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1 Introduction

Hydrodynamics [1] is a well-established theoretical framework which universally describes
the long wavelength, low frequency behaviour of interacting systems at finite temperature.
Essentially, hydrodynamic theory is a description of conserved quantities and the mani-
festation of the corresponding symmetries in a system in thermal equilibrium. Theories
with widely varying microscopics can have the same macroscopic hydrodynamic descrip-
tion. One possible explanation why such a universal description is possible is that all
operators except conserved charges have parametrically short lifetimes compared to the
scale of interest and, once the longest-lived non-conserved operator1 has decayed away, the
hydrodynamic description becomes viable (see figure 1).

The hydrodynamic framework may be generalised to systems where the conserved
charges are those of a higher-form symmetry [5] which counts the number density of ex-
tended objects. A recent exploration of this idea [6] (see also [7–10]) shows that the resulting
hydrodynamics of a one-form U(1) charge reproduces the theory of magnetohydrodynamics
(MHD).2 This should not come as a big surprise. MHD is, after all, a low energy effective
theory of plasma where the (dynamical) electric field is screened — the one-form U(1)
symmetry associated to electric flux is explicitly broken. This implies that in, for example,

1While this operator language is more familiar in the context of quantum systems, it is also applicable to
classical systems via e.g. memory matrix formalism [2, 3]. A more modern introduction may be found in [4].

2For the formulation of MHD that closely resembles higher-form symmetry formulation, see e.g. [11–13].
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Figure 1. A cartoon illustration of the lifetime of operators of a theory that exhibit hydrodynamic
behaviour at late time. Here, there is a parametrically large gap between conserved charges ρ and
the rest. The life time τ1 of the longest-lived non-conserved operator, denoted by O1 set the time
scale in which hydrodynamics becomes applicable.

a plasma at zero magnetic field (where the Ohm’s law j = σE is a good approximation)
the electric field has a finite lifetime,

δE ∝ exp(−t/τE) ⇐⇒ 〈Ei(−ω)Ej(ω)〉 ∼ δij

ω + i/τE
, (1.1)

with the lifetime of the electric field τE = 1/σ. The conductivity σ can be computed from
first principles. For instance, quantum electrodynamics at weak coupling, it can be written
as [14]3

σ ∝ T

e2 log e−1 , (1.2)

where e is the electromagnetic coupling. The lifetime of electric field τ ∼ 1/T , is then
much shorter than the scale t� 1/T (or ω/T � 1 in Fourier space) where hydrodynamic
behaviour is expected. If, in this late-time limit, all other operators except energy density
T tt and the momentum T ti have already decayed away, one can expect the hydrodynamic
description of a plasma to be governed by

∂µT
µν = 0 , ∂µJ

µν = 0 . (1.3)

The conserved currents Tµν and Jµν are expressed in terms of energy, momentum, magnetic
flux J ti ≡ Bi and their conjugates, organised order by order in the gradient expansion.
This formulation of MHD only requires macroscopic consistency and does not require the
introduction of the gauge field ?J = F = dA which, due to screening effect, is not a
long-lived degree of freedom.

This brings us to the central question of the present paper: is a hydrodynamic descrip-
tion of the form (1.3) applicable in the limit low temperature compared to magnetic flux
density T 2/|B| � 1? This question is important if one wants to apply the MHD descrip-
tion to astrophysical plasmas where the magnetic field is many orders of magnitude larger
than the scale set by the temperature.4 If one were to naively extrapolate (1.1)–(1.2),
the lifetime of the electric field appears to become arbitrarily long as the temperature
decreases. However, there exists a macroscopic description of plasma in this regime that

3The fact that this quantity has only been computed at the beginning of this century indicates the
difficulty of the required computations.

4To get some intuition of the ratio between T/
√
B in the setup with astrophysical interest, let us consider

the magnetosphere of the pulsar. Here, the typical magnetic field strengh is ≈ 108 Tesla (or ∼ 1011 eV2

in natural unit), see e.g. [15] and reference therein. On the other hand, temperature can be generously
estimated to be of range 100 − 102K (or 10−5 − 10−3 eV in the natural unit).
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has been successfully applied. This theory is called force-free electrodynamics or FFE, and
has been used extensively in astrophysical setups such as in the magnetosphere of black
holes [16, 17], neutron star [18] and solar corona [19] just to name a few. In its conventional
form, this theory is applied to a system which is magnetically dominated (i.e. |B2| > |E2|
or, covariantly FµνFµν > 0) and whose dynamics is governed by

εµνρσFµνFρσ = 0 , (1.4a)
Fµν∇λF λν = 0 . (1.4b)

Here, the first relation implies that E · B = 0 while the second relation implies that the
force jµelFµν , with j

µ
el := ∇νF νµ via Maxwell’s equations, acting on plasma vanishes (hence

the name force-free electrodynamics). More details on the geometric and effective action
view point of FFE can be found in e.g. [20, 21] and [22–25]. One should emphasise that
the system of equations in eq. (1.4) is independent of the microscopic details of the cold
plasma, which then strongly resembles hydrodynamic descriptions. In fact, it turns out
that (1.4) can arise in a special limit where T �

√
|B| of a hydrodynamics description

with one-form U(1) symmetry in (1.3), see [6, 24, 25].5
The existence of FFE is usually justified by saying that the cold plasma is, on one hand,

dense enough to screen the electric field (1.4a) but, on the other hand, dilute enough so
that force-free condition (1.4b) is applicable. This statement can be made more precise in
the light of relations between the equations of FFE and hydrodynamics. Thus, we propose
a criterion for testing the validity of FFE using the lifetime of non-conserved operators —
FFE, or equivalently, hydrodynamic description of cold plasma in the T �

√
|B| limit, is

valid when the lifetime of all non-conserved operators is parametrically shorter than the
time scale of interest. A key advantage of this approach is that the operator lifetime can
be, in principle, computed explicitly from microscopic description and therefore allows one
to find the ‘cutoff’ scale where FFE description should break down.

Computing the operator lifetime from microscopic description is, however, not always
an easy task. In fact, we are not aware of a genuine computation directly from quantum
electrodynamics (in the sense of [14]) when both T and B are turned on. To simplify the
computations, we shall demonstrate the validity of FFE in the strongly interacting magne-
tised plasma with a holographic dual as proposed in [27, 28] where the one-form U(1) global
symmetry is taken into account via a two-form gauge field in the gravity dual. This provides
two key advantages. First, the computation of correlation functions boils down to solving
simple linearised differential equations (see e.g. [29]). Second, there is strong evidences that
charge neutral operators, apart from energy and momentum, have a parametrically short
lifetime in this class of theories.6 Therefore, we shall focus on non-conserved operators in

5Recasting of force-free electrodynamics in the hydrodynamic language also allows the systematic gra-
dient expansions [24, 26]. This could serve to classify correction to FFE in order to account for phenomena
such as pulsar radio emission where E ·B 6= 0.

6To be more precise, it has been shown in N = 4 supersymmetric Yang-Mills theory, which constitutes
the matter sector of the holographic model [27, 28], that there is no long-lived mode besides hydrodynamic
modes at any T 6= 0 and |B| = 0 [30]. A similar conclusion was reached for the same theory in the charge
neutral sector at finite non-dynamical magnetic field [31, 32].
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the electromagnetic sector of the theory: the electric flux operators, whose lifetime can be
extracted via two-point correlation function as in (1.1). This will provide strong evidence
for the validity of FFE limit in a strongly interacting holographic plasma.

On the technical side, the computations presented in this note show that there are
no quasinormal modes present in the vicinity of the hydrodynamic regime ω/T � 1 (and
ω/
√
|B| � 1). The pole in the electric flux correlation function in this regime then implies

that the operator has a parametrically long lifetime which could interfere with the hydro-
dynamic modes. The presence of such long-lived mode can be determined analytically in
the usual hydrodynamic regime of ω/T � 1 for a large class of theories. It is usually diffi-
cult to go beyond this regime towards the limit ω/T ∼ 1, ω/

√
|B| � 1. Such computation

can, however, be done analytically in the simple model of [27] thanks to the presence of the
BTZ×R2 bulk geometry in the deep IR [33]. We should also note that the treatment of a
(long-lived) non-hydrodynamic modes has been extensively used to determine the break-
down of hydrodynamic descriptions in the context of QFTs with holographic duals, see
e.g. [34–37].

The remainder of this paper is organised as the follows. In section 2, we summarise
the procedure involved in the computation of the two-point correlation function in the
holographic dual to one-form global symmetry. In section 2.1, we outline the method for
exploring the existence of decaying modes in the vicinity of the usual hydrodynamic limit
ω/T � 1 at T/

√
B| � 1. Due to the simplicity of the bulk geometry, we are able to

further extend the analysis to arbitrary value of ω/T with ω/
√
|B| � 1 and T/

√
|B| � 1.

This is described in section 2.2. Further open questions and future directions are discussed
in section 3.

2 The holographic model

A simple holographic dual to a strongly interacting field theory of matter charged under
dynamical U(1) electromagnetism (that is, the dynamical plasma described by low energy
MHD) and formulated in the language of higher-form symmetry was constructed in [27, 28].
We present a brief review here for completeness. The five-dimensional bulk theory is
comprised of Einstein gravity coupled to a two-form bulk gauge field, Bµν , and a negative
cosmological constant,

S =
∫
d5X
√
−G

(
R− 2Λ− L2

3 HabcH
abc

)
+Sbnd−

1
κ(Λ)

∫
r=Λ

d4x
√
−γ(naHaµν)(nbHbµν),

(2.1)
where H = dB and Bab is the bulk 2-form gauge field, Λ is the UV-cutoff, na is the
unit normal to the boundary, and Sbnd denotes the Gibbons-Hawking and gravitational
counter term. Roughly speaking, the two bulk fields Gab and Bab, asymptote to gµν and
bµν respectively, which then source the currents, Tµν and Jµν .

〈Tµν〉 ≡
2√
−g

δS

δgµν
, 〈Jµν〉 ≡

1√
−g

δS

δbµν
(2.2)
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The generating functional takes the form,

Z[gµν , bµν ] =
〈

exp
[
i

∫
d4x
√
−g

(1
2T

µνgµν + Jµνbµν

)]〉
(2.3)

and diffeomorphism invariance and gauge symmetry lead to the following equations,

∇µ〈Tµν〉 = (db)νρσ〈Jρσ〉 , ∇µ〈Jµν〉 = 0. (2.4)

H = db is the three-form field strength of the two-form external source. The equilibrium
solution of this holographic model is a domain wall interpolating between an asymptotic
AdS5 geometry in the UV (r →∞ in our convention), and BTZ ×R2 in the near-horizon
IR (r = rh). It is described by the following metric and gauge field

ds2 = GabdX
adXb = −r2f(r)dt2 + dr2

r2f(r) + e2V (r)(dx2 + dy2) + e2W (r)dz2 ,

B = h(r)dt ∧ dz with ?5 H = Bdx ∧ dy
(2.5)

Modulo the subtleties due to the mixed boundary conditions, this is nothing but the hodge
dual of the magnetised black brane solution of [33]. The radial coordinate is chosen such
that r →∞ corresponds to the usual asymptotic AdS5 with

f(r) = 1 , e2V (r) = e2W (r) = r2 (2.6)

in the r →∞ limit. The BTZ × R2 solution near the horizon can be written as

f(r) = 3
(

1− r2
h

r2

)
, e2V = B√

3
, e2W = 3r2 . (2.7)

The temperature is set by the horizon radius via 4πT = r2
h|f ′(rh)| = 6rh/L2. We set L = 1

for simplicity. Note also that B is related to the z-component of the ‘physical’ magnetic
field B which differs by a prefactor L or the 2-form gauge field coupling in the bulk (e.g.
if one were to define the action with S ∼

∫
(1/g2)H2). We will keep using B to emphasise

its holographic origin but there is no harm in thinking of it as simply B.
One interesting feature of this model is that the leading divergence of Bµν in the

Fefferman-Graham expansion is logarithmic. Thus, the definition of the source bµν requires
mixed boundary condition

bµν = Bµν(Λ)− 1
κ(Λ)〈Jµν〉 , with 〈Jµν〉 = −

√
−GnαHαµν (2.8)

Requiring the source bµν to be independent of the UV cutoff fixes the form of the ‘coupling
constant’ 1/κ(Λ) which turns out to be logarithmically running. This is a common feature
for fields with this type of near-boundary behaviour where the counterterm also plays the
role of the double-trace deformation [38, 39], see also [27, 28] for a discussion in the present
context. Mapping Jµν in to a more familiar dynamical field strength via Jµν = 1

2ε
µνρσFρσ,

one can see that the double-trace deformation plays a role similar to the Maxwell term
for the dynamical gauge field in the dual QFT with 1/κ(Λ) as a (logarithmically running)
electromagnetic coupling.
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The finite part of 1/κ(Λ) plays a crucial role in this setup. While the finite counterterm
in the ordinary bulk Maxwell theory simply results in a contact term in the correlation
function, the mixed boundary condition for Bab implies the existence of the purely decaying
mode ω = −i/τE that can interfere with the gapless hydrodynamic excitation. This is
nothing but the life-time of the electric flux operator QE ∼

∫
dSijJ

ij which appears in the
following correlation function [28, 34]

〈J ij(t)Jkl(0)〉 ∼ exp (−it/τE) . (2.9)

Note that, due to the anisotropy introduced by finite equilibrium magnetic field, the value
of τE depends on which direction of the electric field in consideration. The limit where
τE is small, but finite, compared to the length scale of interest (set by temperature or
magnetic flux density) is of particular interest as it allows one to extract τE analytically,
via a matching procedure that we outline below. As argued in the introduction, the lifetime
of the electric flux determines the validity of MHD and FFE description.

2.1 Linearised solutions in ω/T � 1 limit and matching procedure

In this section, we outline the computation required to obtain the relaxation time of the
electric field. We focus on the hydrodynamic regime where ω/T � 1, and the low temper-
ature limit7 T/

√
|B| � 1. This allows us to solve the bulk equation of motion analytically

via a matching method similar to that was employed in [30] (see also [34] for a recent
review). We consider the decay rate of the electric field both along and perpendicular to
the equilibrium magnetic field denoted by E‖ = Jxy and E⊥ = Jxz, Jyz respectively.

Before proceeding, let us summarise the matching procedure for the ω/T � 1 ex-
pansion. It involves separating the bulk into three suitably defined pieces: inner region,
intermediate region and outer region. The inner region is a suitably defined region close
to the horizon while the outer region is defined to be the range of r such that ω/r � 1
so that one can drop terms quadratic in (ω/r)2, which includes the near boundary region.
The integration constants of the solution in the outer region are determined by matching
the form of inner region solution for intermediate value of r that connect the two regions
together. In our case, this is the region of r close to rh but

ω

T
log f(r)� 1 (2.10)

This intermediate region defined above is also consistent with the outer region assumption
where ω/r � 1 and thus we are able to match the two solution together. Note that, while
this procedure is applicable to any bulk solution with event horizon, the limit ω/T � 1
is crucial.

We now present the key equations and resulting lifetime of the electric flux.

2.1.1 Perturbation parallel to equilibrium magnetic field

As the magnetic field in equilibrium points along the z-direction, we are interested in
E‖ = 1

2ε
zxy〈Jxy〉. The corresponding bulk perturbation is δBxy which decouples from the

7Similar computation for the holographic theory dual to a system with ordinary(zero-form) U(1) sym-
metry can be found in e.g. [40, 41].
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metric perturbation in the zero wave vector limit. The bulk equation of motion can be
written as (

r2feW−2V δB′xy

)′
+ ω2

r2f
eW−2V δBxy = 0 (2.11)

where (. . .)′ denotes a derivative w.r.t. the radial coordinate r. The inner region solution for
δBxy, where we substitute the BTZ × R2 solution for f, V,W , with the ingoing boundary
condition can be written as

δBinner
xy = cH exp

(
− iω

4πT log f(r)
)

(2.12)

The outer region solution can be obtained by considering the solution at linear order in
ω/r and one obtains,

δBouter
xy (r) = c1 − c2

(
log Λ−

∫ Λ

r=r
dr

e2V (r)−W (r)

r2f(r)

)

= c1 − c2

(
log r − φ(r) + e2V−W

r2
hf
′

∣∣∣
r=rh

log f
)
,

(2.13)

where φ(r) is a function regular everywhere in the bulk defined as

φ(r) =
∫ Λ

r=r
dr

e2V (r)−W (r)

r2f(r) −
(
e2V (r)−W (r)

r2
hf
′(r)

)
r=rh

f ′(r)
f(r) −

1
r

 .
This parametrisation allows us to single out leading contributions that dominate when
considering the solution near r = Λ, where φ(r) and log(e−2V r2f) vanish, as well as near
r ≈ rh where the log f term dominates. The integration constants c1, c2 in (2.13) are related
to the source bµν and the 2-form current 〈Jxy〉. The precise relations can be obtained via
eq. (2.8) to be

〈Jxy〉 = c2 , bxy = c1 −
(

log Λ + 1
κ(Λ)

)
c2 (2.14)

Note that, for the source to be independent of the UV cutoff, one requires κ(Λ)−1 =
finite term− log Λ. This is the logarithmically running coupling usually found in a double-
trace deformed theory and resembles the running of electromagnetic coupling as pointed
out in [27, 28, 34].

For the outer and inner region solutions to match, we consider both solutions in the
intermediate region where we can write the inner solution as

exp
(
− iω

4πT log f
)
≈ 1− i ω

4πT log f +O
(
ω

T

)2
(2.15)

The matching condition δBinner
xy = δBouter

xy in this region prompts yield the following alge-
braic relations between the boundary quantities bxy, 〈Jxy〉:

iω

4πT c
H =

(
B/rh

3r2
hf
′(rh)

)
〈Jxy〉

cH = bxy +
[ 1
κ(Λ) + log

( Λ
rh

)
+ φ(rh)

]
〈Jxy〉 .

(2.16)
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Figure 2. A sketch of the decay rate (inverse of the lifetime) of the electric field as a function
of T/

√
B, measured in the unit of

√
B. The high temperature regime (red) depict the result of

decay rate at zero magnetic field found in [28, 34] which has the same temperature dependence as
in (1.1)–(1.2). In the low temperature regime (blue), however, the operator lifetime becomes those
found in (2.17).

Solving these equations at vanishing source bxy = 0 yields the spectrum of the form
ω = −i/τE‖ where τE‖ is the lifetime of the electric flux parallel to the equilibrium magnetic
field. This is the first key result that we advertised earlier, namely

τE‖ = 2πT
B

(
e−2
r + φ(rh)

)
, (2.17)

where we write e−2
r = log(Λ/rh) +κ(Λ)−1 which plays the role of renormalised electromag-

netic coupling. More details on the T/
√
B dependence of φ(rh) can be found in appendix A.

Let us discussed a formal limit similar to [34] in order to make sense of this result that is
consistent with the assumption ω/T � 1. While the integral φ(rh) can be a dimensionless
function of T and B, the renormalised electromagnetic coupling can be chosen in such a way
that e−2

r � φ(rh) and e−2
r T 2/B � 1 so that ωτE‖ ∼ ω/T � 1. The second limit is essential

as the matching procedure assumes that ω/T � 1 and the solution outside this regime has
to be discarded. Taking these factors into account, one concludes that the temperature
dependence of the electric flux is different from the high temperature T/

√
B � 1 limit

where τE ∼ 1/T (see figure 2). Naively taking the limit T → 0 in (2.17) will result in
the vanishing lifetime of the electric flux in contrast to the result in (1.2). However, one
has to carefully remove the limit ω/T � 1 in order to access the lower temperature limit
ω/T ∼ 1, ω/

√
B � 1 as explained in section 2.2.

2.1.2 Perturbation perpendicular to equilibrium magnetic field

Unlike the previous case, the perturbation δBxz that corresponds to E⊥ = 1
2ε
yzx〈Jzx〉 is

coupled to the metric perturbation. This is manifest in the equations of motion

d

dr

(
r2fe−W δB′xz + B(δGxt )

)
+ ω2e−W

r2f
δBxz = 0 ,

d

dr

(
e4V+W (δGxt )′ + 4BδBxz

)
= 0 ,

(2.18)

– 8 –
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where δGµν denotes the metric perturbations. Note that the coupled perturbations
{δBxz, δGtx} and {Byz, δGyz} are equivalent due to SO(2) symmetry in the plane per-
pendicular to the equilibrium magnetic field. Also, the second equation of motion in (2.18)
can be written in a total derivative form dπtx/dr = 0 with πtx is related to the momentum
〈T tx〉. Since we are working in the zero wavevector limit, the conservation of momentum im-
plies that πtx = 0 in Fourier space (which can be shown explicitly using the rx−component
of the Einstein equation).

The solution for δBxz, δGtx in the outer region can be found by using the property
of the background geometry combined with the Wronskian method as in [34]. To be
more precise, one first notes that the time-independent solution of the magnetised black
brane can be written in a total derivative form, which implies the existence of two radially
conserved currents.

Q1 = r2f(V ′ −W ′)e2V+W + 2Bh(r) = 0 , (2.19a)

Q2 = e4V+W d

dr

(
e−2V r2f

)
− 4Bh(r) = sT , (2.19b)

where we write the equilibrium ansatz for the gauge field as B = h(r) dt ∧ dz with gauge
choice h(rh) = 0, which, together with the horizon regularity, sets Q1 = 0. The relation
between h(r) and the 3-form field strength is

e2V−Wh′ = B . (2.19c)

More details on obtaining these radially conserved quantities can be found in e.g. [42].
With this ansatz, we can compare (2.18) and (2.19) and find that one of the solutions
of (2.18) when ω/r → 0 are

δBxz = Φ1(r) = h(r) + sT

4B , δGxt = Ψ1(r) = −e−2V r2f . (2.20)

One can use the Wronskian method to find a pair of solution of (2.18) that are linearly
independent to {Φ1,Ψ1}. These solutions are

Φ2(r) = 1
4B −

∫ ∞
r

dr

(
BeW (r)Ψ2(r)

r2f(r)

)
, Ψ2(r) = Ψ1(r)

∫ ∞
r

dr

(
e−W (r)

r4f(r)2

)
(2.21)

As a result, the outer region solution can be written as(
δBouter

xz

(δGxt )outer − 1
BJxz

)
= c1

(
Φ1
Ψ1

)
+ c2

(
Φ2
Ψ2

)
(2.22)

where Jxz := (r2fe−W δB′xz + BδGtx) is an integration constant of (2.18) at ω = 0. One
can substitute the BTZ × R2 ansatz into the solution in (2.22) to check that Φ1,Ψ1,2 are
finite at r = rh while Φ2 is singular. It is convenient to separate out the singular part of
Φ2 in the following form

Φ2(r) = φ2(r)−
(
BeWΨ2
r2f ′

)
r=rh

log f(r) (2.23)

– 9 –
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where φ2(r) is the integral in (2.21) with the logarithmic divergence subtracted. The
boundary condition where the source for both metric and 2-form gauge field fluctuation
vanishes corresponds to the following values of c1 and c2

c1 = Jxz
B

, c2 = −4
(
sT

4B + h(Λ) + B
κ̂(Λ)

)
Jxz (2.24)

One can also check that Jxz is identical to the one-point function 〈δJxz〉 via the defini-
tion (2.8). Note also that the ratio c2/Jxz is finite due to the cancellation of the logarithmic
divergence of 1/κ(Λ) and that of the near boundary solution of h(r), obtained via (2.19c).

Let us also pointed out another way to organise the equations of motion for δBxz. It
turns out that (2.18) can be combined into a single equation of motion that reduces to a
total derivative form at ω = 0. Following the procedure in e.g. [43] and some manipulation,
we find([

e4V+W
(
e−2V r2f

)′]2
r2fe−W δB̃′xz

)′
+ ω2

r2feW

[
e4V+W (e−2V r2f)′

]2
δB̃xz = 0 (2.25)

where δB̃xz = δBxz/[e4V+W (e−2V r2f)′]. The outer region solution of (2.25) is easily ob-
tained and can be shown to be identical to those of (2.22).

We can now proceed to the inner region solution. This can be found by solving
eq. (2.25) and one find

δBinner
xz = cH exp

(
− iω

4πT log f(r)
)
. (2.26)

In the intermediate region, we apply the expansion in (2.15). The coefficients c1, c2 are
related to cH via (

− iω

4πT

)
cH = −

(
BeWΨ2
r2f ′

)
r=rh

c2 ,

cH =
(
sT

4B

)
c1 + φ2(rh)c2 ,

(2.27)

Substituting the form of c1, c2 in terms of 〈δJxz〉, we can write the relations in a form
similar to 〈δJxy〉, namely (

−iω + 1
τE⊥

)
〈δJxz〉 = 0 . (2.28)

In the case of vanishing sources, we can write c2
c1

= −4B
(
sT
4B + h(Λ) + B

κ(Λ)

)
and the relax-

ation time of the electric field perpendicular to the equilibrium magnetic field is

τE⊥ =
√

3
2πTBΨ2(rh)

[
sT

4B
c1
c2

+ φ2(rh)
]

(2.29)

In contrast to the result at e−2
r � 1 and zero equilibrium magnetic field in [28, 34], the

lifetime at strong magnetic field B/T 2 has a very different form. To see this, it is useful to
examined that the combinations that enter the lifetime as follows

Ψ2(rh) ∝ 1
BT 2 , φ2(rh) ∝ 1

B
,

c1
c2
∝ 1
B2 for large 1/κ(Λ) (2.30)
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with proportionality constants given by some numbers of order O(1). In the limit of large
electromagnetic coupling 1/κ(Λ)� 1 and B/T 2 � 1, we find that this gives a short lifetime
of the form τE⊥ ∝ T/B. However, the location of this decaying mode ω = −i/τE⊥ lies
outside the hydrodynamic regime ω/T � 1. Thus, one conclude that there are no modes
with long lifetime in this regime.8

2.2 Checking T & 0 limit in ω/
√
|B| � 1 regime

While the result in the previous section strongly indicated that the electric flux lifetime
becomes very short at extremely low temperature, the simplicity of the holographic model
also allows us to extend the analysis beyond the usual hydrodynamic ω/T � 1 regime.
We will first show that the zero temperature theory does not support the purely decaying
mode of the form ω = −i/τ in the small ω/

√
|B| regime. Next, we further extend the

regime of validity to that of ω/
√
|B| � 1 but for arbitrary ω/T . The purpose of the latter

is to show that τE ∝ T/
√
|B| without relying on the ω/T � 1 limit.

2.2.1 Zero temperature

A simple argument for the non-existence of such a slowly decaying mode, is the presence
of Lorentz symmetry at zero temperature on the AdS3 submanifold in the deep infrared.
On the other hand, one can also show this, using matching methods similar to those
in [40, 45, 46].

To obtain this result, one first realises that the geometry of the magnetised black brane
is that of an interpolation between IR AdS3×R2 and UV AdS5. Roughly speaking, the IR
geometry starts to becomes a good approximation as one starts to probe the scale below
the magnetic field i.e. r ∼

√
|B|. The inner and outer regions are defined such that they

start off from the IR and UV geometry respectively, and extend to cover the overlap region
(see figure 3). This is achievable when ω/

√
|B| � 1.

For concreteness, let us demonstrate how this works in the E‖ channel that involves
the bulk field δBxy governed by eq. (2.11). The solution can be written in the same form
as (2.13) evaluated at zero temperature (i.e. rh = 0). It is worth noting that the singular
behaviour near r/

√
B → 0 is different from that in earlier section. Instead, it can be

written as

δBouter
xy (r) = c1 − c2

(
log Λ− φ̄(r) + B/36r2

)
+O

(
ω2

r2 ,
ω2

r2 log
(
ω

r

))
(2.31)

where the integration constants can be related to source and response via (2.8). It is worth
noting that the logarithmic divergence appears at order ω2. This is can be confirmed via
Frobenius analysis in AdS5 region (see e.g. [47]) and AdS3×R2 region (see appendix B). The
prefactor of the r−2 divergence is obtained by evaluating e2V (r)−W (r)/f(r) at the horizon
r → 0. Here φ̄(r) is the integral in (2.13) subtracted by the r−2 divergent and logarithmic

8Note also that, if one were to perform this analysis for a perturbation in the holographic dual to a
theory with zero-form U(1) at T > 0, µ = 0 (as in [30], see also [34]), one would find a spectrum of the form
ω ∼ T . This solution is spurious as it lies outside the hydrodynamic regime ω/T � 1 and, in fact, is not
present in the genuine spectrum obtained numerically at finite ω/T [44].
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Figure 3. A sketch of the bulk geometry at zero temperature. The inner region, whose solutions
only depends on the ratio ω/r extended from the near horizon limit r → 0 to the one where
ω/r ∼ ω/

√
|B| → 0 as we are working in the ω/

√
|B| � 1 limit. The outer region is defined to be

the region where the ω2/r2 and higher power in ω/r is suppressed, which can be extended toward
r �

√
|B| as long as the frequency is small.

divergent pieces. The resulting integral evalutated from r = r0 ∼
√
B of the overlapping

region to the UV cutoff r = Λ is finite and its number is not extremely relevant for us as
long as one keep e−2

r large.
Next, we consider the inner region solution, which can be obtained by solving (2.11) in

the AdS3 × R2 region. Upon imposing horizon regularity at r → 0, we find that the inner
region solution is

δBinner
xy = cHζK1(ζ) , ζ = 3ω

r
(2.32)

For these two branches of solutions to match, we extend the inner region solution to
the regime where ζ = ω/r � 1. We find that the ‘near boundary’ expansion takes the form

δBinner
xy = cH

(
1 + 1

2γζ
2 + 1

2ζ
2 log ζ + . . .

)
(2.33)

Matching this solution to the outer region, we find that c2 ∝ ω2 unlike what happened in
the previous section. Carrying on the matching procedure, we find that the polynomial
governing the spectrum only depends on ω2 and thus rules out the purely imaginary mode
ω = −i/τ . The same argument can also be made for the E⊥ channel involving δBxz. This
is because, the part that is relevant to the matching procedure only depends on ζ2. See
appendix B for more details on the form of δBxz in the AdS3 × R2 region.

2.2.2 T . ω �
√
|B| limit

In this section, we show that the electric flux lifetime can also be obtained regime where
ω/T & 1 and ω/

√
|B| � 1 while keeping

√
|B|/T � 1. The calculations closely resembles

that of the zero temperature case except that the deep IR geometry is now BTZ × R2

instead of AdS3 × R2. Figure 4 illustrates this geometry where the AdS5 joined with the
BTZ × R2 at the ‘boundary’ AdS3 × R2 of the IR geometry. We will only focus on the

– 12 –
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Figure 4. A sketch of the bulk geometry at low temperature T �
√
|B|. The inner region, whose

solutions only depends on the ratio ω/r extends from the near horizon limit r → rh �
√

B to the one
where ω/r ∼ ω/

√
|B| � 1, which corresponds to the near boundary region of BTZ ×R2 geometry,

described by AdS3 × R2. The outer region is defined to be the region where ω2/r2 (and higher
powers) is negligible and, therefore, can be extended toward r ∼

√
|B| in the ω/

√
|B| � 1 limit.

E‖ fluctuations as it is the only channel that contains the decaying modes in the ω/T � 1
regime. Similar computation for this type of geometry can also be found in [46].

The outer region solution, which extends from the UV AdS5 to the intermediate
AdS3 × R2 region has the same form as in (2.31). This is possible only in the limit where√
B � T so that r/

√
B is always much greater than T/

√
B ∼ rh/

√
B in this region.

The inner region solution in the BTZ × R2 region can be expressed in terms of a
hypergeometric function (upon imposing ingoing boundary condition)

δBinner
xy = cH

(
1− r2

h

r2

)−iw/2
2F1

(
− iw2 ,− iw2 ,− iw2 ; 1−w; 1− r2

h

r2

)
(2.34)

where w = ω/(2πT ) = ω/3rh. Extending this solution in the r � rh limit (which is possible
due to rh/r → 0 as we approach the limit ω/r → 0) yields the following expansion [48]

δBinner
xy ∝ cH

[
1+ iωrh

6r2 + 1
4

(
ω

3r

)2
(

2−2γ−2ψ(1−iw/2)−log
(
r2
h

r2

))
+O(ω3)

]
(2.35)

where ψ(x) is the digamma function and the constants of proportionality are combinations
of gamma functions that can be absorbed in the definition of cH . The first two terms in
[. . .] are what important for us. By working to leading order in ω/r � 1 as one approaches
the intermediate AdS3 × R2 region, we find the following matching solution

c1 − c2 log(Λ/
√
B) + φ̄ = cH ,

(B
3

)
c2 = iω

(2πT
3

)
cH (2.36)

We can convert c1 to the source bxy and c2 as done in the previos sections. Upon taking
e−2
r � φ̄ (so that the solution lies in the regime of validity ω/

√
B � 1), we find the solution

of the form ω = −i/τE‖ where τE‖ is the same as in (2.17). This indicates that the lifetime
indeed grows as T/

√
B increases regardless of the ratio ω/T .
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3 Conclusion

The higher-form symmetry viewpoint of magnetohydrodynamics and its low temperature
incarnation, the force-free electrodynamics, leads to new insights. The central focus of
the present work was to established the absence of long-lived non-conserved operators. In
turn, this indicates the validity of a hydrodynamic description at low temperature and
strong magnetic field. The question of whether the only operators that govern the deep
IR dynamics are the conserved charges is important and ought to be asked before any
quantitative attempt is made to study hydrodynamic properties (such as shear viscosity
etc). All non-conserved operators must decay much faster than the scale of interest if a
hydrodynamic interpretation is to be meaningful.

We work with a holographic model which shares the same global symmetry as that
of the plasma, namely only the energy, momentum and magnetic flux commute with the
Hamiltonian. The model is simple enough for the lifetime of electric flux to be determined
by classical bulk dynamics and the precise question is whether or not the electric flux is
sufficiently long-lived to interfere with hydrodynamic modes. Due to the anisotropy of the
system in the presence of a strong expectation value of magnetic field, the lifetime of the
electric field depends on its orientation. Our results can be summarised as follows

• For electric flux E‖ parallel to the magnetic field, the lifetime has a strong depen-
dence on the double-trace coupling κ which plays a role similar to the renormalised
electromagnetic coupling. In the extreme limit of e−2

r � |B|/T2, the lifetime can be
large enough to be detectable by the analytic computation in both the ‘usual’ hydro-
dynamic regime ω/T � 1 and on even lower temperature regime where ω/

√
B � 1

while ω/T may remains finite. We found that the lifetime becomes shorter as one
decreases the ratio of T/

√
|B|. The latter indicates that the lifetime will become ex-

tremely short in the extremely strong magnetic field regime T/
√
|B| � 1 and cannot

interfere with the low energy regime of ω/
√
|B| � 1 where the FFE limit is thought

to be applicable.

• For the component of electric flux E⊥ perpendicular to the magnetic field, we find
that there is no pole in the vicinity of ω/T � 1. The dependence of the lifetime on
the renormalised electromagnetic coupling disappears as one approaches the strong
magnetic field limit.

We also performed a consistency check at T → 0 to ensure that there are no modes in the
deep IR limit of ω/

√
|B| � 1. In this regime, the modes that indicate (potentially) long

lifetime of E‖ disappear from the low energy spectrum as anticipated.
These computations are basic checks on the validity of FFE description. In the holo-

graphic context, it would be interesting to check if all the accessible non-conserved operator
truly have a parametrically short lifetime as well as confirming the low energy spectrum
predicted by force-free electrodynamics (and its subsequent derivative corrections). Extrac-
tion of FFE effective action from gravity akin to [49–51] or the full constitutive relation as
in [52–54] would be desirable as a definitive proof of FFE description in the dynamically
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magnetised black brane geometry. Last but not least, it would be very interesting to in-
vestigate operators lifetime in (weakly coupled) quantum electrodynamics at finite T and
B to better understand FFE and its limitations in a system more directly connected to
astrophysical plasma than the strongly coupled holographic model considered here.
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A Numerical solution and evaluation of operators lifetime

In this section, remarks on the evaluation of the electric flux are elaborated. The numerical
background solution for this geometry can be constructed in the same way as [33] using
shooting method. The solution is a one-parameter family characterised by B/T 2 which
allows us the freedom to choose rh = 1, r2

hf
′(rh) = 1 (or equivalently T = 1/4π). It is also

convenient to set V (rh) = W (rh) = 0 which results in the UV boundary metric of the form

lim
r→∞

ds2 = r2
(
−dt2 + v(dx2 + dy2) + wdz2

)
+ dr2

r2 (A.1)

Upon rescaling of spatial coordinates {dx, dy, dz} → {dx/
√
v, dy/

√
v, dz/

√
w}, we recover

the desired background solutions. Note also that the physical magnetic flux is related to
the input parameter (that produced the metric in (A.1)) by Bphysical = Binput/v. A small
caveat of this method is that one cannot find a smooth solution beyond Binput &

√
3/2

which corresponds to the temperature T/
√
B = (4π

√
Binput/v)−1 ≈ 0.05. This is most

likely an artifact of the presented numerical method as there exists a smooth solution in
the zero temperature limit corresponding to the AdS3 × R2 geometry in the deep IR. We
should also note that this is a sufficiently low energy temperature as the entropy becomes
sufficiently close to s ∝ T obtained from BTZ×R2 geometry (cf. [27, 33]). The background
is generated for r from [1 + 10−3, 106] and varying the (numerical) cutoffs within this order
of magnitude does not change the obtained numerical results.

Let us also remark on the numerical value of the renormalised electromagnetic coupling
e−2
r = log(Λ/rh)+κ(Λ)−1. This quantity strongly influences both the thermodynamics and
low energy spectrum [27, 28, 34] of the model. In particular a small value of e−2

r would
result in the speed of sound becoming imaginary [27]. Another way to see that this quantity
should be large is to write it in terms of a renormalisation group independent scale M∗
that denotes the energy scale of a Landau pole [28] i.e. e−2

r ∼ log(M?/T ) where M? � T .
We take this to be the largest scale in the problem — much larger than the accessible
value of

√
B/T .
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Figure 5. Numerical evaluation of φ(rh) in (2.17) as a function of T/
√
B. The black dots denote

the numerical evaluation while the red line denotes the fitting function for small T/
√
B as φ ≈

−(0.008) B
T 2 log(5.7B/T 2). For high temperatures, the value of φ(rh) is approximately constant

around 0.69. The value of φ(rh) at lowest achievable temperature is at φ(rh) = −23.49.

Numerical value of the integral for φ(rh) in (2.17) is shown in figure 5. For a larger
temperature (when φ(rh) ≈ O(1)), the lifetime can be sensibly approximated to be τE‖ ≈
2π(T/B)e−2

r . As T/
√
B decreases, the lifetime becomes shorter and, if we are to extrapolate

the fitting function φ ∼ B
T 2 log B

T 2 to even lower temperature where e−2
r & φ, it will escape

the regime of the validity of small ω/T, ω/
√
B expansions. In this scenario, one shall con-

clude that there are no long-lived modes that can interfere with the low energy excitations.

B Frobenius analysis in AdS3 × R2 region

Consider the equation of motion for δBxy in the intermediate AdS3 × R2 region:

δB′′xy(r) + 3
r
δB′xy(r) + ω2

9r2 δBxy(r) = 0 (B.1)

The solution in this region can be obtained via Frobenius method. More precisely, one
can change the radial coordinate into ζ = 3ω/r and redefine δBxy = ζc(ζ). It follows that
c(ζ) is the solution of the Bessel equation of order 1, which has a regular singular point at
ζ = 0. The near-boundary r → ∞, or equivalently ζ → 0, akin to the Fefferman-Graham
expansion in the usual holographic renormalisation, can be written as

δBxy(ζ) = cM1 P1(ζ) +
(
cM2 + h log ζ

)
P2(ζ) (B.2a)

where cM1 , cM2 are integration constants and Pi(ζ) are regular polynomials of the following
form

P1 = 1 +
∞∑
n=1

p
[n]
1 ζn , P2 = ζ2

(
1 +

∞∑
n=1

p
[n]
2 ζn

)
(B.2b)
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Similar to the usual procedure in the holographic renormalisation [55], all the coeffi-
cients p[n]

1 , p
[n]
2 , h except p[2]

1 , which can be set to zero without loss of generality [47], can
be obtained recursively. The important piece of information here is the coefficient h = 1
which can be obtained by recursively solving the equation (B.1). Another easy way to
see this is to recast (B.1) as the Bessel equation of order 1 as pointed out earlier. Then,
using the fact that the Bessel functions K1(ζ) and I1(ζ) are two independent solutions of
such equation and, for small ζ they admit the following asymptotic expansions (see e.g.
section 3.3 of [56])

I1(ζ) = ζ

2 + ζ2

16 +O(ζ)3 , K1(ζ) =
(
γ + log ζ2

)
I1(ζ) + 1

ζ
(B.3)

will result in the series expansions of the solution in AdS3 × R2 region in (B.2a).
A similar procedure can also be applied for E⊥ using eq. (2.25). Substituting

δB̃xz = ζ2c(ζ), one finds that it obeys the Bessel equation of order 2 whose ζ � 1 ex-
pansion only yields even power in ζ.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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