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REVIEW ARTICLE 1 

Title: Current Methods and Future Directions in Avian Diet Analysis 2 

ABSTRACT 3 

Identifying the composition of avian diets is a critical step in characterizing the roles of birds 4 

within ecosystems. However, because birds are a diverse taxonomic group with equally diverse 5 

dietary habits, gaining an accurate and thorough understanding of avian diet can be difficult. In 6 

addition to overcoming the inherent difficulties of studying birds, the field is advancing rapidly, 7 

and researchers are challenged with a myriad of methods to study avian diet, a task that has only 8 

become more difficult with the introduction of laboratory techniques to dietary studies. Because 9 

methodology drives inference, it is important that researchers are aware of the capabilities and 10 

limitations of each method to ensure the results of their study are interpreted correctly. However, 11 

few reviews exist which detail each of the traditional and laboratory techniques used in dietary 12 

studies, with even fewer framing these methods through a bird-specific lens. Here, we discuss 13 

the strengths and limitations of morphological prey identification, DNA-based techniques, stable 14 

isotope analysis and the tracing of dietary biomolecules throughout food webs. We identify areas 15 

of improvement for each method, provide instances in which the combination of techniques can 16 

yield the most comprehensive findings, introduce potential avenues for combining results from 17 

each technique within a unified framework, and present recommendations for the future focus of 18 

avian dietary research.  19 

 20 

KEY WORDS 21 

Feeding Ecology, DNA Metabarcoding, Stable Isotope Analysis, Prey Identification, Dietary 22 

Biomolecules, Avian Diet 23 

 24 

Blinded Manuscript Click here to access/download;Blinded
Manuscript;Main_Document_Revised_8Oct2021_AcceptedChan

https://www.editorialmanager.com/ornithology/download.aspx?id=76706&guid=5fc2c59e-a89d-4848-9877-bdc779aac126&scheme=1
https://www.editorialmanager.com/ornithology/download.aspx?id=76706&guid=5fc2c59e-a89d-4848-9877-bdc779aac126&scheme=1


 2 

LAY SUMMARY 25 

 Providing accurate assessments of diet composition is an essential step in understanding 26 

the life history of birds as well as their roles within ecosystems.  27 

 A wide array of techniques exists to study the prey composition of birds, including 28 

recently developed laboratory-based methods, but each of these methods comes with their 29 

own strengths and weaknesses.  30 

 This review details the benefits and drawbacks of each technique, suggests pathways to 31 

overcoming methodological limitations, and demonstrates how these techniques can be 32 

leveraged to answer cutting-edge questions in avian dietary studies.  33 

 Finally, we discuss how the use of multiple techniques within a single study can yield a 34 

more comprehensive understanding of avian diet, present novel ways to combine data 35 

from each technique within a unified framework, and suggest areas of research to 36 

advance the field of avian dietary ecology.  37 

  38 
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INTRODUCTION 39 

 Evaluating the composition of avian diets has been a focus of ornithological inquiry for 40 

over a century (Slater 1892). Dietary studies have helped to characterize ecological interactions 41 

of birds (Burin et al. 2016) and identify prey preference as a driving force behind the evolution 42 

of the immense biodiversity across the Class Aves (Kissling et al. 2012, Barnagaud et al. 2014). 43 

Diet has long been recognized as a defining life history trait (Eaton 1958), and characterizing the 44 

dietary niche is an important step in identifying the roles of species within ecosystems (Elton, 45 

1927). A baseline understanding of avian prey preferences has helped researchers to better 46 

identify dietary shifts caused by natural (Jaksic 2004) and anthropogenic disturbances (Murray et 47 

al. 2018, Trevelline et al. 2018a) as well as the population- (English et al. 2018) and community-48 

wide (Spiller and Dettmers 2019) consequences of these disturbances. Studies of dietary 49 

composition also inform our understanding of biotic interactions, such as those stemming from 50 

intraspecific competition (McMahon and Marples 2017), interspecific competition (Trevelline et 51 

al. 2018b, Sherry and Kent 2021) and trophic cascade events (Mäntylä et al. 2011). Finally, 52 

studies of bird diets have been used to highlight the ecological services that birds provide 53 

(Whelan et al. 2008). In short, understanding the dietary niche of a species allows researchers to 54 

quickly describe important life history traits (Abrahamczyk and Kessler 2015) as well as the 55 

complex interactions that birds have with their environments (O’Donnell et al. 2012) and, in 56 

turn, provides essential information for the management and conservation of avian species and 57 

their habitats (Ontiveros et al. 2005). 58 

Early investigation of avian diet relied upon direct methods such as the observation of 59 

foraging (Croxall 1976) and provisioning events (Snyder and Wiley 1976) or morphological 60 

identification of prey retrieved from gastric lavage (Moody 1970), feces (Tucker and Powell 61 
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1999), and stomach samples from sacrificed birds (Beal 1915). While these methods provide a 62 

strong foundation, they are laborious, seldom provide taxonomically-precise prey identification 63 

(Symondson 2002), and often fail to detect relatively small prey (Culicidae; Guinan et al. 2008, 64 

Jedlicka et al. 2017), rapidly digested prey (Lepidoptera; Eaton 1958, Trevelline et al. 2016), or 65 

highly fragmented prey remains (Galimberti et al. 2016). The advent of several laboratory-based 66 

methods now allows for indirect estimation of prey composition, thus permitting increased 67 

precision in prey detection and taxonomic assignment (Taberlet et al. 2012), while adding 68 

information on nutrient assimilation (Hobson and Clark 1992a) across time scales ranging from 69 

hours to years depending on the tissue sampled (Podlesak et al. 2005). However, while these 70 

laboratory-intensive techniques have revitalized studies of avian diets and trophic dynamics, they 71 

have their own drawbacks, such as an inability to accurately quantify prey counts or biomass 72 

with DNA-based methods (Piñol et al. 2015), and the variable nature of biomolecule assimilation 73 

(Galloway and Budge 2020) potentially impacting results stemming from isotopic and lipid-74 

based methods. Because the findings of dietary studies are methodologically sensitive (Marti 75 

1987), it is important to understand the benefits and limitations of each technique prior to use.  76 

While valuable reviews detail the most commonly used methodologies in dietary 77 

reconstruction (Schoeninger 2010, Traugott et al. 2013, Nielsen et al. 2017, Alberdi et al. 2019), 78 

few pertain specifically to birds (Rosenberg and Cooper 1990, Barrett et al. 2007), and none 79 

discuss how these methods are currently used in avian diet research or how they can be leveraged 80 

to build on the wealth of prior research in birds, one of the best-studied taxonomic groups. Here, 81 

we review the current methods in avian dietary studies detailing the applications, limitations, and 82 

future directions of each technique. In particular, we highlight areas where additional 83 

methodological refinement is needed, the future directions for avian dietary studies, and how 84 
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data from morphological, molecular, and isotopic studies can be integrated to provide a more 85 

comprehensive understanding of avian diet.  86 

MORPHOLOGICAL IDENTIFICATION 87 

History and Focus 88 

 Traditional methods have informed much of our understanding of avian dietary ecology 89 

(Hyslop 1980, Rosenberg and Cooper 1990, Bent 1925), and serve as the basis for comparison 90 

with more recently developed laboratory techniques. Morphological prey identification has aided 91 

in dietary descriptions of near-threatened warblers (Deloria-Sheffield et al. 2001), helped to 92 

explain how habitat structure and search tactics are related to forest bird prey choice (Robinson 93 

and Holmes 1982), and revealed how aerial insectivores recognize differences in the quality of 94 

prey provisioned to offspring (Quinney and Ankney 1985). As these methodologies have been 95 

used for well over a century (McAtee 1912), a wealth of literature already exists that describes 96 

different approaches to the collection and identification of prey from morphological samples 97 

(Duffy and Jackson 1986, Rosenberg and Cooper 1990). Here, we briefly introduce methods for 98 

morphological prey identification to understand prey composition (versus behavioral ecology, 99 

e.g. Remsen and Robinson 1990, Ydenberg 1994).  100 

Methodological Considerations 101 

Sample collection, storage, and processing. Morphological prey identification 102 

techniques are diverse, and include manual identification of prey during observations of foraging 103 

(Collis et al. 2002), feeding (Fleischer et al. 2003) or provisioning events (Margalida et al. 2005) 104 

as well as monitoring nestling-provisioning attempts with nest-box cameras (Currie et al. 1996) 105 

and digital photography (Gaglio et al. 2017). Researchers have also identified prey retrieved 106 

from regurgitates collected via emetics (Prŷs‐ Jones et al. 1974), neck ligatures (Owen 1956), or 107 
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lavage (Brensing 1977); feces collected while handling birds (Ralph et al. 1985) or from past 108 

deposits (Waugh and Hails 1983); and samples collected directly from gizzards (McAtee 1918) 109 

or stomachs (Sherry 1984, Chapman and Rosenberg, 1991). Some types of direct prey collection 110 

can cause undue stress (Duffy and Jackson 1986), induce behavioral changes (Little et al. 2009), 111 

or have lethal outcomes (Zach and Falls 1976, Poulin et al. 1994, Carlisle and Holberton 2006), 112 

suggesting that some direct collection techniques are undesirable, particularly with at-risk 113 

species (Ralph et al. 1985). 114 

 When samples must be collected, diet items should be analyzed and classified soon after 115 

collection to avoid issues caused by tissue degradation. However, if samples cannot be processed 116 

immediately, preservation via freezing or storage in high concentration ethanol or formalin 117 

enables long-term storage with minimal loss of morphological integrity (Duffy and Jackson 118 

1986). For studies using both observational and laboratory-based techniques, storage methods 119 

must be compatible as they may influence the chemical make-up of prey tissue (Sarakinos et al. 120 

2002) or the ability to retrieve high-quality DNA (Williams et al. 1999) (Figure 1). 121 

Prey classification. Expertise in prey systematics or the aid of detailed taxonomic keys 122 

(Merritt and Cummins 1996, Williams and McEldowney 1990) increases prey classification 123 

accuracy (Ralph et al. 1985, Sullins et al. 2018). However, even expert taxonomists are 124 

challenged to provide complete and detailed taxonomic classifications (Ralph et al. 1985, Parrish 125 

1997), especially if prey remains are difficult to detect in feces or stomach contents (Deagle et al. 126 

2007, Thalinger et al. 2017). Fortunately, characteristic hard parts of prey, such as sclerotized 127 

arthropod mandibles or wing fragments (Sherry et al. 2016), chitinous beaks of cephalopods 128 

(Xavier et al. 2011), bones of vertebrate prey (Dirksen et al. 1995), and seeds from fruits 129 
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(Gorchov et al. 1995) and grains (Desmond et al. 2008) often persist in both regurgitant and fecal 130 

samples. 131 

Visual identification methods are frequently criticized for their inability to classify prey 132 

items to fine taxonomic levels (Symondson 2002, Pompanon et al. 2012). However, using 133 

vouchered reference collections of locally available prey can help to alleviate these problems and 134 

can quantify prey availability in the process (Sherry et al. 2016, Kent and Sherry 2020). 135 

Additionally, species-level prey identification is not always necessary (Sherry et al. 2020), 136 

suggesting that studies will not always benefit from increased taxonomic resolution. 137 

Future Potential 138 

In certain cases, morphological prey identification provides greater insights than 139 

molecular or isotopic methods. For instance, the ability to distinguish caterpillars from adult 140 

moths (Barbaro and Battisti 2011) and winged from worker ants (Herrera 1983) may be 141 

important for understanding how prey are captured and for estimating the nutrient content of 142 

prey items. DNA-based methods cannot distinguish between developmental stages of prey items 143 

(Trevelline et al. 2016) while isotopic methods can only be used to do so if life stages differ in 144 

their isotopic composition (Mihuc and Toetz 1994).  145 

Morphological techniques also provide quantitative information about prey, such as the 146 

number of distinctive prey parts and thus the number of prey individuals per sample (Sherry et 147 

al. 2016), the size of prey items (Calver and Wooller 1982), and even estimated size of partially 148 

digested prey (Hódar 1997, Rosamond et al. 2020). Furthermore, morphological techniques are 149 

unique in that they can be used to estimate prey biomass (Lalas and McConnell 2012, Ormerod 150 

and Tyler 1991), which provides critical information on energetic fluxes through food webs and 151 

can be used in conjunction with frequency of occurrence and total count to determine the relative 152 
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or absolute importance of individual prey taxa (reviewed in Duffy and Jackson 1986). Finally, as 153 

morphological identification of prey is minimally destructive, researchers can glean nutritional 154 

information on prey (Grémillet et al. 2004) as well as digestion-related information (Barton and 155 

Houston 1993) from bolus (Boyle et al. 2014), pellet (Wallick and Barrett 1976), lavage (Cherel 156 

and Ridoux 1992), or fecal samples (Varennes et al. 2015), to assess gross energy content 157 

(Karasov 1990), the caloric value of different prey sizes (Stephens and Barnard 1981) or species 158 

(Guillemette et al. 1992), as well as concentrations of prey-derived macronutrients (Albano et al. 159 

2011).  160 

Although researchers may turn to DNA-based methods for rapid, thorough, and precise 161 

identification of diet items or isotopic methods for information on nutrient assimilation at greater 162 

time scales, morphological prey identification will remain relevant. In addition to a list of 163 

potential prey taxa, morphological techniques can also provide the reference tissue required for 164 

laboratory-based techniques (i.e. prey DNA sequences and isotopic or lipid composition), as well 165 

as data on prey consumption, which can be used as informative priors in Bayesian stable isotope 166 

mixing models (Franco-Trecu et al. 2013). Furthermore, advances in deep learning and image 167 

processing may soon allow for computational classification and quantification of prey taxa, thus 168 

reducing the drawbacks associated with morphological identification (Høye et al. 2021) and 169 

ushering in the development of an online database of ‘prey part’ images, akin to the DNA 170 

barcodes found in the Barcode of Life Database (BOLD; Ratnasingham and Hebert 2007).  171 

DNA-BASED METHODS 172 

History and Focus 173 

DNA-based methods have been used to study the feeding habits of birds for over 20 years 174 

(Sutherland 2000, Casement 2001) with sequence-based identification, or DNA barcoding, 175 
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evolving and improving dramatically in the last decade. The development of high-throughput 176 

sequencing used in combination with DNA barcoding across multiple taxa within a mixed 177 

sample (i.e. DNA metabarcoding), now allows for hundreds of complex samples to be processed 178 

in parallel (Pompanon et al. 2012). Although powerful, the greatest drawbacks associated 179 

with high-throughput techniques lie in the up-front costs and the computational complexity of 180 

analysis (Jo et al. 2016). However, the cost of sequencing continues to decrease—particularly the 181 

per-sample costs when highly multiplexed—and open-source software is available for the 182 

analysis of many prey types (Bolyen et al. 2019, Palmer et al. 2018). 183 

Methodological Considerations 184 

 Sample collection, storage, and processing. Most DNA-based avian dietary analyses 185 

are performed on fecal samples (Ando et al. 2020), which can be collected directly from birds 186 

(Trevelline et al. 2018b, Jarrett et al. 2020), from holding bags (paper: Trevelline et al. 2016, 187 

Southwell 2018; or cloth: Karp et al. 2013), or even from the environment, although the risk of 188 

sample contamination is greater (Oehm et al. 2011, Gerwing et al. 2016, McClenaghan et al. 189 

2019). Similar to fecal samples, boluses are a minimally invasive source of dietary DNA. Other 190 

sample types have been used for genomic diet analyses, but these techniques are more invasive 191 

(i.e. lavage, induced regurgitation) or otherwise hold no obvious advantage over fecal samples 192 

(cloacal or mouth swabs, Vo and Jedlicka 2014; stomach samples, Snider et al. 2021). Though 193 

not frequently used, stomach samples in natural history collections hold great potential for 194 

molecular diet analyses (Remsen et al. 1993). However, this approach may not always be 195 

suitable because many historic samples are stored in formalin, a chemical that crosslinks DNA 196 

and complicates downstream amplification and sequencing techniques. Freezing samples upon 197 

collection is ideal for most analyses (Crisol-Martínez et al. 2016, Gerwing et al. 2016, Jarrett et 198 
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al. 2020), and while additional preservation media are not necessary, samples can also be placed 199 

in stabilizing buffer, silica, or ethanol before freezing for long-term storage (Figure 1). If 200 

immediate freezing is not possible, samples stored at room temperature in ethanol are useful for 201 

extended periods (Trevelline et al. 2016), although samples can degrade if ethanol concentrations 202 

fall below 70% (S. Sonsthagen, USGS, Pers. Comm.).  203 

Studies have tested the efficacy of different DNA extraction techniques (Oehm et al. 204 

2011, Jedlicka et al. 2013), though most DNA-based studies use commercially available kits (e.g. 205 

Qiagen or Zymo) with protocol modifications to optimize DNA yield and quality (Trevelline et 206 

al. 2016). Phenol/chloroform extractions tend to produce inferior results at the PCR stage (Lee et 207 

al. 2010), likely due to inhibitors found in fecal samples (Al-Soud and Rådström 2000). Because 208 

commercial kits cannot always accommodate an entire sample, sub-sampling is common, but 209 

samples should be thoroughly homogenized before sub-sampling (e.g., Forsman et al. 2021) to 210 

minimize biases in prey detection (Figure 2). Increasing the number of extraction replicates 211 

(Lanzén et al. 2017, Mata et al. 2019), as opposed to increased sample input amount, has been 212 

shown to be more effective for capturing alpha-diversity within a sample (Brannock and 213 

Halanych 2015), while chemical lysis, physical disruption (e.g., bead-beating) and 214 

homogenization may minimize prey-specific DNA recovery bias. 215 

DNA barcode markers. Identifying a suitable portion of the genome as the taxonomic 216 

barcode is critical. This region must be sufficiently conserved across putative diet taxa to 217 

develop generalized PCR primers, but also variable enough to distinguish prey taxa. An effective 218 

barcode is one for which the divergence of species within a genus will be lower than of genera 219 

within a family, and so on (Hajibabaei et al. 2006, Clare et al. 2007). Thus, only a few suitable 220 

markers, such as the frequently used mitochondrial cytochrome c oxidase I (COI) gene, have 221 
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been identified and consistently used in avian diet studies (Figure 2). The specific primers and 222 

number of DNA barcoding loci used will depend on whether specific prey (Karp et al. 2014) or a 223 

wide range of taxa (Jusino et al. 2019) are targeted. However, no single primer set can perfectly 224 

amplify every species, therefore using multiple primer sets targeting different loci is advised 225 

(Corse et al. 2019, da Silva et al. 2019, Forsman et al. 2021).  226 

Indexing. Prior to high-throughput sequencing, diet-derived DNA must be appended 227 

with oligonucleotide adapters to allow PCR amplicons to bind to the sequencing flow cell. These 228 

adapters also contain sample-specific DNA sequences (i.e. indexes) that allow for the binning of 229 

reads from each sample. Adapters can be appended directly to barcoding primers (i.e. one-step 230 

preparation) or appended to DNA barcode amplicons during a second, low-cycle PCR (i.e. two-231 

step preparation; Zizka et al. 2019). One-step approaches are faster and reduce costs of PCR 232 

reagents, but there is evidence that PCR efficiency may be reduced compared to the two-step 233 

approach (Zizka et al. 2019). The two-step approach is often preferred because indexes can be 234 

attached to any amplicon, as long as they have a linker sequence complementary to the indexing 235 

primer. Both approaches retain information on the sample and primer set used; therefore, 236 

researchers can use the same adapters on all of the amplicons in a single sample even if multiple 237 

primers targeting various barcoding loci are used. However, if amplicon length differs greatly 238 

between the target loci, sequencing multiple barcoding regions on the same flow cell may alter 239 

the number of expected reads for each sample/primer combination due to the preferential binding 240 

of smaller sequences to the flow cell (S. Dabydeen, Illumina Inc., Pers. Comm.). 241 

Sequence processing. Following sequencing, a number of processing steps are required 242 

before assessing diet composition (Figure 3). Reads should be trimmed and filtered to remove 243 

low-quality sequencing reads and artifacts. However, as a consensus approach has not been 244 
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reached (see Alberdi et al. 2018, O’Rourke et al. 2020), we recommend making bioinformatic 245 

pipelines open access to facilitate comparability of data across studies. Next, putative dietary 246 

taxa are delineated by clustering highly similar sequences (typically 97%) into operational 247 

taxonomic units (OTUs) and selecting a representative sequence for each cluster. Alternatively, 248 

algorithms can be used to correct sequencing errors and retain amplicon/exact sequence variants 249 

(ASVs or ESVs), which are, in effect, OTUs clustered to 100% similarity (Figure 3). Ideally, an 250 

OTU or ASV/ESV should represent a taxonomic unit corresponding to the species level (Alberdi 251 

et al. 2018).  252 

Prey classification. Taxonomic assignment of OTUs is accomplished by comparing the 253 

representative prey-derived sequences to sequences in a reference database such as the National 254 

Center for Biotechnology Information (NCBI) nucleotide database (Benson et al. 2013) or the 255 

Barcode of Life Database (Ratnasingham and Hebert 2007) (Figure 2). Both databases tend to be 256 

biased towards areas where researchers are actively sampling biodiversity, thus representation is 257 

higher for some taxonomic groups (e.g. charismatic Lepidoptera) and for certain parts of the 258 

world (e.g. Europe, North America).  259 

When reference libraries are incomplete, diet items may only be assignable to higher-level 260 

taxonomic ranks (e.g. Order or Family), or may be missed completely leading to false negative 261 

results (Virgilio et al. 2010). Furthermore, distinct representative prey sequences (e.g., multiple 262 

ASVs) could be assigned the same taxonomic classification, leaving open the decision whether 263 

different sequences assigned to the same taxonomic rank should be lumped or considered 264 

distinct. One approach is to aggregate diet items with the same taxonomic assignment (da Silva 265 

et al. 2020), but this can be unsatisfactory if sequencing errors cause sequences from a particular 266 

species to be assigned to the genus level instead of being aggregated with other sequences of the 267 
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same species. In this case, the prey taxon would be treated as a distinct, unidentified species 268 

within the same genus. In addition to biases stemming from incomplete and erroneous reference 269 

databases or from PCR and sequencing, prey taxa may be distinguished based on genetic 270 

divergence rather than reproductive isolation. Recently diverged species may be reproductively 271 

isolated yet genetically similar at barcoding regions unaffected by the speciation event (Wiemers 272 

and Fiedler 2007), while hybridization and introgression can cause cytonuclear disequilibrium 273 

and mask distinct species when primers target organelle DNA (Funk and Omland 2003, Toews 274 

and Brelsford 2012). Conversely, prey items with large population sizes may contain substantial 275 

genetic diversity, causing their sequences to demonstrate high intraspecific divergence (Funk and 276 

Omland 2003), though using a barcoding marker with low intraspecific variation can alleviate 277 

this issue.  278 

Finally, DNA-based methods alone cannot determine how a diet-derived sequence became 279 

present in the sample. Probabilistic cooccurrence models (Griffith et al. 2016) have been 280 

proposed to detect accidental consumption (i.e. the consumption of prey which contains the 281 

DNA of other taxa through consumption/parasitism of another taxa), though direct observation 282 

may be necessary as these models cannot definitively indicate secondary consumption (Tercel et 283 

al. 2021) nor can they determine if an avian parasite was consumed purposefully or accidentally. 284 

Detecting cannibalism also poses a unique issue as DNA-based classification techniques rely on 285 

conspecifics sharing highly similar, if not identical, barcode sequences. However, researchers 286 

can employ barcoding markers that are conserved within the predator species but exhibit high 287 

intraspecific variation, thus allowing for the differentiation of DNA sequences stemming from an 288 

individual’s diet versus its own genome.  289 
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Quality control. The degree of biological and technical replication necessary for 290 

maximizing detectability of diet-derived sequences must be balanced with minimizing false 291 

positives caused by contamination or sequencing errors (Taberlet et al 2018). The use of positive 292 

and negative controls during sample collection and DNA extraction, amplification, and 293 

sequencing processes can guide how reads are filtered during the sequence analysis stage 294 

(reviewed in Zinger et al. 2019) (Figure 2). Additionally, technical replicates, in the form of 295 

multiple PCR reactions for each DNA extract, can minimize false negatives in DNA 296 

metabarcoding data, especially for diet items with low detection probabilities (Ficetola et al. 297 

2015) or poor DNA amplification efficiency (Jusino et al. 2019).  298 

Data Analysis 299 

 Summary analyses. Once the taxonomic composition of the sample has been determined, 300 

data are summarized with a variety of analytical techniques (Figure 3) to create a representation 301 

of an individual’s diet. Researchers frequently transform sequence data into presence-absence 302 

matrices because read abundance does not directly correlate to the biomass or frequency of 303 

corresponding prey consumed. However, this method can overestimate the importance of food 304 

consumed in small quantities (Deagle et al. 2019). Assuming the use of a presence-absence 305 

matrix of unique prey taxa or sequences, the next step is often to estimate the proportion of 306 

samples that contain a particular taxon, termed the frequency of occurrence.  307 

Specialized analyses. More complex analytical approaches include ordination, such as 308 

principal components analysis (PCA; Crisol-Martínez et al. 2016) or non-metric 309 

multidimensional scaling (NMDS; Trevelline et al. 2018a) (Figure 3), which are statistical 310 

methods that collapse high-dimensionality data (i.e. taxonomic composition) into a smaller 311 

number of meaningful diet axes. If downstream analyses are to be implemented, such as deriving 312 
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a measure of distance in niche space between two species, PCA is generally preferable to 313 

NMDS, t-SNE (Maaten and Hinton 2008) or UMAP (McInnes et al. 2018) because these 314 

methods do not preserve distances in multivariate space. Following data ordination, hypothesis 315 

testing can be implemented. For example, criteria can be developed to identify groups in 316 

multivariate space and test whether these accord with the bird species or groups in question (e.g., 317 

k-means clustering, Forgy 1965), they might derive multivariate hypervolumes (Blonder et al. 318 

2014), and implement a randomization, null-model approach, or describe the qualitative 319 

differences in multivariate niche space among species or other groups.  320 

Future Potential  321 

DNA-based methods are relatively new (Hebert et al. 2003) and are advancing rapidly to 322 

overcome current limitations. For instance, recent areas of research are exploring the use of 323 

custom positive controls, such as mock mixtures of potential prey DNA, to gauge the success of 324 

the sequencing run and the ability of primers to detect prey taxa (O’Rourke et al. 2020). The 325 

inclusion of mock mixtures may become a standard feature of DNA metabarcoding diet studies, 326 

though familiarity with potential prey taxa is essential to develop an appropriate mock mixture. 327 

Custom reference libraries may be designed for particular prey taxa within the study area to 328 

verify the accuracy of representative prey barcodes; though, such an approach necessitates the 329 

collection, identification, and sequencing of all putative prey taxa.  330 

The inability to accurately quantify the amount of each prey type consumed, either absolutely 331 

or relative to other prey taxa, is a major weakness of DNA-based methods and may be difficult to 332 

resolve due to the variety of factors: primers are inherently more efficient at amplifying some 333 

prey (reviewed in Nilsson et al. 2019); tissue types and prey taxa may have different copy 334 

numbers of marker genes (Thomas et al. 2014, Prokopowich et al. 2003); and some prey may be 335 
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more difficult to digest, like those with exoskeletons (Clare et al. 2014). In silico analyses 336 

(Clarke et al. 2014) and controlled-feeding studies (Thomas et al. 2016) have shown promise in 337 

mitigating (Piñol et al. 2019), or at least accounting for quantification biases inherent to DNA-338 

based studies (Palmer et al. 2018). However, the limited experimental work done to associate the 339 

number of reads obtained for known amounts of specific prey taxa (Deagle et al. 2010) often 340 

uses an extremely limited diversity of prey items (~2-6 taxa), suggesting that direct comparisons 341 

will be ineffective for complex dietary mixtures. Experimental designs that consider multiple 342 

consumer species, and a wider, more realistic range of diet items is necessary before its 343 

widespread application.  344 

A semi-quantitative understanding of diet might also be possible with longer sequencing 345 

reads that are variable enough to detect and distinguish different individuals within each of the 346 

prey species present in a diet sample. However, most high-throughput sequencing methods are 347 

currently limited to short read lengths (<600bp paired-end reads) and, even if sequencing 348 

technology would allow for longer barcodes with sufficient sequence variation among 349 

conspecifics, it is possible that such long DNA fragments would not survive extended 350 

preservation or digestion (Symondson 2002), thus necessitating bioinformatic algorithms to 351 

identify unique contiguous prey sequences among highly similar barcode sequences. Finally, the 352 

use of internal standards for metabarcoding analyses may one day offer a method to compare 353 

absolute prey-derived molecule counts (Harrison et al. 2020), similar to the use of 354 

‘housekeeping’ genes as internal standards for studying gene expression across samples with 355 

qPCR methodologies (reviewed in Eisenberg and Levanon 2013).  356 

Current DNA-based approaches are also limited by their ability to identify specific prey 357 

traits, such as age or life stage, as an organism’s DNA marker remains unchanged throughout its 358 
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life. However, epigenetic molecular age biomarkers (MABs; Jarman et al. 2015), such as mRNA 359 

expression levels, locus-specific DNA methylation, or telomere length, are likely to change 360 

throughout an organism’s life, thus giving researchers the opportunity to glean prey life history 361 

information through the development of additional genetic tools. To date, such methods have not 362 

been implemented in dietary studies generally, let alone in avian studies. However, the 363 

development of such novel applications promises to address research questions fundamental to 364 

our understanding of avian trophic ecology.  365 

 DNA-based metabarcoding methods excel at individual prey detection and identification, 366 

and so are particularly well-suited to answer questions that require species-level data. However, 367 

given that dietary taxa can vary greatly in resource quality, an alternative approach would be to 368 

step away from taxonomic complexities and instead focus on prey characteristics (e.g., nutrient 369 

content or life history traits), as this would dramatically simplify both the analysis and, 370 

presumably, the number of samples required to reach robust conclusions. We are aware of only 371 

one avian metabarcoding study that directly assessed prey characteristics (aquatic vs. terrestrial 372 

life stages; Trevelline et al., 2018a), and while the absence of a comprehensive prey trait 373 

database currently makes such an approach challenging, we encourage future research to 374 

consider prey traits in their analyses to better illuminate the functional characteristics of avian 375 

dietary ecology. 376 

 DNA-based dietary studies have mostly focused on the description of prey taxa and the 377 

ecosystem services of avian predators (e.g. Crisol-Martinez et al. 2016); however, we can also 378 

leverage DNA-based methods to examine diet overlap of sympatric species (Trevelline et al. 379 

2018b), and thus address theoretical questions related to competition and resource partitioning 380 

(e.g., Spence et al. 2021; Stillman et al. 2021). There is also considerable scope to examine 381 
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whether species are dietary specialists or generalists (Jesmer et al. 2020), and how prey selection 382 

is influenced by disturbance (e.g., hurricanes, fire, e.g., Stillman et al. 2021) or time of the 383 

annual cycle when nutrient requirements are high (e.g., breeding, pre-migration), thus clarifying 384 

responses to prey availability and physiological need. DNA-based methods are also well-suited 385 

for identifying the ecological services that birds offer, such as in seed dispersal (González-Varo 386 

et al. 2014) and pollination (Spence et al. 2021). From a conservation standpoint, DNA-based 387 

methods can help managers assess the foraging success of captive bred individuals reintroduced 388 

to the wild, thus lending important perspective on the potential for long term resilience (e.g. 389 

Volpe et al. 2021). Finally, there is considerable opportunity to examine how prey species 390 

communities have changed over time by taking core samples (i.e. guano at communal roosts) and 391 

extracting DNA from different layers representing different points in time. The ability to 392 

associate prey communities with climate may help to predict how climate change will affect prey 393 

availability for a range of birds. 394 

STABLE ISOTOPE ANALYSIS 395 

History and Focus 396 

Elements may exist in forms that differ in atomic mass (i.e. isotopes) and are typically found 397 

overwhelmingly in one common form with lower abundances of rarer, usually heavier, forms. 398 

The relative abundance of rare to common isotopes can change as a result of numerous 399 

biogeochemical reactions, where abundance is expressed in delta (δ) notation relative to 400 

international standards in parts per thousand (‰, per mil; Hayes 1982). In biological systems, 401 

stable isotopes are incorporated at the base of food webs through fixation of inorganic 402 

compounds by primary producers (Kelly 2000), and their relative abundances are subsequently 403 

modified as they move through the food web via metabolic processes. For example, birds 404 
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incorporate the isotopic values of their prey into their own tissue, and the extent of subsequent 405 

isotopic change is generally dependent upon the element, dietary quality, and tissue type 406 

(Boecklen et al. 2011). Some elements (e.g., lead or strontium) with high atomic mass show little 407 

to no isotopic change with trophic position and, thus, make for useful direct tracers of basal 408 

energy pathways to consumers (DeNiro and Epstein 1978), while the lighter elements (e.g. 409 

nitrogen) show stronger isotopic changes with trophic level and can inform trophic position 410 

(Wassenaar 2019). Thus, by characterizing the stable isotope ratios of prey sources at the base of 411 

food webs and knowing how these ratios are modified between diet and consumer through 412 

isotopic discrimination, it is possible to use the stable isotope ratios in avian tissues to infer 413 

dietary source and feeding habits.  414 

A wealth of literature discusses the details of stable isotope analyses in ecological studies 415 

(e.g., Peterson and Fry 1987, Schmidt et al. 2007, Katzenberg 2008, Hobson 2011, Boecklen et 416 

al. 2011, Layman et al. 2012, Wiley et al. 2017), and their use in the study of bird movements 417 

(Rubenstein and Hobson 2004, Hobson and Wassenaar 2019). Here, we provide a brief overview 418 

of stable isotope analysis to investigate the diets of birds by detailing the relevant applications, 419 

considerations, and future directions of this technique.  420 

Methodological Considerations 421 

Sample collection, storage, and processing. Because stable isotopes are incorporated 422 

during tissue synthesis, any tissue that can be retrieved from a bird can be used for stable isotope 423 

analysis; though, selection of tissue will depend on the focus and timescale of the research 424 

question (Figure 4). To assess dietary isotopic endpoints, researchers should be sure to analyze 425 

the tissues of the main dietary items that birds consume, such as fruits (Vitz and Rodewald 426 

2012), prey muscle tissue (Anderson et al. 2009), or even the entire body (Herrera et al. 2003) to 427 
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ensure that the isotopic sources are representative of the prey pool contributing to the nutrition of 428 

the consumer. For all tissues, freezing is the preferred preservation method (Bond and Jones 429 

2009) followed by air drying with a smokeless heat source (Bugoni et al. 2008), or storage in 430 

70% ethanol (Hobson et al. 1997). Preservation media, such as formalin, genetic buffer solutions 431 

(Hobson et al. 1997), or high percentage ethanol (Bugoni et al. 2008) can replace isotopes within 432 

dietary or avian tissues with their own, which can be particularly problematic for carbon, 433 

nitrogen, and hydrogen stable isotope analyses. For lipid-rich tissues, chemical lipid-extraction 434 

may be needed prior to analysis (Bond and Jones 2009) to facilitate accurate diet reconstruction 435 

(Kojadinovic et al. 2008). Similarly, diets or avian tissues rich in carbonates often require 436 

acidification prior to analysis to obtain the unbiased δ13C values of the organic matrix (Polito et 437 

al. 2009, Mackenzie et al. 2015). However, chemical lipid-extraction and acidification have the 438 

potential to bias tissue δ13C and δ15N values (Jaschinski et al. 2008, Elliott and Elliott 2016). As 439 

such, mathematical normalization for tissue lipid and/or carbonate content represents an 440 

alternative method when chemical lipid-extraction or sample acidification is not feasible or 441 

advisable (Post et al. 2007, Jaschinski et al. 2008, Oppel et al. 2010). 442 

Isotope systems. The most common elements used in isotopic dietary studies are those of 443 

carbon (13C/12C; δ13C) and nitrogen (15N/14N; δ15N), which typically provide information on 444 

source of feeding and trophic position, respectively (Figure 4). Stable isotopes of hydrogen 445 

(2H/1H; δ2H) and oxygen (18O/16O; δ18O) are tightly linked to the hydrological cycle and ambient 446 

temperature, and have also been used to identify nutrient inputs from terrestrial and aquatic 447 

origins (Figure 4). Sulfur (34S/32S; δ34S) isotope ratios have been used to identify nutrients 448 

derived from marine vs. terrestrial sources, proximity to coastlines, benthic vs. pelagic energy 449 

pathways, and use of estuarine and marsh habitats (Figure 4). Analysis of “heavy” elements can 450 
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be useful for delineating source of feeding, especially those of strontium (87Sr/86Sr; δ87Sr), which 451 

are associated with age of bedrock and, in North America, tend to vary along longitudinal 452 

gradients (Figure 4). While the investigation of a single element’s isotopic ratio within avian 453 

tissues can provide details about diets and foraging habitat, using the stable isotopic values of 454 

multiple elements within a single study can allow researchers to differentiate among prey sources 455 

using isotopic mixing models or determining spatial origins of diets (Bowen and West 2019).  456 

Isotopic discrimination. The change in stable isotope ratios that takes place between 457 

reactants and products or as a result of kinetic processes is known as isotopic fractionation 458 

(Tiwari et al. 2015). Isotopic fractionation is rarely measured in natural systems; instead the 459 

isotopic discrimination that results from many individual fractionation events is measured 460 

(Schoeller 1999). Isotopic discrimination patterns between diets and consumers in animal food 461 

webs involving changes in δ15N values are particularly useful once established. Processes of 462 

amination and deamination of proteins results in step-wise and fairly predictable increases in 463 

consumer tissue δ15N values with each trophic transfer (Macko et al. 1986), and this has allowed 464 

researchers to use tissue δ15N values to estimate consumer trophic position (DeNiro and Epstein 465 

1981, Hobson and Welch 1992). Trophic discrimination factors (TDFs) based on δ15N values, or 466 

the differences in δ15N values between prey and consumer tissues, range between +2.5‰ to +5‰ 467 

with average values centered around +3‰ to +3.5‰ (Post 2002). A recent meta-analysis of 468 

factors influencing TDFs have resulted in the development of the R-package SIDER as a tool to 469 

predict TDFs when TDFs from controlled studies are not available (Healy et al. 2018) (Figure 5). 470 

However, researchers are encouraged when possible to conduct controlled long-term feeding 471 

trials of focal species to establish appropriate TDFs (Martínez del Rio et al. 2009). 472 
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For δ13C values, it is generally assumed that TDFs are relatively low with average values 473 

centering around +0.4‰ (Post 2002). However, TDFs can vary by avian tissue type even when 474 

synthesized under the same diet due to differences in biochemical processes and macromolecule 475 

routing, which is especially apparent among lipid-rich and keratin-based tissues that may require 476 

correction factors prior to analysis (Hobson and Clark 1992b, Cherel et al. 2014b). Stable sulfur 477 

isotope measurements (δ34S) appear to also have low TDF values (~0.0‰ to +1‰) and so can be 478 

more readily linked to food web source inputs (Richards et al. 2003, Arneson and MacAvoy 479 

2005, Florin et al. 2011). Even so, δ34S TDFs can vary due to the input of endogenous sulfur 480 

from the recycling of body proteins when individuals consume low-protein diets (Richards et al. 481 

2003). Little is currently known about TDFs associated with δ2H values and whether or not 482 

patterns of trophic enrichment are due to isotopic discrimination or ambient exchange (reviewed 483 

in Vander Zanden et al. 2016). 484 

Isotopic turnover. The residency time of elements in animal tissues varies 485 

approximately by the metabolic rate of that tissue (Figure 4). This means that metabolically 486 

active tissues will assimilate isotopic information on diet over different timescales, and thus 487 

present an opportunity to choose a tissue most appropriate for the dietary integration period of 488 

interest (Hobson 1993, reviewed by Thomas and Crowther 2015, Carter et al. 2019a). 489 

Researchers have performed stable isotope analysis on various avian tissues to understand an 490 

individual bird’s diet composition at scales ranging from hours (breath and plasma; Hatch et al. 491 

2002; Podlesak et al. 2005; Pearson et al. 2003), days and weeks, (red blood cells; Podlesak et al. 492 

2005; Hobson and Clark 1993), to months (feathers and claws; Hedd and Montevecchi 2006; 493 

Bearhop et al. 2003) or even years (bone collagen; Stenhouse et al. 1979; Hobson and Clark 494 

1992a; Hobson and Sealy 1991; Hedges et al. 2007). Indeed, it is possible to estimate year-round 495 
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dietary patterns by examining multiple tissues from the same individual (Hobson 1993, Hobson 496 

and Bond 2012, Gòmez et al. 2018). For tissues that are metabolically inactive following 497 

synthesis (e.g. claws, feathers) the tissue’s isotopic information is effectively “locked in”, and 498 

represents only the time window over which the tissue was grown (Hobson 2005). For birds with 499 

predictable molt cycles or those stored in museum collections, this represents an opportunity to 500 

sample feathers to infer diet at a previous time (Blight et al. 2015). Additionally, claw tissue is 501 

metabolically inert once formed but claws grow continuously, thus allowing researchers to make 502 

dietary inferences on a captured bird based on previous months (Bearhop et al. 2003).  503 

Isotopic turnover rates can also differ due to diet composition (Hobson and Clark 1993, 504 

Podlesak et al. 2005), tissue type (Vander Zanden et al. 2015), an individual’s physiological state 505 

(Carleton and Martínez del Rio 2005, Cherel et al. 2005), and energy expenditure. For instance, 506 

in proteinaceous tissues, structural turnover is the main driver of isotopic turnover (Carter et al. 507 

2019a), but in lipids, it appears to be influenced by energy expenditure (Foglia et al. 1994, Carter 508 

et al. 2018). Though there is now a greater understanding of isotopic turnover both among 509 

individuals and tissue types, uncertainty remains for less-studied systems (Carter et al. 2019a). In 510 

addition, drivers of tissue-specific and macromolecule-specific turnover rates as well as the 511 

development of mechanistic models of isotopic turnover that can be applied across a broad 512 

diversity of taxa are needed (Carter et al. 2019a, Caut et al. 2009). The derivation of allometric 513 

relationships driving isotopic turnover rates will assist research on birds that differ in body mass 514 

(Carleton and Martinez del Rio 2005, Carter et al. 2019a). 515 

Macromolecule routing. While isotope-based dietary reconstruction is founded on the 516 

notion that “animals are what they eat plus a few parts per mil” (DeNiro and Epstein 1976), the 517 

idea that the isotopes derived from prey tissues are dispersed throughout a bird’s body uniformly 518 
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(coined the "Scrambled egg theory"; Van der Merwe 1982) is an unrealistic (Martínez del Rio et 519 

al. 2009) and unsupported assumption (Ambrose and Norr 1993). Instead, stable isotopes located 520 

in macromolecular pools of diets (e.g., proteins, lipids, carbohydrates) can be differentially 521 

allocated to various consumer tissues through the process of isotopic routing (Schwarcz 1991), 522 

an effect that may be particularly important to consider when studying omnivores (Podlesak and 523 

McWilliams 2006). Thus, selection of bulk avian tissue type for stable isotope analysis is not 524 

only based on the time scale of nutrient assimilation but also on the sources and destination of 525 

dietary macromolecules. Dietary amino acids may be preferentially routed to more proteinaceous 526 

tissues (Gannes et al. 1998, Martínez del Rio and Wolf 2005) whereas less proteinaceous tissues 527 

derive the bulk of their isotopic values from dietary carbohydrates and lipids (Gannes et al. 528 

1998), though some mixing of isotopic assimilation between prey sources and avian tissue is 529 

expected to occur. Where possible, researchers should strive to understand the biochemical 530 

processes and routing resulting in the isotopic composition of a given tissue (Voigt et al. 2008), 531 

as known isotopic routing and discrimination will guide interpretation (Martínez del Rio and 532 

Wolf 2005). 533 

Bulk stable isotope analysis. Stable isotope analysis of bulk tissues (e.g., muscle, blood, 534 

feather) has been the most common approach to avian dietary studies thus far. This approach has 535 

been effective because sample cost is relatively low, and analyses can be performed rapidly with 536 

high sample throughput. In addition, avian tissues used in non-lethal diet reconstruction studies, 537 

such as feathers (Kojadinovic et al. 2008) or blood (Bond and Jones 2009), will typically require 538 

little additional sample processing prior to bulk stable isotope analysis (but see Bond et al. 2010). 539 

When dietary sources are well characterized and isotopically distinct, and tissue-specific TDFs 540 

have been quantified, bulk stable isotope analysis can provide robust insights into the dietary 541 
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history of birds (Inger and Bearhop 2008). However, when sources and/or TDFs cannot be 542 

adequately characterized, a common challenge in the interpretation of bulk tissue stable isotope 543 

values is determining whether variation is due to changes in diet, variability in baseline food web 544 

isotope values, or some combination of these factors (Inger and Bearhop 2008). These challenges 545 

are now being overcome through more complex isotopic analyses of specific compounds (e.g., 546 

fatty acids and amino acids; Whiteman et al. 2019, Twining et al. 2020) with a method known as 547 

compound-specific isotope analysis (CSIA; Lorrain et al. 2009). 548 

Data Analysis 549 

Mixing models, trophic position, and isotopic niche analyses. Isotopic values of a 550 

consumer’s tissue are a mixture of the isotopes derived from their prey, thus stable isotope 551 

mixing models can be used to determine the relative contributions of each prey taxon (Phillips 552 

2012) (Figure 5). To accurately quantify prey composition, researchers must not only know the 553 

potential prey groups that birds eat, but also the isotopic values of each potential prey group, 554 

ensuring that the isotopic values of each group are distinct. If unique prey sources are not 555 

isotopically distinct, but belong to a shared functional group, researchers should consider 556 

combining these sources in downstream analyses (Phillips et al. 2005). While all mixing models 557 

work under the principle that a consumer’s isotopic ratio is proportional to that of its assimilated 558 

prey, earlier iterations of these models have been improved by including the elemental 559 

concentrations of prey sources (Phillips and Koch 2002), considering isotopic routing (Martínez 560 

del Rio and Wolf 2005), and working within a Bayesian framework to allow for better 561 

propagation of uncertainty and use of informative priors (Parnell et al. 2013). Mixing models can 562 

be applied to both bulk tissue stable isotope analysis and CSIA data to reconstruct avian diets 563 

(Johnson et al. 2019), and dietary predictions can be improved through the inclusion of data from 564 
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morphological or laboratory-based methods (Polito et al. 2011, Chiaradia et al. 2014, Johnson et 565 

al. 2019).  566 

The R-package MixSIAR provides a Bayesian mixing model framework that can include 567 

fixed and random effects as covariates explaining variability in mixture proportions, incorporate 568 

prior data sources, and calculate relative support for multiple models via information criteria 569 

(Stock et al. 2018). Another R package applying a similar Bayesian framework, tRophicPosition, 570 

calculates consumer trophic positions using stable isotopes, with one or two isotopic baselines, 571 

while explicitly including individual variability and propagating sampling error in the resulting 572 

posterior estimates (Quezada‐ Romegialli et al. 2018). In addition, the SIBER (Jackson et al. 573 

2011) and nicheROVER (Swanson et al. 2015) packages allow for direct comparison of isotopic 574 

niche area (a proxy for trophic niches; Newsome et al. 2007) and overlap (Flaherty and Ben‐575 

David 2010) across consumers and/or communities (Figure 5). While sophisticated analyses 576 

continue to be published, these models are only as good as the data and study design employed, 577 

and decisions about model parameterization and source grouping can influence results (Bond and 578 

Diamond 2011). Phillips et al. (2014) provide a summary of the best practices for stable isotope 579 

mixing models in food-web studies that are broadly applicable to avian research. 580 

Future Potential 581 

As stable isotope analysis has been used in avian diet reconstruction for nearly 40 years 582 

(Schoeninger and DeNiro 1984), many of its limitations and future directions have been 583 

identified—or even addressed (Post 2002, Boecklen et al. 2011, Wiley et al. 2017). However, 584 

one promising new development in the field lies in CSIA or the isotopic analysis of biological 585 

macromolecule groups, such as amino acids or fatty acids. Because specific compounds are 586 

metabolized through unique pathways, CSIA is an improvement on bulk isotopic analysis as it 587 



 27 

can quantify and account for variation in isotopic baselines over time and space, and the 588 

differential routing of dietary macromolecules throughout consumer tissues (Whiteman et al. 589 

2019) . For δ15N, some individual amino acids (e.g., glutamic acid) undergo large isotopic 590 

fractionation during transamination/deamination providing greater sensitivity when estimating 591 

trophic position (McMahon et al. 2015, Ohkouchi et al. 2017). In contrast, other amino acids 592 

(e.g., phenylalanine) show little to no trophic fractionation between diet and consumer allowing 593 

researchers to quantify isotopic baselines (McMahon et al. 2015, Ohkouchi et al. 2017). The 594 

analysis of individual “trophic” and “source” amino acids can thus be used to infer trophic 595 

position of avian consumers even in situations where baseline food web isotopic values are not 596 

known. For example, McMahon et al. (2019) used feather glutamic acid and phenylalanine δ15N 597 

values to calculate a nearly 100-year record of Pygoscelis spp. penguin trophic positions that 598 

explicitly accounted for variation in food web isotopic baselines over time, while Whiteman et al 599 

(2020) quantified δ13C and δ15N values of various amino acids to investigate nutrient allocation 600 

by birds to their eggs within the context of the capital vs. income continuum. 601 

 Animals must acquire essential amino acids from their diet, and as these amino acids 602 

undergo little to no additional isotopic change from diet to consumer (Hayes 2001, McMahon et 603 

al. 2015), δ13C stable isotope analysis of amino acids (CSIA-AA) can better trace energy 604 

pathways from basal sources to upper-level consumers. For example, Johnson et al. (2019) found 605 

that while bulk stable isotope analysis and CSIA-AA of Seaside Sparrow (Ammospiza maritima) 606 

liver tissues predicted similar contributions of terrestrial and aquatic-derived carbon, CSIA-AA 607 

did so with greater precision. CSIA of fatty acids (CSIA-FA) have also provided a glimpse into 608 

the importance of fatty-acid composition in energy metabolism of migrating birds (Carter et al. 609 
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2019b), and novel applications of δ13C CSIA-FA promise to broaden our understanding of avian 610 

food webs and address the limitations of previous applications (Twining et al. 2020).  611 

ALTERNATIVE DIETARY BIOMOLECULE TRACING 612 

While DNA-based and stable isotope techniques are applicable to most study systems, 613 

researchers also trace other biomolecules through food webs to address more specialized 614 

questions in avian dietary ecology. Useful dietary tracers include essential biomolecules that are 615 

not synthesized by birds (e.g., essential lipids, amino acids, vitamins; Ruess and Müller-Navarra 616 

2019), biomolecules that undergo little or no metabolic change post-consumption (e.g., long-617 

chain polyunsaturated fatty acids; Twining et al. 2016), and non-nutritional components 618 

indicative of environmental contamination (e.g., lead, mercury). Because alternative dietary 619 

tracers are often specific to certain environments, studies typically couple one of the previously 620 

described techniques with these tracers to draw ecological inferences about the effect of diet 621 

variation; though, continued development of mixture modeling approaches (e.g., quantitative 622 

fatty acid analysis [QFASA]; Iverson et al. 2004) and the identification of additional dietary 623 

tracers in new habitats (Hixson et al. 2015) will allow for broader application of biomolecule 624 

tracing in diet reconstruction. Analytical methods for individual dietary tracers is beyond the 625 

scope of this review, but has been discussed by others (Williams and Buck 2010, Nielsen et al. 626 

2017, Majdi et al. 2018). Here, we focus on analyses employing multiple techniques to address 627 

objectives beyond diet identification. 628 

Nutritional Components: A Healthy Diet 629 

In addition to meeting energy demands and broad macronutrient requirements, birds must 630 

obtain essential biomolecules from diet to maintain optimal health and productivity (Klasing 631 

1998). Essential polyunsaturated fatty acids have been useful as tracers because vertebrates tend 632 
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to have a limited ability to convert these biomolecules, and controlled diet studies suggest that 633 

consumer fatty acid signatures resemble the fatty acid signatures of their food (Twining et al. 634 

2016). Historically, most research in avian nutrition has focused on domesticated species, but 635 

there has been recent momentum in studying the nutritional response of wild populations to 636 

changes in food availability resulting from anthropogenic influences and climate change (Birnie-637 

Gauvin et al. 2017). Because diet items are not all nutritionally equivalent, the impacts of 638 

changes in food quality to avian health and fitness should be considered alongside prey 639 

identification in shifting diets through a combination of techniques. For example, morphological 640 

diet identification followed by fatty acid analysis has shown that diets containing optimal prey 641 

items correlate with greater concentrations of essential polyunsaturated fatty acids as well as 642 

metrics of survival and reproductive success in grassland (Zhang et al. 2020) and riparian 643 

songbirds (Twining et al. 2018). Combining bulk stable isotope analysis and fatty acid analysis 644 

enabled Hebert et al. (2014) to trace prey-specific fatty acids to aquatic birds foraging in benthic 645 

and pelagic locations, thus explaining how shifts in bird diet were linked to disease emergence. 646 

Similarly, combining fatty acid analysis and CSIA-FA showed that riparian songbirds derive 647 

essential long-chain polyunsaturated fatty acids from aquatic prey, even if terrestrial prey make 648 

up a greater portion of their diet (Twining et al. 2019). Furthermore, integrating morphological, 649 

stable isotope and fatty acid techniques has the potential to produce a more cohesive picture of 650 

avian feeding habits across short- and long-term scales, which has been influential in identifying 651 

patterns of foraging plasticity (Moseley et al. 2012) and niche partitioning (Connan et al. 2014). 652 

While future research will likely focus on the composition of fatty acids and amino acids, other 653 

diet-derived molecules, such as carotenoids (Witmer 1996), may also enable the examination of 654 

diet as well as the resulting consequences for avian populations. 655 
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Non-nutritional Components: A Contaminated Diet 656 

In addition to nutritional components, non-nutritional chemicals and debris are also 657 

consumed directly or indirectly via contaminated prey. Anthropogenically-induced 658 

environmental contamination is a major cause of avian mortality, and also generates sublethal 659 

effects that can be tied to declining populations. For example, lead and mercury exposure can 660 

both cause immune suppression and reduce reproductive output (Whitney and Cristol 2018, 661 

Williams et al. 2018, Vallverdú-Coll et al. 2019), while brominated flame retardant exposure 662 

impacts avian courtship behavior, growth and development (Guigueno and Fernie 2017). 663 

Environmental contaminants often biomagnify at higher trophic levels, therefore, combining 664 

dietary and contaminant analyses can lead to greater insights regarding exposure risk for birds 665 

among different habitats and feeding guilds. For instance, Barn Owls (Tyto alba) are most 666 

heavily exposed to anticoagulant rodenticides during the fall, as estimated by diet and chemical 667 

residues in pellets (Apodemus spp;.Geduhn et al. 2016). Regurgitates and pellets as well as feces 668 

have also been analyzed to detect the presence of plastics ingested by wetland birds (Gil-Delgado 669 

et al. 2017, Reynolds and Ryan 2018), gulls (Lindborg et al. 2012, Furtado et al. 2016), and 670 

seabirds (Acampora et al. 2017). Although no sampling method for detecting ingested plastics is 671 

perfect (Provencher et al. 2019), tracking consumption of contaminated diet items or debris by 672 

applying morphological identification methods can support the use of avian populations as 673 

biomonitors of an increasingly polluted environment. 674 

Future Potential  675 

Bulk stable isotope methods have also been incorporated into studies of contaminant 676 

exposure where the effects of trophic position (δ15N) and dietary source (δ13C and δ34S) 677 

influence levels of exposure. For example, positive correlations between mercury concentrations 678 
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and δ15N values show biomagnification of lead, mercury and arsenic, resulting in higher 679 

contaminant loads for aquatic and terrestrial birds feeding at higher trophic levels (Cui et al. 680 

2011, Carravieri et al. 2013, Badry et al. 2019, Tasneem et al. 2020, Costantini et al. 2020). 681 

Correlations between mercury concentrations and δ34S have revealed a greater exposure risk for 682 

gulls with a marine-sourced diet (Ramos et al. 2013), and the correlation between flame 683 

retardants and δ13C explain the role of a terrestrially-sourced diet on Peregrine Falcon (Falco 684 

peregrinus) contaminant exposure in urban environments (Fernie et al. 2017). Stable isotope 685 

reconstruction of diet over long time periods has also been useful in explaining Chimney Swift 686 

(Chaetura pelagica) diet shifts with respect to historical use of DDT (Nocera et al. 2012) and in 687 

creating an accurate mercury exposure trend for Herring Gulls (Larus argentatus) by 688 

incorporating diet shifts (Burgess et al. 2013). These studies highlight the utility of combining 689 

diet and contaminant analyses to the source, timing, and risk of exposure to avian populations. 690 

COMBINING DIETARY ANALYTICAL TECHNIQUES  691 

While the vast majority of avian dietary studies use only a single method for dietary 692 

characterization, the use of multiple techniques within a single study, either independently or in 693 

concert, will mitigate some of the drawbacks of each technique and yield a more accurate 694 

understanding of the study system overall. There are four basic approaches to combining the 695 

dietary analytical techniques we have described. All have advantages and disadvantages, and all 696 

depend on assumptions related to biases inherent in any given application. First, researchers may 697 

present the results of various techniques separately and consider in depth what each suggests 698 

about diet (Sydeman et al. 1997, Lavoie et al. 2012, Alonso et al. 2014, Génier et al. 2021; 699 

Bumelis et al. 2021). For example, researchers could apply DNA-based methodologies to 700 

identify each prey taxon to the species level, morphological techniques to understand which prey 701 
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life stages and sizes are often targeted, and stable isotope analysis to quantify the assimilated 702 

nutrients that birds acquire from each prey group or life stage over a certain time period, thus 703 

gaining important information on many facets of a bird’s dietary niche. Such an approach would 704 

effectively mitigate the drawbacks associated with each technique, and in many ways, would be 705 

entirely complementary as each method represents different degrees of dietary resolution and 706 

periods of assimilation. The net result of such analyses will be to provide a weight of evidence 707 

approach that will require a forensic reconstruction of diet similar to approaches advocated for a 708 

court of law (e.g. Ehleringer et al. 2020). This approach is appealing because all dietary evidence 709 

is presented for the reader to interpret on its own merits. 710 

The second approach is to convert all dietary information to relative probabilities of input 711 

to a given individual or population-level diet. Once converted to probabilities, they can then be 712 

formally combined as informative priors in Bayesian mixing models (Parnell et al. 2013). For 713 

example, mixing models based on bimodal isotopic data (e.g. δ13C and δ15N) for avian tissues 714 

and diet can be combined with morphological (Robinson et al. 2018, Johnson et al. 2020) or 715 

DNA-based data (Franco-Trecu et al. 2013, Chiaradia et al. 2014) as informative priors. In 716 

general, the formal incorporation of informative priors will improve the precision of dietary 717 

mixing models. For example, if two prey species overlap isotopically, the use of informative 718 

priors based on non-isotopic data may better resolve these inputs in the final posterior probability 719 

distributions of prey inputs. However, it is also clear that informative priors can result in 720 

misleading inferences in dietary reconstructions (Franco-Trecu et al. 2013) and considerable 721 

attention must be paid to potential biases associated with prior information. The effect of an 722 

informative prior will depend heavily on sample size and will be especially powerful with small 723 

sample sizes. As with most aspects of mixing model applications, true evaluation of the use of 724 
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priors based on controlled feeding experiments (e.g. Chiaradia et al. 2014) are rare. Currently, 725 

researchers are encouraged to present results of Bayesian mixing models with and without the 726 

use of informative priors.  727 

A third approach is to incorporate various biomarkers directly into a multidimensional 728 

Bayesian mixing model framework (i.e. without necessarily employing informative priors). 729 

Because different biomarkers have different units of measurement, they must first be 730 

transformed to the same unitless scale by subtracting the mean and dividing by the standard 731 

deviation. The mixing model is then run in the normal fashion to discern relative dietary inputs. 732 

The approach of using stable isotope measurements and fatty acid analyses has been relatively 733 

common in marine systems (Neubauer and Jensen 2015), though O’Donovan et al. (2018) used 734 

this approach to investigate diets of wolves in northern Canada using two stable isotopes (δ13C 735 

and δ15N) and three fatty acids of wolf and prey tissue in a five-dimensional model. While the 736 

authors found the combined approach was more powerful than using stable isotopes alone, they 737 

cautioned that adding more variables (i.e. more fatty acids) will not necessarily improve 738 

resolution.  739 

Related to the third approach, a fourth approach combines various analytical approaches 740 

into a multidimensional dietary niche space (Swanson et al. 2015). Though studies frequently 741 

derive values from the same type of assay (e.g., stable isotope analysis), axes can theoretically 742 

include other metrics such as trace element concentrations or fatty acid concentrations. As 743 

indicated above, incorporating different metrics requires that the various axes be expressed in 744 

quantities that are unitless (typically expressed as mean values divided by the standard 745 

deviation). Analytically, this approach has many advantages, though the main drawback is that it 746 

can become difficult to interpret multidimensional niche volumes and again, multidimensional 747 
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niche overlap does not necessarily mean true dietary overlap. Nonetheless, if the objective is to 748 

examine evidence for differences in diet among individuals or populations, the derivation of such 749 

multidimensional niche hypervolumes is appealing. 750 

Future dietary studies will continue to embrace ever more sophisticated forensic tools to 751 

evaluate avian nutritional ecology and these approaches will benefit from vast improvements in 752 

web-based analytical packages. Nonetheless, there are key knowledge gaps that should be 753 

urgently addressed. First, the bulk of avian studies have been focused on describing, and often 754 

re-describing, the diets of relatively few species, thus leaving gaps in our basic understanding of 755 

dietary composition for many avian taxa, particularly Neotropical species (Lees et al. 2020). 756 

While studies of most bird species will benefit from using any of aforementioned methods, 757 

DNA-based techniques seem particularly well-suited for providing a general understanding of 758 

diet for understudied species and may help build the foundation necessary for further hypothesis-759 

driven research. Similarly, most dietary studies have been biased toward the breeding season, 760 

and while the importance of seasonal interactions on bird populations has been known for some 761 

time (Marra et al. 1998), there has been little change in the frequency of multi-seasonal or year-762 

round avian studies (Marra et al. 2015). While evaluating diet throughout the annual cycle may 763 

appear daunting, stable isotope techniques allow assays of different time periods based on a 764 

single capture event (Gómez et al. 2018, Cherel et al. 2014a), with sampling of migratory birds at 765 

banding stations providing such tissue samples readily (Smith et al. 2003). Finally, the 766 

combination of multiple techniques together with the recent advances in temporal and spatial 767 

analyses, such as Motus (Taylor et al. 2017) or GPS tags (Gyimesi et al. 2016), will provide 768 

additional information on foraging areas of birds, which may ultimately lead to novel concepts, 769 

such as “nutritional landscapes or seascapes”, that describe avian diets and aid in conservation 770 
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efforts (Genier et al. 2021, Bumelis et al. 2021). We are, thus, in an exciting era whereby the 771 

optimization and integration of techniques and their applications for revisiting previous studies 772 

and answering novel ornithological questions will likely lead to a stronger understanding of 773 

avian trophic ecology and a greater appreciation for the roles that birds serve in changing 774 

ecosystems around the world.  775 
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A diagram of the common considerations when characterizing 
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Figure 4: Considerations in Dietary Stable Isotope Analysis: 
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A diagram of the common considerations when characterizing 
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Figure 5: Considerations in Dietary Stable Isotope Analysis: 
Trophic Discrimination & Data Analysis.  
A diagram of the common considerations when characterizing 
prey with isotopic methods, which includes trophic 
discrimination and data analysis. Citations are included to 
provide example studies and to highlight review articles that 
detail each methodological consideration. 
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