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We investigate the impact of different assumptions in the modeling of one-loop galaxy bias on the recovery
of cosmological parameters, as a follow-up of the analysis done in the first paper of the series at fixed
cosmology. To carry out these tests we focus on the real-space galaxy-power spectrum from a set of three
different synthetic galaxy samples whose clustering properties are meant to match the ones of the CMASS
and LOWZ catalogs of BOSS and the SDSS Main Galaxy Sample. We investigate the relevance of allowing
for either short range nonlocality or scale-dependent stochasticity by fitting the real-space galaxy autopower
spectrum or the combination of galaxy-galaxy and galaxy-matter power spectrum. From a comparison among
the goodness of fit (χ2), unbiasedness of cosmological parameters (FoB), and figure of merit (FoM) of the
model, we find that a simple four-parameter model (linear, quadratic, cubic nonlocal bias, and constant shot
noise) with fixed quadratic tidal bias provides a robust modeling choice for the autopower spectrum of the
three galaxy samples, up to kmax ¼ 0.3h Mpc−1 and for an effective volume of 6h−3 Gpc3. Instead, a joint
analysis of the two observables fails at larger scales, and a model extension with either higher derivatives or
scale-dependent shot noise is necessary to reach a similar kmax, with the latter providing the most accurate and
stable results. Throughout the majority of the paper, we fix the description of the nonlinear matter evolution
using a hybrid perturbative-N-body approach, RESPRESSO, that was found in the first paper to be the closest
performing to the measured matter spectrum.We also test the impact of different modeling assumptions based
on perturbative approaches, such as galilean-invariant Renormalised Perturbation Theory (gRPT) and
effective field theory (EFT). In all cases, we find the inclusion of scale-dependent shot noise to increase the
range of validity of the model in terms of FoB and χ2. Interestingly, these model extensions with additional
free parameters do not necessarily lead to an increase in the maximally achievable FoM for the cosmological
parameters ðh;Ωch2; AsÞ, which are generally consistent with those of the simpler model at smaller kmax.
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I. INTRODUCTION

Over the past decades galaxy redshift surveys
have provided a wealth of information on the large-scale
distribution of galaxies across the Universe. Clustering

measurements of two-point statistics—the galaxy-
power spectrum PðkÞ and the two-point correlation func-
tion ξðsÞ—from large data samples can indeed provide
precise measurements about the underlying cosmological
model [1–4].
The inference of cosmological parameters from the

large-scale structure is made intrinsically more difficult
by the realization that galaxies are a biased tracer of the
total matter density field [5–11]. This translates into the
necessity of having an accurate description of the relation-
ship between the galaxy and matter density fields, a
phenomenon which is commonly referred to as galaxy
bias. Even though the latter can be partially understood in a
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phenomenological way, e.g. using results from N-body
simulations, the complexity of dealing with tracers featur-
ing different morphological properties makes it desirable to
develop an analytic formulation that is based on a more
theoretical background. From this point of view, perturba-
tive approaches stand as a natural way of describing galaxy
bias in a physically motivated way.
The main idea behind this formulation is that the galaxy

overdensity δg can be expressed in terms of a series of
operators involving spatial derivatives of the gravitational
and velocity potentials. At leading order, this relation is
captured by a single multiplicative factor, i.e. δg ¼ b1δ,
where δ is the matter density contrast and b1 is a multipli-
cative factor called linear bias [6]. Higher-order contribu-
tions become progressively more important on mildly
nonlinear scales, as expected from a spherically symmetric
gravitational collapse [12,13], in a way that the expression
for δg can be expanded to include higher powers of δ,
i.e. δg ¼

P
n bn=n!δ

n [6,14]. At the same time it has been
shown that anisotropies in the process of gravitational
collapse are responsible for the generation of non-negligible
tidal effects, which also contribute to the local distribution of
galaxies [15,16]. This finding followed the realization that
the local-in-matter-density bias model had limitations in
providing a proper description of the clustering of dark
matter halos [17,18] and was leading to incompatible
constraints on the quadratic bias b2 from measurements
of the power spectrum and bispectrum [19,20].
The most important aspect of the previously described

model is that galaxy bias is treated as a spatially local
quantity. However, it is well known that the formation of
halos and galaxies is triggered by the gravitational collapse
of matter from a spatially finite region, and therefore the
local assumption is bound to fail when approaching scales
that roughly correspond to the Lagrangian radius R of the
host halos. In terms of δg, this effect can be taken into
account by considering not only its dependency on density
and tidal fields, but also on functionals of δ [11]. This is
equivalent to introducing higher derivatives of the matter
density field, which at leading order provide a contribution
to δg of the form R2∇2δ [21–23]. A further ingredient to the
galaxy-matter relation is represented by stochastic terms,
which on large scales behave as an additional contribution
to Poissonian shot noise [24]. Stochasticity is the direct
result of small-scale perturbations, which are not correlated
over long distances under the assumption of Gaussian
initial conditions [25–27]. At higher wave modes the halo-
exclusion effect [12,28,29] imprints a scale dependence on
the stochastic contributions, whose strength is controlled by
the Lagrangian radius [30], similarly to higher derivatives.
At next-to-leading order, this contribution scales as k2, and
might become relevant even for clustering analysis based
on two-point statistics, as shown in [31].
Galaxy bias models based on the one-loop perturbative

expansion have been used to extract cosmological

constraints from big data collaborations, such as BOSS,
using clustering measurements both in configuration [32]
and in Fourier space [33–35]. More recently, the same data
have been reanalyzed in a number of works [36–38] with
novel techniques that nevertheless assume the same biasing
scheme for the galaxy-matter relationship. The majority of
these analyses assume a different ansatz in terms of the
degrees of freedom of the model, by fixing some of the free
bias parameters to some physically motivated relations. For
example, the authors of [32,35,38] fix the cubic nonlocal
bias parameter to the local Lagrangian (LL) relation, while
those of [34] also fix the quadratic nonlocal parameter. On
the other side, the authors of [36] set the cubic term to zero
and leave the quadratic tidal bias completely free.
This paper is part of a set of works [31,39] in which we

explore the impact of different bias modeling choices using a
set of three performance metrics, namely the goodness of fit,
the unbiasedness of sampling parameters, and the merit of
the model. To do that, we make use of a set of three different
simulated galaxy samples with an effective volume of
6h−3 Gpc3, whose clustering properties and number den-
sities reproduce the ones of three real catalogs, the CMASS
and LOWZ samples of BOSS [40–42], and the Main Galaxy
Sample of SDSS [43]. In order to exclusively concentrate
on the modeling of one-loop galaxy bias, we carry out this
analysis in real space removing the impact of redshift-space
distortions, which would require an additional modeling
layer. In [31] we performed a fixed cosmology analysis by
using the measured nonlinear matter power spectrum. In that
case, we used the linear bias parameter as a proxy for the
goodness of our model. Here, we additionally model the
impact of matter nonlinear evolution and sample over
cosmological parameters to determine the impact of one-
loop galaxy bias on the recovery of such parameters. In the
first part of the paper we use the hybrid perturbative-
simulated approach, RESPRESSO, while comparing results
for different perturbation theory (PT)-based dark matter
models in a later section.
Our paper is organized as follows. In Sec. II we

summarize the main ingredients of our galaxy bias model
including a description of all the terms contributing at one
loop in perturbation theory. This includes also a short review
of the three nonlinear matter predictions we employ in this
work. In Sec. III we describe the simulated galaxy samples
we use to test one-loop galaxy bias, along with fitting
procedure, parameter priors and the performance metrics we
introduced above. The main results from fit of the autoga-
laxy-power spectrum and the combination between the latter
and the galaxy-matter cross power spectrum are given in
Sec. IV. We finally draw our conclusions in Sec. V.

II. ONE-LOOP PERTURBATION THEORY
FOR BIASED TRACERS

The theory describing the evolution of the clustering
of biased tracers on mildly nonlinear scales is a well
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established topic (for a review of galaxy bias see [11])
that can be naturally described in the framework of
perturbation theory. This section stands as an overview
of the most important results obtained at one loop in
standard perturbation theory (SPT) and derived approaches.
Notice that for sake of readability we omit all the depend-
ences on redshift z.

A. Galaxy bias expansion

The general perturbative expansion of galaxy bias can
be interpreted as a sum of different operators that are
functions of the gravitational potential Φ and velocity
potential Φv. Focusing on one-loop contributions, the
relationship between biased tracers and the underlying
dark matter density field can be described considering
terms up to third order in the matter perturbation δ.
Following the notation of [44] we can write

δgðxÞ ¼ b̄1δðxÞ þ
b̄2
2
δ2ðxÞ þ γ̄2G2ðΦvjxÞ

þ γ̄21G2ðφ1;φ2jxÞ þ β̄1∇2δðxÞ þ � � � ; ð1Þ
where the first two terms on the right-hand side are part of
the standard local expansion in powers of δ.
In the previous equation G2 is a Galilean invariant

operator, representing the tidal stress tensor generated by
the velocity potential Φv, and it is given by

G2ðΦvÞ ¼ ð∇ijΦvÞ2 − ð∇2ΦvÞ2: ð2Þ
In Fourier space1 this translates into

G2ðkÞ ¼
Z
q

�½q · ðk − qÞ�2
q2jk − qj2 − 1

�
θðqÞθðk − qÞ; ð3Þ

where θ is the divergence of the matter velocity field, such
that ∇2Φv ≡ θ.
Differently from the first two terms of Eq. (1), terms

involving G2 incorporate nonlocal (in matter density δ)
contributions that spontaneously arise from the nonlinear
evolution of the matter density field. The second of
these terms is obtained by expressing the nonlinear velocity

potential up to second order (i.e. Φv ¼ Φð1Þ
v þΦð2Þ

v ,

φ1 ¼ −Φð1Þ
v , φ2 ¼ −Φð2Þ

v ), and keeping the next-to-leading
order correction [45], leading to

G2ðφ1;φ2Þ ¼ ∇ijφ1∇ijφ2 −∇2φ1∇2φ2; ð4Þ

where ∇2φ1 ¼ −θ is the linear velocity divergence field,
and ∇2φ2 ¼ −G2ðφ1Þ is the next-to-leading order. The net

result of adding this higher-order correction is that δg
collects contributions up to third order in the matter
perturbation δ.
In addition to the standard expansion, any biased tracer

also comes with a physical scale which regulates the
importance of higher-derivative operators [8,21,23,27,46],
whose leading order scales as ∇2δ. This scale quantifies the
size of the region in which galaxy formation occurs, and
it is therefore influenced by any short-range gravitational
effect and baryonic corrections. For halos, this scale is close
to the Lagrangian radius [21,47], while it differs for other
kinds of tracers, such as galaxies and quasars, depending on
their type.
An important aspect of the previously described biasing

scheme is the renormalization of the parameters on which it
is based. As a matter of fact, the bare bias parameters listed
in Eq. (1) are sensitive to the UV cutoff scale used to make
one-loop integrals convergent. In particular, the current
basis carries a dependence on the variance of the matter
density field σ2 ¼ hδ2ðxÞi, and more generally to any
higher-order correlator hδðnÞi. This dependence is com-
pletely nonphysical and can be reabsorbed by means of an
adequate renormalization of the bias parameters [48,49].
The new basis (for convention this is denoted without the
overscript hat) can be identified using the peak-background
split formalism [50], and it is constructed in a way that its
components quantify the response of the cosmic mean
abundance of tracers to a change in the background density,
with no dependence on the one-loop cutoff scale.
An alternative approach to this renormalization can be

obtained by realizing that the renormalization procedure
can be bypassed altogether by expanding δg in terms of the
galaxy multipoint propagators, as described in [44]. As in
renormalized perturbation theory [51], these quantities are
defined as the ensemble averaged derivatives of δg with
respect to δL,

� ∂δgðkÞ
∂δLðk1Þ…∂δLðknÞ

�
≡ ð2πÞ3ΓðnÞ

g ðk1;…; knÞ

× δDðk − k1…nÞ: ð5Þ

As shown in [44], the renormalization procedure corre-
sponds to trading derivatives evaluated at δL ¼ 0 [Taylor-
type series coefficients as in Eq. (1)] by their expectation
values [as in Eq. (5)], which are observables that can be
measured by simply cross-correlating δg with δL fields.
Technically, this procedure corresponds to associating the
observable bias parameters with the (infinite) sum of
irreducible diagrams at all orders from Eq. (1) that depend
on all the bare bias parameters. The expansion of δg in
terms of multipoint propagators then reads

δg ¼ Γð1Þ
g ⊗ H1 þ Γð2Þ

g ⊗ H2 þ � � � ; ð6Þ

1We adopt the usual convention for the Fourier transform,
δðxÞ ¼ R

k exp ð−ik · xÞδðkÞ, and use the short-hand notation
for the three-dimensional integrals,

R
k1;…;kn

≡ R
d3k1=ð2πÞ3 � � �

d3kn=ð2πÞ3.
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where the Hn are the Wiener-Hermite functionals [44,52],
and the operator ⊗ is defined as

½ΓðnÞ
g ⊗ Hn�ðkÞ≡ ð2πÞ3

Z
k1;…kn

δDðk − k1���nÞ

× ΓðnÞ
g ðk1;…; knÞHnðk1;…; knÞ: ð7Þ

In this way, one just calculates correlators of δg from Eq. (6)
directly, and obtains the corresponding expression for the
power spectra used in this work without the need of doing
any extra renormalization steps. The parameters appearing
in Eq. (6) are exactly the same as in the set of equations for
two-point statistics below.
Here, we are interested in the galaxy autopower spectrum

Pgg and galaxy-matter cross power spectrum Pgm, which
are defined as the auto- and cross-correlation of the two
density fields δg and δm, as

hδgðkÞδgðk0Þi≡ ð2πÞ3PggðkÞδDðkþ k0Þ; ð8Þ

hδgðkÞδmðk0Þi≡ ð2πÞ3PgmðkÞδDðkþ k0Þ: ð9Þ

Substituting Eq. (1) in the previous set, we get to the full
expressions for the galaxy auto- and cross-power spectra at
one-loop,

PggðkÞ ¼ b21PmmðkÞ þ b1b2Pb1b2ðkÞ þ b1γ2Pb1γ2ðkÞ
þ b22Pb2b2ðkÞ þ b2γ2Pb2γ2ðkÞ þ γ22Pγ2γ2ðkÞ
þ b1γ21Pb1γ21ðkÞ − 2b1β1k2PLðkÞ; ð10Þ

PgmðkÞ ¼ b1PmmðkÞ þ
1

2
½b2Pb1b2ðkÞ þ γ2Pb1γ2ðkÞ

þ γ21Pb1γ21ðkÞ� − β1k2PLðkÞ; ð11Þ

where PL is the linear matter power spectrum, Pmm is the
nonlinear matter power spectrum, and the one-loop bias
corrections read

Pb1b2ðkÞ ¼ 2

Z
q
F2ðk − q; qÞPLðjk − qjÞPLðqÞ; ð12Þ

Pb1γ2ðkÞ¼Pmc
b1γ2

ðkÞþPprop
b1γ2

ðkÞ

¼4

Z
q
F2ðk−q;qÞSðk−q;qÞPLðjk−qjÞPLðqÞ

þ8PLðkÞ
Z
q
G2ðk;−qÞSðk−q;qÞPLðqÞ; ð13Þ

Pb2b2ðkÞ ¼
1

2

Z
q
½PLðjk − qjÞPLðqÞ − P2

LðqÞ�; ð14Þ

Pb2γ2ðkÞ ¼ 2

Z
q
Sðk − q; qÞPLðjk − qjÞPLðqÞ; ð15Þ

Pγ2γ2ðkÞ ¼ 2

Z
q
S2ðk − q; qÞPLðjk − qjÞPLðqÞ; ð16Þ

Pb1γ21ðkÞ ¼ 4PLðkÞ
Z
q
Sðk − q; qÞSðk; qÞPLðqÞ: ð17Þ

Here F2 and G2 are the symmetrized second-order mode-
coupling kernels [52], and Sðk1; k2Þ ¼ ðk̂1 · k̂2Þ2 − 1 is the
Fourier transform of the kernel describing G2ðΦvÞ, as
shown in Eq. (3).
The only two propagatorlike contributions are perfectly

degenerate with each other, and follow the relation

Pb1γ21ðkÞ ¼ −
7

6
Pprop
b1γ2

ðkÞ: ð18Þ

For this reason, in a real analysis, it is common practice to
either neglect one of the two tidal field related parameters
(e.g. [36]) or to assume perfectly local-in-matter-density
relations (see Sec. II D) to express one of them in terms of
lower order local bias parameters (e.g. [32,53]).
Since the Pb2b2 contribution does not asymptote to 0 in

the large-scale limit, we renormalize it as in Eq. (14), and
absorb the constant low-k amplitude as an additional
contribution to the shot noise error, which will be discussed
in Sec. II C.

B. Matter modeling

In this section we discuss the modeling options for
the nonlinear matter power spectrum Pmm in Eqs. (10)
and (11). As a matter of fact an accurate modeling of Pmm is
essential, as any systematic effect in the description of the
matter density field in the range of scales we are consid-
ering might lead to invalid interpretations of the galaxy-
matter bias relationship.
Differently from [31], where one-loop bias was inves-

tigated at fixed cosmology and adopting the measured
matter power spectrum as reference, here the main goal is
to assess the level of accuracy of our model in terms of
cosmological parameters. For this reason, we have to
explicitly assume a model for Pmm. In the rest of this
section we provide a description of the three models we are
going to test. In particular we use (1) a refined RPT-derived
model, based on the preservation of Galilean invariance
(dubbed gRPT), (2) an EFT-like approach based on baryon
acoustic oscillations (BAO) damping and a nontrivial stress
tensor, and (3) a mixed approach, RESPRESSO, based on
accurate N-body simulations and a perturbative expansion
around the fiducial cosmology.

1. Standard perturbation theory

The basic assumption of SPT is that dark matter behaves
as a perfect pressureless fluid on large enough scales, where
matter is not subject to shell crossing as in multistreaming
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regions. Under this assumption, and after having expanded
the matter density contrast in a Taylor series, i.e.
δ ¼ δð1Þ þ δð2Þ þ δð3Þ þ � � �, we find solutions at every
order in perturbation as [52]

δðnÞðkÞ ¼
Z
q1…qn

δDðk − q1 − � � � − qnÞFnðq1;…; qnÞ

× δLðq1Þ…δLðqnÞ; ð19Þ

where Fn is the nth order symmetrized kernel describing
the nonlinear mode coupling between fluctuations at
different wavelengths.
Moving to two-point statistics, the expansion for the

matter power spectrum can be written as

PmmðkÞ ¼ PLðkÞ þ P1-loopðkÞ þ � � � ; ð20Þ

where at one loop the only nonvanishing contributions are

P1-loopðkÞ ¼ P22ðkÞ þ P13ðkÞ

¼ 2

Z
q
F2ðk − q; qÞPLðk − qÞPLðqÞ

þ 6PLðkÞ
Z
q
F3ðq;−q; kÞPLðqÞ: ð21Þ

It is now well established that a SPT approach like the one
described above lead to significant residuals if compared to
the output of numerical simulations, even including higher-
order corrections [54]. The source of this inaccuracy can be
mostly identified in two separate effects, whose description
is the subject of the next two sections.

2. BAO damping from large-scale “infrared” modes

One of the most acknowledged deviations between one-
loop SPT predictions and the matter power spectrum
measured from numerical simulations is the shape of the
BAO features. Since the characteristic scale of the BAO
peak is much larger than the scale at which nonlinear
contributions become important, one may expect a standard
perturbative approach to provide accurate predictions on
that scale. However, large-scale bulk motions produce a
non-negligible effect on the amplitude of the power
spectrum at the BAO scale, the most significant of which
is a smearing of the BAO signal due to the large-scale
relative displacement field [55–59].
These corrections to the matter power spectrum were

first resummed in the context of RPT [55], and at leading
order the net effect is to apply a damping factor to the BAO
wiggles. Practically, we can express the matter power
spectrum as the sum of a smooth (Pnw) and wiggly (Pw)
term [60],

PðkÞ ¼ PnwðkÞ þ PwðkÞ: ð22Þ

The smooth-wiggle split can be realized adopting several
different recipes, and throughout this paper we follow the
approach described in [61,62], where the smooth compo-
nent is defined as a rescaling of the featureless spectrum
first defined in [63] to account for broadband difference
with the linear power spectrum.
At leading order, the damping factor can be calculated

assuming the Zel’dovich approximation, and subsequently
applied to the wiggly component, so that

PLOðkÞ ¼ PnwðkÞ þ e−k
2Σ2

PwðkÞ; ð23Þ

where

Σ2 ¼
Z

kS

0

PnwðqÞ
�
1 − j0

�
q

kBAO

�
þ 2j2

�
q

kBAO

��
dq
6π2

ð24Þ

is the relative displacement field two-point function at the
BAO scale [56]. Here jn is the nth order spherical Bessel
function, kBAO ¼ π=lBAO is the wave mode corresponding
to the reference BAO scale lBAO ¼ 110h−1 Mpc, and kS is
the UV limit of integration. To properly account for the
resummation of IR modes at any given scale k, one should
integrate over all modes q < k, in a way that kS ¼ kSðkÞ.
However, pushing the integration to significantly large
values of kS would result in the breaking of the range of
validity of the perturbative IR expansion. At the same time,
it can be shown that the integrand of Eq. (24) gives
significant contributions only up to kS ∼ 0.2h Mpc−1 and
therefore we restrict the integration to the range [0, 0.2]
when computing the value of Σ [36,64].
At next-to-leading order, the IR-resummed matter power

spectrum can be written as [64]

PNLOðkÞ ¼ PnwðkÞ þ ð1þ k2Σ2Þe−k2Σ2

PwðkÞ
þ ðP1-loop

nw ðkÞ þ e−k
2Σ2

P1-loop
w ðkÞÞ; ð25Þ

where P1-loop
nw is the one-loop matter correction defined in

Eq. (21) but evaluated using the smooth component Pnw
rather than the full linear power spectrum PL, and
P1-loop
w ¼ P1-loop − P1-loop

nw .

3. Small-scale corrections: Nontrivial stress tensor

Along with the resummation of infrared modes, we also
have to consider the impact of small-scale physics on long
wavelength fluctuations. This happens because the original
assumption of a perfectly pressureless fluid is bound to
fail on nonlinear scales, where dark matter experiences
shell crossing in multistreaming regions [52]. Moreover,
the effect of baryonic physics, such as galaxy formation,
cooling and feedback, also contributes in generating a

TESTING ONE-LOOP GALAXY BIAS: COSMOLOGICAL … PHYS. REV. D 104, 043531 (2021)

043531-5



baryonic pressure that impacts the clustering of dark matter
on larger scales.
The net effect of UV scales on dark matter clustering is

to generate a nonzero stress tensor [65] whose leading
contribution to the matter power spectrum is to add a
counterterm of the form [65–67]

PctrðkÞ ¼ −2c1k2PLOðkÞ: ð26Þ

Here c1 can be treated as an effective speed of sound, which
reflects the influence of short wavelength perturbations,
and in particular of the complex physics beyond galaxy
formation. Given the poor knowledge about these types
of processes, a standard assumption is to treat c1 as a free
parameter (see e.g. [68,69]) and marginalize over it to
obtain the posterior distribution of the parameters of
interest.
By inspection of the individual terms contributing to

one-loop formulas in Eq.s. (10) and (11), we can notice that
the counterterm defined in Eq. (26) is completely degen-
erate with the leading order higher-derivative contribution
defined in Sec. II A, as they both scale as k2PLðkÞ. In
principle we may remove this degeneracy when jointly
fitting the auto- and cross-galaxy-power spectra, as the
nonvanishing stress tensor affects only the one-loop matter
power spectrum Pmm. This results in different imprints on
Pgg and Pgm,

PggðkÞ ⊃ −2b1ðb1c1 þ β1Þk2PLðkÞ;
PgmðkÞ ⊃ −ð2b1c1 þ β1Þk2PLðkÞ: ð27Þ

In practice, the sensitivity to UV modes might affect in
different ways Pgg and Pgm, leading to inconsistent values
of c1 between the two observables. For this reason in the
rest of the paper we will employ two independent free
parameters βP and β×P characterizing the k2PLðkÞ contri-
butions coming from Pgg and Pgm, respectively.

4. Modeling of the nonlinear matter power spectrum

In this section we briefly summarize the three different
prescriptions we adopt to model the nonlinear matter power
spectrum Pmm throughout the rest of the paper.
The first of such models is based on a perturbative-

simulated mixed approach, which revolves around a
fiducial high-resolution measurement of the nonlinear
matter power spectrum from N-body simulations, and a
two-loop perturbative expansion in the cosmological
parameter space for the response function [70,71]. The
latter quantifies the variation of the nonlinear power
spectrum at scale k induced by a variation of the linear
power spectrum at scale q, namely

Kðk; qÞ≡ q
∂PmmðkÞ
∂PLðqÞ

: ð28Þ

Under the assumption of having a reliable measurement of
Pmm for a fiducial cosmology θfid, it is possible to predict
the same observable at a generic position θ as

Pmm;RðkjθÞ ¼ PmmðkjθfidÞ
Z

dðlogqÞKðk; qÞ

× ½PLðqjθÞ − PLðqjθfidÞ�: ð29Þ

The range of validity of this mixed approach becomes
progressively less accurate for cosmologies that are far
away from θfid, but this issue can be overcome by employ-
ing a multistep reconstruction starting from the fiducial
cosmology.
The RESPRESSO public package [72] makes use of

this approach, starting from fiducial measurements of
Pmm from a set of high-resolution N-body simulations
with the Planck 2015 cosmology [73].
The second model we consider is based on the effective

field theory of large scale structure [66,74], and it is close to
what was recently used in the full shape analysis of the
BOSS DR12 galaxy-power spectrum [36]. At one loop in
real space, this model is based on SPT results, but it also
accounts for the effect of IR and UV modes on the
evolution of the matter power spectrum, as described in
the previous two sections. Namely, we can write a simple
expression for the one-loop matter power spectrum that
reads

Pmm;EFTðkÞ ¼ PNLOðkÞ þ PctrðkÞ; ð30Þ

where PNLOðkÞ and PctrðkÞ are defined in Eqs. (25) and
(26), respectively.
The third model we consider is based on a particular

flavor of renormalized perturbation theory (RPT) [51,55].
In this kind of approach, the nonlinear matter power
spectrum is typically separated into a component that
evolves the initial density contrast independently at each
wavelength, called propagator GðkÞ, and a mode-coupling
term that accounts for the mixing of scales due to nonlinear
evolution, so that we can write

PðkÞ ¼ G2ðkÞPLðkÞ þ PMCðkÞ: ð31Þ

In a RPT-based approach (e.g. [75,76]), the propagator is
resummed while keeping the mode-coupling term at a fixed
order, leading to a breaking of the Galilean invariance (GI)
of equal-time correlators [77]. This translates into an
unphysical damping of the broadband power, which
becomes mostly significant in the UV regime. The RPT
flavor we consider here, known as gRPT, effectively
attempts to resum the mode-coupling term in a way that
is consistent with the resummation of the propagator. The
full expression for the nonlinear matter power spectrum in
this case reads
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Pmm;gRPTðkÞ ¼
�
1þ Pinv

13

PL

�
ex½ð1 − xÞPL þ Pinv

22 �; ð32Þ

where Pinv
13 ¼ P13 þ k2σ2vPL and Pinv

22 ¼ P22 − k2σ2vPL are
the invariant (under large-scale displacements) components
of P13 and P22, σ2v ¼

R
q PLðqÞ=3 is the linear velocity

variance, and x is defined by the invariance requirement
xPL ¼ P1-loop −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP1-loopÞ2 − PLP2-loop

p
. One benefit of

this approach is that it naturally incorporates IR resumma-
tion consistently with what is described in Sec. II B 3. We
notice that, although even in this case the impact of the
nonzero stress tensor should be taken into account with the
addition of an effective speed of sound, the broadband
predicted by gRPT is slightly suppressed with respect to
SPT predictions, as gRPT adds mode-coupling contribu-
tions (which change the broadband shape) of higher order
consistently with the resummation of the propagator to
achieve the invariance under large-scale displacements.
This would in principle lead to an even smaller UV
counterterm, and for this reason we fix c1 ¼ 0 when
modeling Pmm with gRPT.
Being partially calibrated on numerical measurements,

RESPRESSO provides much more accurate results on non-
linear scales, as it intrinsically incorporates higher-order
corrections with respect to the previous two models, which
include only one-loop contributions to the matter density
field. For this reason, in the first part of this paper we fix the
description of dark matter nonlinear evolution following
this approach, and check the impact of using different
matter models only in Sec. IV D. This choice is also
motivated by the analysis performed in [31], which showed
how RESPRESSO is the model that most closely reproduces
the performances of the true matter power spectrum
measured from simulations.

C. Stochasticity

One ingredient that is still missing from Eq. (10) is the
stochastic contribution to the galaxy-power spectrum.
As a matter of fact, the previous relations are completely
deterministic, and assume a one-to-one correspondence
between the distribution of galaxies and the combined
effect of the matter density and tidal fields. However,
galaxy formation is determined not only by large-scale
perturbations, but also by short wavelength modes. Under
the assumption of Gaussian initial conditions, these
modes are completely uncorrelated from large-scale
fluctuations, and give birth to an additional stochastic
field εg which is dependent on the local distribution
of matter.
In practice, we can define the stochastic contribution

Pεgεg to the power spectrum as [11]

hεgðkÞεgðk0Þi ¼ ð2πÞ3PεgεgðkÞδDðkþ k0Þ; ð33Þ

and add this contribution to the one-loop galaxy-power
spectrum in Eq. (10). As for the modeling of Pεgεg , we
notice that the relation between the distribution of galaxies
and the high-k modes is not exactly local, as it depends on
the distribution of matter within a small finite region,
similarly to the higher derivatives of the galaxy density
field. For this reason we can write

PεgεgðkÞ ¼
1

n̄
ð1þ N0 þ N2k2 þ � � �Þ; ð34Þ

where n̄ is the mean number density of galaxies in the
considered volume. The constant contribution N0 repre-
sents deviations from purely Poissonian shot noise (1=n̄),
while higher-order corrections, of which the leading term
scales as k2, are generated to account for the short-range
nonlocality described above.
N0 is expected from the halo exclusion effect [28–30]

for which two different dark matter halos cannot overlap
(the same principle is what drives the effective matter
pressure in multistreaming regions). This implies a
deviation from Poissonian shot noise that can be either
positive (super-Poisson) or negative (sub-Poisson), depend-
ing on the considered tracer. Sub-Poissonian shot noise is
more expected for central galaxies of massive halos, while
super-Poissonian values are more typical of galaxy pop-
ulations with high satellite fractions [30,78].
Notice that assuming Gaussian initial conditions all

cross-correlators of the form hεgδi are null by construc-
tion, and therefore Eq. (34) is the only stochastic con-
tribution to the galaxy autopower spectrum Pgg. In reality,
nonlinear gravitational evolution introduces a degree of
correlation between long and short wavelengths, so that
hεgδi ≠ 0 at later times, but all of these contributions are
subdominant in the case of the power spectrum, and can
thus be neglected.
As anticipated in Sec. II A, the quadratic term Pb2b2

needs to be renormalized in order to provide a null
contribution in the low-k limit. For this reason, we subtract
from Eq. (14) its large-scale asymptote [21,48], defined by

Pnoise
b2b2

¼ b22
2

Z
q
P2
LðqÞ; ð35Þ

and reabsorb it into the constant shot-noise parameter N0.
Along with Pgg it can be shown that also Pgm requires an

additional stochastic component. In this case, stochasticity
is not sourced by εg, as once again all correlators of the
form hεgδi vanish, but rather by the matter density field
itself via a new stochastic field εm. The reason of this is
that dark matter ceases to behave as an ideal pressureless
fluid on small scales, where the dynamics of gravitational
collapse is subject to shell crossing. This translates into an
effective pressure exerted by the matter density field, whose
contribution to the galaxy-matter cross power spectrum
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scales as k2 in the low-k limit [79]. For this reason,
it follows [11]

hεgðkÞεmðk0Þi ¼ ð2πÞ3PεgεmðkÞδDðkþ k0Þ; ð36Þ

where

PεgεmðkÞ ¼
1

n̄
ðN×

2 k
2 þ � � �Þ: ð37Þ

D. Coevolution relations

Although the previously described galaxy bias expan-
sion is complete at one loop, the large number of free bias
parameters makes its applicability to real datasets difficult,
particularly when using the information contained only in
the two-point statistics (using additional constraints from
e.g. the galaxy bispectrum can break some of the degen-
eracies between parameters). For this reason it is common
practice to adopt empirical relations among bias parameters
in order to reduce the degrees of freedom of our model.
The most natural expressions are the so-called local

Lagrangian relations [21,80–82]. The latter are based on
the assumption that galaxies (or more generally any biased
tracer of the matter density field) are formed instantane-
ously at an infinite past time, that galaxy formation is
driven exclusively by the local matter density field, and that
the number of tracers is conserved after their formation.
Under these assumptions, it is possible to describe the
subsequent evolution of the galaxy density field under the
effect of gravity, which leads to the appearance of higher-
order nonlocal operators even in the presence of a purely
local relation at the time of formation.
It is possible to relax the Lagrangian local-in-matter-

density assumption, while still requiring the conservation
of the total number of tracers. In this way, we can express
the Eulerian nonlocal parameters γ2 and γ21 as a function of
the corresponding Lagrangian counterparts,

γ2 ¼ −
2

7
ðb1 − 1Þ þ γ2;L; ð38Þ

γ21 ¼ −
2

21
ðb1 − 1Þ þ 6

7
γ2 þ γ21;L; ð39Þ

where the subscript L indicates Lagrangian quantities, and
the remaining terms in the right-hand sides are the result of
gravitational evolution [15,16,44].
Although local Lagrangian relations (i.e. γ2;L¼ γ21;L¼0)

have been proven to be much more accurate than simply
neglecting nonlocal terms, recent measurements of nonlocal
bias parameters from a wide range of halo samples showed a
slight deviation with respect to observations [83,84]. An
alternative approach for the quadratic tidal parameter is
based on the excursion set theory [85], for which γ2 can be
predicted as a function of b1 using a quadratic fit,

γ2;exðb1Þ ¼ 0.524 − 0.547b1 þ 0.046b21: ð40Þ

As shown in Fig. 1 of [31], this relation is more accurate
than the local Lagrangian approximation for tracers with
b1 ≳ 1.3. Therefore this relation should apply much better to
our datasets, which show a linear bias consistently larger
than this value (see Table I). For this reason, we fix γ2 to
Eq. (40) throughout the rest of the paper.

III. DATA AND METHODOLOGY

A. Simulated galaxy samples

The robustness of our biasing scheme can be assessed
only by validating the model over a wide range of tracers,
featuring different host halo masses, galaxy bias, and
redshifts. For this purpose, we make use of a set of three
different synthetic galaxy samples, whose main properties
are summarized in Table I.
The three catalogs were generated by populating dark

matter halos with galaxies using halo occupation distribution
(HOD) prescriptions. Since the HOD parameters were
calibrated to obtain number densities consistent with the
ones of preexisting real observations, for sake of easiness we
label our simulated catalogs with the name of the corre-
sponding data samples. Nevertheless, we remind the reader
that here wemake use of the full comoving snapshot volume,
without considering any selection effect, as the goal is to
investigate the range of validity of one-loop galaxy bias,
leaving aside the impact of observational systematics.
The CMASS sample is based on the MINERVA simu-

lations [53], which consist in a set of 100 realizations
of a ð1500h−1 MpcÞ3 cubic box with periodic boundary

TABLE I. Main properties of the three synthetic galaxy samples used in this work. The Table shows the label we use to identify each
sample, the N-body run on which it is based, the total number of independent realizations, redshift, galaxy number density, effective
volume scaling ratio (see Sec. III B), linear galaxy bias and large-scale deviation from Poisson shot noise (in units of 1=n̄). In order to
obtain fiducial values for the last two columns, we adopt the same strategy described in [31] that makes use of the large-scale limit of the
quantities Pgg, Pgm and Pmm.

Identifier Simulation NR z n̄ ½ðh=MpcÞ3� η b1 N0

MGS LASDAMAS Carmen 40 0.132 1.1 × 10−3 7.04 1.414� 0.003 −0.16� 0.07
LOWZ LASDAMAS Oriana 40 0.342 9.4 × 10−5 1 2.235� 0.012 −0.176� 0.018
CMASS MINERVA 100 0.57 4.0 × 10−4 2.47 2.022� 0.003 −0.29� 0.02
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conditions. The simulations were run using the public
GADGET code [86,87], which regulated the motion of 10003

dark matter particles within the aforementioned volume.
Initial conditions were set up using the linear power
spectrum obtained from CAMB [88] and displacing par-
ticles according to second-order Lagrangian perturbation
theory (2LPT) [89]. The comoving snapshot has a redshift
of z ¼ 0.57 and it is meant to reproduce the properties of
the BOSS CMASS galaxy sample [90].
The LOWZ (z ¼ 0.342) and MGS (z ¼ 0.132) samples

are based on the Oriana and Carmen boxes of the LASDAMAS

N-body simulations [91,92]. These are a set of 40 indepen-
dent realizations with periodic boundary conditions, with a
volume of ð2400h−1MpcÞ3 and ð1000h−1 MpcÞ3, and a
mass resolution of 4.6×1011h−1M⊙ and 4.9×1010h−1M⊙,
respectively. Initial conditions were also set up using 2LPT,
but in this case the initial power spectrum is computed using
CMBFast [93]. The HOD parameters of these synthetic
catalogs were selected to reproduce the properties of the
BOSS LOWZ and SDSS Main Galaxy Sample (MGS)
at Mr < −21.
The complete set of cosmological parameters for

MINERVA and LASDAMAS is summarized in Table II.

B. Measurements of power spectra and their
covariances

Wemake use of the estimator described in [94], based on
fourth order particle assignment scheme and interlacing
optimization to reduce the effect of large modes aliasing,
to measure the galaxy autopower spectrum Pgg and the
galaxy-matter cross power spectrum Pgm for all the tracers
described in Table I. We adopt a linear k binning from
kmin ¼ kf, where kf ¼ 2π=L is the fundamental frequency
of the box of size L, to kmax ¼ kNyq, where kNyq ¼
πNgrid=L is the Nyquist frequency corresponding to a
FFT grid of size Ngrid. We use a linear binning with step
Δk ¼ kf for CMASS and LOWZ, and Δk ¼ 2kf for MGS.
Since we model the stochastic contribution to the galaxy
autopower spectrum in terms of deviations from Poisson
shot noise, we correct our raw measurements of Pgg by
subtracting the constant factor Pnoise ¼ 1=n̄.
Our final data vector consists in the ensemble average

over the number of independent realizations NR (100 for

CMASS, 40 for both LOWZ and MGS). First, we define
the averaged observable

X̄i ¼
1

NR

XNR

n¼1

XðnÞ
i ; ð41Þ

where X ∈ fPgg; Pgmg, i is the index running through the k
binning, and the superscript n refers to the nth realization of
the considered observable. From this definition we estimate
the auto- and cross-covariance matrices as

CX×Y;ij ¼
1

NR

XNR

n¼1

ðXðnÞ
i − X̄iÞðYðnÞ

j − ȲjÞ; ð42Þ

where once again X; Y ∈ fPgg; Pgmg.
Similarly to what was done in [31] we retain only the

diagonal entries of the previously defined covariance
matrices. This approximation is justified given the signifi-
cant low number density of the synthetic samples we
consider (actual values are listed in Table I). These numbers
translate in a significant shot-noise contribution to the
power spectrum, whose main effect is to boost the diagonal
entries of the covariance matrix, leading to subdominant
off-diagonal terms. Therefore we approximate our covari-
ance matrices with a block-diagonal shape, and consider
only the auto- and cross-correlation at the same wavelength
(i.e. Cij ¼ 0 for ki ≠ kj). Additionally, in order to reduce
noise due to the limited number of independent realiza-
tions, we compare the raw covariance matrix to Gaussian
predictions [53] for each k bin, and retain the maximum of
the two values.
The error budgets of our galaxy samples are sub-

sequently rescaled in order to match the same effective
volume [95,96], defined as

Veffðk⋆Þ ¼
�

n̄Pggðk⋆Þ
1þ n̄Pggðk⋆Þ

�
2

V; ð43Þ

where n̄ and V are the mean number density and volume
of the considered sample, respectively, and we choose the
reference scale to evaluate the effective volume as
k⋆ ¼ 0.1h Mpc−1. In this way the constraining power
and the signal-to-noise ratio of the three galaxy catalogs
are artificially set to roughly match the same amplitude.
We choose to rescale the covariance of both CMASS and
MGS to match the effective volume of the LOWZ sample
½≈6 ðGpc=hÞ3�. Table I shows the rescaling factor for the
three samples, which is simply defined as the sample-to-
LOWZ ratio between the respective effective volumes.

C. Fitting procedure and prior choices

We make use of the large number of independent
realizations for each synthetic galaxy sample to define

TABLE II. Cosmological parameters of the dark matter sim-
ulations used to generate the galaxy samples analyzed in this
work. Columns show the matter, dark energy and baryon density,
Hubble constant, scalar index, and rms density fluctuations
within a sphere of radius 8h−1 Mpc.

Simulation Ωm ΩΛ Ωb h ns σ8

LASDAMAS 0.25 0.75 0.04 0.7 1.0 0.8
MINERVA 0.285 0.715 0.046 0.695 0.9632 0.828
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the overall likelihood function as the product of the
individual NR likelihoods [31,97]. In this way, under the
assumption that the individual likelihoods are well
described by a multivariate Gaussian distribution, we can
define the overall likelihood function as

−2 logLtot¼−
2

NR

XNR

n¼1

logLðnÞ ¼
1

NR

XNR

n¼1

χ2ðnÞ

¼ 1

NR

XNR

n¼1

XNb

i;j¼1

ðXðnÞ
i −μiÞC−1

X;ijðXðnÞ
j −μjÞ; ð44Þ

where XðnÞ
i is the measurement from the nth realization

of the ith k bin, μi is the corresponding model prediction,
and Cij is the rescaled covariance matrix as described in
Sec. III B. With this definition, our likelihood ends up
coinciding with the likelihood of the mean of the data with
covariance Cij. In practice, there is a constant factor
between the two definitions, which depends on the number
of independent realizations NR and the number of data
points Nb. This factor is taken into account when deriving
the goodness of fit for each of the tested configurations.
The inference of model parameters is carried out through

a least-χ2 analysis based on a standard Metropolis-Hastings
Markov Chain Monte Carlo (MCMC) algorithm. The
likelihood incorporates a complete recipe for one-loop
galaxy clustering and an interface to CAMB. For each tested
configuration of the MCMC, we first run some preliminary
chains that are needed to obtain a robust estimate of the
parameter covariance, which is essential for the good
convergence of the Markov chain in a highly dimensional
parameter space. We iterate this process twice, each time
specifying the parameter covariance obtained at the pre-
vious step, before running the final set of chains. These are
terminated as soon as the chains satisfy a standard Gelman-
Rubin convergence criterium, i.e. as soon as the between-
chain and within-chain variances (we run eight independent
chains for each case, changing the initial random seed)
are in agreement within R < 1.1 [98]. After removing the
burn-in, these chains are combined into a single object,
which we pass to the software package GetDist [99] to
extract the parameter posteriors.
The models described in Sec. II embed a large number of

free parameters. In this analysis we vary both cosmological
and nuisance terms (the latter include bias, shot noise and
matter counterterm). Since we are constraining two-point
statistics only via galaxy clustering, we fix both the baryon
density parameter Ωbh2 and the primordial spectral index
ns to their fiducial values (listed in Table II), and vary the
CDM density parameter Ωch2 and the Hubble constant h.
We add the primordial scalar amplitude As, but only when
fitting the combination of Pgg and Pgm, since the fit of the
auto-galaxy-power spectrum alone cannot break the strong
degeneracy between As and b1. On the contrary, while both

Pgg and Pgm have the same dependency on As, they scale
differently with the linear bias, i.e. Pgg ∝ b21 and Pgm ∝ b1
in the linear limit. We choose a flat prior for the three
cosmological parameters that is large enough to fully
contain their posterior distribution up to 2σ even for the
least constraining configuration.
The same choice of uniform priors is chosen for the

nuisance parameters. We sample the combination of the
bias parameters with the corresponding power of σ8 in
order to avoid strong degeneracies between the one-loop
bias expansion and the intrinsic nonlinearity of the matter
power spectrum Pmm, which at first order is well captured
by σ8. As anticipated in Sec. II D, we fix γ2 to Eq. (40), and
vary all other bias parameters freely. We quote higher-
derivative parameters with respect to an arbitrary fiducial
scale kHD ¼ 0.4h Mpc−1, while all the shot-noise param-
eters can be naturally expressed in units of 1=n̄. Since terms
involving N2 and N×

2 both carry a k2 dependency, we also
express the latter in units of k−2HD.
The full list of priors for the model parameters is shown

in Table III.

D. Rescaling of the input linear power spectrum

As discussed in Sec. III, MINERVA and LASDAMAS adopt
different Boltzmann solvers to obtain the power spectra for
the initial particle displacements. In particular, the MINERVA

runs assume initial conditions based on CAMB, while the

TABLE III. Adopted priors for the full list of cosmological and
nuisance parameters of the fits. We impose a uniform prior (U) for
all the sampling parameters. The scalar amplitude As is not
sampled over when fitting only Pgg but it is when adding the
additional constraint from Pgm. In all cases the second-order tidal
bias γ2 is fixed to the excursion set relation defined in Eq. (40).

Cosmology
h U [0.5, 1]
Ωch2 U [0.08, 0.16]
109As Pgg∶ Pgg þ Pgm∶

Fixed to fiducial U [0.7, 3.3]

Bias
b1σ8 U [0.25, 4]
b2σ28 U½−10; 10�
γ2 Fixed to γ2;exðb1Þ
γ21σ

3
8

U½−8; 8�
βP½k−2HD� U½−10; 10�
β×P½k−2HD� U½−10; 10�

Shot noise
N0½n̄−1� U½−1; 0.5�
N2½k−2HDn̄−1� U½−10; 10�
N×

2 ½k−2HDn̄−1� U½−10; 10�
Counterterms

c1 U [0, 10]
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LASDAMAS simulations make use of the power spectrum
computed with CMBFAST. Figure 1 shows the fractional
deviation between the output of the two codes at the
reference cosmology of the LASDAMAS runs and at the
redshift of the MGS sample. This difference is compared to
LOWZ andMGS intrinsic signal-to-noise ratio, represented
by the two shaded areas. The two spectra deviate at the
level of ∼0.5% in the range of scales that are relevant to this
analysis, and this might represent an issue when modeling
the galaxy-galaxy and galaxy-matter power spectra. For
this reason, when fitting LOWZ and MGS, we employ a
rescaling scheme based on the renormalization of the input
power spectrum of CAMB by the ratio shown in Fig. 1. This
approximation is valid as long as the sampled cosmology is
not far from the fiducial one, and this becomes a completely
legitimate assumption when hitting exactly the true cos-
mology. However, we claim that even for cosmologies
that are slightly off with respect to the fiducial one, this
rescaling scheme is already better than directly using the
CAMB prediction with no further correction.
In order to perform this rescaling, we first apply the units

transformation h Mpc−1 → Mpc−1. This is meant to assure
that the power spectrum ratio is obtained at the same set of
scales, avoiding the dependency on the Hubble parameter h
[100]. At each step of the Markov chain, the current CAMB
prediction is first transformed into Mpc−1 units, rescaled
using the approach described above, and finally trans-
formed back into h Mpc−1 units.

E. Performance metrics

The validation of one-loop galaxy bias as described in
Sec. II is mostly based on its range of validity. In order to
select the maximum mode at which our model stops

providing good performances, we run multiple MCMC
chains varying kmax in the interval ð0.1; 0.3Þh Mpc−1 with
a step of 0.025h Mpc−1, leading to nine different fitting
ranges for each configuration. We stop at kmax¼0.3hMpc−1

as pushing the model to even smaller scales would inevitably
require accounting for two-loop contributions in the descrip-
tion of galaxy bias and nonlinear matter evolution. Clearly,
exploiting the small-scale information contained in the
nonlinear regime naturally provides a better constraining
power for the model parameters, but at the cost of intro-
ducing theory systematics in their posterior distribution.
As described in [31] (see [62] for a similar approach), we
make use of a set of three different performance metrics,
whose goal is to provide a quantitative way to compare the
posteriors extracted from our Markov chains, and to deter-
mine when a particular model no longer gives an accurate
description of our datasets.

1. Figure of bias

The first quantity we are interested in evaluating is the
ability of the model to provide unbiased measurements
of its free parameters. In particular, in this work we focus
mostly on the systematic error of the cosmological param-
eters: the Hubble constant h, the cold dark matter density
Ωch2, and, when considering the joint fit between Pgg and
Pgm, the primordial scalar amplitude As.
We define the figure of bias (FoB) of the considered

model for a given parameter set θ as

FoBðθÞ≡ ½ðθ̄ − θfidÞ⊺ S−1ðθ̄ − θfid�1=2; ð45Þ

where θ̄ represents the mean of the posterior distribution,
θfid represents the fiducial position, and S is the parameter
covariance expressed in matrix form. In this way, we are
simply quantifying the relative separation of the measured
parameter from its true value in terms of the variance of the
posterior distribution. If the FoB is evaluated only for one
parameter, then the standard 68%–95% percentile thresh-
olds correspond to a FoB of 1–2, respectively. On the
contrary, when more than one parameter is considered to
compute the FoB, the two percentiles can be calculated
by direct integration of a multivariate Gaussian distribution
with the corresponding dimensionality. For the case
we consider n ¼ 2ðn ¼ 3Þ it follows that the 68%–95%
percentiles correspond to a FoB of 1.52–2.49 (1.88–2.83),
respectively.

2. Goodness of fit

Along with finding unbiased constraints on the param-
eters of interest, we also ask our model to provide a good
description of the observables we use in the fit. We quantify
the goodness of fit in terms of the standard χ2 extracted
from the Markov chains [Eq. (44)], but after rescaling it
to account for the additional factor η introduced in the

FIG. 1. Ratio between the CMBFast and CAMB linear pre-
diction at the reference cosmology of the LASDAMAS simulations.
The two shaded gray bands mark the intrinsic 1-sigma error of the
LOWZ and MGS galaxy-power spectrum Pgg.
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covariance of the data (see Sec. III B). With this rescaling,
we can compare the recovered χ2 to the 68% and 95%
percentiles of a χ2 distribution with Ndof degrees of
freedom, where

Ndof ¼ NR × Nb − Np: ð46Þ

Here NR is the number of independent realizations for each
galaxy sample, Nb is the total number of k bins included in
the fit, and Np is the number of free model parameters.

3. Figure of merit

The final metric we employ is based on the merit of the
considered model with respect to the cosmological param-
eters that are varied in the fit. We define the figure of merit
(FoM) of a given model for a subset of parameters θ as
the inverse of the determinant of the parameter covariance
matrix corresponding to the subset θ, i.e.

FoMðθÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ½S̄ðθÞ�

p : ð47Þ

Here S̄ðθÞ≡ SðθÞ=θ2fid is the block corresponding to the
parameter subset θ rescaled by their fiducial values. With
this last normalization we are explicitly asking for a relative
FoM rather than an absolute quantity, which would be more
difficult to compare to the one of other parameters.

IV. TESTING ONE-LOOP GALAXY BIAS

In this section we analyze parameter posteriors extracted
from several Markov chains, where we vary both the
maximum fitting scale kmax and the final expression we
adopt to model one-loop galaxy-power spectra. The com-
plete list of model configurations is summarized in Table IV,
along with the total number of free parameters in each case.
Based on results from [31], we decide to employ RESPRESSO

to model Pmm in this section, and to leave the comparison
between different matter models to Sec. IVD. In this way we
can focus exclusively on assessing the validity of one-loop
bias in real space leaving aside both the impact of nonlinear
matter evolution and redshift-space distortions (that will be
the topic of a future paper).
For each configuration, we compute the three perfor-

mance metrics defined in Sec. III E and show their trends
as a function of kmax. At the same time, we perform sanity
checks on the linear bias b1σ8 and the large-scale shot-noise
parameter N0, for which we have fiducial values to
compare with (see Table I). As anticipated in Sec. II D,
throughout the rest of the paper we fix the second-order
nonlocal bias parameter γ2 to the excursion-set relation
[Eq. (40)], in order to break the strong degeneracy between
the former and γ21. This choice is also based on results
from [31], where it was shown how this choice led to stable
and overall accurate measurement of the linear bias.

In the next two sections we analyze the posterior derived
from fits of the auto-galaxy-power spectrum Pgg alone, and
from the combination of the auto- and cross-galaxy-power
spectra, Pgg þ Pgm. In the latter case, the additional
information contained in Pgm allows to break the degen-
eracy between the linear bias and the amplitude of
primordial fluctuations, allowing us to also sample over As.
In both cases, we adopt a criterion for defining the

range of validity of a given model, which is based on a
combination of FoB and goodness of fit. Following [31],
we define the model-breaking statistics as

σMBðkÞ≡ FoBðkÞ
FoB68%

þ χ2ðkÞ − 1

χ295%ðkÞ − 1
; ð48Þ

where the subscript percentages correspond to the
percentiles of the corresponding distribution (FoB and χ2).
We say that a given model breaks down at a scale k† when
the model-breaking statistics assumes a critical value σcrit
at k†, i.e.

σMBðk†Þ ¼ σcrit: ð49Þ

We arbitrary choose the critical threshold σcrit ¼ 1.5. In this
way we would accept models with a maximum FoB one
and a half times larger than the value corresponding to the
1-sigma of the FoB distribution, but only under a perfect
recovery of the shape of the input dataset. Practically, this
case is unrealistic at high kmax, as the χ2 progressively

TABLE IV. List of all the considered combinations between the
modeling of Pmm and the extensions to one-loop galaxy bias, as
described in Sec. II. For each model, we denote with a check
mark all the free parameters of the Pgg fit, while we use a double
check mark for the free parameters that are exclusive to the joint
Pgg þ Pgm fit. The total number of free parameters is listed in the
final row (numbers outside/inside the round parentheses corre-
spond to the auto/cross fits).

Pmm RESPRESSO gRPT EFT

Bias model STD k2N HD STD k2N HD STD k2N

h ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ωch2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

As ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
b1σ8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

b2σ28 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

γ21σ
3
8

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

βP ✓ ✓
β×P ✓✓ ✓✓
N0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
N2 ✓ ✓ ✓
N×

2 ✓✓ ✓✓ ✓✓

c1 ✓ ✓

# parameters 6(7) 7(9) 7(9) 6(7) 7(9) 7(9) 7(8) 8(10)
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deviates from the number of degrees of freedom because
of the weakening of the model. For this reason σMB
receives individual contributions from the FoB and the
goodness of fit.

A. Validity of one-loop galaxy bias
for the autopower spectrum

In this section we analyze results from the fits to the
autopower spectrum Pgg. We fix the description of the
nonlinear matter power spectrum and test different exten-
sions of one-loop galaxy bias. The standard (STD) model is
based on two free cosmological parameters ðh;Ωch2Þ plus
four free nuisance parameters ðb1σ8; b2σ28; γ21σ38; N0Þ. The
k2-dependent shot noise (k2N) and higher-derivatives (HD)
extensions have one additional free parameter each, i.e. N2

and βP, respectively.
In Fig. 2 we show the three performance metrics

extracted from the three different Pgg measurements
(CMASS, LOWZ and MGS), plotted against the maximum
scale kmax included in the fit. In this case we show the FoB
and FoM corresponding to the combination h;Ωch2Þ, i.e. to
all the cosmological parameters that are varied in the
model. The two gray shaded areas in the panels corre-
sponding to FoB and goodness of fit mark the 68th and

95th percentiles of the corresponding quantity. As
described in Sec. III E 1, the 68%–95% FoB limits do
not correspond to values of FoB ¼ 1 and FoB ¼ 2, but
rather have to be computed integrating a multivariate
Gaussian distribution with n ¼ 2 number of dimensions.
For the three galaxy samples, we find that the STD

model (blue line) alone is enough to provide a good
description of the dataset in terms of goodness of fit, as
the reduced χ2 constantly stays within the 68% (dark gray
shaded area) of the corresponding χ2 distribution. At the
same time, the combined constraint on the ðh;Ωch2Þ pair is
unbiased, showing a multivariate posterior distribution that
is able to capture the fiducial position at typically ∼0.5σ.
Adding either an additional k2-dependent shot noise (red
line) or the leading higher derivatives correction (green
line) does not significantly alter the two metrics, while
reducing the amplitude of the corresponding FoM (∼10%
when adding the stochastic contribution N2, ∼20%–30%
when adding the higher derivatives parameter βP). Even for
the STD model, for which we expect the model to fail
earlier than the other two extensions) the model-breaking
scale k† is higher than the maximum scale we probe
ðkmax ¼ 0.3h Mpc−1Þ. However, we decide to stop at this
scale without exploring smaller scales, even if the model-
breaking criterion were most likely satisfied at higher kmax.

FIG. 2. FoM, FoB and goodness of fit extracted from chains corresponding to the fits of the galaxy autopower spectrum Pgg.
Performance metrics refer to the combinations of h and Ωch2, which are the only two free cosmological parameters of the model. The
standard (STD), k2-dependent shot noise (k2N), and higher derivatives (HD) models are color coded as shown in the legend. In all three
cases, the nonlinear matter power spectrum is modeled with RESPRESSO, and the second-order tidal bias γ2 is fixed to Eq. (40). The two
shaded gray regions mark the 68th and 95th percentiles of the FoB and χ2 distribution.
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As a matter of fact it would be hard to separate the effective
goodness of the model from the impact of two-loop
contributions to galaxy bias.
We notice how, similarly to what was obtained in [31]

when focusing on the linear galaxy bias, there is a tendency
of the FoM to flatten above an approximate scale of
kmax ¼ 0.25h Mpc−1. This is an indication that pushing
the nonlinear model to increasingly higher wave modes
does not necessarily imply a more stringent measurement
of the cosmological parameters, as most of the additional
constraining power is absorbed by nuisance parameters
such as higher-order galaxy bias contributions.
In Fig. 3 we show the dependence on kmax of the linear

bias parameter b1σ8 and the constant stochastic contribu-
tion N0, for which we have fiducial values obtained
exploiting the large-scale limit of the measured galaxy
and matter power spectra. Although the extension to either
the k2N or the HD model enlarges the size of the error bars,
we notice how the former model is the only one capable
of providing a simultaneous unbiased measurement of the
two parameters, for the three galaxy samples we are
considering. In particular the LOWZ sample shows a
clear detection of N2, that, if not accounted for, can lead
to a significant ð>2-σÞ systematic effect on N0 above
kmax ∼ 0.25h Mpc−1, while partially recovering the true
amplitude of Pgg with an underestimation of b1σ8. The only
exception is represented by the MGS sample, whose linear
bias is constantly overestimated by a ∼2% factor for all
three modeling assumptions, and that is consistent with the
fiducial value only up to 2-σ. We argue that this peculiarity
can be explained by the presence of tight degeneracies

between b1σ8 and the pair constituted by Ωch2 and b2σ28,
both of which result in a higher value of the linear
bias parameter respect to the predicted value. These
degeneracies can be broken with the additional information
of the galaxy-matter power spectrum, as we show in the
next section.

B. Consistency between auto- and cross-power spectra

In this section we focus on a much more stringent test,
corresponding to the simultaneous fit of both the galaxy
autopower spectrum Pgg and the galaxy-matter cross power
spectrum Pgm. As a matter of fact, a good accuracy for this
combined statistics might become crucial in analyses that
aim to exploit the whole information contained in galaxy
clustering and galaxy-galaxy weak lensing, as most of the
upcoming large observational projects are going to do
(3 × 2-point analysis, see e.g. [101–103]).
The different scaling of Pgg and Pgm on the linear bias b1

leads to the breaking of the strong b1 − As degeneracy.
Therefore, we additionally sample the scalar amplitude As,
effectively extending by 1 the number of degrees of
freedom of our model. Also in this case, we concentrate
on the one-loop biasing scheme, fixing the description of
the matter clustering to the output of RESPRESSO. We test
the standard (STD) model against the k2-dependent shot
noise (k2N) and higher derivative (HD) templates, for
which we introduce 2 more degrees of freedom (one
free parameter for Pgg and Pgm, each). In summary, the
STD model is based on three free cosmological parameters
ðh;Ωch2; AsÞ plus four free nuisance parameters

FIG. 3. Marginalized constraints on the linear bias b1σ8 (top) and the constant stochastic termN0 (bottom) as a function of kmax, for the
fits of the galaxy autopower spectrum Pgg. In all cases dark matter nonlinear evolution is modeled using RESPRESSO. Fiducial values of
the linear bias and constant shot-noise contribution are reproduced with black dashed lines. Uncertainties on the fiducial values are
marked with shaded gray bands (marking 1-σ and 2-σ confidence intervals). Fiducial measurements are listed in Table I.
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ðb1σ8; b2σ28; γ21σ38; N0Þ. The k2N and HD models have two
additional free parameters each, i.e. ðN2; N×

2 Þ and ðβP; β×PÞ,
respectively. Note that the second-order tidal bias γ2 is not a
free parameter, but it is fixed to the excursion-set relation
defined in Eq. (40) for all the cases we consider.
In Fig. 4 we show the three performance metrics in a

similar way as we did for the Pgg-only fits. In this case both
FoM and FoB are computed from the combinations of
the three cosmological parameters ðh;Ωch2; AsÞ. We first
notice how the use of the STD model is no longer sufficient
to provide an accurate recovery of the cosmological
parameters on the overall range of scales we are consid-
ering. Indeed, the FoB of both CMASS and LOWZ quickly
increases above 2-σ at an approximate scale of kmax ∼
0.23h Mpc−1 and keeps getting worse at higher wave
modes. The same trend is observed in panels referring to
the goodness of fit, as the reduced χ2 starts to fall outside
the 95% confidence region at approximately the same scale
cut. According to the model-breaking criterion, the range
of validity of the STD model is limited to scales below
k ∼ 0.2h Mpc−1 (this is reflected in the plot by the solid-to-
dashed line transition).
Adding k2-dependent stochasticity increases both the

accuracy in the recovery of the cosmological parameters

and the overall likelihood between data vectors and
best-fitting model. Indeed, the k2N model shows a FoB
which is constantly within 1-σ for the three galaxy samples.
Moreover, the goodness of fit is significantly improved
with respect to the STD model, with the χ2 measured at the
highest kmax still being consistent within 1-σ. The combi-
nation of FoB and goodness of fit can be observed via
the model-breaking criterion on the FoM, for which the
k2N model is the only one managing to be accepted up
to kmax ¼ 0.3h Mpc−1.
The HD model also provides a better recovery (com-

pared to STD) of the cosmological parameters, within 1-σ
from the fiducial position, but it fails earlier than the k2N
model to provide the required goodness of fit for both
CMASS and LOWZ, hinting for a stronger necessity of
adding k2-dependent stochasticity with respect to short-
range nonlocalities.
In terms of FoM amplitude, the k2N and HD models

behave in a mostly similar way, significantly reducing the
statistical constraints of the cosmological parameters at any
given kmax cut. However, we notice how according to the
model-breaking criterion both models allow to push the
analysis to higher kmax with respect to the STD case. In
other words, a proper comparison of the merit of the three

FIG. 4. Same as Fig. 2 but for the combinations of the galaxy auto- and cross-power spectrum, Pgg and Pgm. In this case, performance
metrics (FoM and FoB) refer to the combinations of the three cosmological parameters ðh;Ωch2; AsÞ. The standard (STD), k2-dependent
shot noise (k2N), and higher derivatives (HD) models are color coded as shown in the legend. The solid-to-dashed transition marks the
model-breaking scale k†. In all three cases, the nonlinear matter power spectrum is modeled with RESPRESSO. The two shaded gray
regions mark the 68th and 95th percentiles of the FoB and χ2 distribution.
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models should be done considering the individual scale k†

after which the model breaks down. Considering the
CMASS sample, the STD model provides a FoM consistent
with the one obtained from the HD case, and ∼30% larger
than the one of the k2N model. However, the latter two
models have yet to reach the maximum scale k† correspond-
ing to the breaking of the model. A simple exercise of
extending the k2N model to slightly larger mode values
shows that the latter turns out to be competitive against the
STD model at a scale of kmax ∼ 0.35h Mpc−1. As for
LOWZ, the HD case is significantly less constraining than
the STD model (∼50%), mostly because its range of validity
does not run all theway up to kmax ¼ 0.30h Mpc−1 but stops
earlier. In contrast, the k2N model outperforms the standard
model by a∼10% factor, although also in this case the model
breaking scale k† has yet to be reached.
A particular case is represented by MGS, which differ-

ently from the previous two samples shows a stable and
accurate recovery of cosmological parameters all the way
up to kmax ¼ 0.3h Mpc−1 even with the STD model. The
reason is most likely related to our choice of employing
RESPRESSO to model the nonlinear matter evolution. This
ultimately provides an accurate description of Pmm even at
the low redshift of MGS, leaving only the galaxy-matter
relation to be modeled. Since MGS features the lowest
large-scale bias among the samples we consider, it is likely
that the one-loop standard expansion is enough to provide
both a good χ2 and an accurate parameter recovery on the
full range of scales up to kmax ¼ 0.3h Mpc−1.
Differently from the fit of the galaxy autopower spec-

trum, in this case the FoM for the three different galaxy

samples do not show a flattening on the range of scales we
are considering. Checking the independent contributions
coming from the individual cosmological parameters, we
notice how the FoM does actually flatten for both h and As,
whereas it monotonically increases for Ωch2. This is a hint
showing that the matter density parameter still benefits from
additional information contained in the mildly nonlinear
regime, when combining the two galaxy-power spectra.
In Fig. 5 we show the dependence of the linear bias b1σ8

and the constant shot-noise contribution on kmax, similarly
to what we showed in Fig. 3 for Pgg alone. The more
stringent requirement of simultaneously fitting Pgg and Pgm

makes the standard model fail in providing accurate
measurements of both parameters. In particular, b1σ8 starts
to be biased at approximately the same scale for which
the model also provides incorrect measurements of the
cosmological parameters. Adding either k2-dependent shot
noise terms or higher derivative parameters helps in
recovering the true values of the bias, with a slight
preference for the former. More generally the k2N model
is the only one that is capable of simultaneously providing
unbiased measurements of the cosmological parameters,
the linear bias and the large-scale stochastic contribution
to the galaxy-power spectrum. This is also in agreement
with the results obtained in [31] at fixed cosmology.

C. Constraints on stochasticity and
higher-derivative parameters

After having focused on the marginalized posteriors
of the cosmological parameters, linear bias and constant
shot noise, here we try to put internal constraints on both

FIG. 5. Same as Fig. 3 but for the combined fits of the galaxy autopower spectrum Pgg and the galaxy-matter cross power spectrum
Pgm. In all cases dark matter nonlinear evolution is modeled using RESPRESSO. Fiducial values of the linear bias and constant shot-noise
contribution are reproduced with black dashed lines. Uncertainties on the fiducial values are marked with shaded gray bands (marking
1- and 2-σ confidence interval).
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the k2-dependent stochastic parameters and the higher
derivative parameters. In particular, we want to check
whether these terms can be detected with statistical
significance under the assumption of using a reference
effective volume like the one described in Sec. III.
Figure 6 shows marginalized constraints for the two sets

of parameters (extracted from the Pgg þ Pgm chains) as a
function of kmax. For a consistency check, in the panels
referring to parameters that enter the modeling of the
galaxy autopower spectrum, N2 and βP, we also show less
stringent constraints extracted from the chains correspond-
ing to the fit of Pgg (shaded gray band).
The consistency of the k2-dependent shot-noise model is

additionally reinforced by the trend observed in the top
panels of Fig. 6. As a matter of fact, the relation between
N2=N×

2 and kmax can be well described by a straight line
with zero slope, this fact intrinsically hinting at a correct
behavior for both parameters, as their profiles remain
stable when adding constraints at higher wave modes.
Moreover, there is a clear detection of the k2-dependent
shot-noise parameters, with a statistical significance
that further reinforces the impact of adding N2 and N×

2

in terms of goodness of fit. Indeed N2 and N×
2 are detected

at kmax ¼ 0.3h Mpc−1 with a statistical significance of
3.5-σ and 2.5-σ, respectively, for the CMASS sample. With
LOWZ the detection becomes even larger, with numbers
that are close to 6-σ and 4-σ, respectively. The MGS sample
is the one showing the least significant detection of both
parameters, with a possible modification of the recovered
value of N×

2 at kmax ¼ 0.3h Mpc−1. However, we remind
that the STD model performs surprisingly well on this
dataset, and therefore the weaker detection of the two
parameters is partially expected.
The higher derivative parameters also show stable results

as a function of kmax, with the highest detection represented
by β×P for LOWZ. However on these scales the HDmodel is
already broken, as shown in Fig. 4. For the other cases, the
typical significance of the detection is set to ∼2-σ and ∼4-σ
for βP and β×P, respectively.
Differently from [31], we do not observe incompatible

results between the marginalized posteriors of N2 and βP
from fits of Pgg and Pgg þ Pgm. However in this case we
significantly extended the dimensionality of the parameter
space leading to weaker constraints on the model param-
eters, so that the deviation may be hidden by the larger
statistical noise.

FIG. 6. Marginalized posterior of the k2-dependent stochastic parameters N2 and N×
2 (top), and the higher derivatives parameters βP

and β×P (bottom), as a function of kmax, for the combination of Pgg þ Pgm. In all cases dark matter nonlinear evolution is modeled using
RESPRESSO. For a consistency check we also show the 1-σ standard deviations of the parameters N2 and βP obtained from the fit of Pgg

only as a shaded gray area.
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D. Results for alternative matter models

So far we have fixed the modeling of the nonlinear
matter power spectrum using a hybrid approach such as
RESPRESSO. Another way of proceeding is to employ a
perturbative description not only for one-loop bias but also
for Pmm. In this section, we analyze the impact of a different
modeling of Pmm inside Eqs. (10) and (11), and for this
purpose we make use of the two additional models
described in Sec. II B 4.
We remind the reader that these models correspond to

(1) an EFT-like model based on resummation of IR modes
and nontrivial stress tensor that at leading order in real
space can be described by a single counterterm, and (2) a
RPT-based approach with a tighter requirement of preserv-
ing the Galilean invariance of equal time correlators
(gRPT). For the three different matter models, we show
results for the STD model and for the extension including
higher-order stochastic contributions, as in the previous
sections we assessed how this extension is preferred from
the three data samples we are considering. Differently from
the other matter models, the EFT-based approach requires
an additional free parameter, represented by the counter-
term c1, which at one loop for the power spectrum is
completely degenerate with leading order higher derivative
terms. For this reason, in this case the STD model partially
incorporates a higher-derivative correction. This choice
does not correspond to a complete inclusion of short-range
nonlocalities, as we are imposing a positive prior on the free
parameter c1. However it is possible to observe from the
posterior distributions of the parameter space how the
marginalized constraints on c1 are consistently larger than
0, a symptom that, even if partially absorbed by this extra
degree of freedom, higher derivatives provide a much lower
contribution than the stress tensor corrections in the
modeling of our data vectors. The full list of configurations,
together with free model parameters, is given in Table IV.
Figure 7 shows the performance metrics for the three

different dark matter models when fitting the combination
of Pgg and Pgm. In this case, we show the individual
contributions to FoM and FoB from the three cosmological
parameters, h, Ωch2 and As. The relative trends for the joint
FoM and FoB (referring to the combination of the three
cosmological parameters) can be easily related to the ones
of the individual parameters. More precisely, the range of
validity of the model when considering the parameter
combination mimics is well represented by the same k†

of the individual parameters. For the sake of simplicity, we
identify this model breaking scale, k†, with the end of the
corresponding line in the FoM panels.
We first notice how the recovered goodness of fit is

severely worsened when adopting gRPT to describe the
nonlinear matter power spectrum, particularly when con-
sidering the STD model. This intrinsically hints at the
presence of a nontrivial stress tensor, leading to a matter
counterterm different from 0, as in the case of the

EFT-based models. We separately tested the impact of
extending the STD model to include higher derivatives
(i.e. allowing for a nonzero matter counterterm), and while
this extension slightly improves the range of validity of the
gRPT-based model, it still fails in being accepted up to
kmax ¼ 0.30h Mpc−1. The corresponding k2N model def-
initely improves the recovered trends but the net result is a
worse performance with respect to RESPRESSO and EFT.
The STD model of EFT breaks at higher values of kmax,
and this is somewhat expected given the presence of the
additional free parameter c1. Nevertheless in order to
provide a χ2 consistent within 95% confidence interval
at all scales we still have to include additional stochas-
tic terms.
The FoB is overall consistent among the three different

parameters, showing a strong bias on the marginalized
posterior (>2 − σ at kmax > 0.25h Mpc−1) when adopting
the STD for either gRPT or RESPRESSO. Similarly to the
goodness of fit, the STD case combined with EFT provides
better results (consistent within 1-σ) since it already
incorporates a k2PLðkÞ correction which is absent from
the other matter models. The overall interpretation is that
all three matter models strongly hint for the necessity of
adding k2-dependent stochastic contributions, both to
produce an accurate description of the joint data vector
Pgg þ Pgm and to provide unbiased measurements of the
cosmological parameters.
As for the FoM, we notice how its dependency on kmax is

significantly different between the ðh; AsÞ pair and Ωch2.
For the former, the difference in performance between STD
and extended models is tiny ð∼10%Þ, while, for the latter,
adding k2-dependent stochasticity (or higher derivatives)
results in the suppression of the FoM at a reference scale
of kmax ¼ 0.2h Mpc−1 by a factor of ∼50% and ∼25%,
respectively.
Focusing on the maximum FoM achieved by each model

in the range of scales we consider, we obtain different results.
The usage of gRPT typically leads to the breaking of the
model at lower wave modes, kmax ∼ 0.2h Mpc−1, when
using the STDmodel (slightly larger with the HD extension).
Substituting gRPT with RESPRESSO helps in extending the
range of validity of the HD model, as shown in Sec. IV B,
while leaving almost untouched the model breaking scale
of the STD case. However, this last configuration, i.e.
RESPRESSO with the STD biasing scheme systematically
results in one of the best performing models in terms of
maximally achievable FoM. Adding k2-dependent stochastic
terms to both matter models extends the range of validity
up to kmax ¼ 0.3h Mpc−1, with a value of FoM which is
typically consistent with the one of the STD case at the
corresponding k†. Finally, the range of validity of the EFT
model is hitting our maximum value of 0.3h Mpc−1 already
with the STD model for both CMASS and MGS, while
being limited to intermediate values ðkmax ∼ 0.25h Mpc−1Þ
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for LOWZ. The latter can be also be adjusted by considering
k2-dependent shot-noise parameters.

E. Impact of Pgm on the figure of merit

After having assessed the impact of different modeling
assumptions we can now check the statistical significance

of adding the galaxy-matter cross power spectrum to a full
shape measurement fit like the one we carried out in this
analysis. Indeed, as we already pointed out in Sec. IV B
3 × 2-point analysis will be the source of several cosmo-
logical constraints in next-generation galaxy surveys.
Although in this analysis we are excluding redshift-space
distortions, in order to separate the additional model

FIG. 7. FoM, FoB and goodness of fit extracted from fits of Pgg þ Pgm. Performance metrics are separated into each individual
component, i.e. h, Ωch2 and As. Different dark matter models and different one-loop modeling assumptions are color and style coded as
shown in the legend. The two shaded gray regions mark the 68th and 95th percentiles of the FoB and χ2 distribution.
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systematics from the ones of one-loop galaxy bias, it is
anyhow interesting to quantify the improvement in FoM
when including constraints from Pgm.
In Fig. 8 we compare the marginalized posterior distribu-

tion of the cosmological parameters and linear bias obtained
when fitting only Pgg and the combination Pgg þ Pgm. For
this comparison we model Pmm with RESPRESSO, include

k2-dependent stochastic contributions, and include all scales
up to kmax ¼ 0.3h Mpc−1. We remind that the comparison
is not properly fair, as we fix the scalar amplitude As in the
fits of the autopower spectrum alone, while this is treated as a
free parameter in the fits of the combined statistics.
The observed trend when including Pgm in the fit is a

significant reduction of the statistical uncertainty of all

FIG. 8. Comparison between the posterior parameter distribution (68% and 95% confidence intervals) obtained by fitting the galaxy
autopower spectrum Pgg (blue) and the combination of galaxy-galaxy and galaxy-matter power spectrum Pgg þ Pgm (red). We show
constraints obtained at kmax ¼ 0.3h Mpc−1 for the cosmological parameters h,Ωch2, As, and the linear bias b1σ8. In all cases we assume
nonlinear dark-matter evolution to be described by RESPRESSO. Dashed solid lines correspond to the fiducial values of the corresponding
parameter. Gray solid bands mark the 1-σ and 2-σ error on the fiducial linear bias parameter.
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parameters. In particular we measure a 1-σ standard
deviation for h and Ωch2 that is 1.4, 2, and 1.2 times
smaller for CMASS, LOWZ andMGS, respectively. On the
other hand, the linear bias absorbs most of the additional
constraining power, leading to more precise measurements
of b1σ8 by a factor 3 for all three samples.

V. CONCLUSIONS

In this work we performed a full-shape analysis of the
galaxy-power spectrum meant to assess the robustness of
one-loop galaxy bias models, extending the investigation
carried out in [31] to include also the sampling over
cosmological parameters. Since we deal with galaxy
clustering in real space, we decided to fix both the baryon
densityΩbh2 and the spectral index ns while leaving as free
parameters the cold dark matter density Ωch2, the Hubble
constant h, and the scalar amplitude As. The latter is kept as
a free parameter only when considering joint fits to the
galaxy-galaxy and galaxy-matter power spectra.
We measured both observables from a set of three

different synthetic galaxy samples, whose clustering prop-
erties are meant to reproduce the ones of three real data
catalogs, i.e. CMASS and LOWZ from BOSS, and MGS
from SDSS. We rescaled the statistical uncertainties of
each of these samples to match an effective volume of
6ðh−1 GpcÞ3 (i.e. the one of the LOWZ sample), which is
representative of the volume of tomographic bins from
next-generation galaxy surveys (e.g. Euclid [104]).
The analytical recipes we adopted to model these

observables are based on a standard one-loop expansion
of the galaxy density field on the matter density field,
collecting terms related to both spherically symmetric
gravitational collapse and tidal fields up to third order in
perturbations. In the first part of the paper, we fixed the
description of the nonlinear matter power spectrum using a
hybrid perturbative-simulated approach, i.e. RESPRESSO,
which was already shown in [31] to provide the closest
behavior to the true measured matter power spectrum on the
overall range of scales and redshifts that we consider. In a
later section we explicitly tested the impact of different
matter modeling assumptions, by employing an EFT-like
model and a RPT-derived model (gRPT). In all the
considered cases we fixed the quadratic tidal bias γ2 using
an excursion-set-derived relation, in order to break the
strong degeneracy between the latter and the cubic nonlocal
parameter γ21.
Our main interest was in understanding the range of

validity of the standard one-loop expansion, and if our
synthetic galaxy sample would hint for the necessity of
adding additional terms to the standard recipe. For this, we
considered two extensions of the standard model that take
into account either higher derivatives of the gravitational
potential or scale-dependent stochasticity, as expected from
short-range nonlocality due to galaxy formation and the
halo-exclusion effect, respectively.

In order to quantify the goodness of each model we make
use of a set of three different performance metrics, which
are (1) the figure of bias, to assess the level of bias
introduced in the recovery of cosmological parameters,
(2) the goodness of fit, to quantify the likelihood between
the input data vector and the best fit model, and (3) the
figure of merit, to compare the constraining power of each
model at any given kmax. All of these quantities are easily
obtained by postprocessing the MCMC chains that we run
for each combination of matter modeling, one-loop bias
extensions, and maximum mode kmax.
Our results can be summarized as follows:
(i) When using the fiducial description of the nonlinear

matter power spectrum (i.e RESPRESSO), we find that
a standard one-loop bias model (linear bias, quad-
ratic bias, cubic nonlocal bias, constant shot-noise
parameter) with fixed quadratic tidal bias can pro-
vide a good description of the galaxy-power spec-
trum for all our samples up to kmax ¼ 0.3h Mpc−1

while also returning unbiased value of the cosmo-
logical parameter set ðh;Ωch2Þ.

(ii) Similarly to the fixed cosmology analysis of [31] we
notice that when we consider the additional infor-
mation from the galaxy-matter cross power spec-
trum, the standard model is no longer capable of
providing a good performance on the overall range
of scales we consider for all three samples. In
particular, this model breaks at a scale of kmax ¼
0.25h Mpc−1 and kmax ¼ 0.2h Mpc−1 for CMASS
and LOWZ, respectively, while being accepted all
the way up to kmax ¼ 0.3h Mpc−1 for MGS. This
might be representative of the level of nonlinearities
in the galaxy-matter relationship, which at first order
can be captured by the parameter b1σ8 (that is ∼1.52
for LOWZ, ∼1.26 for CMASS and ∼1.06 for MGS).

(iii) Extending the standard model to account also for
the presence of either higher derivatives or scale-
dependent stochasticity provides a better perfor-
mance both in terms of figure of bias (in this case
for the parameter set ðh;Ωch2; AsÞ) and goodness of
fit. Adding scale-dependent stochastic terms restores
the range of validity of the model up to kmax ¼
0.3h Mpc−1 for both CMASS and LOWZ, while the
importance of higher derivatives is limited by a
worse χ2 for kmax ≳ 0.2h Mpc−1, and slightly worse
recovery of the linear bias parameter and the con-
stant shot-noise correction. As an additional check,
we verify that the marginalized posterior distribution
of both k2-dependent terms and higher derivative
parameters is stable as a function of kmax. However
we notice how the maximally achievable FoM of the
extended models is consistent with the one of the
standard configuration at its lower kmax, leading to
equivalent statistical constraints on the cosmological
parameters.
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(iv) Changing the description of the nonlinear matter
power spectrum to either EFT or gRPT induces
modifications to the range of validity of one-loop
galaxy bias models. Overall, we find that, as high-
lighted in [31], RESPRESSO is the best performing
model, followed by EFT and gRPT. The EFT-based
model is penalized in terms of figure of merit
because of the presence of an additional degree of
freedom (i.e. the effective speed of sound c1), but it
compensates this with an extended range of validity.
On the contrary, gRPT breaks sooner than the other
models, at a typical scale of kmax ∼ 0.2h Mpc−1,
which is consistent with the range of validity
observed in direct fits of the matter power spectrum.
This indicates that this model would also benefit
from the presence of an additional free parameter
representing a nonzero stress tensor such as in the
case of the EFT-based model, as expected. Although
the gRPT-based model breaks earlier than the other
two models, its maximally achievable FoM is con-
sistent with the one recovered using RESPRESSO.

(v) The additional constraints coming from the galaxy-
matter cross power spectrum results in an improved
statistical precision on measurements of cosmologi-
cal parameters. Although we fix the scalar amplitude
As when fitting only the galaxy autopower spectrum,
we still find that in the combined case we achieve
better constraints on both h andΩch2 by a factor 1.4,
2 and 1.2 for CMASS, LOWZ and MGS, respec-
tively. At the same time we notice how a significant
fraction of the additional constraining power can be
absorbed by nuisance parameters, such as the linear
bias, for which constraints are tighter by a factor of 3
for all three samples.

In this work we analyze three samples with an effective
volume which is rescaled to a value of 6h−3 Gpc3.
Although the results we obtained are partially based on
this choice, as shown in [31], this volume can be well

representative of individual tomographic redshift bins
that will be adopted by next-generation galaxy surveys.
In addition we explore the additional constraining power
brought by adding the galaxy-mass cross power spectrum
to galaxy-power spectrum fits, which is a relevant study in
the context of 3 × 2pt analyses of next-generation imaging
surveys. Therefore, these results can provide useful insights
when adopting one-loop perturbation theory to describe the
relationship between the galaxy and matter density fields in
that context [103]. In order to completely concentrate on
galaxy bias, we performed this analysis using real-space
coordinates, avoiding a further modeling layer for redshift-
space distortions. We leave to future works the exploration
of this effect, both using the power spectrum alone, and
combining it with the galaxy bispectrum.
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