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Explore for a day? Generating personalized itineraries that fit spatial 
heterogeneity of tourist attractions 

 
Abstract: Recommender systems are widely adopted by firms as an innovative 

personalization tool across various industries. Most of the existing tour recommender 

systems treat the spatial structure of tourist attractions as a single type, which neglects 

the spatial heterogeneity among these attractions. This study attempts to address this 

problem by modeling the spatial heterogeneity in the design of personalized trips. We 

propose a two-phase heuristic approach, which involves an improved artificial bee 

colony algorithm and a differential evolution algorithm. The results of a field 

experiment confirm that our new model outperforms the benchmark models in 

maximizing customer utilities. 

Keywords: Recommender system; Tourist trip design problem; Heuristic approach; 

Personalization; Spatial structure; Tourism attraction 
 

1. Introduction 

Planning a one-day exploration in various places of interest at an unfamiliar 

destination is time-consuming. A tour recommender system can help users plan a dream 

holiday exploration by automatically generating a personalized travel plan that suits 

their needs and preferences. A recommender system generally uses content-based 

and/or collaborative filtering algorithms by considering the attributes of a product that 

a consumer liked or purchased in the past (content-based) or the similarity between a 

consumer and others according to their historical like or purchase data (collaborative 

filtering) (Lee & Hosanagar, 2019). The design of a tour recommendation is more 

complex than that of a product recommendation, as it involves recommending the 

attractions or points of interest (POIs) and a travel route that connects the POIs 

(Kotiloglu, et al., 2017).  

Developers of a tour recommendation have to consider numerous real-life 

constraints, among which are the temporal and spatial constraints (Lim, et al., 2019). 

In terms of the spatial structure, there are two basic types of attractions, namely the 

node- and line-shaped attractions, which often exist simultaneously in a tourism 

destination. For line-shape attractions, such as greenway, coastline, river, and street, the 

profits (or utility) for tourists are associated with arcs, rather than vertices and their 

spatial position changes when they finish visiting the attractions. Despite the advances 
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in tour recommender systems, most studies treat all attractions as the same in terms of 

spatial structure and ignore the multiple entrances/exits of attractions, thereby 

restricting the modeling of vertices or arcs. As a result, these systems may fail to capture 

the practical properties of attractions with large areas and multiple entrances/exits. For 

example, Yellowstone National Park has five entrance stations, each of which is far 

from the others. Therefore, choosing appropriate stations to enter and leave the park 

while planning the trip is essential. Moreover, previous studies put relatively little 

emphasis on optimizing the time for exploration or enjoyment at each attraction, which 

is a pivotal part of tourist experiences and must not be ignored in the recommender 

system design (Zheng & Liao, 2019). 

This study aims to tackle the above problems by considering tourist attractions’ 

spatial structure and the time spent at each attraction for generating a personalized travel 

itinerary. Specifically, we consider the heterogeneity of attractions’ spatial structure, 

that is, the inhomogeneity and complexity of spatial structure, and categorized it into 

three types: (a) POI (node-shape attraction with a unique and identical entrance and 

exit), (b) line of interest (LOI, line-shape attraction with only one entrance/exit at both 

ends), and (c) area of interest (AOI, large area with multiple entrances/exits). In addition, 

the time spent at attractions is considered an optimization variable. The complexity of 

such a problem results from the correlation among attraction selection, sequencing 

determination, choice of entrances/exits and time allocation, and multiple constraints. 

We tackle this mixed tourist trip design problem by developing a two-phase heuristic 

approach (HA), which involves an improved artificial bee colony (ABC) algorithm and 

a differential evolution algorithm (DEA). Our approach differs from existing trip design 

methods in several ways. First, our proposed approach applies a variant-form nectar 

with four pheromones to code the solution. Second, it designs a cell array embedded in 

different dimension matrices for improved storing and managing of the relationship 

among vertices. Third, it improves the search ability and optimization performance of 

the algorithm by adjusting the evolution structure of ABC and adding a new group of 

bees. Finally, it also improves the evolution structure by introducing an adaptive 

evolutionary parameter to reach an equilibrium of the solution quality and algorithm 

efficiency.   

This study makes three major contributions to information systems literature. First, 

this study advances recommender system design by offering an improved approach that 

integrates spatial heterogeneity with other features and influencing factors, whereas 



 

4 

most previous recommender system studies mainly focus on recommending POIs, 

without considering the unique spatial features of each POI. Second, our system design 

incorporates the actual available entrances and exits of each attraction; thus, it avoids 

unnecessary detours and allows more time for the users to explore and enjoy their visit. 

Third, our design further considers the access order, access time, and visitors’ personal 

preferences. As a result, the recommendations generated from our approach can closely 

match users’ preferences while meeting their time budgets, which outperform those 

generated from the baseline methods.   

The remaining sections of this paper are organized as follows. Section 2 reviews 

the design of recommender systems and, specifically, tourist trip design. Section 3 

formalizes a high-efficient mathematical model to address the mixed tourist trip design 

problem. Section 4 presents our proposed HA framework. Section 5 examines the 

effectiveness of our method through a field experiment. Finally, Section 6 discusses the 

results and offers directions for further studies. 

 

2. Literature review 

2.1. Tourism recommender system  

The design of a recommender system is usually based on one or both of the two 

basic modeling approaches: content-based and collaborative filtering algorithms (Lee 

& Hosanagar, 2019). Content-based systems focus on the attributes of a product that a 

consumer liked or purchased in the past, whereas collaborative filtering recommenders 

are based on the similarity between a consumer and others according to their historical 

like or purchase data. Many recommender systems use a combination of both 

approaches. Research on the POI recommender system has explored four major 

techniques, including the collaborative filtering-based, matrix factorization-based, 

probabilistic, and link-based models (Si, et al., 2019). First, both user-based and friend-

based collaborative filtering have been adapted for recommending POIs. Second, 

various matrix factorization models have been leveraged, together with a combination 

of multiple latent factors. Third, probabilistic models have been used to capture the 

different influencing factors, including social, sequential, geographical, and temporal 

influences on user preferences to generate recommendations. Fourth, link-based models 

have been used to present graphs of the links between users and POIs for 

recommendations. Integrating the various factors with algorithmic techniques improves 

the tour recommendations (Si, et al., 2019).    
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The design of a tour recommendation should consider numerous real-life 

constraints, in addition to that of a product or POI recommendation. The temporal and 

spatial constraints are the key influencing factors that should be integrated into the 

design (Lim, et al., 2019). In a typical day-trip excursion at a destination, a day reflects 

the constraint of time, and the destination offers the space for tourist exploration. The 

temporal constraints include the limit of time allocated for the tour including time at 

attractions and travel between attractions. The design thus needs to incorporate various 

factors, such as crowdedness and time for queuing at the attractions, transport modes 

used, traffic congestion, and uncertainty in time for travel (Gavalas, et al., 2015; Zhang, 

et al., 2016). Moreover, the tour recommender system has to consider factors such as 

user demographics (Cheng, et al., 2011), traveling group size (Chen, et al., 2013), real-

time location, and user’s personal interests (Taylor, et al., 2018). Contextual factors 

such as the day, time, season, and weather should also be taken into account (Majid, et 

al., 2015).  

2.2. Spatial constraints for a tourist trip design 

The spatial constraints for a tourist trip design include the need for the start and 

end at certain locations, including the location of the hotel the tourist stays, stations, 

attractions, and specifically the entrance and exit of an attraction. Most studies abstract 

tourist attractions as vertices and assume that tourists enter and leave attractions at the 

same location (see a summary in Table 1). These works are sufficient for designing 

routes at attractions with single entrance/exit, such as museums, galleries, small squares, 

or parks. However, the practical properties of other types of attractions, such as 

greenway, coastline, river, and street, are not mined. When tourists visit such attractions, 

the profits are associated with arcs, rather than vertices (Lu, et al., 2017; Lu & Shahabi, 

2015), and their spatial position changes when they finish visiting the attractions 

(Souffriau, et al., 2011). Given these differences, abstracting attractions as vertices may 

not be feasible or ideal in practice (Eby & Molnar, 2002).  

Several recent studies treat attractions as arcs and regard tourist trip design 

problem as a variant of arc orienteering problem. For example, Souffriau et al. (2011) 

formulated the cycle route planning and proposed a heuristic solution approach and 

presented a mathematical optimization model. Verbeeck et al. (2014) extend the arc 

orienteering problem, consider the different profits of various direction arcs, and 

introduce a branch cutting method to solve the bicycle journey design problem with the 

same end and starting points. Lu and Shahabi (2015) introduce a variant of arc 
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orienteering problem and used a set of meta-heuristic algorithms to tackle the problem 

in search of the optimal travel path in large-scale road networks. Lu et al. (2017) 

proposed a two-time-dependent arc orienteering problem, under which the travel time 

and benefit value depend on time. 

Table 1 Studies on personalized tour design 
Authors Contributions Models Factors 
Lee, et al. 
(2009)  

An ontological recommendation multi-
agent. 

Ant colony 
optimization 

Context information; Tourists’ 
requirements; Tainan City travel 
ontology. 

Rodriguez et 
al. (2012)  

A tool that formalizes a mathematical 
model and interactive multi-criteria 
technique. 

Tabu search Multiple tourists’ objectives; 
Interactive process with the 
tourist.  

Hsu et al. 
(2012)  

An intelligent recommender system for 
tour decision-making. 

None (Based on 
Google API) 

Tourist preference prediction. 

Tsai and 
Chung (2012)  

A route recommender system based on 
tourist behavior and real-time 
information. 

Route generation 
algorithm 

Tourist behaviors similarity; 
Current facility queuing situation. 

Liu, et al. 
(2014)  

A recommender system that focuses on 
real-time personalized tour design.   

Route generated 
algorithm 

Real-time traffic information. 

Cenamor, et al. 
(2017) 

A system based on information 
gathered from social networks. 

Automated planning 
approach 

User expectations for POIs; POIs 
popularity. 

Kotiloglu, et 
al. (2017)  

A framework named “Filter-first, Tour-
second”.   

Iterated tabu search Mandatory points; Optional 
points. 

Sun and Lee 
(2017) 

A four-phase framework based on 
contents gathered from photo-sharing 
social networks. 

Tour recommendations 
by sharing photos 
approach 

Landmark topics; User 
characterization. 

Zheng, et al. 
(2017)  

A combination of difference evolution 
algorithm and a genetic algorithm 

Genetic algorithm and 
differential evolution 

Aesthetic fatigue; Variable 
sightseeing value. 

Liao and 
Zheng (2018)  

A stochastic environment that is time-
dependent in the tourist trip design 
problem. 

Heuristic algorithm 
based on random 
simulation 

Time-dependent stochastic 
environment like travel times and 
wait times. 

Zheng and 
Liao (2019)  

A heuristic approach using Pareto 
optimality to meet group member 
preferences. 

Nondominated sorting 
heuristic algorithm 

Heterogeneous preferences of 
group members. 

Zheng, et al. 
(2020a)  

A two-level heuristic approach with 
consideration of hotel selection. 

Memetic algorithm Hotel selection. 

Zheng, et al. 
(2020b) 

A model that considers transport mode 
choice in the day itinerary design 

Nondominated sorting 
heuristic algorithm 

Transport mode. 

The two types of attractions (node- and line-shape) may exist simultaneously in 

tourism destinations, which make the tour itinerary design a typical combination of 

orienteering problem and arc orienteering problem (Vansteenwegen, et al., 2011; Zheng, 

et al., 2020a). Gavalas et al. (2017) abstract the multiple-day itinerary design problem 

with node- and line-shape attractions and proposed the first metaheuristic approaches 

to tackle it. Mrazovic et al. (2017) also model this issue and introduce a variable 
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neighborhood search to deal with this problem. 

Despite the progress made in the recommender system research, existing studies 

continue to ignore the discussion and solution of spatial heterogeneity. First, prior 

literature focuses on the information at the tourist and attraction levels to recommend 

tours (Cenamor, et al., 2017; Hsu, et al., 2012; Sun & Lee, 2017). Most studies assume 

that all the attractions have the same spatial structure and that tourists enter and leave 

attractions at predefined locations (Cenamor, et al., 2017; Hsu, et al., 2012; Liao & 

Zheng, 2018; Sun & Lee, 2017; Zheng, et al., 2020a; Zheng, et al., 2017). This situation 

is impractical in many cases, especially for attractions with large areas and multiple 

entrances/exits (e.g., Yellowstone National Park). Considering that the paths (travel 

distance) from different exits of an attraction to different entrances of another attraction 

are completely different (Huang, et al., 2020), which further affects tourist behavior, 

ignoring the choice of attractions’ entrances/exits may lead to potentially infeasible or 

suboptimal solutions (travel time increased and travel experience decreased). For 

example, although Liu et al. (2014) and Liao and Zheng (2018) take traffic/travel time 

into account when modeling, ignoring the spatial heterogeneity of attractions results in 

the underperformance of their approach in solving our problem. Second, existing 

studies on the mixed orienteering problem and the mixed tourist trip design problem 

assign a fixed value to the time spent on the vertex (Gavalas, et al., 2017; Mrazovic, et 

al., 2017). However, in reality, the lengths of time that each tourist wishes to take at a 

vertex may vary. Hence, vertex time allocation should also be optimized in line with 

tourists’ characteristics (Zheng, et al., 2020a; Zheng & Liao, 2019). 

Moreover, space variables, such as attraction, sequencing, and the entrances/exits 

of an attraction) are discrete variables, whereas time is a continuous one as the 

simultaneous optimization of spatial and temporal structure factors present additional 

modeling challenges. Consequently, we consider the following improvements. First, we 

fully consider the heterogeneity of tourist attractions’ spatial structure and the duration 

spent at each vertex by proposing a two-phase HA to design additional reasonable trips. 

Second, with the recognition of the complexity of the mixed tourist trip design problem, 

we use multiple methods to reach an equilibrium of the solution quality and algorithm 

efficiency. 

3. Mathematical model   

A mathematical model can be developed to introduce the research problem. Table 

2 lists the description of variables used. Let V be the set of vertices, including attractions 
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jΛ ∈V   such that 1 IΛ ∈V  , M FΛ ∈V  , 

{ }2 1, , M AΛ Λ − ⊂ V , the arrival time at Λ1 is set to τ. For the attractions visited at each 

stage Λj, its actual visit time tj
s should not take place outside its time window [toi,tci] 

where toi is the opening time and tci is the closing time. However, the earlier or the later 

arrival time tj
a will cause unnecessary waiting time or miss the favorite attraction. The 

time budget for the trip equals to Tmax, which contains the duration of Λj and the travel 

time between Λj-1 and Λj. For clarity, an example of a five-stage route (M = 5) is shown 

in Fig.1, where the solid red lines and dots represent a visit to a vertex (a stage), the 

dotted lines represent the road between each stage. Compared with the models built, 

when we consider the impact of attractions’ heterogeneity on tourist trip design, our 

model introduces the number of entrances and exits of vertices and the influence of the 

selected entrances and exits on the travel time between two adjacent stages.  

 
Fig.1 Illustration of a tourist route 

 
Table 2 Mathematical variables 

Variable Description 
VI Set of the initial starting locations of the destination, i = 1, 2, …, N1 
VA Set of the attractions of the destination, i = 1, 2, …, N2 
VF Set of the final ending locations of the destination, i = 1, 2, …, N3 
V Set of vertices, = ∪ ∪I A FV V V V  
N Number of vertices, N = N1 + N2 + N3 

k
iEN   kth entrance of vi 
k
iEX  kth exit of vi 

EN

iK  Number of entrances for vi 
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EX

iK  Number of exits for vi 
Tmax Budgeted time available for the tourist 

τ Arrival time at the destination 
ni Number of discrete visits to vertex vi 
M Number of total stages in the trip (i.e., the sum of ni, M = ∑ni, i = 1, 2, …, N) 
Λj Vertex visited at the jth stage, j = 1, 2, …, M 

[toi,tci] Time windows of vi 
t(Λj, Λj+1) Travel time between Λj and Λj+1  

a
jt  Arrival time at vertex Λj 
s
jt  Actual start time visiting vertex Λj 
e
jt  Departure time from vertex Λj 

pi Tourist’s preference value for vi, [0,1]ip ∈  
ti Average time spent at vi by previous tourists 
xij If the tourist visits vi at the jth stage, set xij = 1; otherwise, 0 
yij If a visit to vi is followed by a visit to vj, set yij = 1; otherwise, 0 

3.1. Model objective 

The model’s objective is to maximize the utility of tourists under numerous 

constraints. Considering that tourists may repeatedly visit a landmark attraction during 

their tour (Tsai & Chung, 2012), let ni represent the number of discrete visits to vertex 

vi. In Eq. (1), integer M denotes the number of the stages, and N represents the number 

of vertices at the attraction: 

∑
=

=
N

i
inM

1
                                (1)  

The utility at each stage obtained by an individual tourist is mainly determined by 

the vertex visited at that stage (Λj). It is closely related to the length of time spent at the 

corresponding vertex and ip   for Λj. In tourist destinations, a unit time stay in an 

attraction is regarded as a commodity (Rugg, 1973). According to the law of 

diminishing marginal utility, marginal satisfaction decreases as consumers purchase 

more of the same product (Brewer & Venaik, 2010). Owing to the aesthetic fatigue of 

tourists in a similar way, as the duration a tourist stays at the same vertex increases, the 

marginal utility decreases (Liao & Zheng, 2018). Under this consideration, the utility 

gained by the tourist at jth stage can be calculated by Eq. (2) according to the duration 

that needs to be optimized and the preference value provided by tourists. In this 

equation, ( )iMS t   denotes the marginal sensation acquired by the tourist from vi at 

moment t, a non-negative decreasing function of time. We set xij as a 0–1 discrete 

variable: if the tourist visits vi at the jth stage, xij = 1; otherwise, 0. s
jt  indicates the 

start time at vertex Λj, whereas a
jt  is arrival time at Λj. These two values are usually 

unequal because the time windows of the vertices may result in waiting time. Thus, s
jt  
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can be obtained as follows (see Eq. (3)): 

( )
1

d
e
j

s
j

Nt
j i i ijt

i
u MS t p x t

=

  = ⋅ ⋅   ∑∫                      (2) 

max ,s a
j j it t to =                            (3) 

We suppose that tourists obtain zero utility while waiting and during traffic. Thus, 

the utility can be obtained as follows: 

1

M

j
j

u u
=

=∑                                  (4) 

3.2. Model constraints 

A tour route design has personalized and permanent technical constraints. 

Implementing permanent technical constraints ensures the validity and real meaning of 

the designed routes, as shown in Eqs. (5)–(10), whereas implementing personalized 

constraints to ensure the trip is within the time budget limit is the premise to meet an 

individual’s needs and preferences (Rodriguez, et al., 2012), as illustrated in Eq. (11). 

Specifically, Eqs. (5) and (6) set a limit that a tourist starts her/his trip at one of the 

initial starting locations and ends the trip at one of the final arrival locations. Eq. (7) 

guarantees that only one attraction can be visited per stage, from the second one to the 

M−1th stages of the entire trip: 

1 1
∈ ∈

= =∑ ∑
i I j

i jM
v v

x x
FV V

                      (5) 

1 1
1

= ∈ = ∈

= =∑ ∑ ∑ ∑
i i

M M

ij ij
j v j v

x x
I FV V

                    (6) 

1, 2,3, , 1
∈

= = −∑
i

ij
v

x j M
AV

                  (7) 

Equations (8)–(9) ensure the connectivity of time and path, where yij is a 0–1 

discrete variable. If a visit to vi is followed by a visit to vj, then we set yij to 1; 0, 

otherwise. If a tourist visits vi at the jth stage and enters vi from the kth entrance, then 

we set 0–1 discrete variable =1ijkg ; otherwise, =0ijkg . Similarly, if a tourist visits vi at 

the jth stage and leaves vi from the kth exit, then we set 0–1 discrete variable =1ijkh ; 

otherwise, =0ijkh . Eq. (10) restricts that a tourist enters through one of the entrances to 

visit the vertex and then leaves through one of the exits. Eq. (11) limits the total visit 

time of the trip to a maximum time budget Tmax, where a
Mt  is the arrival time at ΛM and 
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τ is the time that the tourist starts the trip: 

( ) ( )1 1, , 1,2, , 1e a
j j j jt t t j MΛ Λ + ++ = ∀ = −              (8) 

0, ; ,
i I A k A F

ij jk j i j j k
v v

y y v v v v v
∈ ∪ ∈ ∪

− = ∀ ∈ ≠ ≠∑ ∑ A
V V V V

V            (9) 

1 1
= =

= =
∑ ∑

EN EX
i iK K

ijk ijk ij
k k

g h x                         (10) 

max
a
Mt Tτ≤ +                            (11) 

4. Solution approach 

The problem proposed in this study is a generalization of the orienteering problem, 

which has been proven to be NP-hard (class of problems that are at least as hard as the 

hardest problems in NP) (Golden, et al., 1987). This implies that deriving the optimal 

solution of the model in a limited time is difficult. Moreover, our model considers the 

influence of spatial heterogeneity on tour recommendation, which makes it more 

complex and increases the risk of falling into local optimum. Therefore, we propose a 

two-phase HA that combines improved ABC and DEA, including the preprocessing and 

evolution phases. ABC algorithm, first introduced by Karaboga (2005). DEA is 

specifically applicable to solving continuous optimization problems. The 

comprehensive framework of HA is illustrated in Fig. 2. The details of each phase are 

presented in Sections 4.1 and 4.2. 
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Evolution phase

Preprocessing phase

Start

Attraction
characterization

Initial solution set 
generation

Information cell 
array construction

Employed bees

Onlooker bees

Scout bees

DEA algorithm

End

Solution coding

Yes

No

Iterations<G?

 
Fig. 2 Procedure of the proposed method 

4.1. Preprocessing phase 

In the preprocessing phase, four tasks are conducted: attraction characterization, 

information cell array construction, solution coding, and initial solution set (ISS) 

generation. 

As previously mentioned, a tour route may contain attractions with different 

spatial structures: POI, LOI, and AOI. For example, the route as shown in Fig. 3 (a) 

means that the tourist starts her/his trip from the initial start location (v1) and then 

successively visits v3, v7, v5, v6, and v2. Finally, the trip ends at the final end location 

(v4). For the visited attractions, v3 and v7 are POIs, v5 is an AOI, and v6 and v2 are LOIs. 

To facilitate the subsequent processing of the approach, each entrance and exit of 

vertices should also be characterized. Therefore, the information of attractions in Fig. 

3 (a) is transformed to Fig. 3 (b). 
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 ·        ·
Initial start 

location

Final end 
location

v3

v7

v5 v6

EN1

EN2

EX1

EN3/EX3

EN1/EX1

EN2/EX2

v1 v3 v7 v5 v6

EN5
1

EN3
1

EN5
3

EX5
1

EX5
3

EN6
1

EN6
2

v4

EX6
1

EX6
2

(a)

(b)

    ·

EN1

EX1v2

v2 EX2
1EN2

1EX3
1 EN7

1 EX7
1 EN5

2

v1
v4

EX2

EX5
2

 
Fig. 3 Example of attraction characterization 

Certain vertices contain multiple entrances and exits. This leads to multiple paths 

between a pair of vertices. For example, six paths exist between the pair (v5, v6) (as 

shown in red lines in Fig. 3 (a)). Choosing different entrances/exits indicates that 

different path selections are available, which may correspond to different travel times. 

This information can significantly affect trip optimization. Most previous studies use a 

regular matrix to store information without considering the multiple entrances/exits of 

attractions. Given that the existing methods are incapable of solving the problem 

concerned, we design a cell array embedded in different dimension matrices, which 

denote a distance matrix between two vertices. For clarity, we provide a specific 

example to illustrate such a structure, as shown in Fig. 4 (a). The structure contains the 

distance information among vertices (v1, v2, …, v7). As displayed in Fig. 3, six paths 

exist between the pair (v5, v6) and two paths between the pair (v6, v2). Thus, two cell 

arrays (v5→v6, shown in the red grid; v6→v2, presented in the blue grid) denote two 

matrices with different dimensions, as illustrated in Fig. 4 (b). 

v1

v1

v7

v2

v4

v2 v3

(a) (b)

5 6v v→

6 2v v→

( )1 1
6 2,t EX EN

( )2 1
6 2,t EX EN

1
6EX
2
6EX

1
2EN

1
5EX
2
5EX
3
5EX

( )1 1
5 6,t EX EN

( )2 1
5 6,t EX EN

( )3 1
5 6,t EX EN

( )1 2
5 6,t EX EN

( )2 2
5 6,t EX EN

( )3 2
5 6,t EX EN

1
6EN 2

6EN

 
Fig. 4 Cell array embedded in different dimension matrices 

After characterizing the attractions and constructing the information cell array, we 

must code the solutions. Most evolution algorithms require an advanced determination 

of solution dimensions (Geiger & Eskandari, 2008), which cannot be applied to the 

present problem owing to possible variations in the vertices that a tourist visits. To code 
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the solutions, Zheng et al. (2017) design a double-layer, variable-length chromosome 

that involves vertex selection, sequencing, and time allocation. In addition to these three 

elements, our study must determine the entrances/exits of the chosen vertices. Thus, we 

introduce a variable-form nectar with four pheromones to code the solutions. The two 

upper pheromones are the vertex selection of the route and the time spent at each chosen 

vertex, whereas the two lower pheromones indicate the entrances and exits of the 

chosen vertices. This solution coding is illustrated with an example in Fig. 5, which 

depicts that the tourist starts the trip at v1, then successively visits v3, v7, v5, v6, v2, and 

v4, where the trip ends. At v3, v7, v5, v6, and v2, the time spent are 69, 18, 6, 43, and 26 

minutes, respectively. The entrance and exit for each chosen vertex are ( )1 1
1 1,EN EX  , 

( )1 1
3 3,EN EX , ( )1 1

7 7,EN EX , ( )3 2
5 5,EN EX …, ( )1 1

4 4,EN EX , as shown in the red lines in Fig. 5 

(a). 

 ·        ·
Initial start 

location

Final end 
location

v3

v7

v5 v6

EN1

EN2

EX1

EN3/EX3

EN1/EX1

EN2/EX2

    ·

EN1

EX1v2

v1

v4

EX2

(b)

v1

0
1
1

v3 v7 v5 v6 v2

69 18 6 43 26
1 1 3 1 1
1 1 2 2 1

v4

0
1
1

(a)

 
Fig. 5 Examples of solution coding 

Each employed bee (EB) corresponds to a food source (solution). The quality of 

ISS strongly influences the performance of our approach. To ensure the diversity of 

solutions, SN (population size) solutions are generated based on the constraints as 

presented in Section 3.2, and they are randomly assigned to the EBs. 
4.2. Evolution process 

The goal of the evolution process is to obtain solutions with greater utility, 

matching an individual tourist’s needs. As described in Section 4.1, a solution is coded 

as a variable-form nectar with four pheromones, including the selection and sequencing 

of vertices, the length of time at each vertex, and the choice of vertices’ entrances and 

exits. We use an improved ABC algorithm and a DEA to evolve these four variables. 

The improved ABC algorithm optimization includes three discrete variables: selection 

of vertices, sequencing of vertices, and the choice of vertices’ entrances and exits. The 
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DEA is applied to optimize the visit time for the corresponding vertices. 

The ABC algorithm is developed by Karaboga (2005) based on honeybees’ 

behavior. In the ABC system, EBs and onlooker bees (OBs) select food sources based 

on their experiences and nestmates and then adjust their positions. Scout bees (SBs) fly 

and randomly select food sources without using experiences. The ABC system 

combines local and global search methods. Local search methods are used by EBs and 

OBs, whereas global search methods are used by SBs. Given the simplicity, flexibility, 

and robustness of the ABC algorithm, it has been extensively used in optimization 

problems with multiple variables (Cura, 2014; Karaboga, et al., 2014; Kıran, et al., 2013; 

Martín-Moreno & Vega-Rodríguez, 2018; Omkar, et al., 2011; Pan, et al., 2011; Szeto, 

et al., 2011). Realizing that our study involves interacting elements, we improve ABC 

in two ways. (1) Four neighborhood structures are embedded in ABC to enhance the 

local search ability. (2) A new group of bees named “employed scout bee (e-SB)” is 

designed to further optimize the choice of entrances/exits of attractions. 
4.2.1. EB process 

A solution is denoted as a variable-form nectar with four pheromones. In this study, 

the EBs focus on the optimization of the first pheromone, that is, the selection and 

sequencing of vertices. Each EB is linked with a particular food source (solution). At 

each iteration, EBs search for new food sources and assess their fitness (the utility of 

the solution). When the food source position cannot be improved further, ABC 

algorithm abandons the food source after a predetermined number of iterations limit 

(Karaboga, 2005). However, to solve the mixed tourist trip design problem, we suggest 

the extract-insert search strategy to allow the algorithm a greater opportunity to escape 

from a local optimum. All four applied neighborhood structures are introduced: 

insertion (select a vertex and then insert it into the optimal location), inversion (reverse 

the sequence between two vertices), swap (select two vertices and then exchange their 

positions), and extract-insert (exclude a random number of vertices and insert non-

included vertices). For the detailed illustration of these neighborhood structures, we 

refer to Cura (2014). 

We suppose that the solution loaded on an EB is the current solution (CS), and the 

fitness value of CS (f(CS)) represents the utility of the corresponding solution, which 

can be obtained through Eq. (4). First, the EB randomly selects one of the above 

neighborhood structures to search for a new solution (NS). The fitness value of NS 

(f(NS)) is also calculated based on Eq. (4). If (f(NS) > f(CS)), then a good solution is 

found. Subsequently, the CS of the EB is replaced with the NS, and the number of trials 
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(t(EB)) is reset to 0; otherwise, the EB keeps the current solution, and t(EB) is added by 

1 (i.e., t(EB) = t(EB)+1). 
4.2.2. OB process  

After the EB searching behavior is completed, EBs return to the hive with 

information about the food sources (solutions) and head to the dance area to share the 

information. OBs waiting in the nest selects a food source according to such information. 

Specifically, an OB chooses a solution based on the probability values, which can be 

obtained by using the fitness values that EBs provided. In view of this purpose, the 

roulette wheel selection method can be adopted. This fitness-based selection technique 

is proposed by Goldberg (1989). Hence, many onlookers are attracted to rich sources, 

resulting in positive feedback behavior. The probability value pm with which EB is 

selected by an OB can be calculated using Eq. (12), where CSm means the solution 

loaded on EBm, and SN denotes the population size: 
( )
( )∑

=

=

SN

m
m

m
m

CSf

CSfp

1

.                          (12) 

After an OB selects an EB and its corresponding solution, a neighborhood solution 

is determined by randomly using one of the above neighborhood structures again. Its 

fitness value is computed using Eq. (4). Following the EB process, a greedy selection 

is used between the originally selected solution (CSm) and the neighborhood solution. 

If the neighborhood solution dominates CSm, then CSm is replaced by the neighborhood 

solution. 

4.2.3. SB process 

In the general ABC algorithm, unemployed bees who randomly select their food 

sources are named scout bees. In addition to general SBs (g-SBs), a new group named 

e-SB is designed to further optimize the choice of entrances/exits of attractions. The 

details of both groups are presented in the following: 

(1) g-SBs. As mentioned earlier, if the solution to an EB is unable to be improved 

through a predetermined number of trials (named abandonment criteria, limit), that is 

t(EB) = limit, then the EB becomes g-SB, and its solution is abandoned. The converted 

g-SB begins to randomly seek a new solution, which can be assigned to the 

corresponding EB, whose solution has been abandoned. Hence, poor solutions are 

discarded, and negative and positive feedbacks are balanced.   

(2) e-SBs. e-SBs are special bees that are designed to optimize the entrances and 

exits of attractions. Such entrances and exits are represented as the two lower 
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4.1). Each e-SB only 

corresponds to a single EB in the whole evolution process, and its optimization is based 

on the solution of the EB. Specifically, e-SBs optimize the route whose vertex selection 

and sequencing have been optimized by EBs and OBs. e-SBs seek good solutions 

according to the following steps. First, the paths set between each pair of adjacent 

vertices (Λ1, Λ2), (Λ2, Λ3), …, (ΛM-1, ΛM) are determined, and the path sets are denoted 

as S1, S2, …, SM-1. Second, the shortest path ( ∗
ip ) of the ith path set (Si) is found. Finally, 

the starting and ending points of ∗
ip  are marked as the exit and entrance vertices Λi 

and Λi+1, respectively. For clarity, the pair (v5, v6) shown in Fig. 3 is taken to illustrate 

this process. Six paths are observed between pair (v5, v6), and the travel time of the path 

between 3
5EX  and 1

6EX  is the shortest among the six paths. Thus, 3
5EX  and 1

6EX  are 

selected as the exit of v5 and the entrance of v6, respectively (Fig. 6). 
v1

0
1
1

v3 v7 v5 v6 v2
69 18 6 43 26
1 1 3 1 1
1 1 2 2 1

v4

0
1
1

v1

0
1
1

v3 v7 v5 v6 v2
69 18 6 43 26
1 1 3 1 1
1 1 3 2 1

v4

0
1
1  

Fig. 6 Example of an e-SB 

4.2.4. DEA process 

Typically, each iteration involves all four processes: EBs, OBs, SBs, and DEA. The 

optimization of vertex entrance/exit and time allocation is based on that of vertex 

selection and sequencing. In addition, in the early stage of evolution, the optimization 

intensity of vertex selection and sequencing is strong. Thus, the optimization of vertex 

entrance/exit and time allocation in the early stage of evolution cannot effectively 

improve the quality of final solutions but can reduce the efficiency of the algorithm. To 

reach an equilibrium of solution quality and algorithm efficiency, we improve the 

evolution structure by introducing the adaptive evolutionary parameter (pe), which can 

be calculated using Eq. (13). In this equation, G is the iteration times of the algorithm, 

and Iter refers to the current iterations. pe increases as the number of iterations increases, 

indicating that the optimization intensity of vertex entrance/exit and time allocation 

increases gradually: 
1

1ep
G Iter

=
− +

                            (13) 

5. Field experiment 
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5.1. Field  

The field selected for the experiment is Kulangsu (or Gulangyu), a tiny island of 

merely 1.88 km2 located southwest of Xiamen City in China (Fig. 7). The island is a 

UNESCO World Cultural Heritage Site, surrounded by various attractions such as 

heritage buildings, beaches, gardens, rugged terrain, and historical sites. The only 

access to the island is two dedicated ferries for tourists, operating between Kulangsu 

and Xiamen, with the third one open only to local residents (shown as red dots in Fig. 

7). The island is car-free, walking is the only way for tourists to tour around the island. 

Approximately 90% of the tourists visiting the island chose the one-day tour option, 

according to official statistics (Zheng & Liao, 2019). A dilemma exists between the 

number of attractions in Kulangsu and the limited time tourists have for their tour, 

which makes it an ideal case for our study. 

 
Fig. 7 Map of Kulangsu Island 

5.1.1. Basic information about the attractions  

Kulangsu is dotted with plenty of attractions. This study selects 39 of the most 

popular ones for the study. Locations of the 39 attractions are indicated in Fig. 7. The 

number of entrances and exits for each attraction can significantly affect route planning. 

The information is listed in the fifth column of Table 3. Note that certain attractions are 

open areas (e.g., Gangzaihou Seaside Resort). Thus, tourists can enter and leave from 

anywhere. For these attractions, the number of entrances and exits can be considered 

infinite. In addition, the average time spent by earlier tourists (ti) at each attraction can 
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influence the development of the initial solution in the preprocessing phase. The 

responses from a survey with tourists and Kulangsu tourism service staff members 

serve as data on ti. We randomly conducted several interviews with tourists leaving 

Kulangsu. They wrote down two kinds of information: (1) the attractions they had 

visited, and (2) the time they had used at each attraction. We deleted the values that are 

too large or too small to calculate the average time spent at each attraction. The sixth 

column in Table 3 presents the results. 
Table 3 Attractions in Kulangsu  

No Name Spatial structure Time window 
Number of 

entrances/exits 
tj (min) 

v1 Shuzhuang Garden AOI [05:00–21:30] 2, 2 60 
v2 Gangzaihou Seaside Resort AOI [00:00–24:00] Infinite, Infinite 10 

v3 
International Calligraphy and 

Carving Gallery 
POI [08:15–18:15] 1, 1 15 

…. ….. …. ….. ….. ….. 
v36 Gulang Rock POI [00:00–24:00] 1, 1 10 
v37 Merihua Beach AOI [00:00–24:00] Infinite, Infinite 10 
v38 Shell Museum AOI [08:00–18:00] 1, 1 60 
v39 Gusheng Tunnel LOI [00:00–24:00] 2, 2 5 
v40 Sanqiutian Ferry Terminal Ferry Terminal [00:00–24:00] 1, 1 -- 
v41 Neicuoao Ferry Terminal Ferry Terminal [07:20–18:40] 1, 1 -- 

5.1.2. Basic information of the participants  

We recruited 100 tourists to participate in our survey at Sanqiutian and Neicuoao 

Ferry Terminals on August 11, 19, and 27, 2019. We conducted a simple oral interview 

with the participants. We described to the participants the 39 attractions using pictures 

and collected the willingness respondents rated to visit each attraction based on a scale 

from “0” (no interest to visit the attraction) to “1” (the highest interest to visit the 

attraction). Subsequently, the respondents recorded their time budget. Respondents' 

demographic information was requested, too. Among all our participants, 37 were male, 

and 63 were female; 45 were recruited at Sanqiutian Ferry Terminal, whereas 55 were 

gathered at Neicuoao Ferry Terminal; 39 were recruited for the first survey, 34 during 

the second, and the remaining 27 were invited for the final survey. Table 4 lists the 

aforementioned tourist information. 
Table 4 Sample tourist preferences and time budget 

Tourist Gender Preferred attractions  Time budget 

1 M [.50, .36, .29, ..., .20, .23, .29] 
5 hours, 

[8:00–13:00] 
2 F [1.0, .40, .28, …, .94, 1.0, .90] 5 hours, 
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[8:00–13:00] 
… … … … 

100 M [.63, .88, .64, …, 1.0, .74, .81] 
12 hours, 

[8:00–20:00] 

5.2. Algorithm parameters 

The performance of our approach can be considerably affected by algorithm 

parameters, including SN, G, the numbers of EBs (Neb), OBs (Nob), g-SBs (Ng-sb), and e-

SBs (Ne-sb) in the colony, abandonment criteria (limit), and differential evolution rate 

(Fs). Inappropriate SN and G values may reduce the performance of the approach: too 

small SN and G may increase the risk of reaching a local optimum, whereas too large 

values may cause computational inefficiency. In general, Neb and Nob are the same and 

equal to SN, that is, Neb = Nob = SN. Moreover, Nsb is usually set to 1 (Guo & Zhang, 

2017; Kıran, et al., 2013). In this study, a new group of bees called e-SBs is designed to 

optimize the choice of entrances/exits of attractions. Ne-sb equals to Neb, as e-SB is 

mapped one-to-one with EB. The parameter limit is set to SN×D, where D is the 

dimension of the solution and equals to the number of vertices (N). The parameters of 

our algorithm are presented in Table 5. 
Table 5 Algorithm parameters 

 SN G Neb Nob Ng-sb Ne-sb Limt Fs 

Value 15 10000 15 15 1 15 615 0.1 

5.3. Model performance evaluation 

Considering the personal characteristics, preferences, and constraints of the 100 

participants (Table 4), the essential information of Kulangsu (Table 3), and algorithm 

parameters (Table 5), we designed tour routes using our method along with four 

baseline methods, namely, iteration local search (ILS), standard genetic algorithm 

(sGA), particle swarm optimization (PSO), and ant colony optimization (ACO). To 

prevent random errors, each algorithm creates the route for each tourist 30 times and 

averages the total utility of results 30 times (Karaboga, 2005). Figure 8 shows the 

average utility obtained by each tourist through these five methods. 
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Fig. 8 Average utility by methods (HA, ILS, sGA, PSO, and ACO) 

Several paired sample t-tests were run to examine whether any statistical 

differences exist among the utility achieved by the five methods of HA, ILS, sGA, PSO, 

and ACO. Table 6 lists the means and standard deviations of the utility generated from 

the five methods. Table 7 shows the results of the paired t-tests. For the first pair (HA–

ILS), the gap mean was 2.442, and HA reached a significantly higher utility (M = 40.811, 

SD = 19.352) than ILS (M = 38.369, SD = 17.887) (t(100) = 10.222, p < 0.05). 

Analogously, the second (HA–sGA), third (HA–PSO), and fourth pairs (HA–ACO) 

showed an obvious advantage of our proposed method over sGA, PSO, and ACO in 

improved utility. 
Table 6 Basic statistics of paired samples 

 Mean N 
Standard 
deviation 

Standard 
error mean 

Pair 1 HA 40.811 100 19.352 1.935 
ILS 38.369 100 17.887 1.789 

Pair 2 HA 40.811 100 19.352 1.935 
sGA 35.006 100 17.301 1.730 

Pair 3 HA 40.811 100 19.352 1.935 
PSO 36.847 100 17.675 1.768 

Pair 4 HA 40.811 100 19.352 1.935 
ACO 35.416 100 16.449 1.645 

 
Table 7 Results of paired sample t-tests 

 
Paired differences 

t df Sig. (2-tailed) 
Mean Standard Standard 95% Confidence 
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deviation error mean interval of the 
difference 

Lower Upper 

Pair 1 HA–ILS 2.442 2.389 0.239 1.968 2.916 10.222 99 0.000*** 
Pair 2 HA–sGA 5.805 3.655 0.365 5.080 6.530 15.883 99 0.000*** 
Pair 2 HA–PSO 3.964 2.751 0.275 3.418 4.510 14.407 99 0.000*** 
Pair 3 HA–ACO 5.395 3.690 0.369 4.663 6.127 14.621 99 0.000*** 

*p < 0.05, **p < 0.01, ***p < 0.001. 
 

5.4. Model efficiency evaluation 

We now compared our proposed approach with the above four algorithms (ILS, 

GA, PSO, and ACO) to analyze the efficiency of HA. The two tourists from each group 

with a time budget of 4, 8, and 12 hours were selected as the test samples, and we ran 

each algorithm 30 times. To depict the relationship between the result and iterations, 

the optimization history of HA is provided in Fig. 9. As our approach pays attention to 

the optimization of discrete and continuous variables and provides more opportunities 

to escape from local optimality, the efficiency of the algorithm may be limited. 

Therefore, we flexibly adjusted the number of iterations to 2,000 (denoted as LHA) and 

kept other parameters of the algorithm unchanged, to achieve a better trade-off between 

efficiency and performance. 

 
Fig. 9 Optimization history of HA 

Table 8 shows the results of five methods for various time budgets Tmax and the 

corresponding number of tourists where the average utility U and the average 

computational time T are reported. The performance of HA and LHA is optimal for all 
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the runs, especially in optimizing the route for a longer time budget, whereas ILS shows 

great advantages in computational time. The structure of our approach, which focuses 

on finding the best choice of entrance and exit and the duration at attractions, becomes 

very time consuming to calculate. 

Table 8 Comparison of efficiency between different methods 
  HA LHA ILS GA PSO ACO 

Tmax No. U T U T U T U T U T U T 

4H 28 23.53 10.93 23.21 2.54 20.83 0.09 18.09 3.20 18.02 2.75 19.35 3.37 
4H 77 21.87 11.42 21.56 2.54 21.44 0.06 17.69 3.16 20.87 2.67 20.34 3.37 
8H 16 44.00 13.67 43.11 3.39 38.39 0.05 38.86 3.55 39.30 3.41 35.00 3.70 
8H 58 47.71 15.60 46.64 3.17 42.73 0.12 40.29 3.53 41.63 3.34 43.14 3.38 

12H 22 72.86 13.46 71.53 3.47 61.38 0.09 58.28 3.97 58.18 4.25 62.55 3.55 
12H 35 82.77 13.79 82.17 3.60 72.13 0.10 65.53 4.03 65.52 4.29 72.04 4.39 

5.5. Case demonstration 
The results indicate the advantage of our approach in accumulating more utility 

for the tourist over the other four methods, indicating that it can help improve the 

effectiveness of the tour recommender system by considering the heterogeneity of 

tourist attractions’ spatial structure and the time spent at each attraction. By contrast, 

most previous studies abstract attractions as pure vertices or pure arcs, ignoring the 

multiple entrances/exits of attractions, leading to unnecessary detours or additional time 

en route between attractions. In general, longer time at attraction and less time en route 

provide greater utility (Zheng, et al., 2020a). Our approach reflects the actual situation 

of attractions’ spatial structure and incorporates time optimization, thus helping tourists 

avoid unnecessary detours or extra time en route between attractions. 

For validation, we performed a comparative test to make a distinction between our 

approach and ILS presented by Gavalas, et al. (2016). For example, the first tourist in 

Table 4 plans to visit Kulangsu for 5 hours (from 8:00 to 13:00). We employed HA and 

ILS to create routes for this tourist, as shown in Fig. 10 (the left shows our proposed 

HA, whereas the right indicates ILS). As displayed in the figures, compared with ILS, 

HA designs routes that reduce the amount of time spent on the road, thereby increasing 

the number and time of visits to attractions for achieving additional utility, as presented 

in Table 9. 

Table 9 Information about tour routes designed by HA and ILS 

Method 
Number of attractions 

visited 
Time spent in the 

attractions 
Time spent on 

the road 
Utility 

HA 21 243 57 25.49 
ILS 13 225 75 24.26 
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Fig. 10 Tour routes designed by HA and ILS 

Given the full consideration of the attractions’ spatial structure, the route designed 

by our approach can avoid “backtracks” as much as possible. These so-called 

“backtracks” refer to repeating the route taken to reduce the marginal utility of tourists 

or cause additional traffic time consumption. For example, both the routes designed by 

HA and ILS (Fig. 10) include the sub-route “The Bagua Building (Organ Museum) (v31) 

→ Longshan Tunnel (v32) → Epigraphy on Restoration of the Sanhe Taoist Temple 

(v33).” Our approach considers that Longshan Tunnel (v32) is a line-shape attraction and 

avoids “backtrack” by optimizing the choice of v32’s entrance and exit. By contrast, the 

route designed by ILS has a “backtrack,” which may reduce the marginal utility of the 

tourist. Figure 11 illustrates the comparison of these two approaches (the left shows our 

proposed HA, whereas the right indicates ILS). The dotted line in the right figure 

represents that the tourist walked twice in Longshan Tunnel. 

 
Fig. 11 Tour routes designed by HA and ILS (backtracks) 
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In addition, certain tourist attractions contain multiple entrances/exits. Therefore, 

choosing appropriate stations to enter and leave attractions is important in planning 

trips. Our approach considers the multiple entrances and exits of attractions to avoid 

unnecessary detours. For example, both the routes designed by HA and ILS (Fig. 10) 

contain the sub-route “Yu Garden (v9) → Xiamen Music School (v8).” Yu Garden (v9) 

has three entrances ( 1
9EN , 2

9EN , and 3
9EN ) and three exits ( 1

9EX , 2
9EX , and 3

9EX ) (Fig. 

12). Our approach optimizes the choice of entrances/exits of attractions. The tourist 

enters v9 from 3
9EN  and leaves the attraction from 1

9EN , which is the nearest exit from 

v8 (left of Fig. 12). In the route designed by ILS, the tourist enters v9 from 2
9EN  and 

leaves the attraction from the same station, adding an unnecessary detour (the yellow 

curves in the right of Fig. 12). Detours can undoubtedly increase the travel time between 

attractions. For example, the traffic time between v9 and v8 is 1 minute in the route 

designed by HA, but 4 minutes in the route presented by ILS. 

 
Fig. 12 Tour routes designed by HA and ILS (detours) 

6. Discussion and conclusions 

Providing information services such as fit-for-purpose recommendations is 

essential for firms to successfully compete in today’s market environment (Feng, et al., 

2015; Gorgoglione, et al., 2019). One of the neglected issues in the tour recommender 

research is the heterogeneity of attractions’ spatial structure. Failing to consider it may 

lead to potentially infeasible or suboptimal recommendations for the users. This study 

proposes a novel model with solutions coded using a variant-form nectar with four 

pheromones, optimized with variables combining improved ABC and DEA. Our 

proposed model adopts various measures to reach an equilibrium of solution quality 

and algorithm efficiency (e.g., improving the evolution structure, embedding 
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neighborhood search structure, and adding a new group of bees in the ABC algorithm). 

We test our new model along with four benchmark models using a field experiment that 

verifies the superior performance of our model. 
This study offers an improved model of tourist trip design that integrates spatial 

heterogeneity. The design provides significant improvement for tour recommender 

systems that optimize tourism experience; thus, our model can help tourism 

organizations provide more enjoyable trips. This is important because system design 

should be user-centered, and user well-being is of paramount importance. Service 

providers can integrate our proposed model to improve their existing recommender 

systems. In addition, our model can be further integrated with other intelligent systems, 

such as tourist personal conversational agents, which can be applied across multiple 

channels such as websites, smartphones, kiosks, and service robots to enhance tourist 

experience, satisfaction, and loyalty. 

There are some limitations in this study, which are worth considering in future 

research. First, although we provided the evidence that the time spent in an attraction 

can be regarded as a commodity, the utility of stay with time requires further exploration, 

based on different tourist characteristics and destination characteristics. Second, for 

island destinations that have multiple ferry terminals, the choices of terminals affect the 

route structure, thereby increasing the complexity of the design problem. Future studies 

should take into consideration the choices of ferry terminals in the trip design for island 

destinations. Finally, as tourists may change their minds owing to the changes in the 

weather condition, traffic condition, personal issues, tiredness, or mood, future 

researchers may consider the development of a dynamic tour recommender system that 

can adjust in real time to the changes of the contexts and tourist preferences. 
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