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When calculating derivatives of structure factors, there is one particular term

(the derivatives of the atomic form factors) that will always be zero in the case of

tabulated spherical atomic form factors. What happens if the form factors are

non-spherical? The assumption that this particular term is very close to zero is

generally made in non-spherical refinements (for example, implementations of

Hirshfeld atom refinement or transferable aspherical atom models), unless the

form factors are refinable parameters (for example multipole modelling). To

evaluate this general approximation for one specific method, a numerical

differentiation was implemented within the NoSpherA2 framework to calculate

the derivatives of the structure factors in a Hirshfeld atom refinement directly as

accurately as possible, thus bypassing the approximation altogether. Comparing

wR2 factors and atomic parameters, along with their uncertainties from the

approximate and numerically differentiating refinements, it turns out that the

impact of this approximation on the final crystallographic model is indeed

negligible.

1. Introduction

The quality of diffractometer equipment for X-ray crystal-

lography has increased enormously over the last few decades:

new detector technology, ever more intense radiation sources

and enough computer power to handle large amounts of

measurement frames all have led to more precise and accurate

X-ray diffraction data than ever before. There is a wealth of

chemical information in these improved diffraction data, and

yet, these opportunities are largely ignored. X-ray diffraction

data are still modelled in essentially the same way as they were

100 years ago. In obtaining the crystallographic model, sphe-

rical, non-interacting atomic electron densities are used – this

is the so-called independent atom model (Compton, 1915).

It has been known for as long as the spherical model has

existed that non-spherical contributions to atomic electron

densities (caused by bonding in the molecular and crystal

field) could potentially be observable from the X-ray diffrac-

tion pattern (Debye, 1915; Coppens, 1967). One can calculate

these non-spherical atomic electron densities quantum-

mechanically and then use them to generate crystallographic

models, for example employing Hirshfeld atom refinement

(HAR) (Jayatilaka & Dittrich, 2008; Capelli et al., 2014). This

is the approach we follow in this paper. In contrast, multipole
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model refinements have been developed to introduce further

parameters to refine the non-spherical atomic electron

densities (Hansen & Coppens, 1978; Stewart, 1977; Korit-

sanszky & Coppens, 2001). Variations of this approach, such as

databases based on the multipole model, so-called transfer-

able aspherical atom models (TAAM), have also been

pioneered (Bąk et al., 2011; Jarzembska & Dominiak, 2012;

Domagała et al., 2012; Dittrich et al., 2006; Jha et al., 2020). All

such non-spherical approaches are part of the field of quantum

crystallography. For more details, we refer readers to overview

articles (Grabowsky et al., 2017; Genoni et al., 2018; Macchi,

2020; Genoni & Macchi, 2020).

Using any of the mentioned quantum-crystallographic

techniques will generate crystallographic models that are

significantly more accurate in terms of atomic coordinates and

displacement parameters, as well as agreement statistics, than

anything obtainable from the spherical approach. This applies

especially to hydrogen-atom parameters which are now much

closer to those obtained by neutron diffraction (Woińska et al.,

2016; Fugel et al., 2018; Sanjuan-Szklarz et al., 2020; Jha et al.,

2020; Dittrich et al., 2017; Wieduwilt et al., 2021; Malaspina et

al., 2020).

We have recently introduced an entirely general way to

handle non-spherical form factors in the refinement engine

olex2.refine (Bourhis et al., 2015). This has been followed by a

new implementation of HAR in Olex2 (Dolomanov et al.,

2009) called NoSpherA2 (Non-Spherical Atoms in Olex2),

which we believe will make sophisticated non-spherical

refinement models generally accessible and very easy to use

(Kleemiss et al., 2021).

When employing non-spherical form factors, additional

issues arise, such as the iterative update of form factors as the

model changes (Capelli et al., 2014), the use of finite-sized

bases and the level of theory employed. There is also one

fundamental approximation not addressed in the literature:

when calculating the derivatives of the structure factors (as

required for the least-squares refinement) the contributions of

the derivatives of atomic form factors have thus far been

neglected. It is important to make sure that this approximation

is valid, especially since there is convincing evidence that the

use of non-spherical form factors yields significantly improved

structure models. In this study, the approximation is only

tested and probed for the method HAR, but it is also relevant

for other cases of non-spherical structure refinement such as

other HAR variants (Malaspina et al., 2019; Chodkiewicz et al.,

2020) or TAAM where the atomic form factors are not

refinable parameters. It would not be relevant, though, for

multipole modelling where the multipole populations, and

consequently the form factors, are refinable parameters.

To explain this approximation, let us briefly discuss how the

least-squares minimization process leads to this. The ultimate

aim of the least-squares minimization is to modify the theo-

retical model in such a way that the theoretical results are in

the best agreement with the observed data. Least-squares

minimization needs the partial derivatives of the structure

factors. The structure factors are dependent on the atomic

form factors, which are the Fourier transforms of the electron-

density functions of the atoms. In the current non-spherical

refinement implementation in olex2.refine, the derivatives of

the non-spherical form factors with respect to model para-

meters are chosen to be zero (that is, neglected) in the

computation of these structure-factor derivatives. The method

utilizing this approximation is henceforth called approximate

non-spherical refinement. A fundamental question is whether

this approximation of the derivatives has a noticeable impact

on the refinement process. It is this question that is the

motivation for this paper.

To answer this question, we implemented a non-spherical

refinement process which uses as accurate as possible partial

derivatives of the structure factors. Since these partial deri-

vatives cannot be computed analytically and exactly, we use

numerical differentiation. We refer to such refinement as

numerical non-spherical refinement. The disadvantage of

numerical non-spherical refinement is that it is too time-

consuming for practical use (see Section 2.5). However, it is an

ideal tool to test the impact of the approximation used in

approximate non-spherical refinement. Details of these

different refinement procedures are presented in Section 2.

Our investigations, based on crystals of the molecules

ammonia, epoxide and l-alanine, begin with testing the

robustness and validity of numerical non-spherical refinement

– first determining appropriate step sizes to be used for the

numerical differentiation, then confirming that its results are

consistent, convergent and that the wR2 factors are reduced

(in comparison with approximate non-spherical refinement).

This is carried out in Section 3.

We continue in Section 4 by comparing classical spherical

refinement and approximate non-spherical refinement against

numerical non-spherical refinement. Our comparison criteria

comprise wR2 factors, X—H distances and the positioning of

the individual atoms in the unit cell under the different

refinement processes. In addition, we investigate dependence

of both approximate and numerical non-spherical refinement

results on the quantum-mechanical basis sets.

In Section 5 we investigate the standard uncertainties of the

least-squares minimization in the different refinement

processes.

Expanded mathematical details regarding the least-squares

minimization process and uncertainties are presented in

Appendices A and B.

This article makes no statement about the best refinement

method to provide the most accurate model of a real-world

crystal. Instead, this paper is concerned with the numerical

significance of a simplification used in the computation of the

theoretical structure-factor derivatives. We believe this

investigation is very important: if the approximation were

found to have a significant impact on refinement results, this

would require a rethink of the currently implemented method

of non-spherical refinement.

2. The three main refinement procedures

The purpose of this section is to present the approximation

under investigation and to discuss refinement procedures
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which are at the centre of our investigations: classical spherical

refinement, approximate non-spherical refinement and numer-

ical non-spherical refinement.

Any crystallographic structure refinement depends on the

provision of atomic form factors. Form factors are utilized in

the computation of the structure factors which, in turn, enter

into the derivation of the shift via a least-squares minimization

method. The structure factor is computed from the form

factors via the crystallographic model formula:

Fcðx; hÞ ¼
XNatoms

j¼1

fjðz; hÞ expð2�ih>zjÞ expð�h>UjhÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Gjðx;hÞ

; ð1Þ

where Natoms is the number of atoms in the unit cell, zj is the

position of the atom j and Uj is the matrix of its anisotropic

displacement parameters (ADPs). Additionally, fjðz; hÞ is the

form factor of the atom j translated to the origin. This form

factor, in the non-spherical case, is dependent on the atomic

positions z (comprised of the individual atomic positions zj)

and the reciprocal-lattice vector h. The zj and Uj values form

the vector x of refined parameters describing the model,

taking into account the symmetry restrictions where necessary.

For example, if all atoms of the molecule are in general

positions, we have three positional parameters and six ADPs

for each atom which, in succession, form the vector x. The jth

atom A in the model vector x 2 R
9Natoms is then represented by

the 9-tuple ðxA; yA; zA;UA
11;UA

22;UA
33;UA

12;UA
13;UA

23Þ, with

zj ¼ ðxA; yA; zAÞ and

Uj ¼
UA

11 UA
12 UA

13

UA
21 UA

22 UA
23

UA
31 UA

32 UA
33

2
4

3
5;

where UA
21 ¼ UA

12;UA
31 ¼ UA

13 and UA
32 ¼ UA

23.

The least-squares minimization process requires the deri-

vatives of the structure factors, given by

@Fc

@xn

ðx; hÞ ¼
XNatoms

j¼1

@fj

@xn

ðz; hÞGjðx; hÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ð�Þ

þfjðx; hÞ
@Gj

@xn

ðx; hÞ: ð2Þ

The motivation of this paper is to investigate the consequences

of the common setting of ð�Þ ¼ 0 which, whilst true for

spherical refinement (described below), is no longer true for

non-spherical refinements. It is worth clarifying that the

coordinates xn of x are related to either the positional (zj) or

ADP (Uj) components. We note that for xn related to ADPs,

the derivative ð@fj=@xnÞðz; hÞ is always zero (as fj has no

dependence on the ADPs), and thus for those parameters we

can in fact determine the derivatives @Fc=@xn analytically

(since the functions Gj are simple exponentials with explicitly

given derivatives).

Further details with regards to the least-squares minimiza-

tion process, including a useful description of a modified

design matrix ~DD as well as distinguishing where structure-

factor derivatives are required, are shown in Appendix A.

2.1. Classical spherical refinement and multipole modelling

Spherical refinement is based on the independent atom

model (IAM), which provides spherically symmetric functions

for the form factors. These form factors are not only spheri-

cally symmetric, but also depend only on the atom type and

charge – that is, they do not change with the model of the

crystal. This leads to the simple deduction that any change to

the model will not result in a change to the form factor – that

is, the derivative @fj=@xn is always zero, and thus the term ð�Þ in

(2) is zero. In the case of multipolar atom refinement, the

derivative of the non-spherical atom form factors is analyti-

cally solvable since the density is a function of the spherical

harmonic occupancy and radial kappa values and the atomic

parameters in the vector xj; therefore the approximation

scrutinized here does not apply.

2.2. Approximate non-spherical refinement

It is natural to assume that choosing physically more

accurate form factors and more accurate values of their

derivatives for the specific model consequentially will lead to

more accurate results from the least-squares minimization

process. To obtain these physically more meaningful form

factors, we utilize quantum-mechanical computations to

determine the electron-density function �mol of the whole

molecule. Then, this function is partitioned into individual

atoms utilizing a weight function

wjðrÞ ¼
�sph

j ðrÞ
�proðrÞ ;

(Hirshfeld, 1977) where r is a point in space, �sph
j is the

spherical atomic density associated to the jth atom, and

�proðrÞ ¼ P
j �

sph
j ðrÞ is the promolecule density generated from

the spherical atomic densities. Given a molecular electron

density �mol, we then assign each atom its non-spherical elec-

tron-density function

�nonspher
i ðrÞ ¼ wjðrÞ�molðrÞ:

This is commonly known as Hirshfeld partitioning or Hirsh-

feld stockholder partitioning and is used in HAR (Jayatilaka

& Dittrich, 2008). These atomic non-spherical electron-density

functions are transformed into non-spherical form factors fj

via a Fourier transform. Fortunately, this formalism introduces

no additional refinement parameters and thus cannot lead to

overfitting.

With current technologies, however, we are not aware of

any practically feasible method to compute the derivatives

@fj=@xn of these non-spherical form factors analytically for

HAR. There might be ways to do it in the case of multipole

database approaches if one morphs the form factors based

on slight changes in positioning of the atoms within a

fragment, but this is not the topic of this paper. Because of this,

in the currently implemented non-spherical refinement in

olex2.refine using NoSpherA2, we make an approximation –

that the form factor derivatives @fj=@xn are close enough to

zero to be taken as zero (Kleemiss et al., 2021). Therefore, we

set the term ð�Þ in (2) to zero. This leads to a process which we
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call approximate non-spherical refinement. In short, we use

molecular quantum-mechanical computations and parti-

tioning to obtain better form factors, but we use the simplest

approximation of their derivatives by setting them equal to

zero. Approximate non-spherical refinement is illustrated in

the flowchart in Fig. 1.

Approximate non-spherical refinement begins with an

initial model obtained through classical spherical refinement.

Then, by passing this model to a quantum-mechanical calcu-

lation program, a wavefunction is calculated and transferred

to the NoSpherA2 software in the form of a wfn or wfx file.

NoSpherA2 converts this into an electron-density function for

the model, partitions it, and computes the non-spherical form

factors, which are returned in a .tsc file for further use

(Kleemiss et al., 2021; Midgley et al., 2019).

We then utilize least-squares minimization, bringing in

other information such as the observed intensities Io and

weights, calculating Fc and approximating @Fc=@xn by the

analytical expression (2) [with ð�Þ ¼ 0] and using these to

calculate a shift to the model which should result in a better

agreement with observed data.

We run this loop repeatedly as in a classical refinement,

until the model is converged (by the standard shift/e.s.d.

� 0:01 rule, where ‘e.s.d.’ is the estimated standard deviation,

also referred to as standard uncertainty, of the model para-

meter), or we have reached a limit nmax of how many times we

are comfortable doing a refinement cycle without recalcu-

lating the .tsc file, as this will become increasingly outdated

with increasing changes to the model. As calculation of the .tsc

file is time consuming, we prefer to get more ‘use’ out of the

same file before the model changes too significantly.

We then compare this output model to the input model – if

they are sufficiently close (for example, if the maximal para-

meter difference/e.s.d. � 0:01), then the refinement has

converged and we take the output model as our final model.

Here we also limit the number of iterations to mmax and we

terminate the procedure if this convergence criterion has not

been satisfied.

2.3. Numerical non-spherical refinement

The third refinement method uses the same quantum-

mechanically calculated non-spherical form factors given via a

.tsc file. However, a numerical procedure to derive improved

values of the derivatives @Fc=@xn (in coordinates xn repre-

senting positional parameters) is included, without the

simplification that ð�Þ is zero. Since differentiation describes

the change of Fc in the direction of xn, we use models which

are close neighbours of the current model x. We alter a single

positional parameter xn by a small amount to calculate the

derivative @Fc=@xn. This allows us to perform a mathematically

more accurate least-squares minimization process. We refer to

this process in this paper as numerical non-spherical refine-

ment. As in the case of approximate non-spherical refinement,

no additional refinement parameters are introduced and thus

we again avoid overfitting.

In the case of numerical non-spherical refinement, illu-

strated by the flowchart in Fig. 2, the initial model can be
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Flowchart illustration of numerical non-spherical refinement.
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either obtained by spherical refinement or by approximate

non-spherical refinement. We utilize NoSpherA2 in each

iteration not only once for the computation of the form factors

fj of the given model but also multiple times for the calculation

of the derivatives @Fc=@xn of the structure factor. In fact, each

such partial derivative computation via numerical differ-

entiation requires two additional quantum-mechanical and

NoSpherA2 computations and the time complexity of this

process grows linearly with the number of atoms in the model.

We additionally are cautious and reduce the risk of outdated

quantum-mechanical data by only ever performing one

refinement cycle with a given .tsc file. Additionally, we always

carry out a full 20 steps whether or not the model has

converged, to provide additional information as to whether a

model remains in this status or whether it may still fluctuate.

We record the model at each step and return the model with

the lowest wR2 factor as our final model. These settings are

currently only used for test purposes, not as defaults in

NoSpherA2 for general use.

Typically, there are up to three derivative calculations per

atom, corresponding to its x, y and z coordinates. These can

sometimes be reduced by the symmetry of the molecule, as in

the case of ammonia. As the ADPs have no part in the

wavefunction calculation, and no impact on the form factors,

all derivatives related to them are simply taken as in the

approximate non-spherical case.

2.4. Hybrid refinement

Later in this article, we will also consider a ‘hybrid’ version

between numerical and approximate non-spherical refine-

ment, where only the derivatives related to the hydrogen

atoms are computed more accurately via numerical differ-

entiation, and all other derivatives are computed in the same

way as in approximate non-spherical refinement. We intro-

duce this compromise since each atom adds a lot of compu-

tational cost and hydrogen atoms typically show the biggest

differences between numerical and approximate refinement.

This allows a reduction in time cost whilst still largely retaining

the benefit of numerical non-spherical refinement. This is

referred to as hybrid non-spherical refinement.

2.5. Time cost

Time-cost comparisons of approximate, numerical and

hybrid non-spherical refinements are presented in Table 1. We

present the median time cost for one refinement step (that is,

the generation and application of one shift vector) amongst 20

random refinement steps in each of the three refinement

processes. These were carried out on a computer running

Windows 10 utilizing 15 GB of RAM and three CPU cores.

As numerical non-spherical refinement requires a quantum-

mechanical calculation twice for each positional parameter in

x, as well as one for the central Fcalc, we expect it to take

ð2 � #parameters þ 1Þ times as long to run as approximate non-

spherical refinement does, which is reflected in this table. This

is a theoretical time requirement, not an implementation one,

so it gets less and less viable for larger molecules, but is

otherwise dependent on the speed of the method used. In the

case of hybrid non-spherical refinement, we count only those

positional parameters relating to hydrogen atoms. For

example, in the case of l-alanine, one expects that numerical

will take 79 times as long, and hybrid 43 times as long, as

approximate non-spherical refinement.

2.6. Numerical differentiation

Let us finally provide a brief explanation of the method of

numerical differentiation which we use for the computation of

the partial derivatives @Fc=@xn in the case of numerical non-

spherical refinement. For simplicity, the illustration in Fig. 3

presents the one-dimensional case.

As demonstrated in Fig. 3, the derivative is computed

numerically as follows:

F 0ðxÞ ’ �F

�x
¼ Fðx þ �Þ � Fðx � �Þ

2�
: ð3Þ

That is, the expression on the right-hand side of this equation

is the slope of the purple line (where the slope of the green

line is the actual derivative). Theoretically, the expression on

the right-hand side of (3) is more and more accurate as the �
value becomes smaller. On the other hand, too small � values

lead numerically to increasingly significant rounding errors.

The right choice of the step size �> 0 is therefore a compro-

mise between these two inaccuracies.
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Table 1
Median time costs for one step of each non-spherical refinement process
(in seconds).

Molecule Approximate Hybrid Numerical

Ammonia 9.3 63 79
Epoxide 11.8 302 503
l-Alanine 47.2 2137 3783

Figure 3
The principle behind numerical differentiation; the analytical derivative
(slope of tangent) is shown in green whilst the numerical derivative (slope
of secant) is shown in purple.
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In our many-dimensional case where the function is the

structure factor Fc, we use the following expression:

@Fc

@xn

ðx; hÞ ’ Fcðxþ �en; hÞ � Fcðx� �en; hÞ
2�

;

where en is the nth standard basis vector associated to the

parameter xn. The next section (Section 3) of this paper is

concerned with a good choice of the step size �> 0 in

numerical non-spherical refinement and with robustness

investigations of the numerical differentiation used in this

process.

We consider the numerical non-spherical refinement

procedure as the most mathematically accurate at our

disposal. Therefore, in Sections 4 and 5 of this paper we

compare its performance with approximate non-spherical

refinement which is currently used in NoSpherA2 interfaced to

olex2.refine, and spherical refinement as routinely used in

olex2.refine.

2.7. Experimental settings

In this work, we used the following settings. The non-

spherical refinement method HAR was performed utilizing

Olex2-1.5 (Dolomanov et al., 2009), NoSpherA2 and ORCA

(Neese, 2012, 2018). The basis set chosen was def2-TZVPP

with the method PBE and high integration accuracy, unless

mentioned otherwise. Refinement was done using standard

unit weights, using the Gauss–Newton minimization method.

The Cartesian step size for numerical non-spherical refine-

ments was � = 10�3 Å if not otherwise specified. The code used

to perform numerical refinements can be found in the

supporting information.

3. The quality of numerical non-spherical refinement

This section is concerned with the quality of numerical non-

spherical refinement. In particular, we test it with regards to

the following criteria:

(i) wR2 reduction. Numerical non-spherical refinement

should result in a smaller wR2 factor than spherical or

approximate non-spherical refinement.

(ii) Convergence. When numerical non-spherical refine-

ment has reached a wR2 minimum, the model should no longer

fluctuate – future shift vectors should be sufficiently small.

(iii) Consistency. The minimum should be independent

of the start model used for the numerical non-spherical

refinement.

Note that the model and the partial derivatives are given in

fractional coordinates with respect to the unit cell. The

computation of partial derivatives in positional directions via

numerical differentiation uses a certain step size � in fractional

coordinates which translates into a corresponding Cartesian

step size � in Cartesian coordinates. In order to find the most

suitable choice of Cartesian step size �, we investigate and

compare results for numerical differentiation with � choices

from 10�1 to 10�6 Å.

In our tests, we employ data sets collected from crystals of

three different molecules – ammonia (NH3) (Boese et al.,

1997), epoxide (C2H4O) (Grabowsky et al., 2010) and l-

alanine (C3H7NO2) (Destro et al., 1988; Grabowsky et al.,

2008) (see Fig. 4 for their chemical structures, see Table S1 in

the supporting information for further details). In the latter

two molecules, all atoms are in general positions and the

vector x describing the model has nine parameters for each

atom (three positional parameters and six ADPs). The space

group of NH3 is P213 and its model is determined by nine

parameters for the H atom, and only three parameters for the

N atom as it is restricted to the symmetry x ¼ y ¼ z (meaning

also that U11 ¼ U22 ¼ U33 and U12 ¼ U13 ¼ U23). Of course, in

the presence of symmetries, the vector x can be expanded to a

larger vector y ¼ yðxÞ which provides all nine parameters for

each atom in the molecule.

The least-squares process is focused on minimizing the wR2

factor. The wR2 factor is defined as

wR2ðxÞ ¼
P

h wðhÞ½YoðhÞ � ~KKðxÞYcðx; hÞ�2P
h wðhÞYoðhÞ2

� �1=2

: ð4Þ

Here, YoðhÞ are the observed intensities, Ycðx; hÞ the calcu-

lated intensities (depending on the model x), and wðhÞ the

weight associated to the Miller triple h. Here we also have the

scaling factor ~KKðxÞ, an analytically calculated constant multi-

plier across all Yc which scales Yc to minimize the weighted

norm (6) of the difference vector YoðhÞ � ~KKðxÞYcðx; hÞ.
The wR2 factor can also be written as a quotient of weighted

norms

wR2ðxÞ ¼
k~rrðxÞkw

kYokw

ð5Þ

of the residual vector ~rrðxÞ ¼ YoðhÞ � ~KKðxÞYcðx; hÞ and the

observed intensities Yo.

Here, the weighted norm of a vector v is given by

jjvjjw ¼ P
h

½wðhÞvðhÞ2�
� �1=2

: ð6Þ

That is, wR2ðxÞ is the difference between the model and

observed intensities relative to the strength of the observed

intensities – it provides a percentage disagreement.
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Figure 4
The chemical structures and atom labels of ammonia (top), epoxide (left)
and l-alanine (right). Because of crystallographic symmetries in
ammonia, two symmetry-equivalent H atoms are shown in blue.
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Henceforth, we will use the following notation: xspher

denotes the final model obtained via spherical refinement and,

similarly, xappr and xnum denote the corresponding final models

for the non-spherical refinements. Starting with an initial

model x0 ¼ xspher or x0 ¼ xappr, numerical non-spherical

refinement iteratively generates a sequence xj of 20 models via

xjþ1 ¼ xj þ sj, where sj is the jth shift vector (see Appendix A

for more details). Then xnum is the model xj with the minimal

wR2 factor within this sequence.

The maximal shift/e.s.d. for ammonia over 20 refinement

steps for each choice of � 2 {10�1, 10�2, 10�3, 10�4, 10�5,

10�6 Å} is shown in Fig. 5. The 20 refinement steps are

represented by the horizontal axis. At step j, each parameter in

the shift vector sj is divided by the corresponding uncertainty

of the model xj and the maximum over these quotients is

taken. This value shift/e.s.d. is represented vertically above

each step.

If shift/e.s.d. is lower than 0.01 the model is considered

settled as the shifts cannot cause a significant change to the

parameters (compared with their uncertainties). Fig. 5 shows

that this convergence threshold (represented by the dashed

line) is not reached for � 2 {10�4, 10�5, 10�6 Å}. Similar

diagrams for epoxide and l-alanine are presented in the

supporting information, and also include the line for hybrid

non-spherical refinement at � ¼ 10�3 Å (Figs S2–S4). For � 2
{10�1, 10�2, 10�3 Å}, convergence is reached from the third

step onwards. For such choices of �, the criterion of conver-

gence is achieved.

Fig. 6 shows the wR2 factors of numerical non-spherical

refinement for ammonia. Figures for epoxide and l-alanine

can be found in the supporting information (Figs. S12 and S19,

respectively), alongside diagrams presenting the finer details

for all three molecules (Figs. S6–S22). We note that many of

the points (in Fig. 6) overlap, and all journeys have the same

start point of 1.944%. In particular, � = 10�1 Å, . . . , 10�4 Å

have very similar essentially horizontal wR2 progressions.

Since the wR2 factor decreases compared with the start value,

numerical non-spherical refinement provides wR2 reduction

(compared with approximate non-spherical refinement). Fig. 6

also indicates that � = 10�5 Å and 10�6 Å provide results with

larger wR2 factor shifts later in the journey (outliers). We

therefore consider these � values as less suitable for a

systematic investigation, since they lead to computational

instabilities in the numerical procedure. Such increased errors

at low � are typically related to errors in the storage of

numbers. In our case, this could be related to the way that

NoSpherA2 passes information, such as atomic positions, to

the quantum-mechanical program, and more precise passing

of information could allow smaller � choices. Presently, we are

limited by the 8-digit precision of the wfn file, which can lead

to an error of up to 2 � 10�8 Å in the input to the quantum-

mechanical program (this is many orders of magnitude smaller

than experimental error).

In view of the above results and in consideration with the

results from the other molecules, we decided to fix the

Cartesian step size to be � = 10�3 Å for all numerical differ-

entiations in the remainder of this paper. This usually gives

lower wR2 factors whilst satisfying convergence. This can be

seen in Figs. S2–S4, S13 and S20 in the supporting information.

To provide evidence of the general applicability of our

verification tool for the assumption, we utilized a different

generation scheme (TAAM) in the supporting information,

with figures akin to Figs. 5 and 6 shown in Figs. S26–S28

(Kumar et al., 2019; Chodkiewicz et al., 2018; Gildea et al.,

2011).

After numerical refinement, employing approximate

refinement steps will rapidly return to the approximate

minimum with a slightly higher wR2. In Fig. 7, we ran five steps

of approximate refinement followed by five steps of numerical

refinement on ammonia, and repeated (we began at the

spherical minimum, so the first two very large steps have been

cut off. This graph for the other molecules and the full motion

from xspher can be found in Figs. S9–S11, S16–S18 and S23–S25

in the supporting information). It is clear to see that each
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Figure 5
Maximal shift/e.s.d. for numerical non-spherical refinement starting from
xappr for � = 10�1 Å, . . . , 10�6 Å (ammonia).

Figure 6
The progression of wR2ðxjÞ for j ¼ 0; 1; . . . ; 20 and for � =
10�1; . . . ; 10�6 Å starting from xappr (ammonia).
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refinement method returns to its own minimum within only a

few steps, and that these are distinct. This means that

approximate and numerical refinements converge to slightly

different minima although both methods aim to minimize the

same target function (measured by wR2) and both seem to

converge to their respective minima equally rapidly. Using the

wrong atom form factor derivatives (namely assuming them to

be zero) leads consistently to a small deviation from the

numerical refinement result of the approximate refinement

process into a less optimal minimum. This provides further

evidence that numerical refinement provides wR2 reduction

and is also a first indication for its consistency.

Finally, we compare the journeys of numerical non-sphe-

rical refinement beginning at the two different start models

xspher and xappr, as shown in Table 2.

The first four columns of Table 2 demonstrate the typical

convergence measures shift/e.s.d. and wR2 factor for numerical

non-spherical refinement processes starting from xspher and

from xappr. Italic values in the first two columns mean that the

convergence criterion ‘shift/e.s.d. <0.01’ is achieved while bold

values mean that it is not. As expected, the initial wR2 factor

of numerical non-spherical refinement starting from xspher is

much higher than the initial wR2 factor of numerical non-

spherical refinement starting from xappr, but the wR2 factors of

both journeys agree already after a few steps in both refine-

ment processes. Note that all wR2 factors are computed using

non-spherical form factors.

In the last column of Table 2 we present the difference d (in

10�6 Å) between corresponding atom sites of the two models

obtained via k numerical non-spherical refinement steps

starting from xspher and xappr, respectively. For example, the

third entry 2458 � 10�6 Å is the difference between the atom

site of H of ammonia after three numerical non-spherical

refinement steps starting from xspher and the same atom site of

H after three numerical non-spherical refinement steps

starting from xappr (since this distance is maximal for H

amongst all corresponding atoms). Our investigations confirm

that this maximum is always attained by one of the H atoms

(see Table S2 in the supporting information). These maximal

differences between sites of corresponding atoms shrink

significantly after each refinement step until they reach values

around 10�5 Å. Since, after about seven refinement steps,

these distances are about the same size as the maximal

Cartesian shifts of the individual atoms from the model xk to

the model xkþ1 (these maximal shifts can be found in Table S2

of the supporting information), we can safely conclude that

convergence of both refinement processes is essentially

obtained after at most seven refinement steps. Moreover, since

the two refinement processes from different start models xspher

and xappr lead after about seven refinement steps to models

whose atom sites agree up to 10�5 Å, the table proves in

particular consistency of numerical non-spherical refinement.

4. Comparison of refinement minima

This section is concerned with a direct comparison of the final

models obtained via our different refinement methods. Within

this, we work with the assumption that numerical non-sphe-

rical refinement is the best theoretical refinement method for

our X-ray diffraction data, and measure the quality of the

results obtained with spherical refinement, approximate non-

spherical refinement and hybrid non-spherical refinement

against those obtained from numerical refinement. Recall that

all refinements from now on are based on the Cartesian step

size � ¼ 10�3 Å.
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Figure 7
The progression of wR2ðxjÞ for j ¼ 3; 4; . . . ; 40 and for � = 10�3 Å,
alternating between five steps of approximate and five steps of numerical
refinement (ammonia).

Table 2
Progression of refinement values from xspher and xappr via numerical non-
spherical refinement with � ¼ 10�3 Å.

In the first two columns, if the shift/e.s.d. is below 0.01, it is shown in italic, else
bold. The final column represents the maximal difference d between sites of
corresponding atoms through numerical non-spherical refinement from these
two start points.

Step

Shift/e.s.d.
(�105)
(from xspher)

Shift/e.s.d.
(�105)
(from xappr)

wR2

(from xspher)
wR2

(from xappr)
d
(in 10�6 Å)

Ammonia
k = 0 392693 143955 9.2821% 1.9440% 126974
k = 1 198189 18797 2.6092% 1.9180% 20665
k = 2 47387 2818 1.9216% 1.9176% 2458
k = 3 7724 760 1.9176% 1.9176% 380
k = 4 1823 324 1.9175% 1.9176% 102
k = 5 592 142 1.9176% 1.9176% 36
k = 6 140 78 1.9176% 1.9176% 11
k = 7 . . . 20 �88 �119 1.9176% 1.9176% �5
Epoxide
k = 0 674626 51117 12.0375% 4.6551% 130527
k = 1 281762 4568 4.9113% 4.6536% 21095
k = 2 35810 812 4.6561% 4.6536% 3093
k = 3 6868 476 4.6537% 4.6536% 461
k = 4 1365 152 4.6536% 4.6536% 136
k = 5 292 88 4.6536% 4.6536% 38
k = 6 138 102 4.6536% 4.6536% 16
k = 7 . . . 20 �99 �126 4.6536% 4.6536% �11
l-Alanine
k = 0 992154 50245 6.4989% 3.2299% 126479
k = 1 308603 3568 3.3127% 3.2291% 24140
k = 2 32231 641 3.2298% 3.2291% 1818
k = 3 7711 244 3.2291% 3.2291% 237
k = 4 1838 176 3.2291% 3.2291% 59
k = 5 431 202 3.2291% 3.2291% 20
k = 6 214 194 3.2291% 3.2291% 16
k = 7 . . . 20 �190 �267 3.2291% 3.2291% �14
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Whilst in the previous section we focused on the wR2 factor,

we will now be comparing more specific values such as the

model parameters themselves and the interatomic distances.

The results of this section focus on the exact computational

results. Considerations of statistical uncertainties will be

investigated in the next section.

In this section, hybrid non-spherical refinement is also

analysed. Hybrid non-spherical refinement takes numerical

non-spherical derivatives for the H atoms, but takes approx-

imate non-spherical derivatives for any other atoms (see

Appendix A for further details). This allows a reduction in

time cost (roughly corresponding to the proportion of H atoms

in the molecule – see Section 2.5) compared with numerical,

whilst still conveying many of the benefits of full numerical

non-spherical refinement. In keeping with previous notation,

the final model of hybrid non-spherical refinement (which is

again chosen to be the model with smallest wR2 factor through

the 20 refinement steps) is denoted xhybr.

4.1. wR2 factors and interatomic distances

In Table 3 we present the wR2 factor and interatomic

distances of the models. We note that the wR2 factor calcu-

lated at xspher uses spherical form factors (accounting for the

difference compared with those in Table 2, which are based on

non-spherical form factors throughout).

One can clearly see the dramatic difference between xspher

and xappr with regards to a drop in the wR2 factor and increase

of the interatomic distances. The difference from xappr to xhybr

is much smaller, and the difference to xnum from xhybr is almost

non-existent. While the aim of this paper is to compare the

refinement methods, for general interest, Table 3 also presents

the corresponding distances for l-alanine obtained by neutron

diffraction taken from Malaspina et al. (2019). The X—H

distances from neutron diffraction are, as expected, in much

better agreement with xappr, xhybr and xnum than they are with

xspher. Nevertheless, they are in most cases still longer than any

of the X-ray-derived values in the non-spherical methods

(xappr, xhybr and xnum), which may be related to the weak

scattering signal of H atoms in X-ray diffraction [also see

Capelli et al. (2014), Dittrich et al. (2017) for further discus-

sion].

4.2. Atomic positions

In Table 4, we compare the individual atom positions, where

zC
� denotes the three Cartesian positional coordinates of the

chosen atom, at the final model obtained through the corre-

sponding refinement with � 2 fnum; appr; hybr; spherg. We

compare each final model against the final model xnum.

In both spherical and approximate non-spherical refine-

ment, the H atoms are significantly further from the positions
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Table 3
wR2 factors and interatomic distances from different refinement
techniques for three X-ray data sets, and reference neutron data for l-
alanine.

xspher† xappr xhybr xnum xneutron‡

Ammonia
wR2 2.39% 1.944% 1.918% 1.918%
N—H 0.855 (6) 0.973 (5) 0.979 (5) 0.979 (5)

Epoxide
wR2 6.71% 4.655% 4.654% 4.654%
H2a—C2 0.995 (8) 1.095 (7) 1.095 (6) 1.095 (6)
H2b—C2 0.975 (8) 1.079 (6) 1.080 (5) 1.080 (5)
H3a—C3 0.975 (11) 1.102 (8) 1.106 (7) 1.106 (7)
H3b—C3 0.968 (10) 1.090 (7) 1.090 (7) 1.090 (7)
C2—O1 1.4367 (8) 1.4316 (5) 1.4316 (5) 1.4316 (5)
C3—O1 1.4425 (7) 1.4359 (5) 1.4359 (5) 1.4359 (5)
C3—C2 1.4561 (9) 1.4577 (6) 1.4578 (6) 1.4578 (6)

l-Alanine
wR2 6.04% 3.230% 3.229% 3.229%
H1a—N1 0.923 (13) 1.006 (6) 1.007 (6) 1.007 (6) 1.0351 (16)
H1b—N1 0.936 (12) 1.019 (6) 1.019 (6) 1.019 (6) 1.0439 (16)
H1c—N1 1.085 (17) 1.045 (8) 1.050 (6) 1.050 (6) 1.0534 (15)
H1—C1 1.002 (9) 1.090 (5) 1.091 (4) 1.091 (4) 1.0993 (15)
H2a—C2 0.993 (13) 1.100 (7) 1.101 (6) 1.101 (6) 1.0919 (19)
H2b—C2 0.978 (11) 1.094 (7) 1.095 (6) 1.095 (6) 1.0945 (18)
H2c—C2 1.005 (10) 1.089 (6) 1.090 (5) 1.090 (5) 1.095 (2)
C1—N1 1.4919 (7) 1.4905 (4) 1.4906 (4) 1.4906 (4) 1.4891 (7)
C2—C1 1.5260 (7) 1.5264 (4) 1.5264 (4) 1.5264 (4) 1.5266 (8)
C3—C1 1.5329 (8) 1.5344 (4) 1.5344 (4) 1.5344 (4) 1.5360 (7)
O1—C3 1.2493 (6) 1.2478 (3) 1.2478 (3) 1.2478 (3) 1.2479 (9)
O2—C3 1.2668 (7) 1.2664 (3) 1.2664 (3) 1.2664 (3) 1.2661 (8)

† wR2 factors for xspher are calculated using spherical form factors. ‡ Neutron data are
taken from Malaspina et al. (2019) and are only presented for l-alanine as there are no
neutron data for ammonia and epoxide to our knowledge. No wR2 value given, since the
wR2 value in Laue neutron and single-wavelength X-ray refinement statistics is not
directly comparable.

Table 4
Differences between the sites of atoms of xnum versus other models (in
10�7 Å).

The first column shows the difference between final models of numerical non-
spherical refinement processes obtained from different start models xspher and
xappr, with the subscript ‘s’ indicating that from xspher.

kzC
num � zC

num;sk kzC
num � zC

hybrk kzC
num � zC

apprk kzC
num � zC

spherk
Ammonia
N 47 475 951 35920
H 705 3521 85980 1343000
Epoxide
O1 5 119 301 51120
C2 1 152 320 18290
H2a 131 364 17220 1011000
H2b 294 894 17990 1131000
C3 7 290 1154 33400
H3a 519 1813 50850 1344000
H3b 191 863 26680 1238000
l-Alanine
N1 5 127 313 8932
H1a 151 869 37230 1076000
H1b 149 192 17360 929600
H1c 166 1116 48640 774200
C1 2 77 71 26240
H1 170 687 22420 904900
C2 1 62 193 2788
H2a 144 236 19900 1114000
H2b 64 146 20740 1281000
H2c 133 457 13590 865500
C3 1 118 75 7201
O1 1 103 255 20220
O2 2 146 213 8635
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at xnum than heavier atoms are. This difference is dramatically

reduced in the case of hybrid non-spherical refinement.

Table 4 also demonstrates that approximate non-spherical

refinement provides an agreement with numerical non-sphe-

rical refinement which is 100-fold better than spherical

refinement is. Hybrid refinement then further provides a 20- to

50-fold better agreement for the H atoms.

This shows that there is a significant change from spherical

to approximate non-spherical refinement, and a further

change from approximate to hybrid non-spherical refinement

with regards to the H-atom positions in the direction of

numerical non-spherical refinement.

4.3. Basis-set dependence

When utilizing quantum-mechanical calculations, the user

needs to select a method, a basis set, and also needs to utilize

an accuracy for the integration grids, which can be selected

from the pre-defined settings ‘High’, ‘Normal’ and ‘Low’ in

NoSpherA2.

We carried out refinement procedures with the method of

PBE with five basis sets for ammonia – 3-21G, def2-SVP, def2-

TZVP, cc-pVTZ, cc-pVQZ [for details on these basis sets, see

Pritchard et al. (2019)] – and our results are shown in Fig. 8.

In Fig. 8 we compare the H positions of the results using

various options for the basis sets in three-dimensional space.

Fig. 8 clearly indicates that the difference between smaller

basis sets [3-21G (teal) and def2-SVP (orange)] and larger

ones [def2-TZVP (purple), cc-pVTZ (red) and cc-pVQZ

(green)] is far more significant than the difference between

approximate non-spherical and numerical non-spherical

refinements. Additionally, the difference between larger basis

sets is roughly of the same magnitude as the change intro-

duced by using numerical rather than approximate non-

spherical refinement.

We finally note here that every larger basis set results in an

additional movement in the �y direction when numerical non-

spherical refinement is used instead of approximate non-

spherical refinement. Further details including different inte-

gration grids, which had a smaller impact, can be found in the

supporting information in Figs. S29 and S30.

5. Bringing in uncertainties

In this section we compare the parameters of corresponding

atoms in the models xnum, xappr and xspher together with their

uncertainties. These uncertainties are error measures for the

parameters obtained in the least-squares minimization

process. They are represented by the variance–covariance

matrix of the model x given by the following rescaling of the

inverse of the normal matrix BðxÞ:

VarðxÞ ¼ jj~rrjj2w
#obs � #param

BðxÞ�1 ð7Þ

[formula (3.1.10.2) in Shmueli (2010)], where jj~rrjjw is the

weighted norm introduced in (6) of the residual ~rr, #obs is the

number of observations taken into account in the refinement

process and #param is the number of parameters contained in

the vectors xnum, xappr and xspher (that is, their length) [for more

information on the normal matrix see (13) in Appendix A]. We

note that the prefactor jj~rrjj2w=ð#obs � #paramÞ coincides with the

square of the goodness of fit.

The positional or ADP uncertainties of any atom in any of

the final models x can be extracted from VarðxÞ and are

represented by 3 � 3 or 6 � 6 submatrices, respectively.

Through a transformation into Cartesian coordinates and

calculations of the eigenvalues of this matrix, we can derive

lower and upper bounds of these uncertainties. These bounds

can be represented by balls centred at the atom (for the

mathematical details see Appendix B), and these inner and

outer uncertainty balls can be plotted to allow us to compare

corresponding atoms of the different final models with respect

to their uncertainties.
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Figure 8
The position of the H atom (in Å), obtained through classical spherical refinement (black square) and non-spherical refinement processes (approximate
= triangles and numerical = circles) using various basis sets, where the H atom in the classical spherical model is shifted to the origin (0,0,0). The
integration accuracy used is ‘Normal’ (ammonia).
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The uncertainties are illustrated as follows. In any dimen-

sion, three points can be displayed on a single plane. We apply

this fact to the atomic positions of corresponding atoms in

xnum, xappr and xspher, and include the uncertainty balls for

epoxide in Figs. 9 and 10 (equivalent diagrams for l-alanine

and ammonia and for uncertainties of ADPs can be found in

the supporting information in Figs. S31–S42, alongside Tables

S3–S8 of the precise values of these bounds). With regards to

the balls we use the following colour code: green balls

represent inner uncertainty balls and red balls represent outer

uncertainty balls.

Figs. 9 and 10 confirm that each individual atom of xnum and

xappr lies well within each others’ uncertainty bounds, whilst

the corresponding atom of xspher lies much further away. While

the significant difference in H position between xspher and xappr

is well known, such a difference often holds true even for non-

H atoms (see Fig. 10). Similar phenomena for l-alanine and

ammonia are presented in Figs. S31–S32 and S39–S40 in the

supporting information. We conclude that there is such a

strong agreement between approximate and numerical non-

spherical refinement that the simplification of setting (*) in (1)

to zero is justified.

6. Conclusions

Over the course of this work, we have obtained the following

results:

(i) Numerical non-spherical refinement is robust and

mathematically more complete, but the time cost makes it

unviable for practical use.

(ii) The best choice for the step size � in numerical non-

spherical refinement is between 10�3 and 10�2 Å for our

choice of molecules, which provides converging and consistent

wR2-reducing results.

(iii) Approximate non-spherical refinement (as currently

used in NoSpherA2 and other non-spherical structural

refinement methods) is significantly closer to numerical non-

spherical refinement, in terms of wR2 factor, X—H distances

and atomic positions, than spherical refinement is.

(iv) Hybrid non-spherical refinement, which only calculates

the H-atom derivatives of the form factor via numerical

differentiation, provides a compromised change of the

approximate method towards numerical non-spherical

refinement. It provides a time-cost reduction roughly

equivalent to the proportion of non-H atoms in the model

compared with the complete numerical refinement.

(v) We have implemented a framework which can be

adapted for similar analysis of other aspects of refinement

processes, in contexts where numerical differentiation is

required for mathematically accurate computation.

(vi) We have introduced the concept of ‘uncertainty balls’

for the visualization of relative differences of parameters with

regards to their uncertainties.

(vii) Considering the refinement uncertainties, the differ-

ences of results from approximate and numerical non-

spherical refinement are insignificant for both H and non-H

atoms.

The fundamental question of this paper was the impact of

assuming the form factor derivatives to be zero during the

least-squares refinement process. Our investigations have

shown that the impact of this assumption is negligible, and

therefore we can be confident in applying it within

NoSpherA2.

This result is not limited exclusively to Hirshfeld atom

refinement and we expect that other non-spherical approaches

are also unaffected by this approximation.

7. Outlook

The validation of non-significance of the derivatives of atomic

form factors in non-spherical refinements removes one of the

concerns about the accuracy of non-spherical structural

refinement techniques. This leads to the natural question,

whether these techniques provide better agreement with the
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Figure 10
Positions of the non-H atoms in xnum (white diamond), xappr (black circle)
and xspher (red square), and their uncertainty balls. Green balls represent
inner uncertainty balls and red balls represent outer uncertainty balls
(epoxide).

Figure 9
Positions of the H atoms in xnum (white diamond), xappr (black circle) and
xspher (red square), and their uncertainty balls. Green balls represent inner
uncertainty balls and red balls represent outer uncertainty balls
(epoxide).
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structural parameters obtainable by other techniques. Here we

want to remind the reader of the already documented

(Sanjuan-Szklarz et al., 2020; Fugel et al., 2018; Woińska et al.,

2016, 2017; Kleemiss et al., 2021; Malaspina et al., 2019, 2020;

Jha et al., 2020; Dittrich et al., 2017; Wieduwilt et al., 2021)

improvement of X—H distances obtainable by X-ray diffrac-

tion data in comparison with neutron diffraction, which can

also be visualized using the techniques presented in this work.

In Fig. 11 we show the positions and uncertainty radii of H

atoms from the refinements of l-alanine using xspher and xappr

in comparison with xneutron, taken from Laue diffraction data

as reported by Malaspina et al. (2019) and already used as a

reference by Kleemiss et al. (2021). As expected from the

previous studies, the H-atom positions in xappr are significantly

closer to those given by the neutron data. In comparison, their

positions in xspher are significantly much more distant and less

precise. However, even in xappr they do remain outside of the

corresponding uncertainty balls, showing that the accuracy of

the determination of X—H distances from X-ray diffraction is

much improved with non-spherical approaches but does not

yet equal that of neutron diffraction. The non-H-atom and

ADP comparisons can be found in the supporting information

(Figs. S43–S46).

APPENDIX A
Shift vector computation in the least-squares
minimization

In this appendix we discuss the mathematical details of the

shift vector computation in the non-spherical refinement

processes. While there are similarities to the arguments given

in Appendix B of Bourhis et al. (2015), there are also

conceptual differences: we introduce a modified design matrixeDDðxÞ and we distinguish carefully between terms involving

only the structure factors themselves and other terms which

also require their partial derivatives. This is important since all

non-spherical refinement processes rest on the same non-

spherical structure factors, but they differ in the computation

of their partial derivatives.

A1. Preliminaries

Let Yo be the set of observed intensities corresponding to

the Miller indices h1; . . . ; hM with associated weights wðhmÞ,
1 � m � M. We view Yo as a column vector with components

YoðhmÞ. The weights w give rise to a weighted scalar product on

two such column vectors X;Y given by

hX;Yiw ¼ PM
m¼1

wðhmÞXðhmÞYðhmÞ;

and its corresponding weighted norm kXkw ¼ ðhX;XiwÞ1=2

[see also (6)].

A given model x gives rise to a list of non-spherical form

factors fjðz; hmÞ provided by a tsc file. These form factors

determine the structure factor Fcðx; hmÞ via (1) and the

corresponding theoretical intensities Ycðx; hmÞ = jFcðx; hmÞj2.

We view the set of theoretical intensities again as a column

vector YcðxÞ.

A2. The residual and the scale factor

The residual vector measures the difference between

observed and theoretical intensities involving a scale factor

K > 0:

rðx;KÞ ¼ Yo � KYcðxÞ:
The scale factor is chosen in such a way that

Lðx;KÞ ¼ krðx;KÞk2
w becomes minimal. Since

Lðx;KÞ ¼ kYok2
w � 2KhYo;YcðxÞiw þ K2kYcðxÞk2

w

¼ kYcðxÞk2
w K � hYo;YcðxÞiw

kYcðxÞk2
w

� �2

þ kYok2
w � hYo;YcðxÞi2

w

kYcðxÞk2
w

;
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Figure 11
Positions of the H atoms in xneutron (purple star), xappr (black circle) and
xspher (red square), and their uncertainty balls. Green balls represent inner
uncertainty balls and red balls represent outer uncertainty balls (l-
alanine).
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this minimum is attained by the following choice of the scale

factor:

eKK ¼ eKKðxÞ ¼ hYo;YcðxÞiw

kYcðxÞk2
w

:

The residual corresponding to the scale factor eKK minimizing

krðx;KÞkw is denoted byerrðxÞ and given by

errðxÞ ¼ Yo � eKKYcðxÞ ¼ Yo �
hYo;YcðxÞiw

kYcðxÞk2
w

YcðxÞ:

Note that the residualerr depends only on the weights and the

theoretical and observed intensities and not on the partial

derivatives of the theoretical intensities.

A3. Design matrices

The entries of the design matrix DðxÞ are given by

½DðxÞ�mn ¼ @Yc

@xn

ðx; hmÞ;

with 1 � n � N, 1 � m � M and N is the length of the vector

x, that is, the number of refined parameters. Their computa-

tion involves the partial derivatives of the structure factor Fc

since

@Yc

@xn

ðx; hÞ ¼ 2Re F�
c ðx; hÞ

@Fc

@xn

ðx; hÞ
� �

;

where F�
c ðx; hÞ denotes the complex conjugate of Fcðx; hÞ. The

general form of partial derivatives of Fc is given in formula (2).

For xn representing ADPs, we calculate these partial deri-

vatives analytically:

@Fc

@xn

ðx; hÞ ¼
XNatoms

j¼1

fjðx; hÞ
@Gj

@xn

ðx; hÞ: ð8Þ

In the case of positional parameters xn, our refinement

methods differ. In the case of approximate non-spherical

refinement, these partial derivatives are approximated by the

expression

@Fc

@xn

ðx; hÞ ’
XNatoms

j¼1

fjðx; hÞ
@Gj

@xn

ðx; hÞ: ð9Þ

Numerical non-spherical refinement uses the more accurate

difference quotients

@Fc

@xn

ðx; hÞ ’ Fcðxþ �en; hÞ � Fcðx� �en; hÞ
2�

: ð10Þ

Hybrid non-spherical refinement uses a combination of both

choices, namely (9) for partial derivatives in positional direc-

tions of heavier atoms and (10) for positional directions of the

H atoms [and (8) for all partial derivatives with respect to

ADPs].

To have a good fit with the observed intensities Yo, the

rescaled theoretical intensities eKKYc should be used instead of

Yc, which leads to the following modification eDDðxÞ of the

design matrix,

½eDDðxÞ�mn ¼ @eKKYc

@xn

ðx; hmÞ ¼
@eKK
@xn

ðxÞYcðx; hmÞ þ eKKðxÞ½DðxÞ�mn;

where

@eKK
@xn

ðxÞ ¼ 1

kYcðxÞk2
w

@Yc

@xn

ðxÞ;Yo � 2eKKðxÞYcðxÞ
� �

w

: ð11Þ

The two design matrices are thus related by

eDDðxÞ ¼ eKKðxÞDðxÞ þ YcðxÞ gradeKKðxÞ
h i>

; ð12Þ

where YcðxÞ is a column vector and where the gradient grad f

of a function f : RN ! R is the column vector of the partial

derivatives @f=@xn. The design matrix eDDðxÞ is therefore a rank-

one perturbation of the product eKKðxÞDðxÞ. Its computation

requires the structure factor Fc together with its partial deri-

vatives @Fc=@xn.

A4. Shift vector computation

The two ingredients of the shift vector computation are the

residualerrðxÞ and the design matrix eDDðxÞ. While the residual

only requires the structure factor itself and is the same for all

non-spherical refinement processes, the computation of the

design matrix is different for each of the non-spherical

refinement processes. The computation of eDDðxÞ via numerical

differentiation in the case of numerical non-spherical refine-

ment is much more time consuming since it relies on two

further quantum-mechanical computations for each partial

derivative in positional directions. Hybrid non-spherical

refinement is a compromise providing near-identical results

(to numerical non-spherical refinement) for the final model by

only computing derivatives of the H atoms via numerical

differentiation and thus reducing the overall computation

time.

The normal matrix BðxÞ is the symmetric matrix

BðxÞ ¼ eDDðxÞ>WeDDðxÞ; ð13Þ
where W is the M � M diagonal matrix with the weights wðhmÞ
on the diagonal. In the standard case of the Gauss–Newton

method, the shift vector sðxÞ is then computed via the formula

[see also (72) of Bourhis et al. (2015)]

BðxÞsðxÞ ¼ eDDðxÞ>WerrðxÞ: ð14Þ
The derivation of the shift sðxÞ on the left-hand side of this

equation is carried out utilizing the Cholesky decomposition

of BðxÞ. The new model is then given by xþ sðxÞ. This

completes the mathematical description of an iteration step in

the least-squares minimization.

APPENDIX B
Uncertainty balls

In this appendix we provide the mathematical justification for

the use of inner and outer uncertainty balls of the positional

parameters of a specific atomic site (or of its ADPs) and

explain how these balls and their radii are calculated.
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In our derivation we will make repeated use of the following

fundamental rule [see, e.g., III.5 in Feller (1971)]: if random

vectors x and y are transformed via y ¼ Axþ b (with a fixed

matrix A and a fixed vector b) then their corresponding

variance–covariance matrices are related by

VarðyÞ ¼ A VarðxÞA>: ð15Þ
The first transformation from the vector x (representing a

model) into the crystallographic parameters y is often the

identity (in the case of epoxide and l-alanine), but in other

cases with constraints (like ammonia) the expansion may be

given by some matrix J, that is y ¼ Jx [the choice of J for

ammonia can be found in the supporting information in

equation (S1)]. Application of the above rule yields

VarðyÞ ¼ J VarðxÞ J> [see also (35) of Bourhis et al. (2015)].

The variance–covariance matrix of the fractional positional

coordinates z of an atom is a specific 3 � 3 submatrix of

VarðyÞ. The transformation to Cartesian coordinates is given

through multiplication with the orthogonalization matrix A,

that is, zC ¼ Az. Consequently, the above rule yields

VarðzCÞ ¼ A VarðzÞA>.

For the ADPs of an atom, we utilize the matrix

U� ¼
U�

11 U�
12 U�

13

U�
12 U�

22 U�
23

U�
13 U�

23 U�
33

2
4

3
5

[U� is the unitless representation of the ADPs as in Grosse-

Kunstleve & Adams (2002)] and transform it with the help of

the orthogonalization matrix A into a Cartesian matrix:

UC ¼
UC

11 UC
12 UC

13

UC
12 UC

22 UC
23

UC
13 UC

23 UC
33

2
4

3
5 ¼ A

U�
11 U�

12 U�
13

U�
12 U�

22 U�
23

U�
13 U�

23 U�
33

2
4

3
5A>: ð16Þ

This transformation can be equivalently written as

UC
11 UC

22 UC
33 UC

12 UC
13 UC

23

	 
>
¼ B U�

11 U�
22 U�

33 U�
12 U�

13 U�
23

	 
> ð17Þ
with a suitably chosen 6 � 6 matrix B, which can then be used

with the above rule to obtain VarðUCÞ [see Parois & Lutz

(2011) for further details].

The uncertainty of the random vector zC in direction v is

given by the expression

�vðzCÞ	 
2¼ v> VarðzCÞ v
v>v

: ð18Þ

We postpone the derivation of (18) and first discuss its usage.

If the random parameters zC are restricted by certain

constraints (as in the case of ammonia), we only consider

admissible directions complying with these constraints, and we

define the inner and outer uncertainty radii as the smallest and

largest uncertainties appearing in all admissible directions.

The fraction on the right-hand side of (18) is known as

Rayleigh’s quotient [see e.g. p. 176 of Horn & Johnson (2013)],

and is bounded by the maximal and minimal eigenvalues of

the symmetric and positive semidefinite matrix VarðzCÞ.

In the case of constraints, the uncertainty in any direction v

perpendicular to the subspace of admissible directions is

identically zero, that is, v lies in the kernel of VarðzCÞ. If v is an

admissible direction, the uncertainty �vðzCÞ in direction v lies

in the interval ½ð�minÞ1=2; ð�maxÞ1=2�, where �min and �max are the

smallest and the largest non-zero eigenvalue of the positive

semidefinite matrix VarðzCÞ. Consequently, the uncertainties

in any admissible direction are sandwiched between the balls

with radii ð�minÞ1=2 and ð�maxÞ1=2. We call these balls the inner

and outer uncertainty balls of zC. These uncertainty balls are

displayed as red and green balls on Figs. 9, 10 and 11.

Analogous considerations can be carried out for the ADPs of

an atom, viewed as a random vector in R
6.

Let us finally return to formula (18) and its derivation. The

specific direction v 2 R
3 determines a Euclidean line

‘ ¼ R � v0, where v0 ¼ v=kvk is the unit vector corresponding

to v. The orthogonal projection of the random vector zC onto

this line is given by the inner product v0 � zC ¼ kzCk cos�,

where � is the angle between zC and v0. This orthogonal

projection of zC onto the line ‘ is a new one-dimensional

random variable, and we refer to its variance (and its uncer-

tainty) as the variance (and uncertainty) of the random vector

zC in direction v. Rewriting the inner product as the matrix-

vector multiplication v>0 z
C and applying (15) (with A ¼ v>0 and

b ¼ 0) we obtain

�vðzCÞ	 
2¼ Varðv>0 zCÞ ¼ v>0 VarðzCÞ v0 ¼
v> VarðzCÞ v

v>v
:

This completes our mathematical discussion of the uncer-

tainties of positional parameters and ADPs of specific atoms

and their associated uncertainty balls.
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