eading to a parameter tension, is the H 0 tension, where multiple
 https:// www.darkenergysurvey.org/ . 
 ht tps://hsc.mt k.nao.ac.jp/ssp/. 
 http:// kids.strw.leidenuniv.nl/ . 
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bservations find that measurements from the early Universe are
roadly inconsistent with those of the late Universe (Verde, Treu &
iess 2019 ), particularly the distance scale measurement of H 0 based
n Cepheids by the SH0ES collaboration (Riess et al. 2019 ). 
In order to address these parameter tensions, and more deeply

robe the nature of the Universe, it is important to measure cos-
ological parameters as precisely as possible. This can be achieved

y maximizing the information that can be extracted from a given
urv e y. The standard approach for WL surv e ys is to measure
 CDM parameters with two-point statistics, such as the shear–

hear correlation function (Schneider et al. 2002 ; Hoekstra et al.
006 ; Semboloni et al. 2006 ; Fu et al. 2008 ; Heymans et al. 2012 ;
ilbinger et al. 2013 ; Hildebrandt et al. 2017 ; Troxel et al. 2018 ;
ihara et al. 2019 ; Hikage et al. 2019 ; Asgari et al. 2020 ; DES
ollaboration et al. 2021 ). Ho we ver, the shear two-point correlation

unction (2PCF) does not capture non-Gaussian information, and,
ue to the non-linear evolution of the Universe, WL data are highly
on-Gaussian. To fully exploit the data, many non-Gaussian statistics
ave been developed, which encapsulate information beyond two-
oint statistics. A well-established example is the abundance of
L peaks (local maxima in the convergence field), which has been

hown to be complementary to the shear two-point function and
elps break the �m 

–σ 8 parameter de generac y (Jain & Van Waerbeke
000 ; Pen et al. 2003 ; Dietrich & Hartlap 2010 ). Peaks are also
hown to outperform the standard methods for constraining the sum
f neutrino mass (Li et al. 2019 ) and w 0 (Martinet et al. 2020 ),
nd can be used to provide constraints on modified gravity theories
Liu et al. 2016 ). When used in conjunction with the shear two-point
orrelation function, WL peaks have been used to provide the tightest
onstraints on S 8 from DES-Y1 WL data (Harnois-D ́eraps et al.
020 ). WL peaks also offer utility for other non-Gaussian statistics,
uch as WL voids (Davies, Cautun & Li 2018 ; Davies et al. 2020b ),
here the peaks can be used as tracers to identify the voids. By

ncluding WL peaks as a complementary statistic, the measurement
rrors on cosmological parameters can be reduced, which will help
nform the statistical significance of any parameter tensions between
ultiple observations. 
When used to constrain cosmological parameters, peak analyses

ypically focus on the WL peak abundance, which is the number
ensity of WL peaks as a function of their lensing amplitude. Studies
ave shown that the WL peaks with the highest amplitudes tend to
orrespond to large haloes along the line of sight (Hamana, Yoshida
 Takada 2004 ; Liu & Haiman 2016 ; Wei et al. 2018 ). For this

eason, WL peaks identified in surv e ys such as HSC can be used
o search for galaxy clusters (e.g. Hamana, Shirasaki & Lin 2020 ).
urthermore, shear 2PCF measurements are typically combined with
easurements of galaxy clustering (and galaxy–galaxy lensing) to

urther tighten the cosmological constraints (e.g. DES Collaboration
t al. 2021 ). So, if WL peaks correspond to massive haloes, and hence
assive galaxies, and the clustering of these galaxies is known to

ontain complementary information, then studying and exploiting
he clustering of WL peaks is a natural next step in maximizing the
tility of WL peaks. 
Previously, Marian et al. ( 2013 ) have shown that the 2PCF of
L peaks with high lensing amplitudes does not contain much

omplementary information to the peak abundance alone. In Davies,
autun & Li ( 2019a ), we presented some simple scaling relations

or the WL peak 2PCF, and found that the clustering of low-
mplitude WL peaks also appears to be sensitive to the cosmological
arameters �m 

and σ 8 . In this work, with a more detailed analysis, we
how that the clustering of low-amplitude peaks contains significant
omplementary information to the clustering of high peaks, and that
NRAS 513, 4729–4746 (2022) 
hen the clustering of multiple peak height ranges are combined,
he WL peak 2PCF offers similar constraining power to the peak
bundance alone, where the two probes have different degeneracy
irections. Therefore, we also show that, when their abundance
nd 2PCF are combined, the total cosmological information that
s extracted from the WL peaks is significantly improved. 

We use the numerical simulation suite, cosmo -SLICS (Harnois-
 ́eraps, Giblin & Joachimi 2019 ) to measure the peak abundance

nd 2PCF, for a range of cosmological parameters. These data
re then used to train a Gaussian process regression emulator,
hich, combined with Markov chain Monte Carlo (MCMC), allows
s to generate likelihood contours and provide forecast parameter
onstraints for an LSST -like surv e y. 

The layout of this paper is as follows. In Section 2 , we outline the
ele v ant theory for our WL peak analysis. In Section 3 , we describe
ow we generate our mock observational data, and our emulation
nd likelihood analysis pipeline. In Section 4 , we present the WL
eak statistics used in the analysis, first from the mock data, and then
rom the emulator, in order to understand how these statistics depend
n the cosmological parameters �m 

, S 8 , h , and w 0 . In Section 5 , we
resent the parameter constraint forecasts for the WL peak 2PCF and
eak abundance. Finally, our conclusions are presented in Section 6 .
e also have two appendices where we present the covariance matrix

sed in our analysis, and study the accuracy of our emulator. 

 T H E O RY  

he lens equation for a gravitationally lensed image, relating the
eflection angle ααα to the true position of the source βββ and the observed
osition of the image θθθ , is 

= βββ − θθθ. (1) 

eglecting second-order effects, the deflection angle is the gradient
f a 2D lensing potential ψ , 

= ∇ 

∇ ∇ ψ, (2) 

here ψ is given by 

( θθθ, χ ) = 

2 

c 2 

∫ χ

0 

f K 

( χ − χ ′ ) 
f K 

( χ ) f K 

( χ ′ ) 
� ( χ ′ θθθ, θθθ )d χ ′ . (3) 

ere, χ is the comoving distance from the observer to the source and
′ 

is the comoving distance from the observer to the continuously
istributed lenses. f K ( χ ) is the comoving angular distance, with the
patial curvature of the universe denoted by K . Note that for a flat
niverse with K = 0 (as used in this work) f K ( χ ) = χ . � is the 3D
ensing potential of the lens, and c is the speed of light. � is given
y the Poisson equation 

 

2 � = 4 πGa 2 ρ̄δ, (4) 

here ρ is the matter density of the Universe (with the mean denoted
y a bar), δ ≡ ρ/ ̄ρ − 1, a is the scalefactor, and G is the gravitational
onstant. 

The convergence κ and shear γ = γ 1 + i γ 2 can be related to the
ensing potential via 

≡ 1 

2 
∇ 

2 
θθθ ψ, (5) 

nd 

1 ≡ 1 

2 

(∇ θθθ1 ∇ θθθ1 − ∇ θθθ2 ∇ θθθ2 

)
ψ, γ2 ≡ ∇ θθθ1 ∇ θθθ2 ψ, (6) 
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Figure 1. The four-dimensional parameter space ([ �m 

, S 8 , h , w 0 ]) sampled 
by the cosmo -SLICS simulation suite. The fiducial cosmology is indicated 
by a star with parameter values [0.29, 0.82, 0.69, −1.00]. 
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here ∇ θθθ ≡ ( χ ) −1 ∇. Equations ( 3 ), ( 4 ), and ( 5 ) allow us to express
he convergence in terms of the matter overdensity 

( θθθ, χ ) = 

3 H 

2 
0 �m 

2 c 2 

∫ χ

0 

f K 

( χ − χ ′ ) 
f K 

( χ ) 
f K 

( χ ′ ) 
δ( χ ′ θθθ, χ ′ ) 

a( χ ′ ) 
d χ ′ . (7) 

The abo v e deri v ation uses a fixed source plane. Ho we ver, in real
L observations, the catalogue of source galaxies has a probability 

istribution n ( χ ) that spans o v er a range of χ values, and equation ( 7 )
s then weighted by this distribution to obtain κ( θθθ ) (see, e.g. Kilbinger
015 , for details) : 

( θθθ) = 

∫ χ

0 
n ( χ ′ ) κ( θθθ, χ ′ )d χ ′ . (8) 

WL observations rely on accurately measuring the shapes of 
alaxies, and cross-correlating the shapes of neighbouring galaxies. 
o we ver, measurements of the galaxy shapes used to extract the

ensing signal are dominated by the random galaxy shapes and 
rientations, which is referred to as galaxy shape noise (GSN). 
ince the lensing signal is weak, when identifying WL peaks (local 
axima in the convergence field κ( θθθ )) it is convenient to express the

onv ergence relativ e to the standard deviation of the corresponding 
SN component of the field, σ GSN . This is given by the following
efinition of signal-to-noise ratio, 

= 

κ

σGSN 
, (9) 

here σ GSN is the standard deviation of the contributions to the 
ignal from galaxy shape noise. The σ GSN term can be calculated 
y generating mock GSN maps using the prescription from Jain & 

an Waerbeke ( 2000 ) and Van Waerbeke et al. ( 2000 ) and applying
o them any transformations also applied to the convergence maps, 
uch as smoothing. Mock GSN maps are generated by assigning to 
ix els random conv ergence values from a Gaussian distribution with 
tandard deviation 

2 
pix = 

σ 2 
int 

2 θ2 
pix n gal 

, (10) 

here θpix is the width of each pixel, σ int is the intrinsic ellipticity 
ispersion of the source galaxies, and n gal is the measured source 
alaxy number density. In this work we use σ int = 0.28 and n gal =
0 arcmin −2 as will be discussed in Section 3.1 . 
As mentioned in the introduction, WL peaks are closely related 

o the dark matter haloes along the line of sight. In cosmology, both
he abundance and large-scale clustering of haloes encode useful 
nformation about the underlying cosmological model and parameter 
alues. Therefore, as well as studying the abundance of WL peaks, 
e will also study their clustering. The extent to which objects are

lustered can be measured through the two-point correlation function 
2PCF) that is defined as the excess probability, relative to a random
istribution, of finding a pair of objects at a given separation θ .
ormally, this is written as 

P ij ( θ ) = n 2 (1 + ξ ( θ )) d A i d A j , (11) 

here n is the expected tracer number density, dA i and dA j are two sky
rea elements that are separated by a displacement θ with amplitude 
, and ξ ( θ ) is the 2PCF . W e have ξ ( θ ) = ξ ( θ ), thanks to statistical

sotropy. In practice, the 2PCF can be measured through the Landy–
zalay estimator (Landy & Szalay 1993 ) that requires the generation 
f matching catalogues containing randomly distributed points and 
s given by 

LS ( θ ) = 1 + 

(
N R 

N D 

)2 
D D ( θ ) 

R R ( θ ) 
−

(
N R 

N D 

)
D R ( θ ) 

R R ( θ ) 
. (12) 
n the abo v e, N D and N R are the numbers of data and random points,
nd DD , DR , and RR are the numbers of data–data, data–random,
nd random–random pairs in bins θ ± δθ , respectively. See Davies 
t al. ( 2019a ) for more details about the measurement of the peak
PCF, which are important for small lensing maps. 

 M E T H O D O L O G Y  

n this section, we describe the methodology followed in this 
ork, including the simulations, mock lensing data, emulation, and 

ikelihood analysis. 

.1 Mock data 

n this work, we use the SLICS and cosmo -SLICS (Harnois-D ́eraps
 van Waerbeke 2015 ; Harnois-D ́eraps et al. 2018 , 2019 ) mock WL

onvergence maps, which we briefly outline in this subsection. 
The cosmo -SLICS are a suite of high-resolution N -body simu-

ations that were run for 26 sets of [ �m 

, S 8 , h , w 0 ] cosmological
arameters. Here S 8 ≡ σ 8 ( �m 

/0.3) 0.5 , h = H 0 /100 km s −1 Mpc −1 is
he reduced Hubble constant, and w 0 the dark energy equation-of- 
tate parameter, which is assumed to be a constant that is allowed to
eviate from −1 (cosmological constant). 
The four-dimensional parameter space is sampled using a Latin 

ypercube, which samples the parameter space comprehensively 
ith a low node count. The exact cosmological parameter space 

hat is probed by the cosmo -SLICS is shown in Fig. 1 . Each
imulation volume is a cube with length L = 505 h −1 Mpc, with
 = 1536 3 dark matter particles. To reduce the impact of cosmic
ariance, two simulations are run for each cosmology, starting from 

ifferent (paired) initial conditions. For each set of cosmological 
arameters, 50 pseudo-independent light-cones are constructed by 
esampling projected mass sheets, which are then ray-traced under 
he Born approximation to construct lensing maps and catalogues 
MNRAS 513, 4729–4746 (2022) 
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see Harnois-D ́eraps et al. 2019 , for full details about the light-cone
nd catalogue construction). 

We use the Generic cosmo -SLICS source catalogue selected o v er
he range z s = [0.6, 1.4] to match LSST specifications, which gives
 conserv ati ve source galaxy number density of 20 arcmin −2 . From
his, we generate 50 WL convergence maps for each of the nodes,
ith a sky coverage of 10 × 10 deg 2 each and 3600 2 pixels, following

he method described in Giblin et al. ( 2018 ). These maps are then
moothed with a Gaussian filter with smoothing scale θ s = 1 arcmin.
avies et al. ( 2019a ) contains a study of the impact of different

moothing scales on the WL peak 2PCF. 
For estimates of the covariance matrices, we use the SLICS suite

o produce 615 WL convergence maps at the fiducial cosmology,
hich match the properties of the cosmo -SLICS maps. These are
btained from fully independent N -body realizations carried out
t the same cosmology, 4 but with different seeds in their initial
onditions, allowing to accurately capture the sample variance. The
arger number of SLICS realizations relative to cosmo -SLICS allows
s to calculate robust covariance matrices and to use large data vectors
n the likelihood analysis below when combining probes. 

.2 Emulation and likelihood analysis 

n this subsection, we outline the procedure used to test the sensitivity
f WL peak statistics to the cosmological parameters �m 

, S 8 , h , and
 0 . 
First, we measure the WL peak statistics from the 50 convergence
aps for each of the nodes shown in Fig. 1 . Then, in order to

redict the WL peak statistics at arbitrary points in this parameter
pace, we use the Gaussian process (GP) regression emulator
rom SCIKIT - LEARN (Pedregosa et al. 2011 ) to interpolate the peak
tatistics between nodes. GP regression is a non-parametric Bayesian
achine learning algorithm used to make probabilistic predictions

hat are consistent with the training data (see, e.g. Habib et al.
007 ; Schneider et al. 2008 , for some of its early applications in
osmology). The accuracy of the GP emulator trained on cosmo -
LICS has been tested e xtensiv ely and shown to reach a few
er cent level in predictions of WL shear two-point correlation
unctions (Harnois-D ́eraps et al. 2019 ), density split statistics (Burger
t al. 2020 ), persistent homology statistics (Heydenreich, Br ̈uck &
arnois-D ́eraps 2020 ), aperture mass statistics (Martinet et al. 2020 )

nd WL void statistics (Davies et al. 2020b ). In this work, the average
eak statistics and their standard errors at each node are used as the
raining data. We present results of the accuracy of the emulator for
he peak statistics in Appendix A . 

Finally, once the emulator has been trained and tested, we use
CMC to estimate the posteriors of the parameters for the entire

arameter space and produce likelihood contours. We use the EMCEE

YTHON package (F oreman-Macke y et al. 2013 ) to conduct the
CMC analysis in this work sampling the 4D parameter space as

ollows. We employ a Bayesian formalism, in which the likelihood
f the set of cosmological parameters p 

p p = [ �m 

, S 8 , h, w 0 ], given a
ata set d d d , is given by 

 ( p 

p p | d d d ) = 

P ( p 

p p ) P ( d d d | p 

p p ) 

P ( d d d ) 
, (13) 

here P ( p 

p p ) is the prior, P ( d d d | p 

p p ) is the likelihood of the data
onditional on the parameters, and P ( d d d ) is the normalization. In this
NRAS 513, 4729–4746 (2022) 

 The SLICS cosmology has the following parameter values: [ �m 

, σ 8 , h , w 0 , 
 s , �b ] = [0.2905, 0.826, 0.6898, −1.0, 0.969, 0.0474]. 

S  

t
 

c  
ork we use flat priors with the following upper and lower limits,
espectively, for �m 

: [0.10, 0.55], S 8 : [0.61, 0.89], h : [0.60, 0.81],
 0 : [ −1.99, −0.52], which matches the parameter space sampled by

osmo -SLICS. The log likelihood can be expressed as 

log ( P ( d d d | p 

p p )) = −1 

2 
[ d d d − μ( p 

p p ) ] C 

−1 [ d d d − μ( p 

p p ) ] , (14) 

here μ( p 

p p ) is the prediction generated by the emulator for a set of
arameters p 

p p , and C 

−1 is the inverse of the covariance matrix. We
se the emulator’s prediction of a statistic at the fiducial cosmology
s the data d d d . This choice is for simplicity and presentation purposes,
hich ensures that the confidence intervals are al w ays centred on

he true values of the cosmological parameters allowing for easier
omparisons between multiple probes. 

The likelihood returns a 4D probability distribution that indicates
ow well different regions of the parameter space match the input
ata d d d . Note that equation ( 14 ) assumes that the covariance matrix
oes not depend on the cosmological parameters. 
We use the 615 SLICS WL map realizations (which match the

ducial cosmology) to calculate the covariance matrices, and then
ivide it by a factor of 180 to rescale the covariance matrix from a
00 deg 2 area to the LSST survey area, which we take as 18 000 deg 2 .
he joint covariance matrix for the peak probes studied in this work

s presented in Appendix B . We also multiply the inverse covariance
atrix by a debiasing factor α, which accounts for the bias introduced
hen inverting a noisy covariance matrix (Anderson 2003 ; Hartlap,
imon & Schneider 2007 ), and is given by 

= 

N − N bin − 2 

N − 1 
. (15) 

ere N = 615 is the number of WL maps used to calculate the
ovariance matrix and N bin is the number of bins used to measure the
tatistic. 

 W L  PEAK  STATISTICS  

n this section, we present the WL peak statistics studied in this
ork, which include the peak abundance and the peak 2PCF. For

ach statistic, we first show their measurements from the cosmo -
LICS nodes that are used as the training data for the emulator. We

hen present emulations of the statistic by varying one cosmological
arameter at a time, to e x emplify its sensitivity to different cosmo-
ogical parameters, which will aid the interpretation of the forecast
osmological constraints in Section 5 . 

.1 WL peak abundance 

ig. 2 shows the differential WL peak abundance (number density)
easured in each of the 26 nodes in Fig. 1 . The abundance of the
ducial cosmology is shown by the blue curve, with the rest of the
osmologies plotted in grey. 

First, the figure shows that there are an appreciable number of
eaks with amplitudes below ν = 0, which correspond to local
axima in regions that are underdense. In this analysis we do not

se peaks with ν < 0 for our forecast constraints for the following
wo reasons. First, Martinet et al. ( 2018 ) have shown that peaks with
< 0 correlate very strongly with peaks with ν > 0, and so there

s little gain in parameter constraints when these peaks are included.
econd, due to their low amplitude, these peaks are also more likely

o be affected by GSN. 
The maxima of the peak abundance occur just abo v e ν = 1 for all

osmologies. Due to the low signal-to-noise ratio, this indicates that
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Figure 2. (Colour online) The differential WL peak number density (abun- 
dance) as a function of peak height ν. The gre y curv es correspond to the 26 
cosmo -SLICS nodes in Fig. 1 , with the fiducial cosmology plotted as a blue 
thick curve. The orange shaded regions shows the 1 σ standard error measured 
from the 50 fiducial cosmoSLICS realizations, multiplied by a factor of 10 to 
increase visibility. 
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 large fraction of the total number of peaks correspond to spurious
ocal maxima induced by galaxy shape noise, rather than a physical 
ignal induced by matter o v erdensities along the line of sight, while
ore peaks at the high- ν end are produced by a true physical signal.
As the peak abundance approaches higher ν values, the spread 

n the peak abundances between different cosmologies increases 
ignificantly, where the abundance of peaks at ν = 6 can differ
y an order of magnitude between the most extreme cosmologies. 
his is due to two factors. First, because the peaks at this amplitude
re not dominated by noise, differences in the physical signal are 
ore visible. Secondly, because the high-mass end of the halo mass

unction varies more significantly as a function of cosmological 
arameters, so does the peak abundance, since the largest peaks are 
reated by the largest haloes (Liu & Haiman 2016 ; Wei et al. 2018 ).

Whilst the high- ν end of the abundance exhibits the greatest 
ariation amongst the different cosmological parameters, this region 
lso has the highest sample variance, since high peaks are orders of
agnitude less abundant than low peaks. Therefore, as ν increases, 

he increased spread between cosmologies is in direct competition 
(a) (b)

igure 3. (Colour online) Top row: the emulated peak abundance. The curves co
.8, 0.7, −1.0], unless otherwise stated in the subpanel legends. Each subpanel co
e gend. Bottom row: the curv es from the top ro w, di vided by the fiducial cosmolog
osmo -SLICS realizations are included on the fiducial (blue) curves, and they are b
ith the increased statistical uncertainty. For this reason, it is 
mportant to consider the abundance of peaks o v er a wide ν range in
ur forecasts. We also note that large ν peaks are more affected by
ncertainties such as intrinsic alignments and baryonic physics, as 
hown in Harnois-D ́eraps et al. ( 2020 ). 

Next, in order to aid the physical interpretation of how the WL
eak abundances (Fig. 2 ) depend on the four parameters, �m 

, S 8 ,
 , and w 0 , we use the cosmo -SLICS data to train a GP emulator as
iscussed in Section 3.2 and present the emulated peak abundances 
n the cosmo -SLICS parameter space. In Fig. 3 , we present these
mulator predictions while varying one parameter at a time. 

The emulated peak abundances plotted in Fig. 3 sample the signal
round the test cosmology with parameters [ �m 

, S 8 , h , w 0 ] = [0.3,
.8, 0.7, −1.0]. Each subpanel contains curves where one parameter 
s varied abo v e and belo w these v alues. The bottom ro w of sub
anels shows the ratio of the curves relative to the test cosmology.
 σ standard errors measured from the 50 cosmo -SLICS realizations 
re included on the test cosmology, shown by the shaded blue
egion. Finally, the ν range plotted here is slightly narrower than 
hat presented in Fig. 2 , since we are no w sho wing the ν range that
ill be used to forecast the peak abundance constraints, which is ν
 [0, 6]. We do not use peaks with ν > 6 for two reasons. First, due

o a low number density, the sample variance in this regime is very
igh. Secondly, as previously mentioned, this regime is significantly 
ffected by uncertainties such as intrinsic alignments and baryonic 
hysics. We have also performed tests using a higher upper limit of
< 8, and find that it has nearly no impact on our results. Therefore,
sing ν < 6 allows us to stay within the regime that is less affected by
he afore-mentioned uncertainties, whilst still encapsulating maximal 
osmological information. 

Panel (a) shows how the peak abundance depends on �m 

. Note
hat since S 8 = σ 8 ( �m 

/0.3) 0.5 , σ 8 increases when �m 

is reduced (and
ice versa), in order for S 8 to remain constant. Increasing �m 

(with
 8 and the other parameters held constant) reduces the abundance 
f WL peaks with amplitudes ν < 2 but increases the abundance of
eaks with amplitudes ν > 2, relative to the fiducial case. This is
ecause a higher �m 

increases the matter content of the universe, 
hich allows dark matter haloes to grow more massive, increasing 

heir lensing signal and the resulting peak amplitudes. The opposite 
ehaviour can be seen when �m 

is reduced relative to the fiducial
ase, with more peaks below ν = 2 and fewer abo v e. There is an
MNRAS 513, 4729–4746 (2022) 

(c) (d)

rrespond to the cosmological parameters [ �m 

, S 8 , h , w 0 ] with values [0.3, 
rresponds to varying one cosmological parameter at a time, denoted in the 
y (blue curve in the top row). The 1 σ standard errors measured from the 50 
arely visible in the upper subpanels. 
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pturn in the peak abundance for �m 

= 0.1 at ν ≈ 5, which is due to
he fact that S 8 is held constant, rather than σ 8 . 

Panel (b) shows the peak abundance for different S 8 values. The
esults presented in this subpanel vary more strongly compared to
ll other subpanels, verifying that the peak abundance is the most
ensitive to S 8 of all the parameters studied here. Similar to the
ehaviour seen for �m 

, increasing S 8 reduces the number of small
eaks below ν ≈ 2.7, but increases the number of large peaks
bo v e this point. The opposite behaviour is seen for decreasing S 8 .
ncreasing S 8 leads to greater clustering of matter, which will place
ore haloes closer together. The increased mass along an o v erdense

ine of sight translates into a greater lensing signal, which produces
ore peaks of higher amplitudes. This also reduces the number of

mall peaks since fewer haloes are in isolation that would produce
mall peaks. 

Panel (c) sho ws ho w the peak abundance changes with h . Peaks
ith amplitudes ν < 3 are mostly unaf fected, ho we ver there is a

mall amount of sensitivity to h at the high ν end, where increasing
 slightly increases the number of high peaks and vice versa. This
esult is not entirely surprising: From equation ( 7 ), we can see that
he dependences of h , or equi v alently H 0 , cancel out, because the
omoving distance can be written as 

( z ) = 

c 

H 0 

∫ 
1 

E( z ′ ) 
d z ′ , (16) 

here E � CDM 

( z) is defined as 

 � CDM 

( z) ≡ H � CDM 

( z) 

H 0 
= �m 

(1 + z) 3 + 1 − �m 

, (17) 

or a flat � CDM cosmology (as is the case of our fiducial cosmology),
nd is independent of h . This means that the H 0 factors in the pre-
actor, and the χ and d χ terms of equation ( 7 ) cancel out, so that the
nly dependence on H 0 in κ would come through the matter density
ontrast δ. In the linear-perturbation regime, the evolution of δ can
e expressed in the linear growth factor D + 

, which, for a flat � CDM
osmology, is given by the following solution: 

 + 

( z) = E � CDM 

( z) 

[∫ ∞ 

0 

(1 + z ′ ) 
E 

3 
� CDM 

( z ′ ) 
d z ′ 

]−1 

∫ ∞ 

z 

(1 + z ′ ) 
E 

3 
� CDM 

( z ′ ) 
d z ′ , (18) 

here the term in the bracket offers the normalization to ensure
hat D + 

( z = 0) = 1 as per the usual convention – this suggests
hat for flat � CDM models with the same �m 

, σ 8 and D + 

, κ is
ndependent of h . Ho we ver, we remark that the above argument only
pplies to a universe with strictly no radiation. In practice, increasing
 with �m 

fixed would mean that the physical matter density today,
m 

h 2 , increases, which brings the matter-radiation equality to higher
edshift. Since the growth of matter perturbations is slower during
adiation domination but faster during matter domination, this means
hat small-scale matter perturbations experience a stronger growth
n the case of a larger h , and thus it requires a lower value of A s 

the amplitude of the primordial power spectrum) in order to reach
he desired σ 8 . Consequently, the matter clustering on large scales

e.g. at k smaller than � 0.01 h Mpc −1 , which corresponds to the
orizon scale at matter-radiation equality – will indeed be weaker .
ctually, a more detailed calculation shows that, when comparing

he cases of h = 0.9 and 0.7 (with �m 

and σ 8 fixed), the late-time
atter power spectrum P ( k ) is higher (lower) in the latter than in

he former for k � 0.1 h Mpc −1 ( k � 0.1 h Mpc −1 ). This will have
on-trivial implications for the peak 2PCFs as we shall see shortly.
evertheless, for the peak abundance, the most rele v ant scales are
NRAS 513, 4729–4746 (2022) 
 � 0.1–1 h Mpc −1 , where the cases of h = 0.7 and 0.9 have similar
atter clustering amplitudes, which is slightly higher for larger h :

¯ s this k range corresponds to the sizes of halo-forming regions,
his is consistent with the high- ν behaviour of the middle right-hand
anel. 
Panel (d) shows the peak abundances with varying w 0 . Similar to

 , the peak abundance does not appear to be very sensitive to changes
n w 0 , but increasing w 0 does indeed create slightly more low- ν peaks
nd fewer high- ν peaks compared to the fiducial case, and vice versa.
 different dark energy equation of state can change the expansion

ate, therefore affecting the comoving distances, the lensing kernel
n equation ( 7 ), and the growth rate of matter perturbation δ. The
hysics underlying the qualitative behaviours shown in these panels
s actually complicated and quite interesting. Usually, a more ne gativ e
 0 , e.g. w 0 < −1.0, implies an increase of the dark energy density
ith time and therefore (for the same matter density) a faster

ransition from the phase of decelerated expansion to an accelerated
ne dominated by dark energy, compared to standard � CDM. But
iven that we fix h and therefore H 0 , at z > 0 the expansion rate is
ctually slower than the fiducial � CDM model, because the density
f dark energy in this case decreases with redshift, and so at z > 0
he total density of matter and dark energy is smaller than in � CDM.

ore explicitly, we have E w 0 ( z) ≤ E � CDM 

( z) for w 0 < −1, where 

 w 0 ( z) = 

H w 0 ( z) 

H 0 
= �m 

(1 + z) 3 + [ 1 − �m 

] (1 + z) 3(1 + w 0 ) , (19) 

hich reduces to equation ( 17 ) when w 0 = −1. Because the dark
nergy in our simulations is assumed to be non-clustering, the only
ffect of varying w 0 is to modify the background expansion history,
hich leads to a scale- independent change in the linear matter

lustering, P ( k ). It may seem that, since w 0 = −1.5 leads to a
lower expansion, it will increase matter clustering. While this is
rue, we have to note that in this comparison we have fixed S 8 (and
qui v alently σ 8 ) today in all three cases, and so this means that, in
rder to have the same σ 8 at the present day, the primordial power
pectrum must be lower in the w 0 = −1.5 case (we hav e e xplicitly
hecked this using CAMB ). At an initial thought, this seems to suggest
hat this model predicts less structure formation than � CDM (until
 = 0), which is against the results of Fig. 3 . Ho we ver, recall that
nother effect of having a slower expansion is that the Universe
ecomes older at z = 0, and distances to the same redshift become
arger; the latter , in particular , means that in between the observer
nd the source(s) there would be more volume, and more structures
uch as large dark matter haloes. Since these haloes produce the
igh- ν peaks, the net effect can be a larger abundance of such peaks.
ig. 3 indeed confirms that the two competing effects – the decrease
f LSS due to the lowered primordial power spectrum and the larger
olume between the observer and a fixed source redshift – give rise to
 higher peak number count at ν � 2.3. For low peaks, the total effect
s less clear-cut, since a peak is defined as a pixel in the convergence
ap with a higher κ value than all its neighbouring pixels, and both

he central and the neighbouring pixels could be affected by chance
lignments of small dark matter structures; Fig. 3 shows that at ν �
.3 the peak abundance is smaller in w 0 = −1.5 than in � CDM. The
ehaviour of the w 0 = −0.5 model can be similarly explained. 
Figs 2 and 3 show that the peak abundance is mostly sensitive to

hanges in �m 

and S 8 , and less so to h and w 0 , with sensitivity to
osmology coming from both the high- and low-amplitude peaks. 
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Figure 4. (Colour online) The WL peak 2PCF, where each subpanel corresponds to the 2PCF of a different peak catalogue. The various peak catalogues (and 
hence their 2PCF) only contain peaks with amplitudes ν > 1 (top left-hand panel), ν > 2 (top right-hand panel), ν > 3 (bottom left-hand panel), and ν > 4 
(bottom right-hand panel). The curves in each subpanel correspond to the 26 cosmo -SLICS nodes in Fig. 1 , with the fiducial cosmology plotted in blue. The 
shaded orange regions show the 1 σ standard errors measure from the 50 cosmoSLICS realizations. Note the change of y -axis range between the upper and lower 
subpanels. 
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.2 WL peak two-point correlation function 

n order to measure the WL peak 2PCF, we first remo v e peaks with
mplitudes below a given ν threshold, and then repeat this step with 
ifferent ν thresholds in order to create multiple peak catalogues. 
his procedure is moti v ated by the following factors. 
First, as discussed in Section 4.1 , a significant fraction of the WL

eak population is noise-dominated (low ν), suggesting that their 
patial distribution (to which the 2PCF is sensitive) may not contain 
seful cosmological information. We have tested this assertion, and 
ound that the WL peak 2PCF measured using peaks of all heights
as a very low amplitude and exhibits only small variations between 
he 26 cosmo -SLICS nodes. This indicates that when no distinction 
s made based on peak heights, the average clustering of WL peaks
s close to that of a randomly distributed sample. Therefore, in order
o extract useful information on the clustering of WL peaks, we 

ust first remo v e the low-amplitude noise-dominated peaks. We have 
ested a range of ν thresholds, and use two criteria to determine the
est threshold. First, the amplitude of the 2PCF measurement must be 
ufficiently high so that the clustering signal is not noise dominated. 
econdly, the variance between 2PCFs for different cosmological 
arameters must be larger than the variance with which the fiducial 
PCF is measured. This ensures that any cosmological information 
ill not be lost to noisy measurements. We found that both these

riteria can be met with a threshold as low as ν = 1. 
Secondly, varying the ν threshold and using multiple WL peak 

atalogues produces multiple WL peak 2PCF measurements. The 
hange in the 2PCF as the ν threshold changes is also sensitive to
he underlying cosmology, so we expect that the different 2PCF 

easurements will contain complementary information to each 
ther, so that combining these measurements will yield tighter 
osmological parameter constraints. 

Fig. 4 shows the 2PCFs for four WL peak catalogues with ν > 1
top left-hand panel), ν > 2 (top right-hand panel), ν > 3 (bottom 
eft-hand panel), and ν > 4 (bottom right-hand panel). The 2PCFs for
he 26 cosmo -SLICS nodes are plotted, with the fiducial cosmology
lotted in blue, and all other cosmologies plotted in grey. 
The 2PCF measurements for the ν > 1 catalogue have the lowest

mplitude. As the ν threshold increases, so does the amplitude of the
PCF for all cosmologies, indicating that the high ν peaks are more
lustered than the low ν peaks. Both the gradient and the amplitude of
he 2PCF change as the ν threshold increases, ho we ver the changes
n amplitude appear to be the most dominant feature. This can be
xplained by the relationship between WL peaks and dark matter 
aloes – more massive haloes are known to be more strongly biased
nd clustered, because they form from higher density peaks of the
rimordial density field. 
Similar to Section 4.1 , we use the cosmo -SLICS data from Fig. 4 to

rain a GP emulator as discussed in Section 3.2 , and present emulated
eak 2PCFs in the cosmo -SLICS parameter space by varying one
arameter at a time. The results are plotted in Fig. 5 . The bottom row
n each section shows the ratio relative to the test cosmology. The
 σ standard errors measured from the 50 cosmo -SLICS realizations 
re included for the fiducial cosmology and are shown by the shaded
lue region. The top and bottom sections of Fig. 5 shows results for
he 2PCF of peaks with ν > 2 and ν > 4, respectively. We choose
o show results for ν > 2 rather than ν > 1 since, as we will see in
ig. 6 , ν > 2 gives stronger parameter constraints than the ν > 1
ase. 

Panel (a) shows the emulated 2PCF for ν > 2 varying only
m 

. Increasing �m 

has less of an impact on the 2PCF for small
compared to large θ , ef fecti v ely steepening the curv e relativ e to

he fiducial case by a small amount. When decreasing �m 

, the abo v e
ehaviour is mirrored, except the overall magnitude of the change 
s larger compared to the case where �m 

is increased. This shows
hat �m 

dictates the gradient of the 2PCF, and appears to be more
ensiti ve to lo w �m 

v alues. It might seem counter-intuiti ve that a
MNRAS 513, 4729–4746 (2022) 
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M

Figure 5. (Colour online) The emulated peak 2PCF for two different peak catalogues, ν > 2 (top section) and ν > 4 (bottom section). The curves correspond 
to the cosmological parameters [ �m 

, S 8 , h , w 0 ] with values [0.3, 0.8, 0.7, −1.0], unless otherwise stated in the subpanel legends. Each subpanel corresponds to 
varying one cosmological parameter at a time, as specified in the legend. The bottom rows in each section show the ratio of the curv es relativ e to the fiducial 
cosmology. The 1 σ standard errors measured from the 50 cosmo -SLICS realizations are shown for the fiducial cosmology by the shaded blue region. 
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odel with smaller �m 

would predict a stronger clustering for WL
eaks, but we note again that here S 8 has been fixed when �m 

is
eing varied, so that a smaller �m 

corresponds to a larger σ 8 , and
he latter means there is more matter clustering. 

Panel (e) shows the peak 2PCFs for ν > 4 for the same �m 

alues. Similar to the ν > 2 case, increasing �m 

decreases the 2PCF
mplitude and vice versa, and the behaviour relative to the fiducial
ase is asymmetric, where changing �m 

by a fixed amount in either
irection has a larger impact on the amplitude when �m 

is decreased,
uggesting that the ν > 4 catalogue is also more sensitive to small

m 

. Ho we ver, compared to the ν > 2 case, there appears to be slightly
ess change to the o v erall slope of the 2PCF as �m 

is varied. 
Panel (b) is the same as the previous panels except S 8 is varied in

his case. The figure shows that changes to S 8 affect the amplitude
f the 2PCF, where lowering S 8 lowers the 2PCF amplitude since
t corresponds to a smaller σ 8 (remember that �m is held constant
ere) and therefore less clustering of matter. Increasing S 8 by the
ame amount increases the amplitude relative to the fiducial case,
ut the magnitude of the change is slightly smaller compared to the
ecreased S 8 case. Panel (f) shows the ν > 4 2PCF for the same three
 8 values. The o v erall trend here is the opposite to the ν > 2 case.
nitially, it seems counter-intuitive that higher S 8 values would lead
o a lower clustering amplitude; however, as shown by Fig. 3 , the
bundance of peaks is also larger for this catalogue. Therefore, when
 8 increases, the number of peaks with ν > 4 increases, meaning
hat smaller maxima in the primordial density field – which are less
NRAS 513, 4729–4746 (2022) 
iased and hence less clustered tracers of the matter density field –
nd up contributing to this peak catalogue, and so the clustering of
he peaks decreases and vice versa. 

Panel (c) shows how the 2PCF for the ν > 2 catalogue depends
n h . The 2PCF appears to be sensitive to changes in h , where
ncreasing h decreases its amplitude, and vice versa. This observation
s actually consistent with the discussion abo v e about the physical
mpact of varying h – with �m 

and σ 8 fixed – on matter clustering:
ncreasing h from 0.7 to 0.9 weakens the late-time matter clustering
t k � 0.1 h Mpc −1 , and these are the scales most rele v ant for the peak
lustering (which is expected to trace the dark matter clustering)
s well. Unlike the behaviour seen for �m 

and S 8 , changing h
y a fixed amount in either direction appears to change the 2PCF
mplitude by an equal amount. Panel (g) shows the ν > 4 2PCF
or the same three h values. As for the case of ν > 2, the 2PCF
mplitude increases when h decreases and vice versa. Indeed, the
f fects of v arying h are similar for both the ν > 2 and the ν > 4
atalogues, except the ν > 2 case appears to be more sensitive to h at 
arge θ . 

Panel (d) shows the ν > 2 2PCFs for different values of w 0 .
ncreasing w 0 decreases the amplitude and vice versa, with no
pparent changes to the gradient. This behaviour also appears to
e symmetric relative to the fiducial cosmology, similar to that seen
or h , and unlike �m 

and S 8 . Panel (h) is the same but shows the
> 4 2PCF, which appears to have little sensitivity to changes in
 0 . In both catalogues, we think that the physical reason underlying

art/stac1204_f5.eps
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Figure 6. (Colour online) Constraint forecasts on cosmological parameters measured from the WL peak 2PCF. Contours are shown for 2PCFs measured from 

WL peak catalogues with ν > 1 (blue), ν > 2 (orange), ν > 3 (green), and ν > 4 (red) and the combination of all four catalogues (black). The true cosmological 
parameter values used to generate the data are indicated by the black point. The diagonal panels show the 1D marginalized probability distribution, and the 
remaining panels show the marginalized 2D probability contours enclosing the 68 and 95 per cent confidence intervals. The table in the top right shows true 
parameter values (top section) and the inferred parameter values for the different peak catalogues with 68 (upper section) and 95 per cent (lower section) 
confidence limits. 
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he w 0 dependence is the same as in the case of peak abundance.
lthough, naively, it seems that the case of w 0 = −1.5 – which has

aster growth of structures at late times and hence requires a lower
nitial power spectrum amplitude to achieve the same σ 8 or S 8 at z 
 0 – should predict less matter clustering during the entire lensing 

ernel and so lead to a lower amplitude of the peak 2PCF, we note
hat this model also co v ers a larger volume for the same redshift
ange and therefore receives contribution from a greater number of 
assive haloes. Also, the peak 2PCF is a projection effect, and the

rojection depth is larger for the case of w 0 = −1.5, which leads
o a larger line-of-sight integration. These different effects compete 
ith each other and can have cancellations, which may explain why 
or the ν > 4 catalogue there is almost no dependence on w 0 (also
ote that the same ν > 4 peak height threshold can lead to different
eak populations for the different models, which could also have an
mpact on the peak correlation). 

Comparing the bottom row ( ν > 4) to the top row ( ν > 2), we
ee that the amplitudes of the 2PCFs are all higher. Given that fewer
racers are used for the ν > 4 measurements, the errors on these
urves should be larger. This will be in direct competition with
ny increased sensitivity to the cosmological parameters relative 
o the ν > 2 case. None the less, separate catalogues still contain
omplementary information to each other regardless of which factors 
ins out, as we will show later. 
MNRAS 513, 4729–4746 (2022) 
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 PARAMETER  C O N S T R A I N T S  FORECAST  

n this section, we present parameter constraint forecasts for the
tatistics studied in Section 4 . 

Fig. 6 shows the parameter constraint forecasts for an LSST-like
urv e y for the WL peak 2PCF . W e present constraints for the four WL
eak 2PCFs measured from WL peak catalogues with four heights
> 1, 2, 3, and 4, and the combination of all four 2PCFs. The

rue cosmological parameter values used to generate the data are
ndicated by the black point. The diagonal panels show the 1D

arginalized probability distributions, while the remaining panels
how the marginalized 2D probability contours enclosing the 68 and
5 per cent confidence intervals. All confidence intervals, along with
he true parameter values, are explicitly stated in the table in the top
ight of the figure. 

In general, as the ν threshold increases, the contour sizes start
ff large ( ν > 1), begin to shrink ( ν > 2 and ν > 3), and become
arge again ( ν > 4). The shape and orientation of the contours also
hange significantly as the ν threshold increases. For example, in the
m 

–S 8 plane, the ν > 3 contour is smaller than the ν > 4 contour;
o we ver, the two are orthogonal to each other. This behaviour shows
hat the constraining power of the WL peak 2PCF can be significantly
mpro v ed when the 2PCFs of multiple peak catalogues are combined.
ven in the case of very large contours that fully enclose the contours

rom lower ν thresholds, the presence of complementary information
etween the different 2PCFs is not ruled out. This is because it
epends not only on the size, shape and orientation of the contours,
ut also on the correlation between the contours. This is discussed
n detail in Appendix B . The benefit to combining multiple peak
atalogues is shown by the grey contours, which are significantly
maller than any individual contour in all cases. 

We find that the ν > 2 and ν > 3 peak 2PCFs give the tightest
onstraints on �m 

, the ν > 2 and 4 2PCFs both give the similar
onstraint on S 8 , ν > 2 and 3 are tightest on h and ν > 2 gives the
est constraint on w 0 . It is interesting to note that the constraints
n w 0 are roughly nine times smaller for the combination of all
atalogues compared to ν > 4 alone, indicating that a significant
mount of cosmological information is contained in the clustering of
ow-amplitude peaks. 

Fig. 7 shows parameter constraint forecasts for the combination of
he peak 2PCFs similar to the black contours of Fig. 6 , but now using
 finer selection from eight peak catalogues with ν > 1.0, 1.5, . . . ,
.5 in orange. The constraints from the peak abundance for peaks
ith heights 0 < ν < 6 are shown in blue, and the combination of

he abundance and 2PCFs are shown in green. We note that when
ultiple probes are combined, it is important to account for any

uplicate information between the probes through the covariance
atrix of the data vector, including the cross-correlation between the
ultiple probes. The covariance matrix of all probes studied in this
ork is presented in Appendix B and discussed in detail therein. The
range contour shows how the parameter constraints are impro v ed
hen the 2PCFs of many more WL peak catalogues are combined:

onstraints from the combined 2PCFs are much smaller than the best
onstraints from any individual catalogue (cf. Fig. 6 ). Increasing
he number of catalogues used in the combined case from four to
ight, impro v es the constraints on �m 

and S 8 by roughly 30 and 20
er cent, respectively, there is only a small impro v ement for h , and
he w 0 constraints impro v e by nearly a factor of 2. Potentially, one
ould use a very large number of ν thresholds, by reducing the ν
ncrements further, such as ν > 1.0, 1.25, . . . , 4.5. Ho we ver at some
oint the 2PCFs from adjacent catalogues become so correlated that
here is no gain in extra information, and this significantly increases
NRAS 513, 4729–4746 (2022) 

m  
he length of our data vector. Our choice is a compromise between
aving several ν bins that span a range of peak heights while keeping
 small enough data vector to calculate accurate covariance matrices.

The complementarity between 2PCFs with different thresholds,
ncluding the potential for de generac y breaking, is the main factor
hat contributes to the strong peak 2PCF constraints, when many
atalogues are used. In the following paragraphs, we provide a
hysical interpretation for this behaviour. 
There have been several studies on the structures that produce WL

eaks (Yang et al. 2011 ; Liu & Haiman 2016 ; Wei et al. 2018 ). These
tudies show that in general, medium-height peaks correspond to
hance alignments of multiple haloes along the line of sight, and high-
mplitude peaks are often associated with single clusters along the
ine of sight. Peaks created by LSS projections will contain different
osmological information to those created by single clusters. For the
eak abundance, this can be seen in the covariance matrix (Fig. B1 ,
lso studied in Martinet et al. 2018 ) where there is anticorrelation
etween low and high peaks. There is a similar behaviour in the
eak 2PCF covariance matrix in Fig. B2 , where there is very little
orrelation between the ν > 1 and ν > 4 catalogues. Ho we ver this
eature is less pronounced, due to adjacent catalogues sharing a large
raction of the same peaks. 

Because peaks of different amplitudes are produced by different
ypes of dark matter structures, the 2PCF of each WL peak catalogue
robes slightly different regimes of the dark matter distribution.
y combining multiple peak catalogues with different peak height

hresholds, we essentially add additional information about the peak
eight to the 2PCF. 
As shown by the table in Fig. 7 , the peak abundance and peak

PCF provide similar constraints on �m 

; ho we ver, the constraints
n S 8 are twice as strong for the peak abundance compared to the
eak 2PCF: In the �m 

–S 8 plane, the peak abundance contour is
ignificantly tighter than the peak 2PCF contour in the S 8 direction.

hen the two probes are combined, there is an o v erall impro v ement
n the �m 

and S 8 constraints by a factor of 2, relative to the peak
bundance alone. This leads to a good o v erall impro v ement in the
m 

–S 8 plane when the peak abundance and 2PCF are combined, as
hown by the green contour. 

The peak 2PCF is able to constrain both h and w 0 with greater
ccuracy than the peak abundance. There also appears to be some
rthogonality between the abundance and 2PCF constraints in the h –
 8 and w 0 –�m 

planes. In the w 0 –h plane, the parameter constraints
re dominated by the peak 2PCF contours, while the peak abundance
ontours are significantly larger than the former. This indicates that
he peak 2PCF offers a great deal of complementary information
o the peak abundance, and combining the two probes can signifi-
antly impro v e constraints in the four-dimensional parameter space
tudied here. The behaviour of the constraints from peak abundance
nd 2PCF, especially those on h and w 0 , are consistent with the
bservations we made abo v e for Figs 3 and 5 . 
In Fig. 8 , we also introduce the parameter constraint forecasts

or WL voids from Davies et al. ( 2020b ), which are measured
ith the same methodology and specifications used in this work,

o compare the constraining power of these two different probes.
his is important since the voids studied in Davies et al. ( 2020b ),
hich were found to be a promising void definition (Davies et al.
020a ), are identified as underdense regions in the distribution of
L peaks. This means that the properties of WL voids are likely

orrelated with the number and clustering of peaks, and we need a
oint analysis to reveal the amount of complementary information
ontained in the two probes. The forecasts from the WL voids (blue),
aking use of both their abundances and tangential shear profiles,
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Figure 7. (Colour online) The same a Fig. 6 but for the combination of eight peak 2PCFs from peak catalogues with ν > 1.0, 1.5, . . . , 4.5 (orange), the peak 
abundance (blue), and the combination of the two (green). 
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re compared to the WL peak forecasts (orange), which combine the 
eak abundance and peak 2PCF. We note that both the void and peak
ontours presented here are for the combination of the ν > 1, 2, 3,
nd 4 peak catalogues (excluding the peak abundance that does not 
ombine multiple catalogues). This is to provide a fair comparison 
etween the voids and the peaks. In principle, the void contours 
ould be measured for the eight catalogues used for the orange peak
PCF contours in Fig. 7 , ho we ver this would cause our data vector to
ecome too large, even for our high number of SLICS realizations. 
Overall, both the peaks and voids are able to measure the four

osmological parameters with similar accuracy. The voids provide 
otably tighter measurements of h and w 0 . The void contours are
maller than the peak contours, and follow similar de generac y 
irections for all combinations of parameters. The void and peak 
ontours are most similar in the S 8 –w 0 plane, and most distinct in
he w 0 –h plane. When the peaks and voids are combined (green
ontours), there is a small impro v ement on the �m 

, S 8 , and h
easurements, and, there is also a reasonable impro v ement on w 0 ,
ndicating that the WL peak and void statistics are complementary 
o each other. 

As a comparison, we also include the forecast contours using the
tandard cosmic shear 2PCFs ( ξ+ 

and ξ− combined) in grey (for 
etails on how these are measured, see Davies et al. 2020b ). For fair
omparisons, the cosmological model dependence and covariance 
atrix for these were both obtained using the same simulation data as

sed for the peak and void analyses throughout this paper. For �m 

and
 , WL peaks or WL voids (or both of them) give similar constraints as
he shear 2PCFs; ho we ver, for S 8 and w 0 , the former probes actually
an place tighter constraints (for this surv e y specification) by roughly
 factor of 2, indicating again the benefit of exploring beyond-two-
oint WL statistics to help maximize the information that can be
xtracted. In some parameter planes, such as S 8 –h and h –w 0 , there
s a clear orthogonality between the de generac y directions of the
eak/void statistics and the shear 2PCFs. 
MNRAS 513, 4729–4746 (2022) 
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M

Figure 8. (Colour online) The same as Fig. 6 , but for void statistics presented in (Davies et al. 2020b ) (blue), peak statistics (orange), and the combination of 
peak and void statistics (green). Both the peak and void statistics use the combination of the ν > 1, 2, 3, and 4 catalogues. Shear 2PCF forecasts are shown in 
grey. 

6

W  

c  

2  

t  

i  

t  

r  

s  

w  

l
 

p  

p  

w  

b  

a  

c  

t
 

h  

t  

s  

T  

p  

F  

c  

o  

w  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/4/4729/6576331 by D
urham

 U
niversity Library user on 08 June 2022
 DISCUSSION  A N D  C O N C L U S I O N S  

e have tested the sensitivity of the WL peak statistics to the
osmological parameters �m 

, S 8 , h , and w 0 and compared the peak
PCF to the peak abundance. In order to achieve this, we have
rained a Gaussian Process emulator with 26 cosmologies sampled
n the 4D parameter space using a Latin hypercube, which we used
o predict the peak statistics for arbitrary cosmologies (within the
ange spanned by the training cosmologies). We have run MCMC
amplings from our mock WL data to forecast the accuracy’s at
hich these four parameters can be constrained by a future, LSST-

ike, lensing surv e y, using the abo v e WL peak statistics. 
Using the emulators, we have studied the behaviour of the WL

eak 2PCF in detail, and made connections to the well-established
eak abundance. A main feature of our peak 2PCF analysis is that
e generate a WL peak catalogue from the entire peak population
NRAS 513, 4729–4746 (2022) 

c  
y introducing a peak height ( ν) threshold, below which all peaks
re remo v ed, and then vary this threshold to generate multiple
atalogues. We then study the behaviour of the WL peak 2PCF of
hese catalogues as this ν threshold changes. 

In Marian et al. ( 2013 ), it has been shown that the WL peak 2PCF of
igh-amplitude peaks provides little complementary information to
he peak abundance. In this work, we have presented some additional
teps that are able to further push the utility of the WL peak 2PCF.
hese additional steps significantly impro v e the o v erall constraining
ower of WL peaks when the abundance and 2PCFs are combined.
irst, we study the 2PCF of low-amplitude ( ν) peaks, and find that it
ontains significant cosmological information compared to the 2PCF
f high-amplitude peaks. For example, in Fig. 6 , the constraints on
 0 are roughly four times stronger for the ν > 2 catalogue compared

o the ν > 4 catalogue. Secondly, we find that the 2PCFs of multiple
atalogues are complementary to each other, and when combined,
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he peak 2PCF can constrain �m 

with tighter accuracy than the 
eak abundance, and that it is able to constrain both h and w 0 with
ignificantly greater accuracy than the peak abundance alone. We 
lso find that the peak abundance provides constraints that are twice 
s tight on S 8 than the combined peak 2PCF, indicating that in order
o fully exploit the cosmological information contained in WL peaks, 
oth their abundance and their clustering should be measured and 
ombined. This is illustrated by the green contours in Fig. 7 , which
how the total constraints from WL peaks in which the abundance 
s combined with the combined 2PCF from different ν catalogues. 
ere, the abundance plus the clustering forecasts are roughly twice 

s strong as those for either of the individual cases (orange for 2PCF
nd blue for abundance). When we compare the constraints from the 
eak abundance plus the peak 2PCF to those from the shear 2PCF, we
nd that the peaks are able to constrain �m 

, S 8 , and w 0 with greater
recision than the shear 2PCF, the most significant impro v ement is
or S 8 and w 0 , which impro v e by roughly a factor of 2. Finally, the
nformation required to measure the peak 2PCF is already present 
hen the peak abundance is measured. Therefore, the addition of 

he peak 2PCF to an y pre-e xisting peak abundance analysis pipeline
ill require minimal modifications, making the peak 2PCF a very 
romising probe. 
We also include a comparison of the forecasts from WL peaks 

o the WL voids studied in Davies et al. ( 2020b ), and find that the
ombination of the two can impro v e the constraints on �m 

, S 8 , and h ,
nd can provide significant improvements on the w 0 measurements. 
he WL voids are sensitive to the N -point correlation function of
eaks (White 1979 ), and the impro v ed constraints resulting from
ombining WL peaks and voids shows that three and higher-order 
orrelation functions in the peak distribution contain complementary 
osmological information. WL voids are one simple way to access 
he information contained in the higher order correlation functions 
f peaks. 
The impro v ed parameter constraints from the combination of all of

he peak and void probes presented here can also be explained through 
heir full covariance matrix, which includes cross-correlations be- 
ween probes, present in Appendix B . From the covariance matrix, 
t is clear that many of the probes studied here have a large
egree of statistical independence. This leads to complementary 
nformation between the probes which yields tighter constraints when 
he different probes are combined. 

We highlight that the work carried out here applies to the 4D
arameter space in Fig. 1 , and may change if additional parameters
n the � CDM model, such as the spectral index, are included.
ur results may also be sensitive to changes in curv ature, massi ve
eutrinos or other sources of additional physics. F or e xample, in
avies, Cautun & Li ( 2019b ), we found that the peak abundance is

ensitive to the nDGP modified gravity model, and Liu et al. ( 2016 )
ave used the WL peak abundance to constrain f ( R ) gravity. 
We also note that the ray-tracing method used to obtain our WL
aps employs some approximations, the most important being the 
orn approximation. We do not expect this simplified framework 

o have affected our results. F or e xample, Hilbert et al. ( 2020 ) have
ompared multiple ray-tracing methods, such as our approach versus 
ull techniques run on the fly at the same time as the numerical
imulation, and found very good agreement in the WL convergence 
nd shear power spectrum, as well as in the abundance of peaks with
eights ν < 6. Hilbert et al. have found some discrepancies between 
ethods in the peak abundance for ν > 6, which should not be

urprising since such peaks correspond to massive clusters; however, 
uch differences are unlikely to affect our results since peaks with 
uch high amplitudes constitute only a very small fraction of the 
opulation even for our ν > 4 peak catalogue (e.g. see Fig. 2 ). The
greement of different ray-tracing methods when predicting the peak 
PCF remains to be studied. In this work the peak 2PCF is measured
n scales larger than 0 . ◦1, so any approximations we employed, such
s the Born approximation, need to fail on similar scales to have an
mpact on our measurements. 

In addition, the simulations used to construct the emulators for the
ifferent WL statistics analysed here are limited in their number of
odes sampled with the Latin hypercube. As the results of this paper
uggest, future WL observations can place competitive constraints 
n the various cosmological parameters, with significantly smaller 
ontours than the current status. As the contours keep shrinking 
round the best-fitting model, impro v ed emulators that can more
ccurately capture the small effects induced by small variations 
f parameters will be needed. In the future, it will be necessary
o simulate cosmological models sampled using a nested Latin 
ypercube, or nested Latin hypercubes, to refine the emulators used 
n this work. 

The results presented here may be further impro v ed with the
nclusion of tomography. This is the standard approach when using 
he shear two-point correlation function to measure cosmological 
arameters, and typically this significantly impro v es the constraints 
n w 0 . Therefore, in a future work, we will test how cosmological
arameter constraints can be impro v ed when using WL voids with
omography. 

Finally, in order to use the WL peak 2PCF in observations, it
ill be important to understand the impact of baryonic physics, the

ntrinsic alignment of galaxies, and the uncertainty associated with 
hotometric redshifts and shear calibration. It is already established 
hat the WL peak abundance is altered in presence of baryons (Osato,
hirasaki & Yoshida 2015 ; Coulton et al. 2019 ; Fong et al. 2019 ;
eiss et al. 2019 ) and intrinsic galaxy alignments (Harnois-D ́eraps,
artinet & Reischke 2021 ), so it will also be necessary to test

ow the WL peak 2PCF is affected by these. The behaviour of
hese systematics will be an important factor in determining which 
eak catalogues can be used to reliably measure the peak 2PCF
n observations. When identifying WL peaks in observational data, 
revious studies (e.g. Kacprzak et al. 2016 ; Martinet et al. 2018 ;
arnois-D ́eraps et al. 2020 ) have discarded peaks with ν < 0 and
> 4, in order to mitigate the impact of these systematics on the

eak abundance. We would expect a similar approach to be valid
or the peak 2PCF, though that remains to be tested. Additionally,
he removal of the high-amplitude peaks that are most affected 
y these systematics may not change our posterior forecasts by 
 significant amount, since they also contribute the least to the
arameter constraints. 
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Figure A1. (Colour online) The cross-validation of the WL peak abundance 
emulator accuracy. One node is removed from the training set, and the 
difference between the emulation (Em) and simulation (Sim) predictions of 
the remo v ed node are compared relativ e to the simulation standard error ( σ ). 
This process is repeated for each of the 26 nodes, giving an upper limit on the 
emulator accuracy. The iteration where the node for the fiducial cosmology 
is remo v ed is shown by the blue line. Dashed lines are added at the 1 σ level 
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n this section, we present the accuracy of the peak abundance and
eak 2PCF emulator used for our cosmological forecasts. 

In order to test the accuracy of the emulator, we employ a cross-
alidation test, which is outlined as follows. First, one node from
he training data (simulated data) is remo v ed, and the emulator is
hen trained with the remaining 25 nodes, for a given statistics. The
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Figure A2. (Colour online) The same as Fig. A1 , but showing the percentage 
accurac y relativ e to the simulated predictions. The dashed lines enclose the 1 
per cent region. 
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esult is compared to the simulated version, by taking the difference 
etween the two and dividing it by the standard error measured in
he simulated data for that node. The abo v e steps are repeated 25

ore times, removing a different node from the training data at each
teration. This results in measurements of the emulator accuracy at 
ach node, which is an upper limit, since the accuracy increases as
ore training data are used, and the cross-validation measurements 

ses training data with one less node than the training data used in
he main analysis. 
igure A3. The same as Fig. A1 but for the WL peak 2PCFs. The four panels corre
anel), ν > 2 (top right-hand panel), ν > 3 (bottom left-hand panel), and ν > 4 (bo
Fig. A1 shows the cross-validation test for WL peak abundance. 
he cross-validation for the fiducial cosmology is shown in blue, and

he remaining nodes are shown in grey. The fiducial cosmology is
he node of most interest, as all posterior contours presented in this
ork reside close to this region. The dashed lines delineate the region
here the accuracy of the emulator is within the standard error of the

imulated data. The blue curve shows that, for the fiducial cosmology, 
he emulator is accurate to within 1 σ , as roughly 68 per cent of the
ins are within the 1 σ re gion. The gre y curv es show that the accuracy
s lower for the other nodes, and we find that the accuracy decreases
s we approach the edges of the cosmo -SLICS parameter space. This
s to be expected, as the emulator has less data to train from for
hese regions. Fig. A2 is similar to Fig. A1 , but shows the percentage
ccuracy of the emulator for the cross-validation test. We can observe
hat the accuracy is within roughly 1 per cent for ν � 3, increasing
o up to 4 per cent at ν � 5 due to the more noisy measurement for
he high- ν peaks. 

Fig. A3 is the same as Fig. A1 , but shows the cross-validation test
or the WL peak 2PCF, for peak catalogues with heights ν > 1 (top
eft-hand panel), ν > 2 (top right-hand panel), ν > 3 (bottom left-
and panel), and ν > 4 (bottom right-hand panel). The figure shows
hat, similar to the WL peak abundance, the emulator is accurate to
ithin 1 σ at the fiducial cosmology for the peak 2PCF for all four

atalogues. Fig. A4 is the same as Fig. A3 , but shows the percentage
ccuracy of the peak 2PCF emulator applied in the cross-validation 
est. For the ν > 1 catalogue, the accuracy is mostly within 10 per
ent, with a few bin at 20 per cent. The accuracy is within 10% for
he ν > 2 and 3 peak catalogues, and for ν > 4, the accuracy is within
0 per cent except for the final bin. 
MNRAS 513, 4729–4746 (2022) 

spond to the WL peak 2PCFs of WL peaks with heights nu > 1 (top left-hand 
ttom right-hand panel). 
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M

Figure A4. The same as Fig. A3 but for the percentage accuracy relative to the simulated predictions. The dashed lines enclose the 10 per cent region. 
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PPENDIX  B:  C OVA R I A N C E  

s shown by equation ( 14 ), we require the (inverted) covariance
atrix of the data vector in order to produce our forecasts. Within

he matrix, the diagonal elements correspond to the variance of
ach of the data vector bins and the off-diagonal elements give
he covariance between all possible pairs of bins. When multiple
robes are combined into a single data v ector, an y correlated or
uplicate information between the probes is accounted for by the
ross-covariance within the matrix. 

In Fig. B1 , we present the total correlation matrix for the all of
he probes studied in this work. This corresponds to the matrix that
s used to produce the green likelihood contour in Fig. 8 . We present
he correlation matrix instead of the covariance matrix, as it allows
or easier visual interpretation, which is expressed in terms of the
ovariance matrix as follows 

 ij = 

cov ( i, j ) 

σi σj 

, (B1) 

here R is the correlation matrix, cov is the covariance matrix, and
is the standard deviation for a given bin. 
Starting from the bottom left-hand panel of the figure, the diagonal

iles enclosed by the black lines show the correlation for the following
tatistics (which are labelled with the range of peak heights used in
heir identification): peak abundance (0 < ν < 6), peak 2PCF (four
atalogues with thresholds ν > 1, 2, 3, 4), and WL v oid ab undance
nd WL void tangential shear profiles where the voids are identified
sing the same four peak catalogues. The remaining off-diagonal
erms show the cross-covariances between all possible combinations
f the probes. 
For the peak abundance, the figure shows that the low-amplitude

eaks are somewhat correlated with other low-amplitude peaks, and a
imilar behaviour is present for the high-amplitude peaks, as shown
y the green regions in the bottom left and top right of the peak
NRAS 513, 4729–4746 (2022) 
bundance correlation tile. There also appears to be a small amount
f anticorrelation between low- and high-amplitude peaks, as shown
y the dark regions in the top left- and bottom right-hand corner of
he tile. 

For the diagonal peak 2PCF tiles, each bin in the 2PCF appears
o be correlated with all of the other bins. For the off-diagonal tiles
etween the different peak 2PCFs, there is also a high amount of
orrelation, which is again expected, as the main difference between
he 2PCFs is simply a change in amplitude, and all catalogues have
ome fraction of their tracer population in common. 

For the tiles representing the correlation between the peak 2PCFs
nd the WL void abundances, we see some correlation between
he peak 2PCFs and the small radii WL voids (especially for high

thresholds). This is also to be expected since the WL voids
re identified from a Delaunay triangulation of the peaks, which
ill be sensitive to the peak clustering. It is interesting to see

hat this correlation drops off as the void size increases, which
ay indicate that higher-order clustering such as the three-point

orrelation function of WL peaks dictates the abundance of large
oids. 

In Fig. B2, we show the correlation matrix for the peak abundance
ombined with the eight peak 2PCFs with ν > 1.0, 1.5, . . . , 4.5. The
gure shows that, for the peak 2PCF, adjacent catalogues (similar ν

hresholds) are highly correlated. This is to be expected as the tracer
opulations are very similar for adjacent catalogues. The correlation
educes significantly as the difference between the ν thresholds
ncreases, which is again expected as this is where the tracer
opulations will differ the most. The low correlation between the
eak 2PCFs with very different ν thresholds is a strong contribution
o the impro v ed constraining power from the combination of multiple
eak 2PCFs, alongside any complementary parameter degeneracy
irections. 
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Figure B1. (Colour online) The correlation matrix for all probes studied in this work, which are as follows (from the left to right): peak abundance (d n /d κ), 
peak 2PCF ( ξp ), void abundance (d n /d R v ), and void tangential shear profiles ( γ t ). 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/4/4729/6576331 by D
urham

 U
niversity Library user on 08 June 2022

art/stac1204_fB1.eps


4746 Davies et al. 
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Figure B2. (Colour online) The correlation matrix for the combination of the peak abundance (d n /d κ) and the peak 2PCF ( ξp , for eight catalogues with ν > 

1.0, 1.5, . . . , 4.5). 
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