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We present a consistent implementation of weak decays involving an axion or axionlike particle in the
context of an effective chiral Lagrangian. We argue that previous treatments of such processes have used an
incorrect representation of the flavor-changing quark currents in the chiral theory. As an application, we
derive model-independent results for the decays K− → π−a and π− → e−ν̄ea at leading order in the chiral
expansion and for arbitrary axion couplings and mass. In particular, we find that the K− → π−a branching
ratio is almost 40 times larger than previously estimated.

DOI: 10.1103/PhysRevLett.127.081803

Axions and axionlike particles (collectively referred to as
ALPs in this work) are new types of elementary particles,
which arise in a large class of extensions of the standard
model (SM) and are well motivated theoretically. They can
provide an elegant solution to the strong CP problem based
on the Peccei-Quinn mechanism [1–8]. More generally,
ALPs can arise as pseudo Nambu-Goldstone bosons in
models with explicit global symmetry breaking. Low-
energy weak-interaction processes imply some of the most
stringent bounds on the couplings of ALPs to gluons and
other SM particles [9–12].
In a seminal paper [13], Georgi, Kaplan, and Randall

have derived the effective chiral Lagrangian accounting for
the interactions of a light ALP (with mass below the scale
of chiral symmetry breaking, μχ ¼ 4πfπ) with the light
pseudoscalar mesons, opening the door to a model-inde-
pendent description which does not rely on the details of
Peccei-Quinn symmetry breaking. In this Letter, we reana-
lyze this problem and point out an important omission in
the representation of the weak-interaction quark currents in
the effective theory, which has far-reaching consequences.
Despite the 35-year history of the subject, we find that
even recent papers on weak decays such as K− → π−a and
π− → e−ν̄ea omit the contributions of relevant Feynman
diagrams and thus employ incomplete expressions of
the decay amplitudes (see, e.g., [14–16]). In many

phenomenological studies, the amplitudes are derived by
starting from an amplitude for a decay process involving a
π0 or ηmeson and accounting for the (kinetic) mixing of the
ALP with these neutral mesons by means of mixing angles
θπa and θηa. Below we recall the well-known fact that in the
approach of [13] the mixing angles are unphysical, because
they depend on the parameters of the chiral rotation used
to eliminate the ALP–gluon coupling in the effective
Lagrangian. It is customary to adopt a “default choice”
for these parameters, which eliminates the mass mixing in
the effective Lagrangian. However, there always exist
other contributions to the decay amplitude, in which the
ALP participates in the relevant interaction vertices.
Neglecting these “direct” contributions leads to incorrect
predictions. In fact, they are essential to ensure that the
auxiliary parameters of the chiral rotation cancel out in
predictions for physical quantities. (Only a very special
class of models, in which the ALP couples to SM fields
only through phases in the quark mass matrices, with
no derivative interactions and no couplings to gluons
at the low scale μχ , are an exception to this rule, see,
e.g., [11,17].)
The starting point of our study is the effective ALP

Lagrangian at a scale of order μχ ≈ 1.6 GeV, which we
write in the form [13]

Leff ¼ LQCD þ 1
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Here q is a 3-component vector in generation space
containing the three light quark flavors u, d, s. The ALP
decay constant f is related to the scale of global (Peccei-
Quinn) symmetry breaking by Λ ¼ 4πf and is assumed to
lie above the scale of electroweak symmetry breaking. It
governs the overall magnitude of the ALP interactions with
SM particles, the leading of which are mediated by
dimension-5 operators. (In the literature on QCD axions,
one often defines the axion decay constant fa in terms
of the strength of the axion-gluon coupling, such that
1=fa ¼ −2cGG=f.) The parameters cGG and cγγ determine
the strengths of the ALP interactions with gluons and
photons, while the Hermitian matrices kQ and kq contain
the ALP couplings to left-handed and right-handed quarks.
The off-diagonal entries of these matrices account for the
possibility of flavor-changing s → d transitions. The dots
represent analogous couplings to leptons. The ALP cou-
plings are scale-dependent quantities. Their evolution from
the new-physics scale Λ down to the scale μχ has recently
been studied in detail [18,19]. The mass parameter m2

a;0

provides an explicit soft breaking of the shift symmetry
a → aþ c, which is a (classical) symmetry of the effective
Lagrangian (1). In QCD axion models m2

a;0 vanishes and
the axion mass is generated by nonperturbative QCD
dynamics [6,20]. In more general ALP models a nonzero
bare mass can be generated by means of non-Abelian
extensions of the SM.
To study the low-energy interactions of a light ALP with

the pseudoscalar mesons ðπ; K; ηÞ, the Lagrangian (1) is
matched onto a chiral effective Lagrangian, in which
ΣðxÞ ¼ exp½ði ffiffiffi

2
p

=fπÞλaπaðxÞ� contains the pseudoscalar
meson fields (λa are the Gell-Mann matrices). In order to
find the bosonized form of the ALP-gluon interaction, one
eliminates the aGG̃ term in favor of ALP couplings to
quark bilinears, whose chiral representation is well known.
This is accomplished with a chiral rotation [12,13,21]

qðxÞ → exp

�

−iðδq þ κqγ5ÞcGG
aðxÞ
f

�

qðxÞ; ð2Þ

where δq and κq are Hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not invariant
[22], and this generates extra contributions to the ALP
couplings to gluons and photons. Imposing the condition

Tr κq ¼ κu þ κd þ κs ¼ 1 ð3Þ

ensures that the ALP-gluon interaction is eliminated from
the Lagrangian at the expense of modifying the ALP-
photon and ALP-fermion couplings as well as the quark
mass matrix. Denoting the modified couplings with a hat,
one finds (with Nc ¼ 3 the number of colors)

ĉγγ ¼ cγγ − 2NccGGTrQ2κq;

k̂QðaÞ ¼ eiϕ
−
q a=fðkQ þ ϕ−

q Þe−iϕ−
q a=f;

k̂qðaÞ ¼ eiϕ
þ
q a=fðkq þ ϕþ

q Þe−iϕþ
q a=f; ð4Þ

where ϕ�
q ¼ cGGðδq � κqÞ, and Q ¼ diagðQu;Qd;QsÞ

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as the
condition (3) is satisfied, any choice of the matrices δq and
κq describes the same physics. The derivative couplings of
the ALP to the left- and right-handed quark currents are
implemented by including the ALP field in the definition of
the covariant derivative [23], such that

iDμΣ ¼ i∂μΣþ eAμ½Q;Σ� þ
∂μa

f
ðk̂QΣ − Σ k̂qÞ; ð5Þ

where Aμ is the photon field. This definition implies

ðDμΣÞΣ† þ ΣðDμΣÞ† ¼ ∂μðΣΣ†Þ ¼ 0: ð6Þ

The leading-order chiral Lagrangian can then be expressed
in the form

Lχ
eff ¼

f2π
8
Tr½DμΣðDμΣÞ†� þ

f2π
4
B0Tr½m̂qðaÞΣ† þ H:c:�

þ 1

2
∂μa∂μa −

m2
a;0

2
a2 þ ĉγγ

α

4π

a
f
FμνF̃μν; ð7Þ

where the parameter B0 ≈m2
π=ðmu þmdÞ is proportional to

the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the effects of π0 − η − η0 mixing. With our choice of
diagonal matrices δq and κq, the modified quark mass
matrix takes the form

m̂qðaÞ ¼ exp

�

−2iκqcGG
a
f

�

mq; ð8Þ

where mq ¼ diagðmu;md;msÞ.
The effective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involving
axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term

m2
a ¼ c2GG

f2πm2
π

f2
2mumd

ðmu þmdÞ2
þm2

a;0

�

1þO
�
f2π
f2

��

; ð9Þ

up to higher-order corrections in the chiral expansion
[6,20]. Higher-order terms generate a periodic potential
for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
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symmetry a → aþ nπf=cGG with integer n. One also finds
that there are mass-mixing and kinetic-mixing contribu-
tions involving the ALP and the neutral mesons π0 and η,
whose explicit form depends on the parameters κq. For
instance, at first order in 1=f one obtains π0 ¼ π0phys þ
θπaaphys with the mixing angle

θπa ¼
fπ

2
ffiffiffi

2
p

f

�
m2

aðĉuu − ĉddÞ
m2

π −m2
a

−
m2

πΔκ

m2
π −m2

a

�

; ð10Þ

where ĉqq ¼ cqq þ 2κqcGG with

cqq ¼ ðkq − kQÞ; Δκ ¼ 4cGG
muκu −mdκd
md þmu

: ð11Þ

Via the quantities ĉqq and Δκ the mixing angle depends
on the auxiliary parameters κq in (2). The special choice
κq ¼ m−1

q =Trðm−1
q Þ eliminates the mass-mixing contribu-

tion Δκ, leaving a contribution from kinetic mixing that is
proportional tom2

a and hence is negligible for a QCD axion
with m2

a ∼ f2π=f2. This default choice defines a scheme,
which is frequently adopted in the literature. It is important
to realize, however, that θπa is not a physical quantity. For
instance, one can find values of κu, κd, and κs such that
θπa ¼ 0 and θηa ¼ 0 [19]. In general, the dependence of the
ALP couplings in (4), the quark mass matrix in (8) and the
mixing angles θπa and θηa on the auxiliary parameters κq
must cancel in the predictions for all physical observables.
For flavor-conserving processes such as a → γγ and
a → πππ this was shown explicitly in [19]. In our dis-
cussion below we treat the quantities δq and κq in the
field redefinition (2) as free parameters, subject only to
condition (3). We study in detail how the dependence on
these parameters cancels in predictions for flavor-changing
observables.
In (7) the ALP enters in the quark mass matrix m̂qðaÞ and

through the covariant derivative defined in (5). For the very
special situation in which

Tr½kQðμχÞ − kqðμχÞ� ¼ 2cGG; ð12Þ

it is possible to choose the matrices κq and δq in such a way

that k̂q and k̂Q both vanish. In this case, the ALP only enters
the Lagrangian through the quark mass matrix (8), see, e.g.,
[17]. However, condition (12) is not invariant under
renormalization-group evolution, and it would need fine
tuning to realize this condition at the low scale μχ .
The effective chiral Lagrangian (7) can also be used to

study flavor-changing processes such as K− → π−a and
π− → e−ν̄ea, which in the SM are mediated by the weak
interactions and at low energies are described by 4-fermion
operators built out of products of left-handed currents.
Under a left-handed, flavor-off-diagonal rotation qL →
ULqL of the quark fields, the meson fields transform

nonlinearly as Σ → ULΣ. The effective Lagrangian is
invariant under this transformation if we treat the quark
mass matrix and the left-handed ALP couplings as spurions
transforming as m̂qðaÞ → ULm̂qðaÞ and k̂Q → ULk̂QU

†
L.

Applying the Noether procedure to the Lagrangians in the
quark and meson pictures, and accounting for an additional
phase factor arising from the chiral rotation of the fields, we
find that the left-handed quark currents q̄iLγμq

j
L must be

represented in the chiral theory by

Lji
μ ¼ −

if2π
4

eiðϕ
−
qi
−ϕ−

qj
Þa=f½ΣðDμΣÞ†�ji

∋ −
if2π
4

�

1þ iðδqi − δqj − κqi þ κqjÞcGG
a
f

�

½Σ∂μΣ†�ji

þ f2π
4

∂μa

f
½k̂Q − Σ k̂qΣ†�ji: ð13Þ

This generates both nonderivative and derivative couplings
of the ALP to the weak-interaction vertices. With the
special choice δq ¼ κq one can eliminate the nonderivative
couplings; however, the derivative couplings remain.
Astoundingly, it appears that the contribution involving
the derivative of the ALP field has been omitted in the
literature. It has neither been taken into account in the
original paper [13] nor in later work based on it. Note
that the combination Σk̂qΣ† transforms like a left-handed
operator, and therefore both left-handed and right-handed
ALP-fermion couplings enter in (13).
The chiral representation of the effective weak Lagrangian

mediating the decays K− → π−π0, KS → πþπ−, and KS →
π0π0 at leading order in the chiral expansion involves an
operator transforming as an SUð3Þ octet and two trans-
forming as 27 plets [24–26]. (A second octet operator can be
transformed into the first one using the equations of motion.)
The octet operator receives a huge dynamical enhancement
known as the ΔI ¼ 1

2
selection rule [27]. The corresponding

Lagrangian reads

Lweak ¼ −
4GF

ffiffiffi

2
p V�

udVusg8½LμLμ�32; ð14Þ

where jg8j ≈ 5.0 [28], and the index pair “32” signals a
sL → dL transition. We have calculated the K− → π−a
decay amplitude from the Lagrangians (7) and (14), evalu-
ating the Feynman graphs shown in Fig. 1. The first two
diagrams account for the ALP-meson mixing contributions
mentioned above, while the third graph contains the ALP
interactions at the weak vertex derived from (13). The
following two graphs describe ALP emission of an initial-
or final-state meson. They give nonzero contributions if the
ALP has nonuniversal vector-current interactions with differ-
ent quark flavors. The last diagram contains possible flavor-
changing ALP-fermion couplings, as parametrized by the
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off-diagonal elements of the matrices kQ and kq in (1). To
simplify the analysis we set mu ¼ md ≡ m̄ in order to
eliminate the π0 − η mass mixing. (More general expres-
sions, including also the contribution from the 27-plet
operators, will be presented elsewhere.) The meson masses
are then given by m2

π ¼ 2B0m̄, m2
K ¼ B0ðms þ m̄Þ, and

3m2
η ¼ 4m2

K −m2
π . Before considering the resulting

decay amplitude, it is instructive to see how the scheme-
dependent contributions involving the δq and κq parameters
cancel between the various diagrams. In units of N8 ¼
−ðGF=

ffiffiffi

2
p ÞV�

udVusg8f2π , with jN8j ≈ 1.53 × 10−7, we find
for these contributions

D1 ∋
N8

2f
cGGðκu − κdÞðm2

π −m2
aÞ;

D2 ∋ −
N8

6f
cGGð2m2

K þm2
π − 3m2

aÞðκu þ κd − 2κsÞ;

D3 ∋
N8

2f
cGG½−ðδd − δs − κd þ κsÞðm2

K þm2
π −m2

aÞ

þ ðδu − δd þ κu þ κsÞðm2
K −m2

π þm2
aÞ

þ ðδu − δs þ κu þ κdÞðm2
K −m2

π −m2
aÞ�;

D4 ∋ −
N8

f
cGGm2

Kðδu − δdÞ;

D5 ∋
N8

f
cGGm2

πðδu − δsÞ; ð15Þ

while the last diagram is scheme independent. Via the
mixing angles θπa and θηa the results for D1 and D2 depend
on the κq parameters, see (10). The expressions for D4 and
D5, on the other hand, depend only on the δq parameters.
Only the third diagram, in which the ALP is emitted from the
weak-interaction vertex, depends on both sets of parameters.
In the sum of all contributions the dependence on the
auxiliary parameters cancels (apart from an unambiguous
contribution proportional to κu þ κd þ κs ¼ 1). But this
cancellation only works if the derivative ALP interactions
in (13) are included.

Adding up all contributions, and neglecting corrections
of order ðmu −mdÞ=ms, we obtain the decay amplitude

iAK−→π−a ¼
N8

4f

�

16cGG
ðm2

K −m2
πÞðm2

K −m2
aÞ

4m2
K −m2

π − 3m2
a

þ 6ðcuuþ cdd − 2cssÞm2
a

m2
K −m2

a

4m2
K −m2

π −3m2
a

þð2cuuþ cddþ cssÞðm2
K −m2

π −m2
aÞþ 4cssm2

a

þðkdþ kD− ks− kSÞðm2
K þm2

π −m2
aÞ
�

−
m2

K −m2
π

2f
½kqþ kQ�23: ð16Þ

Note that the transition K− → π−a proceeds via the
dynamically enhanced octet operator, whereas the corre-
sponding decay K− → π−π0 receives contributions from
the 27-plet operator with isospin change ΔI ¼ 3

2
only. This

effect is well known and is referred to as “octet enhance-
ment” [9,10]. Attempts to estimate the K− → π−a decay
rate as θ2πa times the K− → π−π0 rate miss this important
effect. Another interesting feature of the result (16) is its
dependence on the flavor-conserving ALP vector couplings
ðkd þ kDÞ and ðks þ kSÞ to down and strange quarks. In the
presence of the weak interactions the currents d̄γμd and
s̄γμs are not individually conserved, and hence these
couplings can have observable effects here. This is different
from QCD processes, in which only the flavor-conserving
axial-vector couplings cqq in (11) arise.
In order to compare our result (16) with some previous

calculations, we work to leading order in the ratio m̄=ms,
consider the limit wherem2

a ≪ m2
K and assume the case of a

minimal flavor-violating ALP, for which css ¼ cdd and
kd þ kD ¼ ks þ kS [19]. We then obtain the simple result
(still with mu ¼ md, neglecting the small 27-plet contri-
butions, and setting 1=fa ¼ −2cGG=f)

AK−→π−a ≈
im2

K

2fa

�

N8

�

1þ cuu þ cdd
2cGG

�

−
½kq þ kQ�23

2cGG

�

:

ð17Þ

Barring cancellations, the contribution proportional to N8

dominates as long as j½kq þ kQ�23=cGGj ≪ 3 × 10−7, which
we assume from now on. Eliminating the parameter N8 via
the KS → πþπ− decay amplitude, we obtain

BrðK− → π−aÞ
BrðKS → πþπ−Þ ≈

τK−

τKS

f2π
8f2a

�

1þ cuu þ cdd
2cGG

�
2

: ð18Þ

For a long-lived ALP with mass ma ≪ mπ , the upper limit
BrðK− → π−XÞ < 2.0 × 10−10 (90% C.L.) reported by
NA62 [29] from a search for a feebly interacting new
particle X implies

FIG. 1. Feynman graphs contributing to the K− → π−a decay
amplitude at leading order in the chiral expansion. Weak-
interaction vertices are indicated by a crossed circle, while dots
refer to vertices from the Lagrangian (7).
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1

fa

�
�
�
�1þ

cuu þ cdd
2cGG

�
�
�
� <

1

31.9 TeV
: ð19Þ

Estimating the weak-interaction contribution to the
decay amplitude from kinetic ALP-meson mixing (see,
e.g., [14–16]) corresponds to retaining only the first two
diagrams in Fig. 1, evaluated with the default choice of κq
parameters. Under the approximations described above
this leads to

AK−→π−a ≈
iN8m2

a

8fa

�

1 −
cuu − cdd
2cGG

�

; ð20Þ

which underestimates the amplitude by a factor m2
a=ð4m2

KÞ
and predicts the wrong sign for the contribution propor-
tional to cuu. If mass mixing with the η0 is included, one
finds an additional small contribution proportional to
sin θηη0m2

π=m2
K [15,16] relative to the leading term in our

result. The authors of [13] performed a more careful
evaluation of the K− → π−a decay rate for the case of a
QCD axion (m2

a ≈ 0) without couplings to matter (cqq ¼ 0).
In this case diagramD1 andD2 vanish when one adopts the
default choice of κq parameters, and the graphs D4 and D5

vanish if one chooses δq ¼ 0. In the evaluation of the third
diagram the authors omitted the derivative couplings of the
axion shown by the last term in (13). Working in the limit
ms → ∞, they obtained (this formula was not explicitly
shown in the paper, but we have derived it from their
arguments and the presented numerical result)

AK−→π−a ≈
iN8m2

K

4fa

mu

mu þmd
: ð21Þ

This contribution to the amplitude is smaller than the
corresponding term in (17) by a factor fmu=½2ðmuþmdÞ�g≈
0.16, corresponding to an underestimation of the branching
ratio by about a factor 37. (In [13] the authors state that they
have derived the same result in a different scheme with
δq ¼ κq, in which the ALP is removed from the weak-
interaction vertex. With their omission, we cannot reproduce
that the two treatments lead to the same expression.)
We have also applied our matching prescription (13) to

derive the π− → e−ν̄ea decay amplitude, finding again a
result that is independent of the choice of the δq and κq
parameters. It reads

Aπ−→e− ν̄ea ¼−
GF
ffiffiffi

2
p Vud

fπ
2f

ūeð=pπ þ =paÞð1− γ5Þvν̄e

×

�

2cGG
md−mu

mdþmu
þ ku− kdþ

m2
a

m2
π −m2

a
Δcud

�

;

ð22Þ

where kq are the ALP couplings to right-handed quark
currents in (1). We omit a contribution with (=pπ − =pa)

inside the spinor product, which is proportional to the
electron mass. For the default choice of the κq parameters,
the term involving Δcud ≡ cuu − cdd þ 2cGG½ðmd −muÞ=
ðmd þmuÞ� in the second line is due to ALP-pion mixing.
For the QCD axion or a light ALP with m2

a ≪ m2
π this

contribution is negligible. In “pionphobic axion models”
[11] one tunes the couplings cGG, ku and kd in such a way
that the amplitude (22) vanishes. This tuning is unnatural,
because the couplings kq change under scale evolution
whereas cGG is scale invariant [19].
Our model-independent predictions in (16) and (22) can

be compared with results obtained in the context of specific
axion models. In the “variant-axion models” the coupling
parameters in the effective Lagrangian (1) are obtained as
cGG ¼ −ðN=2Þ½xþ ð1=xÞ�, ku ¼ z, kd ¼ ks ¼ ð1=xÞ, and
kU ¼ kD ¼ kS ¼ 0, where z and x are the Peccei-Quinn
charges of the right-handed up and down quarks, and N is
the number of up-type quarks with the same charge
as uR. With these identifications, our result (22) agrees
with eq. (4.1) in [12], and our result (16) agrees with
Eq. (4.66) upon setting m2

a ¼ 0, apart from some sublead-
ing corrections of Oðm2

π=m2
KÞ. For the “short-lived axion

model” the relevant couplings are ku ¼ −2cGG ¼ 1 and
kd ¼ 0, and with these values our result (22) agrees with a
corresponding relation obtained in [11].
In summary, we have presented a consistent implementa-

tion of weak decay processes involving an axion or axionlike
particle in the context of the chiral Lagrangian. We have
pointed out that previous calculations have neglected to
include important weak-interaction vertices involving deriva-
tive couplings of the ALP, which as shown in (13) arise when
the relevant chiral quark currents are derived from the
Noether procedure. Other phenomenological treatments
based on the notion of ALP–meson mixing have omitted
several relevant contributions. In particular, we find that
K− → π−a branching ratio is about a factor 37 larger than
the prediction obtained in [13], which has important
phenomenological consequences. We have derived the
model-independent expressions for the K− → π−a and
π− → e−ν̄ea decay amplitudes, including all relevant ALP
couplings and the effects of the ALP mass. The methods we
have developed can be applied to a variety of other low-
energy observables of phenomenological interest.
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