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ABSTRACT 
 

The operation and maintenance costs of windfarms are always high due to high labour costs and the high 

replacement cost of parts. Thus, it is of great importance to have real-time monitoring and an early fault 

diagnostic system to prevent major events, reduce time-based maintenance and minimize the cost. In this 

paper, such a 2-step system for early stage rolling bearing failures in off-shore wind turbines is introduced. 

Firstly, Empirical Mode Decomposition (EMD) is applied to minimize the effect of ambient noise. Next, 

correlation coefficients between a reference signal and test signals are obtained and incipient fault detection 

is achieved by comparing the results with a threshold value. Through further analysis of the envelope 
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spectrum, Sample Entropy for selected Intrinsic Mode Functions is obtained, which is  further used to train 

a Support Vector Machine classifier to achieve fault classification and degradation state recognition. The 

proposed diagnostic approach is verified by experimental tests, and an accuracy of 98% in identifying and 

classifying rolling bearing failures under various loading conditions is obtained. 

1    INTRODUCTION 

With ever-increasing energy demands, renewable energies such as wind power 

are becoming increasingly attractive for both financial investors and governments around 

the world. The fast development in wind industry has also accelerated the operation and 

maintenance business (O&M) due to the need to maintain power generation efficiency. 

In fact, the global O&M market is forecasted to reach $20.6 billion by 2023 [1]. However, 

some argue that with the usual method of sending a maintenance team after the failure, 

the downtime for offshore wind turbines can be up to 13 days, resulting in increased 

losses [2]. Thus, the design of a complete and accurate diagnostic system is deemed 

necessary, even critical for both wind farm developers and O&M business investors. 

Among all the components, high-speed rolling bearings are those of the greatest 

importance to wind turbines owing to their support to both axial and tangential loads. 

Faults in bearings can lead to a catastrophic failure of the entire system, and hence the 

maintenance is essential. In order to establish such a system, three major steps need to 

be addressed: 1) accurate real-time monitoring, 2) early fault detection, and 3) 

classification of existing defects and degradation states.  

Firstly, an effective real-time monitoring method needs to be applied to obtain 

continuous vibration data from the machine before applying various signal processing 
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methods. Among all monitoring techniques, the most common solution is to install 

accelerometers on rotating machines and obtain the vibration signal in the time domain. 

In real working conditions, there exists a large amount and variety of inevitable 

noise, which often embodies strong vibrations from several competing sources and spans 

across a large frequency range, e.g., random impacts from friction and contact forcesor 

external disturbances [3]. In the early stage of defect development, the defect vibration 

signal is weak and can be easily masked by noise. Thus, it is essential to find a way of 

extracting high quality features from the early-stage failure. 

Up to now, a range of feature extraction approaches have been developed, which 

can be broadly classified into four categories [4]: 1) time-domain feature extraction, 2) 

frequency-domain feature extraction, 3) time-frequency representation, and 4) 

complexity measurement.  

Time-domain analysis is considered as the most classic approach to distinguish 

between different vibration signals. Time domain features, including statistical features 

(RMS, variance, skewness, and kurtosis) and non-dimensional features (shape factor, 

crest factor, impulse factor, and margin factor) have been wildly used in past research [5]. 

Additionally, mathematical morphology operators, which were formerly introduced as a 

non-linear method to analyse two-dimensional image data [6], had been proved to be 

effective in detecting rolling bearing defect frequencies in wind turbines[7,8]. 

 To perform frequency-domain analysis, the time-domain vibration signal needs to 

be transformed into a frequency-domain signal, and the most common and 
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representative way is to apply the Fourier transform, usually implemented in the form of 

Fast Fourier Transform (FFT) [9]. In this way, frequency domain features including spectral 

skewness and spectral kurtosis can be extracted and used to identify rolling bearing 

failures [10,11]. In the existing literature, researchers have already modified the method 

for specified high-speed wind turbine bearing failures [12].  

 Time-frequency representation methods aim at finding the frequency 

components of the signal, as well as how the instantaneous frequency and amplitude of 

a certain component varies within a certain time window. Within the field of time-

frequency representation, wavelet transform and Empirical Mode Decomposition based 

time-frequency analysis are the two most representative methods. 

Wavelet transform is a well-known method in analysing non-stationary signals and 

has been developed over several decades [13,14,15]. By choosing the appropriate 

wavelet basis, the wavelet transform methods can approximate well the signal with a 

limited number of coefficients [16]. Through this process, the selected coefficients can be 

used as defect features for rolling bearings inside wind turbines [17, 18]. 

Adaptive signal processing is another direction of research in the area of time-

frequency representation. In the current literature, the most representative method is 

Empirical Mode Decomposition [19]. This method is based on sequential extraction of 

energy associated with various intrinsic time scales of the signal, starting from high 

frequency modes to low frequency modes [19]. Through the decomposition process, 

sensitive signal components can be selected and used for further feature extraction. 
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 Complexity measurements such as approximate entropy and sample entropy are 

used for assessing the complexity of time domain signals. Approximate entropy (ApEn), 

developed by Steve M. Pincus, is a technique used to quantify the regularity and 

unpredictability of time series fluctuations [20]. The larger the value of ApEn, the more 

the unpredictability of the behaviour of the signal. Sample entropy (SampEn) is a 

modification of approximate entropy and the process of its computation does not depend 

on the size of the dataset [21]. To date, both ApEn [22] and SampEn [23] have been 

studied and directly used by researchers in the field of extraction of wind bearing fault 

features. 

 Other feature extraction methods including correlation dimension [24], Singular 

Value Decomposition (SVD) [25], piecewise Aggregate Approximation (PAA) [26] and 

Kolmogorov-Smirnov (KS) Test [27] were also applied to identify rolling bearing failures, 

obtaining promising results in multiple cases and could be further optimized for wind 

turbine bearing problems. 

After retrieving defect features, a tool is needed to automatically recognise faults 

in order to realize automatic diagnosis. Over the past two decades, the use of machine 

learning techniques have developed from a mere speculative idea into a broad topic of 

research. Due to their high accuracy fault classification, they are also favoured by 

researchers focusing in this particular area: Sugumaran used a decision tree for fault 

diagnostics of roller bearings [28]; Pandya used multinomial logistic regression techniques 

[29]; and Lin et al applied a support vector machine based on an artificial fish-swarm 

algorithm [30]. Apart from these traditional machines learning approaches, deep learning 



Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems 

 

6 

 

models including CNNs (convolutional neural network) and RNNs (recurrent neural 

networks) [31,32] have been adapted into the design of a rolling bearing prognostic 

system. Furthermore, some researchers have modified LSTMs (Long short-term memory) 

[33] using data from wind turbine shafts to achieve early fault diagnosis.  However, the 

deep learning models proved to have better performance only with a large sample pool, 

which makes them less suitable in this case, where there is a limited number of training 

data available. 

Among the machine learning methods, a Support Vector Machine (SVM) is a 

general learning method, well-grounded on Statistical Learning Theory [34], which 

particularly effective in cases with small sample pool. Also, it has a relatively simple 

structure and a satisfying generalization ability, which makes it particularly suitable for 

solving real life failure diagnosis problems. 

In this paper, a high-speed rolling bearing status diagnosis system for wind 

turbines based on high-quality feature extraction and Support Vector Machine is 

proposed. The idea is to merge the merits of several individual techniques into one whole 

diagnostic system. Through case studies, the proposed system exhibits a high accuracy 

for rolling bearing faults detection and classification (over 98%) across various loading 

conditions in a noisy environment. The proposal also offers a way for bearing degradation 

status recognition, and it shows improved performance (75% accuracy) over ordinary 

time-domain and frequency-domain feature extraction methods. 



Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems 

 

7 

 

The remainder of this paper is organized as follows: Section 2 presents the overall 

framework of the prognostic system and introduces the methods used in this paper; In 

Section 3, the system proposed in this paper is validated through experiments using data 

collected from bearing run-to-failure tests. The results are also critically compared with 

other deep-learning models and feature extraction methods. Section 4 draws some 

conclusions based on the performance of the system and suggests the further work that 

can be done. 

2    DIAGNOSTIC PRINCIPLES 

 
2.1 ROLLING BEARING DIAGNOSTIC SYSTEM 

Figure 1 illustrates the structure of the proposed high-speed rolling bearing 

diagnostic system. The system uses the vibration signal retrieved as input. Firstly, EMD is 

applied to the input signal. This step is a data pre-processing step with two main purposes: 

1) it denoises the signal and 2) IMFs that contain bearing failure information can be 

selected out. Next, correlation coefficients are obtained between the signal and reference 

signal and compared with a threshold value to identify where the bearing is under fault 

state. If the bearing is under a certain fault state, a Hilbert Transform will be applied to 

the selected IMFs to obtain the envelope signal. During this process, the signal is 

demodulated and the energy concentrated at the defect frequency is highlighted. As a 

result, the processed signal is ready for feature extraction. To extract features that have 

the lowest dimension possible and can best represent one specific fault status, Sample 

Entropy is obtained for every envelope signal and further grouped up as a feature matrix. 
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Finally, through two well-trained SVM classifiers, both the rolling bearing fault and 

degradation state can be identified.  

The core idea of the proposal is the selection of different data analysis techniques 

and their adaptive arrangement for rolling bearing diagnostics. To lay a theoretical 

foundation, these major techniques, i.e. the Hilbert Huang Transform, the Pearson 

correlation coefficient calculation, the sample entropy, as well as the Support Vector 

Machines, are briefly discussed in the next subsections. 

Fig.1 Flow chart for rolling bearing diagnostic system 

 
2.2 Empirical Mode Decomposition based time-frequency analysis 

In 1999, Huang, with his team, proposed the Empirical Mode Decomposition 

(EMD), which is an adaptive signal decomposition method based on sequential extraction 

of energy associated with various intrinsic time scales of the signal, starting from high 
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frequency modes and going to low frequency modes [19]. For a data series x(𝑡), EMD is 

implemented through a sifting process which follows the rules below [19]: 

1) Identify all the local extrema and connect all local maxima (minima) on x(𝑡) 

with a cubic spline as the upper (lower) envelope. 

2) Calculate local mean 𝑚1(𝑡) for the two envelopes and further obtain 𝑑1(𝑡) =

𝑥(𝑡) − 𝑚1(𝑡). 

3) Unless the two criteria mentioned above are satisfied, treat 𝑑1(𝑡) as the data 

and repeat steps 1 and 2 until the envelopes are symmetric with respect to the zero mean. 

The final 𝑑𝑘(𝑡) is designated as 𝑐𝑛(𝑡). 

4) The sifting process stops when the residue 𝑟𝑛 becomes a monotonic function or 

a function with only one extremum from which no more intrinsic mode function (IMF) can 

be extracted. 

The process can be described as: 

𝑥(𝑡) = ∑ 𝑐𝑖 + 𝑟𝑛

𝑛

𝑖=1

(1) 

Through the decomposition process, n IMFs were created. However, not all the 

IMFs can be used to analyse and determine the nature of the waveform. This is because 

during the decomposition procedure, the energy will often be concentrated on the high 

frequency modes (first IMFs) and then it keeps decreasing until the last IMF is created. 

According to this idea, the last IMFs represents the noise signal, given that the energy 

distribution of the useful components (signal) is not big enough to overcome that of the 

noise signal. 
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To further analyse the mode functions, a Hilbert Transform was applied. With an 

existing signal x(𝑡), its Hilbert Transform 𝐻[x(𝑡)] takes the form: 

 𝐻[𝑥(𝑡)] =
1

𝜋
∑

𝑥(𝜏)

𝑡 − 𝜏

+∞

−∞

𝑑𝜏 (2) 

 

where 𝐻[𝑥(𝑡)] is the convolution of 𝑥(𝑡) and  
1

𝜋𝑡
.  

 

The Hilbert transform is important in signal processing as it can derive the analytic 

representation of a real-valued signal, which can be further utilized to calculate the 

instantaneous frequency and amplitude of the signal [19]. 

2.3 Pearson Correlation Coefficient  

 
The Pearson correlation coefficient (PCC) is a parameter that measures linear 

correlation between two variables X and Y. It has a value between +1 and -1. A value of 

+1 is total positive linear correlation, 0 is no linear correlation, and −1 is total negative 

linear correlation. By computing PCC, one can easily know if there is linear correlation 

between two sets of data. For given signals  𝑥(𝑛)  and 𝑦(𝑛) , the Pearson correlation 

coefficient 𝜌 is the covariance of the variables divided by the product of their standard 

deviations [35]. The formula for the Pearson correlation coefficient can be written as: 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 (3) 

 
Since the product of 𝜎𝑋𝜎𝑌 is a constant, the value of 𝜌𝑋,𝑌 is determined by the 

covariance of signal 𝑋, 𝑌: 
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𝑐𝑜𝑣(𝑋, 𝑌) = exp[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)] (4) 

where: 𝜇𝑋 is the mean of 𝑋 and 𝜇𝑌 is the mean of 𝑌. 

2.4 Sample Entropy 

Richman and Moorman [21] proposed the idea of Sample Entropy, a technique 

used to quantify the amount of regularity and unpredictability of fluctuations over time-

series data: the greater the probability of generating a new pattern in the series, the 

greater the complexity of the sequence which thus leads to greater entropy. This is 

because the complexity and unpredictability of the rolling bearing vibration signal will 

increase as the defect grows. Thus, it is a logical choice to use Sample Entropy as an 

indicator in fault diagnosis. 

For a time-series dataset: {𝑋(𝑛)}, 𝑛 = 1,2, … , 𝑛 , Sample Entropy is calculated 

through the following process: 

1) Define a template vector of dimension m: 𝑋𝑚(𝑖), 𝑖 = 1,2, … , 𝑁 − 𝑚 + 1, where 

𝑋𝑚(𝑖) = {𝑥(𝑖), 𝑥(𝑖 + 1), … , 𝑥(𝑖 + 𝑚 − 1)}. 

2) Define the distance function 𝑑[𝑋𝑚(𝑖), 𝑋𝑚(𝑗)] (𝑖 ≠ 𝑗) (𝑗 ∈ [1, 𝑁 − 𝑚 + 1]) to 

be the Chebyshev distance, that is:  

𝑑[𝑋𝑚(𝑖), 𝑋𝑚(𝑗)] = 𝑚𝑎𝑥𝑘=0,…,𝑚−1(|𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)|) (5) 

3) Define tolerance 𝑟 . For 1 ≤ 𝑖 ≤ 𝑁 − 𝑚 + 1, let 𝐵𝑖  be the number of 𝑋𝑚(𝑗) 

such that 𝑑[𝑋𝑚(𝑖), 𝑋𝑚(𝑗)] ≤ 𝑟  and define 𝐵𝑖
𝑚(𝑟)  as the probability that any vector 

𝑋𝑚(𝑗) is within r of 𝑋𝑚(𝑖): 
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 𝐵𝑖
𝑚(𝑟) = (𝑁 − 𝑚 + 1)−1 ∗ 𝐵𝑖 (6) 

4) Let k = m+1 and repeat step 1-3, define  𝐴𝑖
𝑘(𝑟): 

𝐴𝑖
𝑘(𝑟) = (𝑁 − 𝑘)−1 ∗ 𝐴𝑖 (7) 

5) Calculate the average of natural logarithms of the functions  𝐵𝑖
𝑚(𝑟) and 𝐴𝑖

𝑘(𝑟) 

for every i and denote the results as 𝐵𝑚 and 𝐴𝑘: 

𝐵𝑚(𝑟) = (𝑁 − 𝑚 + 1)−1 ∗ ∑ 𝐵𝑖

𝑁−𝑚+1

𝑖=1

(8) 

𝐴𝑘(𝑟) = (𝑁 − 𝑚 + 1)−1 ∗ ∑ 𝐴𝑖

𝑁−𝑘

𝑖=1

(9) 

(6) Define the sample entropy: 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = −𝑙𝑛
𝐴𝑘(𝑟)

𝐵𝑚(𝑟)
(10)

According to Richman and Moornan’s research [21] and through the process of trial and 

error, the values of m and r were usually chosen between 1 and 2, and 0.15SD to 0.2SD, 

respectively (SD denotes standard deviation). 

2.5 Support Vector Machines 

Support Vector Machines is a classical high dimensional, non-linear classification 

that specializes in dealing with cases of a small sample pool. Its main idea is to find an 

optimal hyperplane to maximise the margin between different classes. In two-

dimensional space, the hyperplane is a line dividing a plane into two parts where each 
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class lies on either side (Figure 2(a)). A detailed description of this method can be found 

in [34]. 

In this paper, defect features cannot be linearly separated. In this case, support 

vector machine uses the kernel function to map the original sample data into a higher 

dimensional space, and the decision function will be: 

𝑓(𝑥) = 𝑠𝑔𝑛 ( ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖
𝑇𝑥𝑗) + 𝑏

𝑀

𝑖,𝑗=1

) (11) 

Additionally, the kernel function used in this paper is the Radial Basis Function 

(RBF), which is defined as: 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾 ||𝑥𝑖 − 𝑥𝑗||
2

) (12) 

Where the value of 𝛾  in this paper is obtained using a cross-validation method 

(partitioning the data into subsets, training the data on a subset and using the other 

subset to evaluate the model’s performance).  

In all, an SVM is a binary classification model. To adapt and optimize the 

performance of SVM on a multi-class classification problem, a one-vs-one SVM strategy 

(Figure 2(b)) is used in this paper: for a multi-class case with k classes, 𝑘(𝑘 − 1)/2 SVM 

models need to be trained, with each SVM models corresponding to one binary 

classification problem. Finally, through a cross-validation process, optimal training 

parameters are selected. 
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(a)                                                                          (b) 

Fig.2 (a): Support vector optimal classification plane. (b): The illustration of one-

vs-one SVM strategy. 

3    CASE STUDIES 

The first and third parts in this section use experimental data from IMS (Intelligent 

Maintenance System) test to failure experiments from the University of Cincinnati [36]. 

The second part uses experimental data from the bearing data centre of Case Western 

Reserve University [37]. 

3.1 Early Fault Detection based on EMD and Pearson Correlation Coefficient 

From nearly five decades of study into the rolling bearing failure mechanism, 

researchers found that defects tend to follow similar patterns, although they may possess 

different features. The defect starts with two components of a rolling bearing in contact; 

thus, a defect meets its mating surface, generating a characteristic impulse. The 

frequency of occurrence of the impulse is referred to as the characteristic defect 

frequency. The frequency is very high and can sometimes reach 20kHz. Thus, the high-

frequency part of the signal is very sensitive to the change in bearing working conditions. 
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By using this feature and knowing that the first IMF created by EMD will always contain 

the high frequency component of the original signal, it is obvious that when a defect 

exists, the correlation coefficient obtained between the test and vibration signals under 

normal working conditions will vary greatly compared to the correlation coefficient 

corresponding to a ‘healthy’ test signal. 

The test rig has four test bearings on one shaft. The shaft is driven by an AC 

motor and coupled by rub belts. Detailed bearing dimensions are shown in Table 1. 

Table 1. Detailed bearing dimensions of test rig 1 

 

 

The experiment lasts for 164 hours with a sampling interval of 10 minutes. The 

data is collected with a sampling rate of 20kHz by a National Instruments DAQCard-6062E 

data acquisition card. At the end of the experiment, outer race failure occurred in bearing 

1. Without knowing the nature of the bearing test-to-failure data, we first assume data 

acquired in the first 12 hours are considered to be ‘healthy signals’, which are the 

vibration signals recorded under normal working condition. Among these ‘healthy 

signals’, one reference signal is randomly chosen to be the baseline signal. EMD is applied 

to this signal and the first IMF is chosen, followed by Fourier Transform applied to this 

IMF to obtain the frequency spectrum. The same procedure is conducted on the other 50 

randomly chosen ‘healthy signals’ and their correlation coefficients with the reference 

signal are computed and plotted in Figure 3(a). From the plot, it is clear that the 50 

Pitch diameter/mm Roller diameter/mm Contact Angle/degree No. rollers 

71.5 8.41 15.17 16 



Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems 

 

16 

 

coefficients obtained fluctuate slightly within the range of 0.47-0.54. Figure 4 gives the 

illustration of the reference signal from both time-domain and frequency-domain aspects. 

 

Fig.3 (a): Illustration of the reference signal and the correlation coefficients obtained 
between the reference signal and other ‘healthy signal’. (b): illustrations of the change 

in correlation coefficient with bearing working time. 
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Fig.4 (a): Time domain illustration of the reference signal. (b): Frequency spectrum of 

the reference signal. 

Datasets collected after the first 12 hours are considered as test data. For 

simplicity, one in every six datasets (one dataset is one hour) are chosen and their 

correlation coefficients with the reference signal are computed. By observing the change 

in correlation coefficient with respect to the increasing operation time, one can easily 

track down the growth of mechanical failure inside the rolling bearing over time [38]. 

Figure 3(b) illustrates the change in correlation coefficients as the outer race defect grows. 

As can be seen from the black line in Figure 3(b), from the 12th hour to around 

the 85th hour, the correlation coefficients fluctuate slightly within a 0.48-0.53 range, 
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showing that the bearings are working in a normal state. Roughly, after the 90th hour, a 

clear downtrend can be observed in the plot, which indicates a gradually formed failure. 

The sudden drop in the correlation coefficient is caused by the high frequency resonance 

generated at the characteristic defect frequency. From the 90th hour to the 120th hour, 

as the failure develops, the difference between the reference signal and test signal 

becomes greater and thus leads to a higher descending rate in the plot. However, as the 

defect grows further, from the 120th hour to the 140th hour, the values of the correlation 

coefficients bounce back from 0.35 (at the 120th hour) to a peak of 0.45 (at around the 

132nd hour) before experiencing another fall and finally landing at around 0.34. This 

sudden and drastic change may be explained by the nature the of rolling bearing defect 

development: when the rolling element passes the defect zone, the asperities caused by 

the previously formed small cracks will be reduced due to over-rolling and abrasive wear. 

This so-called smoothing or “healing” phenomenon has been previously discovered and 

then verified by various researchers [39, 40]. After the 140th hour, the downward trend 

slows down, showing that the outer race mechanical has matured, however the 

continued decline of the correlation coefficients shows that bearing is still in an unstable 

state. 

To investigate the relationship between the number of sample points and the 

results, plots of corelation coefficients using 10000, 8000 and 6000 sample points were 

drawn in Figure 3(b). From the plots, it is clear that the plot using 20480 data points fits 

the red fitting curve best. With fewer sample points, although the plots still follow the 

patterns of the fitting curve, there are larger fluctuations and the mean value decreases 
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and may eventually interfere with the early fault identification. As a result, through trail-

and-error, we found that a minimum number of 8000 data points is needed for the 

method to achieve best performance. 

The experiment has verified the feasibility of the proposed method. In real 

working conditions, due to variance in the designed tolerance for various rolling bearings, 

a threshold value can be set to separate normal working states from fault states. When 

several consecutive values are all under the threshold value, generation of mechanical 

failure can be identified. 

3.2 Rolling Bearing Fault Classification based on Envelope signal analysis, Sample 

Entropy and Support Vector Machine 

In section 3.1, the idea that the occurrence of a mechanical failure will cause a 

periodic impulse signal at a high resonance frequency is used to identify the state of the 

bearing. However, this feature does not help determine the type of failure or the bearing 

degradation state. 

Fortunately, apart from the generation of impulses at resonant frequency, in the 

second phase of bearing failure, a series of harmonic frequency components is present at 

the bearing defect frequency due to the amplitude-modulation effect. According to 

previous studies, the defect frequency varies with the type of failure [19]. The amplitude 

at the defect frequency and its harmonic frequency components is small at the beginning. 

As the defect grows, the amplitude will become more significant. In order to use this 

nature of mechanical failure, EMD will first be applied to the signal to select sensitive 
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IMFs. There are two criteria for choosing sensitive IMFs: 1) the correlation coefficient 

between the IMF and the original signal must be larger than 50%; 2) The kurtosis of the 

IMF needs to be larger than or equal to 3. Through this process, the signal components 

that contain rich fault information were selected out. To further extract the features that 

best represent the characteristics of rolling bearing status, a feature extraction method 

based on envelope signal analysis is proposed.  

To obtain the envelope signal, firstly, we apply a Hilbert Transform to selected 

IMFs:

 𝐻[𝑥(𝑡)] =
1

𝜋
∑

𝑐𝑖(𝜏)

𝑡−𝜏
+∞
−∞ 𝑑𝜏 (13)        

Next, the amplitude of the envelope signal can be calculated according to the 

equation: 

𝐴(𝑡) = √𝑥(𝑡)2 + 𝐻[𝑥(𝑡)]2 (14) 

To extract high quality domain features, Sample Entropy is introduced to measure 

the complexity of the envelope signal. Compared to directly calculating Sample Entropy 

from the original time domain vibration signal, applying the EMD algorithm and Hilbert 

transform and calculating the amplitude of envelope signal forehead decreases the effect 

of noise on the signal and highlights the energy concentrated at the defect frequency, 

which strengthens the physical justification for calculating Sample Entropy for this 

problem.  

In this section, the first four IMFs were chosen due to their high relativity with the 

original signal. Thus, a 𝑚 × 4 feature matrix (m= number of test signals) is constructed: 
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𝐼𝑀𝐹1 𝐼𝑀𝐹2    𝐼𝑀𝐹3 𝐼𝑀𝐹4

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑡𝑟𝑖𝑥 = [

𝑆𝑎𝐸𝑛1
1 𝑆𝑎𝐸𝑛1

1

⋮  ⋮
𝑆𝑎𝐸𝑛1

1 𝑆𝑎𝐸𝑛1
1

⋮  ⋮
 ⋮ ⋮

𝑆𝑎𝐸𝑛1
𝑚 𝑆𝑎𝐸𝑛2

𝑚
 ⋮ ⋮

𝑆𝑎𝐸𝑛3
𝑚 𝑆𝑎𝐸𝑛4

𝑚

]

1
⋮
⋮

𝑚

 

Finally, a one-vs-one SVM model is built and optimized using the extracted 

features. 

 The original vibration data was collected at a sampling rate of 12kHz and detailed 

bearing dimensions are listed in Table 2. 

Table 2. Detailed bearing dimensions of test rig 2 

 

There are three kinds of fault data: outer race defect, inner race defect and rolling 

elements defect. For every kind of mechanical fault, there are four datasets obtained 

under different loading conditions (Table 3). In this case, Sample Entropy 

parameters: 𝑀 = 2, and 𝑟 = 0.2SD were chosen through a trial-and-error process. 

 

 

 

 

 

Inside diameter/mm Outside 

diameter/mm 

Ball Diameter/mm Pitch 

Diameter/mm 

Fault 

diameter/mm 

25.0 52.0 7.94 39.04 7 
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Table 3. Illustration of all experiment datasets 

 

As the calculation of the Sample Entropy does not rely on data length, the datasets 

were split into segments with 2048 data points each. Figure 5 illustrates the four bearing 

condition data under zero and full loading conditions using first IMFs. 

 

Fault Type  Normal Outer race Inner race Rolling elements Load(kW) 

Dataset 1 

Train 

Test 

80 

20 

40 

10 

40 

10 

40 

10 
0 

Dataset 2 

Train 

Test 

80 

20 

40 

10 

40 

10 

40 

10 
0.735 

Dataset 3 

Train 

Test 

80 

20 

40 

10 

40 

10 

40 

10 
1.470 

Dataset 4 

Train 

Test 

80 

20 

40 

10 

40 

10 

40 

10 
2.206 
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Fig.5 Envelope spectrum for four bearing status under zero and full loading conditions 

((a) outer race defect; (b) inner race defect; (c) rolling element defect; (d) normal 

condition) 

As can be seen from Figure 5(d), under normal conditions, the amplitudes are 

extremely low (10-4 m/s2) and the signals are chaotic and have no periodic pattern. In all 

three fault conditions (Figure 5(a,b,c)), the envelope spectrums acquired under different 

loads share similar patterns -- there are peaks appearing at defect characteristic 

frequencies that correspond to one certain type of failure. Among these three fault 

conditions, the envelope spectrum for rolling element defects is the most chaotic: there 

is less difference between impulse signals at defect characteristic frequency and other 

components. This may be because rolling element defects, compared with other defects, 
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have a smaller defect surface area, thus resulting in a smaller amplitude for the impulse 

signal and its harmonic components. However, the peak values at Ball Spin Frequency 

(BSF: characteristic frequency for rolling element failure) and its harmonic components 

(BSF at full and no load, and 3*BSF at full load condition) are still in a dominant position. 

For bearing data under normal conditions (Figure 5(d)), the amplitudes are low in all 

frequency ranges and thus can be separated from the other three scenarios. As a result, 

the application of the Hilbert transform and the corresponding envelope signal can 

effectively extract the defect features and strengthens the physical meaning of calculating 

the Sample Entropy. From Figure 6, one can easily observe the great separability between 

Sample Entropy obtained under different fault conditions. 

 

Fig. 6 Sample Entropy obtained under normal condition and three failure conditions 

In this case, a six-class-one-versus-one SVM model is designed. There are 80 

training samples and 20 testing samples. The overall accuracy reaches 98.5% (Figure 7). 

As a result, we conclude that the designed defect classification method can accurately 
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classify the listed kinds of mechanical failures under noisy conditions. In addition, the 

method works well under various loading conditions, which shows its adaptivity. 

 

Fig.7 Confusion matrix of the proposed model 

To evaluate the performance of the proposed model, deep learning models 

including 1D-CNN and 1D-LSTM were set up, trained and tested using the same datasets. 

To ensure the deep learning models achieve their best performance, data augmentation 

is applied to retrieve a total of 500 training samples and the same number of test samples. 

The results shown in Figure 8 all show very high accuracy (99.5% and 100% respectively). 

Compared with SVM, deep neural networks have a relatively more complicated 

structure and need more datasets to train the model. In real-life, there will be cases that 

one cannot obtain a large number of datasets to train the model and the performance of 

deep learning  models will be restricted. In that case, the model proposed using SVM can 

be utilized and achieves reliable results. 
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(a). 1d-CNN                                                                                   (b). 1d-LSTM 

Fig. 8 Confusion matrices of the deep learning models 

3.3 Bearing Degradation State Recognition 

From Figure 9 (a) to (d), it is clear that with the deterioration of the failure state, 

a series of harmonic components appears at the defect characteristic frequency and the 

multiplied frequencies. Also, from Figure 9 (b) to (d), the peak amplitude at defect 

frequency (230Hz) keeps increasing from 2.8 × 10−3m/s2 to 7.2 × 10−2m/s2, with the 

later value being nearly 26 times larger than the former one. Thus, it is clear that the 

envelope spectrum can be used to determine the bearing degradation state. 
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Fig.9 Envelope Spectrum under: (a) normal working state; (b) mild degradation state; (c) 

moderate degradation state; (d) severe degradation state 

According to Figure 3 (b), the whole bearing degradation process can be roughly 

separated into four phases: 0-88h; 89-117h; 118-155h; 156-164h, which correspondingly 

separate the 984 datasets into four groups: 1-532; 533-704; 705-931; 932-984. Table 3 

illustrates the degradation data partition and the composition of the training set and test 

set; 100 training samples and 20 test samples were chosen from each group. The training 

strategy used is the same as described in section 3.2. 
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Table 3. Degradation data partition and composition of training set and test set 

 

Table 4. Sample entropy obtained at different degradation stages 

Sample Entropy IMF1 IMF2 IMF3 IMF4 

Normal working 

condition 

1.1941 0.9445 0.5261 0.2795 

1.1242 0.9231 0.5031 0.3019 

Mild 

degradation 

0.9420 0.7438 0.3631 0.1827 

0.9698 0.7166 0.4006 0.1611 

Moderate 

degradation 

0.6284 0.6489 0.3598 0.1655 

0.8049 0.7577 0.4108 0.1602 

Severe 

degradation 

0.8365 0.6753 0.3949 0.1512 

0.8226 0.6900 0.3749 0.1736 

 

Table 4 contains Sample Entropy calculated for different IMFs at four degradation 

stages (two randomly chosen datasets for each stage). In this case, through trial-and-

error, the chosen values of m and r are still 2 and 0.2SD, respectively. The value of sample 

entropy (SE) obtained under normal working conditions shows a clear separability from  

the SEs obtained from the other three degradation stages. Also, the value of SE keeps 

decreasing as the degradation becomes more severe: from 1.194 to 0.942 (mild 

degradation stage) and further descending to a value less than 0.85 (moderate and severe 

degradation stages). However, the dividing line between the moderate and severe 

Degradation states Normal  Mild degradation 
Moderate 

degradation 
Severe degradation 

Time intervals [0,88] [89,117] [118,155] [156,164] 

Training samples 100 sets 100 sets 100 sets 100 sets 

Test samples 20 sets 20 sets 20 sets 20 sets 
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degradation states is relatively unclear: the SE obtained using IMF2,3,4 for three 

degradation stages shares similar values with minor fluctuations. There may be two 

reasons for this. Firstly, a ‘healing effect’ starts as a defect develops and weakens the 

defect characteristics, making them hardly detectable. The second reason is the large 

fluctuation over the vibration data collected among the last two stages. When using a 

trained SVM model to identify the degradation stages, similar results occur, as shown in 

Figure 10. The classification accuracy for normal working conditions and severe 

degradation stages are 100% and 90% respectively, while those for mild and moderate 

degradation stages are 65% and 50% respectively and the overall accuracy is 76.25%. 

  

Fig.10 Confusion matrix for the bearing degradation status prediction results 

To further evaluate this method, comparative experiments are also conducted in 

this section based on extraction of statistical time-domain and frequency-domain 

features . For time-domain features, a 5-dimensional feature vector is constructed: 
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𝐹𝑡𝑖𝑚𝑒 = [𝑅𝑀𝑆, 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠, 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠, 𝑆ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟] . For frequency-domain 

features, a 3-dimensional feature vector is constructed: 𝐹𝑓𝑟𝑒𝑞 = [𝐹𝐹𝐶 , 𝐹𝑅𝑀𝑆, 𝐹𝑅𝑉] (centre 

frequency; RMS frequency and Root variance frequency). Detailed definitions and 

formulas for these features can be found in [4]. Thus, two feature matrices are formed 

and used separately to identify bearing degradation states separately through a SVM 

classifier: 

𝐼𝑀𝐹1 𝐼𝑀𝐹2 𝐼𝑀𝐹3 𝐼𝑀𝐹4

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑡𝑟𝑖𝑥 = [

𝐹𝑉1
1 𝐹𝑉2

1

⋮  ⋮
𝐹𝑉3

1 𝐹𝑉4
1

⋮  ⋮
 ⋮ ⋮

𝐹𝑉1
𝑚 𝐹𝑉2

𝑚
 ⋮ ⋮

𝐹𝑉3
𝑚 𝐹𝑉4

𝑚

]

1
⋮
⋮

𝑚

 

The classification performance of the two methods is illustrated by the confusion 

matrix shown in Figure 11 (overall accuracy: 51.2% and 47.5% respectively). In conclusion, 

although its ability to distinguish between the late and early-stage defects needs to be 

improved, the feature extraction method proposed in this paper can accurately indicate 

whether a rolling bearing system is working under normal conditions or encountering 

mild degradation and shows more reliable results than ordinary time-domain and 

frequency-domain feature extraction methods. 

   

 

 



Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems 

 

31 

 

(a)                                                                                     (b) 

Fig. 11 Confusion matrices of bearing degradation status prediction results  (a): Results 

using time-domain features; (b): Results using frequency-domain features 

 

4    CONCLUSION AND FURTHER WORK 

In this paper, a full diagnosis system for high-speed rolling bearings in wind 

turbines based on a high-quality feature extraction method and SVM is proposed. This 

proposed system is complete, achieving high accuracy of incipient fault diagnosis and 

defect classification under different loading conditions, and can automatically and 

efficiently extract defect features. The system also performs simple and efficient incipient 

fault diagnosis by computing a correlation coefficient of the test signal and comparing it 

with a threshold value.  

In order to increase the quality of the extracted features, EMD is applied first to 

the raw signal to reduce ambient noise, and high frequency IMFs are chosen. Then, a 

Hilbert Transform is applied to demodulate the signal. The envelope signal is first 

obtained, followed by calculating the Sample Entropy as a feature representing the 
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complexity of the signal. As a result, the system is versatile and can be easily adapted to 

deal with various kinds of rolling bearing failure problems.  

Although the system works satisfactorily when dealing with defect classification 

problems, the results in determining the bearing degradation stages are not always 

satisfactory. The separability of the Sample Entropy obtained from moderate and severe 

degradation stages is relatively weak and this problem is reflected by the SVM test results 

(65% and 50% accuracy respectively). This may be caused by the insensitive response of 

the Sample Entropy when dealing with signals that have energies of different intensity 

concentrated at similar frequencies. Thus, further studies may focus on finding a more 

appropriate feature that gives better results in determining the bearing degradation 

stages. Furthermore, real-life rolling bearing data with more complicated noise conditions 

may be used to test and improve the existing system. 
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