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ABSTRACT
Smoothed Particle Hydrodynamics (SPH) is a ubiquitous numerical method for solving the fluid equations,
and is prized for its conservation properties, natural adaptivity, and simplicity. We introduce the Sphenix
SPH scheme, which was designed with three key goals in mind: to work well with sub-grid physics mod-
ules that inject energy, be highly computationally efficient (both in terms of compute and memory), and to
be Lagrangian. Sphenix uses a Density-Energy equation of motion, along with variable artificial viscosity
and conduction, including limiters designed to work with common sub-grid models of galaxy formation. In
particular, we present and test a novel limiter that prevents conduction across shocks, preventing spurious ra-
diative losses in feedback events. Sphenix is shown to solve many difficult test problems for traditional SPH,
including fluid mixing and vorticity conservation, and it is shown to produce convergent behaviour in all
tests where this is appropriate. Crucially, we use the same parameters within Sphenix for the various switches
throughout, to demonstrate the performance of the scheme as it would be used in production simulations.
Sphenix is the new default scheme in the Swift cosmological simulation code and is available open-source.

Key words: galaxies: formation, galaxies: evolution, methods: N-body simulations, methods:
numerical, hydrodynamics

1 INTRODUCTION

There have been many approaches to solving the equations of mo-
tion for a collisional fluid in a cosmological context over the years,
from simple first order fixed-grid (Cen 1992) to high-order dis-
continuous Galerkin schemes solved in an adaptive environment
(Guillet et al. 2019). Because Smoothed Particle Hydrodynamics
(SPH) strikes the sweet spot between computational cost, stability,
and adaptivity, it has been used throughout the astronomical com-
munity for nearly five decades.

SPH was originally developed by Lucy (1977) and
Gingold & Monaghan (1977), and was used initially to model in-
dividual stars, as this problem was well suited to Lagrangian
schemes. Shortly after, further applications of the method were
deployed for the study of the fragmentation of gas clouds (Wood
1981), and for the formation of planets (Benz 1988).

The practical use of SPH in a cosmological context began
with Hernquist & Katz (1989), which provided a novel solution to
the large dynamic range of time-steps required to evolve a cosmo-
logical fluid, and was cemented by the Gadget-2 code (Springel
2005) that was made public and exploited worldwide to model
galaxy formation processes within this context for the first time
(e.g. Dolag et al. 2004; Ettori et al. 2006; Crain et al. 2007). The
base SPH model released in Gadget-2, however, was relatively sim-
ple, consisting of a fixed artificial viscosity coefficient and scheme
based on Monaghan (1992). Improved models existed, such as

those presented in Monaghan (1997), but the key that led to the
community rallying around Gadget-2 was both its open source na-
ture and scalability, with Gadget-2 able to run on hundreds or thou-
sands of cores.

The popularity of Gadget-2, and similar codes like GASO-
LINE (Wadsley, Stadel & Quinn 2004), along with its relatively
simple hydrodynamics model, led to critical works such as
Agertz et al. (2007) and Bauer & Springel (2012) that pointed out
flaws in their SPH modelling, relative to mesh-based codes of the
time. The SPH community as a whole, however, already had so-
lutions to these problems (see e.g. Price 2008) and many robust
solutions were proposed and integrated into cosmological mod-
elling codes. In Heß & Springel (2010), the authors experimented
with an extension to Gadget-2 using a Voronoi mesh to reduce
errors inherrent in SPH and allow for better results on fluid mix-
ing problems, eventually giving rise to the AREPO moving mesh
scheme, allowing for significantly improved accuracy per parti-
cle but drastically increasing computational cost (Springel 2010;
Weinberger, Springel & Pakmor 2020). In this case, the authors
have steadily increased their computational cost per particle in an
attempt to reduce errors inherrent in their hydrodynamics model as
much as practicable.

Other authors took different directions, with the GASO-
LINE code (Wadsley et al. 2004; Wadsley, Veeravalli & Couchman
2008; Wadsley, Keller & Quinn 2017) choosing to explicitly aver-
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age pressures within the SPH equation of motion to alleviate the
problems of artificial surface tension; the PHANTOM developers
(Price 2008, 2012; Price et al. 2018) advocating for artificial con-
duction of energy; and further developments on the Gadget-2 and
updated Gadget-3 code by Hopkins (2013) and Hu et al. (2014)
based on the work by Saitoh & Makino (2013) using an explicit
smoothed pressure scheme to ensure a consistent pressure field over
the contact discontinuities that artificial surface tension arises from.

Simultaneously, there was work to reduce the fundamental
numerical errors present in SPH taking place by (Cullen & Dehnen
2010; Dehnen & Aly 2012; Read, Hayfield & Agertz 2010;
Read & Hayfield 2012) through the use of improved choices for
the SPH kernel, which up until this point was assumed to have little
effect on results from SPH simulations. These improved kernels
typically have larger ‘wings’, encompassing more neighbours and
providing more accurate reconstructions for smoothed quantities.
These more accurate reconstructions are particularly important for
the construction of accurate gradients, which enter into ‘switches’
that control the strength of the artificial viscosity and conduction
terms.

The rise of more complex SPH models occurred along-
side a significant jump in the complexity of the correspond-
ing galaxy formation models; such an increase in complexity
was required as resolutions increased over time, meaning more
physics could be modelled directly. Many astrophysical pro-
cesses take place on scales smaller than what can be resolved
in simulations and are included in these so-called galaxy forma-
tion ‘sub-grid’ models. These processes include radiative cool-
ing, which has progressed from a simple one parameter model
to element and even ionisation state dependent rates (see e.g.
Wiersma et al. 2009; Ploeckinger & Schaye 2020); star forma-
tion (see e.g. Cen & Ostriker 1992; Schaye & Dalla Vecchia 2008,
and references therein); and stellar feedback to model super-
novae and element outflows (see e.g. Navarro & White 1993;
Springel & Hernquist 2003; Dalla Vecchia & Schaye 2008, 2012,
and references therein). The coupling of these processes to hy-
drodynamics is complex and often overlooked; careful treatment
of conservation laws and quirks of the chosen variables used
to represent the fluid can frequently hide errors in plain sight
(Borrow, Schaller & Bower 2020).

The development of the Swift code (Schaller et al. 2016) led
to a re-implementation of the sub-grid model used for the EA-
GLE simulation (Schaye et al. 2015), and a chance to re-consider
the Anarchy SPH scheme that was used in the original (Gadget-3
based) code (see Schaller et al. 2015, for details on the scheme).
The findings in Oppenheimer et al. (2018) (their Appendix D) and
Borrow et al. (2020) meant that a switch away from the original
Pressure-Entropy scheme to one based on a smoothed density field
was preferred, along with the key design goals outlined below. This
work describes the Sphenix1 scheme and demonstrates its perfor-
mance on many hydrodynamics tests. We note here that Sphenix
does not give the best performance-per-particle (in both absolute
values of L1 norm (see Section 5.1 for our definition of the L1
norm) compared to the analytical solution, and in terms of con-
vergence speed) compared to other schemes. The moving mesh
AREPO (Springel 2010), finite-volume GIZMO (Hopkins 2015),
and corrected scheme presented in Rosswog (2020a) will produce
improved results. Sphenix however lies in the very low-cost (mem-

1 Note that, similar to the popular Gizmo schemes, Sphenix is not an
acronym.

ory and computation) per particle sweet-spot that traditional SPH
schemes occupy, whilst maximising performance with some novel
limiters for artificial conduction and viscosity. This makes it an ex-
cellent choice for the default SPH scheme in Swift.

The remainder of this paper is organised as follows: in Sec-
tion 2 we describe the Swift cosmological simulation code and
the time-stepping algorithms present within it. In Section 3 we de-
scribe Sphenix in its entirety. In Section 4 we describe the artificial
conduction limiter used for energetic feedback schemes. Finally, in
Section 5 we show how Sphenix performs on various hydrodynam-
ics problems.

2 THE Swift SIMULATION CODE

The Swift2 simulation code (Schaller et al. 2016, 2018) is a hy-
brid parallel SPH and gravity code, designed to run across multi-
ple compute nodes using MPI, but to utilize threads on each node
(rather than the traditional method of using one MPI rank per core).
This, along with its task-based parallelism approach, asynchronous
communication scheme, and work-splitting domain decomposition
system allow for excellent strong- and weak-scaling characteristics
(Borrow et al. 2018).

Swift is also designed to be hugely modular, with hydrody-
namics schemes, gravity schemes, and sub-grid models able to be
easily swapped out. Swift can be configured to use a replica of
the Gadget-2 hydrodynamics scheme (Springel & Hernquist 2002),
a simplified version of the base PHANTOM scheme (Price et al.
2018), the MFM and MFV schemes described in Hopkins (2015),
Sphenix, or a host of other schemes. It can also be configured
to use multiple different galaxy formation sub-grid models, in-
cluding a very basic scheme (constant Λ cooling, no star forma-
tion), the EAGLE sub-grid model (Schaye et al. 2015), a ‘Quick
Lyman-α" model, the GEAR sub-grid model (Revaz & Jablonka
2012), and some further evolutions including cooling tables from
Ploeckinger & Schaye (2020). The gravity solver is interchange-
able but the one used here, and throughout all Swift simulations,
uses the Fast Multipole Method (Greengard & Rokhlin 1987) with
an adaptive opening angle, similar to Dehnen (2014).

2.1 Time integration

Swift uses a velocity-verlet scheme to integrate particles through
time. This takes their acceleration (~a) from the equation of mo-
tion and time-step (∆t) and integrates their position forward in time
through a Kick-Drift-Kick scheme as follows:

~v
(
t +

∆t
2

)
= ~v(t) +

∆t
2
~a(t), (1)

~r (t +∆t) = ~r(t) +~v
(
t +

∆t
2

)
∆t, (2)

~v (t +∆t) = ~v
(
t +

∆t
2

)
+

∆t
2
~a(t +∆t), (3)

2 For the interested reader, the implementation of the Sphenix scheme
was developed fully in the open and is available in the Swift repository
at http://swiftsim.com (Schaller et al. 2018), including all of the tests
and examples shown below. We use version 0.9.0 of the Swift code for the
tests in this work.
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where the first and last equations, updating the velocity, are referred
to as the ‘kick’, and the central equation is known as the ‘drift’. The
careful observer will note that the ‘drift’ can be split into as many
pieces as required allowing for accurate interpolation of the particle
position in-between kick steps. This is important in cosmological
galaxy formation simulations, where the dynamic range is large.
In this case, particles are evolved with their own, particle-carried
time-step, given by

∆ti = CCFL
2γKhi

vsig,i
, (4)

dependent on the Courant-Friedrichs-Lewy (CCFL
Courant, Friedrichs & Lewy 1928) constant, the kernel-dependent
relationship between cut-off and smoothing length γK , particle-
carried smoothing length hi, and signal velocity vsig,i (see
equation 30). The discussion of the full time-stepping algorithm is
out of the scope of this work, but see Hernquist & Katz (1989) and
Borrow, Vandenbroucke & Schaller (2019) for more information.

2.1.1 Time-step limiter

As the time-step of the particles is particle-carried, there may be
certain parts of the domain that contain interacting particles with
vastly different time-steps (this is particularly promoted by particles
with varied temperatures within a given kernel). Having these parti-
cles interact is problematic for a number of reasons, and as such we
include the time-step limiter described in Saitoh & Makino (2009),
Durier & Dalla Vecchia (2012) in all problems solved below. Swift
chooses to limit neighbouring particles to have a maximal time-step
difference of a factor of 4.

3 Sphenix

The Sphenix scheme was designed to replace the Anarchy scheme
used in the original EAGLE simulations for use in the Swift simu-
lation code. This scheme had three major design goals:

(i) Be a Lagrangian SPH scheme, as this has many advantages
and is compatible with the EAGLE subgrid model.

(ii) Work well with the EAGLE subgrid physics, namely instan-
taneous energy injection and subgrid cooling.

(iii) Be highly computationally and memory efficient.

The last requirement precludes the use of any Riemann solvers
in so-called Gizmo-like schemes (although these do not neces-
sarily give improved results for astrophysical problem sets, see
Borrow et al. 2019); see Appendix A. The second requirement also
means that the use of a pressure-based scheme (such as Anarchy)
is not optimal, see Borrow et al. (2020) for more details.

The Sphenix scheme is based on so-called ‘Traditional’
Density-Energy SPH. This means that it uses the smoothed mass
density,

ρ̂(~x) =
∑

j

m jW(|~x− ~x j|,h(~x)) (5)

where here j are indices describing particles in the system, h(~x)
is the smoothing length evaluated at position ~x, and W(r,h) is the
kernel function.

In the examples below, the Quartic Spline (M5) kernel,

w(q) =



(
5
2 −q

)4
−5

(
3
2 −q

)4
+ 10

(
1
2 −q

)4
q < 1

2(
5
2 −q

)4
−5

(
3
2 −q

)4 1
2 ≤ q < 3

2(
5
2 −q

)4 3
2 ≤ q < 5

2
0 q ≥ 5

2

(6)

with W(r,h) = κnD w(r/h)/hnD , nD the number of dimensions, and
κ3 = (7/478π) for three dimensions, is used. The Sphenix scheme
has also been tested with other kernels, notably the Cubic and
Quintic Spline (M4, M6) and the Wendland (C2, C4, C6) kernels
(Wendland 1995). The choice of kernel does not qualitatively af-
fect the results in any of the tests in this work (see Dehnen & Aly
2012, for significantly more information on kernels). Higher order
kernels do allow for lower errors on tests that rely on extremely
accurate reconstructions to cancel forces (for instance the Gresho-
Chan vortex, Section 5.3), but we find that the Quintic Spline pro-
vides an excellent trade-off between computational cost and accu-
racy in practical situations. Additionally, the Wendland kernels do
have the benefit that they are not susceptible to the pairing insta-
bility, but they must have an ad-hoc correction applied in practical
use (Dehnen & Aly 2012, Section 2.5). We find no occurrences of
the pairing instability in both the tests and our realistic simulations.
The Sphenix scheme is kernel-invariant, and as such can be used
with any reasonable SPH kernel.

The smoothing length h is determined by satisfying

n̂(~x) =
∑

j

W
(
|~x− ~x j|,h(~x)

)
=

(
η

h(~x)

)nD

, (7)

with η setting the resolution scale. The precise choice for η gener-
ally does not qualitatively change results; here we choose η = 1.2
due to this value allowing for a very low E0 error (see Read et al.
2010; Dehnen & Aly 2012),3 which is a force error originating
from particle disorder within a single kernel. In Swift, these equa-
tions are solved numerically to a relative accuracy of 10−4.

The smoothed mass density, along with a particle-carried in-
ternal energy per unit mass u, is used to determine the pressure at a
particle position through the equation of state

P(~xi) = Pi = (γ−1)uiρ̂i, (8)

with γ the ratio of specific heats, taken to be 5/3 throughout unless
specified. This pressure enters the first law of thermodynamics,

∂ui

∂~qi

∣∣∣∣∣
Ai

= −
Pi

mi

∂Vi

∂~qi
, (9)

with ~qi a state vector containing both ~xi and hi as independent vari-
ables, Ai the entropy of particle i (i.e. this equation only applies
to dissipationless dynamics), and Vi = mi/ρ̂i describing the volume
represented by particle i. This constraint, along with the one on the
smoothing length, allows for an equation of motion to be extracted

3 This corresponds to ∼58 weighted neighbours for our Quartic Spline
in a scenario where all neighbours have uniform smoothing lengths. In
practical simulations the ‘number of neighbours’ that a given particle
interacts with can vary by even orders of magnitude but equation (7)
must be satisfied for all particles ensuring an accurate reconstruction of
the field. More discussion on this choice of smoothing length can be
found in (Springel & Hernquist 2002; Monaghan 2002; Price 2007, 2012;
Borrow et al. 2020). We chose η = 1.2 based on fig. 3 in Dehnen & Aly
(2012), where this corresponds to a very low reconstruction error in the
density.
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4 Borrow et al.

from a Lagrangian (see e.g. the derivations in Springel & Hernquist
2002; Hopkins 2013),

d~vi

dt
= −

∑
j

m j

 fi jPi

ρ̂2
i

∇iWi j +
f jiP j

ρ̂2
j

∇ jW ji

 , (10)

where Wab = W(|~xb − ~xa|,h(~xa)), ∇a = ∂/∂~xa, and fab a dimen-
sionless factor encapsulating the non-uniformity of the smoothing
length field

fab = 1−
1

mb

(
ha

nDn̂a

∂ρ̂i

∂hi

)(
1 +

hi

nDn̂i

∂n̂i

∂hi

)−1
(11)

and is generally of order unity. There is also an associated equation
of motion for internal energy,

dui

dt
= −

∑
j

m j fi j
Pi

ρ̂2
i

~vi j · ∇iWi j, (12)

with ~vi j = ~v j −~vi. Note that other differences between vector quan-
tities are defined in a similar way, including for the separation of
two particles ~xi j = ~x j − ~xi.

3.1 Artificial viscosity

These equations, due to the constraint of constant entropy intro-
duced in the beginning, lead to naturally dissipationless solutions;
they cannot capture shocks. Shock capturing in SPH is generally
performed using ‘artificial viscosity’.

The artificial viscosity implemented in Sphenix is a simplified
and modified extension to the Cullen & Dehnen (2010) ‘inviscid
SPH’ scheme. This adds the following terms to the equation of mo-
tion (see Monaghan 1992, and references within),

d~vi

dt
= −

∑
j

m jζi j
[
fi j∇iWi j + f ji∇ jW ji

]
, (13)

and to the associated equation of motion for the internal energy,

dui

dt
= −

1
2

∑
j

m jζi j~vi j ·
[
fi j∇iWi j + f ji∇ jW ji

]
, (14)

where ζi j controls the strength of the viscous interaction. Note
here that the internal energy equation of motion is explicitly sym-
metrised, which was not the case for the SPH equation of motion
for internal energy (equation 12). In this case, that means that there
are terms from both the i j and ji interactions in equation (14),
whereas in equation (12) there is only a term from the i j interaction.
This choice was due to the symmetric version of this equation per-
forming significantly better in the test examples below, likely due
to multiple time-stepping errors within regions where the viscous
interaction is the strongest.4

There are many choices available for ζi j, with the case used
here being

ζi j = −αVµi j
vsig,i j

ρ̂i + ρ̂ j
, (15)

where

µi j =


~vi j·~xi j

|~xi j |
~vi j · ~xi j < 0

0 ~vi j · ~xi j ≥ 0
(16)

4 For these reasons all recent works choose symmetric forms for these
equations.

is a basic particle-by-particle converging flow limiter (meaning that
the viscosity term vanishes when ∇ ·~v ≥ 0), and

vsig,i j = ci + c j −βVµi j, (17)

is the signal velocity between particles i and j, with βV = 3 a dimen-
sionless constant, and with ci the soundspeed of particle i defined
through the equation of state as

ci =

√
Pi

ρ̂i
=

√
(γ−1)γui. (18)

Finally, the dimensionless viscosity coefficient αV
(Monaghan & Gingold 1983) is frequently taken to be a constant
of order unity. In Sphenix, this becomes an interaction-dependent
constant (see Morris & Monaghan 1997; Cullen & Dehnen
2010, for similar schemes), with αV = αV,i j, dependent on two
particle-carried α values as follows:

αV,i j =
1
4

(αV,i +αV, j)(Bi + B j), (19)

where

Bi =
|∇ ·~vi|

|∇ ·~vi|+ |∇×~vi|+ 10−4ci/hi
(20)

is the Balsara (1989) switch for particle i, which allows for the
deactivation of viscosity in shear flows, where there is a high value
of ∇ ·~v, but the associated shear viscosity is unnecessary. This, in
particular, affects rotating shear flows such as galaxy disks, where
the scheme used to determine αV,i described below will return a
value close to the maximum.

The equation for αV,i is solved independently for each particle
over the course of the simulation. Note that αV,i is never drifted,
and is only ever updated at the ‘kick’ steps. The source term in the
equation for αV,i, designed to activate the artificial viscosity within
shocking regions, is the shock indicator

S i =

−h2
i max

(
∇̇ ·~vi,0

)
∇ ·~vi ≤ 0

0 ∇ ·~vi > 0
(21)

where here the time differential of the local velocity divergence
field

∇̇ ·~vi(t +∆t) =
∇ ·~vi(t +∆t)−∇ ·~vi(t)

∆t
(22)

with∇·~vi the local velocity divergence field and ∆t the time-step as-
sociated with particle i. The primary variable in the shock indicator
S i of ∇̇ ·~v is high in pre-shock regions, with the secondary condition
for the flow being converging (∇·~v≤ 0) helpful to avoid false detec-
tions as the Balsara (1989) switch is used independently from the
equation that evolves αV,i (this choice is notably different from most
other schemes that use Bi directly in the shock indicator S i). This
choice allows for improved shock capturing in shearing flows (e.g.
feedback events occurring within a galaxy disk). In these cases, the
Balsara (1989) switch (which is instantaneously evaluated) rapidly
becomes close to 1.0, and the already high value of αV,i allows for
a strong viscous reaction from the fluid. The shock indicator is then
transformed into an optimal value for the viscosity coefficient as

αV,loc,i = αV,max
S i

c2
i + S i

, (23)

with a maximum value of αV,max = 2.0 for αV,loc. The value of αV,i
is then updated as follows:

αV,i =


αV,loc,i αV,i < αV,loc,i
αV,i+αV,loc,i

∆t
τV,i

1+ ∆t
τV,i

αV,i > αV,loc,i
(24)
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where τV,i = γK`V hi/ci with γK the ‘kernel gamma’ a kernel depen-
dent quantity relating the smoothing length and compact support
(γK = 2.018932 for the quartic spline in 3D, Dehnen & Aly 2012)
and `V a constant taking a value of 0.05. The final value of αV,i
is checked against a minimum, however the default value of this
minimum is zero and the evolution strategy used above guarantees
that αV,i is strictly positive and that the decay is stable regardless of
time-step.

3.2 Artificial conduction

Attempting to resolve sharp discontinuities in non-smoothed vari-
ables in SPH leads to errors. This can be seen above, with strong
velocity discontinuities (shocks) not being correctly handled and
requiring an extra term in the equation of motion (artificial vis-
cosity) to be captured. A similar issue arises when attempting to
resolve strong discontinuities in internal energy (temperature). To
resolve this, we introduce an artificial energy conduction scheme
similar to the one presented by Price (2008). This adds an extra
term to the equation of motion for internal energy,

dui

dt
=

∑
j

m jvD,i j(ui −u j)r̂i j ·

(
fi j
∇iWi j

ρ̂i
+ f ji

∇ jW ji

ρ̂ j

)
(25)

with r̂i j the unit vector between particles i and j, and where

vD,i j =
αD,i j

2

 |~vi j · ~xi j|

|~xi j|
+

√
2
|Pi −P j|

ρ̂ j + ρ̂ j

 . (26)

This conductivity speed is the average of two commonly used
speeds, with the former velocity-dependent term taken from
Price et al. (2018) (modified from Wadsley et al. 2008), and the
latter pressure-dependent term taken from Price (2008). These
are usually used separately for cases that aim to reduce entropy
generation in disordered fields and contact discontinuities respec-
tively(where initially there is a strong discontinuity in pressure that
is removed by the artificial conduction scheme), but we combine
them here as both cases are relevant in galaxy formation simu-
lations and use this same velocity throughout our testing, a no-
table difference with other works using conduction schemes (e.g.
Price et al. 2018). Price et al. (2018) avoided pressure-based terms
in simulations with self-gravity, but they use no additional terms
(e.g. our αD) to limit conduction in flows where it is not required.
This is additionally somewhat similar to the conduction speed used
in Anarchy and Hu et al. (2014), which is a modified version of the
signal velocity (equation 17) with our speed replacing the sum of
sound speeds with a differenced term. Appendix B contains an in-
vestigation of the individual terms in the conduction velocity. The
interaction-dependent conductivity coefficient,

αD,i j =
PiαD,i + P jαD, j

Pi + P j
, (27)

is pressure-weighted to enable the higher pressure particle to lead
the conduction interaction, a notable departure from other thermal
conduction schemes in use today. This is critical when it comes to
correctly applying the conduction limiter during feedback events,
described below. The individual particle-carried αD,i are ensured to
only be active in cases where there is a strong discontinuity in inter-
nal energy. This is determined by using the following discontinuity
indicator,

Ki = βDγKhi
∇2ui
√

ui
, (28)

where βD is a fixed dimensionless constant taking a value of 1. The
discontinuity indicator enters the time differential for the individual
conduction coefficients as a source term,

dαD,i

dt
= Ki +

αD,min −αD,i

τD,i
, (29)

with τD,i = γKhi/vsig,i, αD,min = 0 the minimal allowed value of
the artificial conduction coefficient, and with the individual particle
signal velocity,

vsig,i = max
j

(vsig,i j), (30)

controlling the decay rate. ∇2u is used as the indicator for a discon-
tinuity, as opposed to∇u, as it allows for (physical, well represented
within SPH) linear gradients in internal energy to be maintained
without activating artificial conduction. This is then integrated dur-
ing ‘kick’ steps using

αD,i(t +∆t) = αD,i(t) +
dαD,i

dt
∆t. (31)

The final stage of evolution for the individual conduction coeffi-
cients is to limit them based on the local viscosity of the fluid. This
is necessary because thermal feedback events explicitly create ex-
treme discontinuities within the internal energy field that lead to
shocks (see Section 4 for the motivation leading to this choice). The
limit is applied using the maximal value of viscous alpha among the
neighbours of a given particle,

αV,max,i = max
j

(αV, j), (32)

with the limiter being applied using the maximally allowed value
of the conduction coefficient,

αD,max,i = αD,max

(
1−

αV,max,i

αV,max

)
, (33)

with αD,max = 1 a constant, and

αD,i =

αD,i αD,i < αD,max

αD,max αD,i > αD,max.
(34)

This limiter allows for a more rapid increase in conduction coef-
ficient, and a higher maximum, than would usually be viable in
simulations with strong thermal feedback implementations. In An-
archy, another scheme employing artificial conduction, the rate at
which the artificial conduction could grow was chosen to be signif-
icantly smaller. In Anarchy, βD = 0.01, which is 100 times smaller
than the value chosen here (Schaye et al. 2015, Appendix A3). This
additional conduction is required to accurately capture contact dis-
continuities with a Density-Energy SPH equation of motion.

4 MOTIVATION FOR THE CONDUCTION LIMITER

The conduction limiter first described in Section 3 is formed of two
components; a maximal value for the conduction coefficient in vis-
cous flows (equation 34), and one that ensures that a particle with a
higher pressure takes preference within the conduction interaction
(equation 27).

This limiter is necessary due to interactions of the artificial
conduction scheme with the sub-grid physics model. Here the EA-
GLE sub-grid model is shown as this is what Sphenix was designed
for use with, however all schemes employing energetic feedback
and unresolved cooling times will suffer from the same problems
when using un-limited artificial conduction. In short, when an en-
ergetic feedback event takes place, the artificial conduction switch
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6 Borrow et al.

Figure 1. Energy in various components as a function of time for a simu-
lated supernova blast (see text for details of the set-up). Blue shows energy
in the kinetic phase, orange shows energy in the thermal phase (neglecting
the thermal energy of the background) and green shows energy lost to ra-
diation. The solid lines show the simulation performed with the artificial
conduction limiter applied, and the dashed lines show the simulation with-
out any such limiter. Simulations performed without the limiter show huge,
rapid, cooling losses.

Figure 2. The set-up from Fig. 1 performed for different values for the
maximum artificial conduction coefficient αD,max (i.e. a different horizontal
axis as Fig. 1, with the same vertical axis), now showing the components of
energy in each phase at a fixed time of t = 25 Myr. Colours and line styles
are the same as in Fig. 1. As well as demonstrating the issue with un-limited
conduction, this figure shows that the conduction limiter prevents the loss
of additional energy energy relative to a simulation performed without any
artificial conduction.

is activated (as this is performed by injecting lots of energy into
one particle, leading to an extreme value of ∇2u). This then leads
to energy leaking out of the particle ahead of the shock front, which
is then radiated away as the neighbouring particles can rapidly cool
due to their temperature being lower leading to smaller cooling
times.

To show the effect of this problem on a real system, we set
up a uniform volume containing 323 gas particles at approximately
solar metallicity (Z = 0.014) and equilibrium temperature (around
104 K), at a density of nH = 0.1 cm−3. The central particle in the
volume has approximately the same amount of energy injected into
it as in a single EAGLE-like stellar feedback event (heating it to
∼ 107.5 K) at the start of the simulation and the code is ran with
full sub-grid cooling (using the tables from Wiersma et al. 2009)
enabled. The initial values for the artificial viscosity and conduction
coefficients are set to be zero (whereas in practice they are set to be
their maximum and minimum in ‘real’ feedback events; this has
little effect on the results as the coefficients rapidly stabilise).

Fig. 1 shows the energy in the system (with the thermal energy
of the ‘background’ particles removed to ensure a large dynamic
range in thermal energy is visible on this plot) in various compo-

nents. We see that, at least for the case with the limiter applied, at
t = 0 there is the expected large injection of thermal energy that
is rapidly partially transformed into kinetic energy as in a classic
blastwave problem (like the one shown in Fig. 5; in our idealised,
non-radiative, Sedov blasts only 28 of the injected thermal energy
is converted to kinetic energy). A significant fraction, around two
thirds, of the energy is lost to radiation, but the key here is that there
is a transformation of the initial thermal injection to a kinetic wave.

In the same simulation, now with the conduction limiter re-
moved (dashed lines), almost all of the injected energy is immedi-
ately lost to radiation (i.e. the feedback is unexpectedly inefficient).
The internal energy in the affected particle is rapidly conducted to
its neighbours (that are then above, but closer to, the equilibrium
temperature) which have a short cooling time and hence the energy
is quickly lost.

The direct effect of the conduction limiter is shown in Fig. 2,
where the same problem as above is repeated ten times with maxi-
mal artificial conduction coefficients αD,max of 0 to 2.5 in steps of
0.1 (note that the value of αD,max used in production simulations is
1). We choose to show these extreme values to demonstrate the effi-
cacy of the limiter even in extreme scenarios. The simulations with
and without the limiter show the same result at αD,max = 0 (i.e. with
conduction disabled) but those without the limiter show a rapidly
increasing fraction of the energy lost to cooling as the maximal con-
duction coefficient increases. The simulations with the limiter show
a stable fraction of energy (at this fixed time of t = 25 Myr) in each
component, showing that the limiter is working as expected and is
curtailing these numerical radiative losses. This result is qualita-
tively unchanged for a factor of 100 higher, or lower, density back-
ground gas (i.e. gas between nH = 0.001 cm−3 and nH = 10.0 cm−3).
In both of these cases, the conduction can rapidly cause numerical
radiative losses, but with the limiter enabled this is remedied en-
tirely. We also note that the limiter remains effective even for ex-
treme values of the conduction parameter (e.g. with αD,max = 100),
returning the same result as the case without artificial conduction
for this test.

5 HYDRODYNAMICS TESTS

In this section the performance of Sphenix is shown on hydrody-
namics tests, including the Sod (1978) shock tube, Sedov (1959)
blastwave, and the Gresho & Sani (1990) vortex, along with many
other problems relevant to galaxy formation. All problems are per-
formed in hydrodynamics-only mode, with no radiative cooling or
any other additional physics, and all use a γ = 5/3 equation of state
(P = (2/3)uiρ̂).

Crucially, all tests were performed with the same scheme pa-
rameters and settings, meaning that all of the switches are consis-
tent (even between self-gravitating and pure hydrodynamical tests)
unless otherwise stated. This departs from most studies where pa-
rameters are set for each problem independently, in an attempt to
demonstrate the maximal performance of the scheme for a given
test. The parameters used are as follows:

(i) The quartic spline kernel.
(ii) CFL condition CCFL = 0.2, with multiple time-stepping en-

abled (see e.g. Lattanzio et al. 1986).
(iii) Viscosity alpha 0.0 ≤ αV ≤ 2.0 with the initial value being

αV = 0.1 (similar to Cullen & Dehnen 2010).
(iv) Viscosity beta βV = 3.0 and length `V = 0.05 (similarly to

Cullen & Dehnen 2010).
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Figure 3. Individual quantities plotted against the analytic solution (purple
dashed line) for the Sod shock tube in 3D. The horizontal axis shows the
x position of the particles. All particles are shown in blue, with the purple
shading in the background showing the regions considered for the conver-
gence (Fig. 4) with the rarefaction wave, contact discontinuity, and shock,
shown from left to right. All panels are shown at the same time t = 0.2, and
for the same resolution level, using the 643 and 1283 initial conditions for
x < 1 and x > 1 respectively.

(v) Conduction alpha 0.0 ≤ αD ≤ 1.0 (a choice consistent with
Price 2008) with the viscosity-based conduction limiter enabled
and the same functional form for the conduction speed (equation
26) used in all simulations.

(vi) Conduction beta βD = 1.0 with the initial value of αD = 0.0.

These choices were all ‘calibrated’ to achieve an acceptable result
on the Sod shock tube, and then left fixed with the results from
the rest of the tests left unseen. We choose to present the tests in
this manner in an effort to show a representative overview of the
performance of Sphenix in real-world conditions as it is primarily
designed for practical use within future galaxy formation simula-
tions.

The source code required to produce the initial conditions (or
a link to download the initial conditions themselves if this is im-
practical) are available open source from the Swift repository.

5.1 Sod shock tube

The Sod (1978) shock tube is a classic Riemann problem often used
to test hydrodynamics codes. The tube is made up of three main
sections in the final solution : the rarefaction wave (between 0.7 <
x < 1.0), contact discontinuity (at position x ≈ 1.2), and a weak
shock (at position x ≈ 1.4) at the time that we show it in Fig. 3.

5.1.1 Initial conditions

The initial conditions for the Sod shock tube uses body centred
cubic lattices to ensure maximally symmetric lateral forces in the
initial state. Two lattices with equal particle masses, one at a higher
density by a factor of 8 (e.g. one with 323 particles and one with 643

particles) are attached at x = 1.0.5 This forms a discontinuity, with

5 This simplistic particle arrangement does cause a slight problem at the
interface at higher (i.e. greater than one) dimensions. In 3D, some parti-
cles may have spurious velocities in the y and z directions at the interface,
due to asymmetries in the neighbours found on the left and right side of
the boundary. To offset this, the lattices are placed so that the particles are
aligned along the x-axis wherever possible over the interface, however some
spurious forces still result.

Figure 4. Pressure convergence for the three regions in Fig 3. The solid
lines show fits to the data at various resolution levels (points) for each re-
gion, with the dotted lines showing convergence speed when the artificial
conduction term is removed. The dashed grey line shows the expected speed
of convergence for shocks in SPH simulations, to guide the eye, with a de-
pendence of L1 ∝ h.

the higher density lattice being placed on the left with ρL = 1 and
the lower density lattice on the right with ρR = 1/8. The velocities
are initially set to zero for all particles and pressures set to be PL = 1
and PR = 0.1.

5.1.2 Results

Fig. 3 shows the shock tube at t = 1, plotted against the analytic
solution. This figure shows the result from the 643 and 1283 initial
condition. In general the simulation data (blue points) shows very
close agreement with the analytic solution (purple dashed line).

The three purple bands correspond to three distinct regions
within the shock tube. The furthest left is the rarefaction wave,
which is an adiabatically expanding fluid. The band covers the
turnover point of the wave, as this is where the largest deviation
from the analytic solution is present. There is a slight overestima-
tion of the density at this turnover point, primarily due to the sym-
metric nature of the SPH kernel.

The next band shows the contact discontinuity. No effort is
made to suppress this discontinuity in the initial conditions (i.e.
they are not relaxed). There is a small pressure blip, of a similar
size to that seen with schemes employing Riemann solvers such
as GIZMO (Hopkins 2015). There is no large velocity discontinu-
ity associated with this pressure blip as is seen with SPH schemes
that do not explicitly treat the contact discontinuity (note that every
particle present in the simulation is shown here) with some form of
conduction, a smoothed pressure field, or other method. Due to the
strong discontinuity in internal energy present in this region, the
artificial conduction coefficient αD peaks, allowing for the pressure
‘blip’ to be reduced to one with a linear gradient.

The final section of the system, the rightmost region, is the
shock. This shock is well captured by the scheme. There is a small
activation of the conduction coefficient in this region, which is ben-
eficial as it aids in stabilising the shock front (Hu et al. 2014). This
shows that the conduction limiter (Section 4) does not eliminate this
beneficial property of artificial conduction within these frequently
present weak (leading to αV . 1.0) shocks.

In an ideal case, the scheme would be able to converge at sec-
ond order L1 ∝ h2 away from shocks, and at first order L1 ∝ h within
shocks (Price et al. 2018). Here the L1 norm of a band is defined as

L1(K) =
1
n

∑
n
|Ksim(~x)−Kref(~x)| (35)
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8 Borrow et al.

Figure 5. Particle properties at t = 0.1 shown against the analytic solution
(purple dashed line) for the Sedov-Taylor blastwave. A random sub-set of
1/5th of the particles are shown in blue, with the orange points showing the
mean value within equally spaced horizontal bins with one standard devia-
tion of scatter. The background purple band shows the region considered for
measuring convergence in Fig. 6. This figure shows the results for a 1283

particle glass file.

with K some property of the system such as pressure, the subscripts
sim and ref referring to the simulation data and reference solution
respectively, and n the number of particles in the system.

Fig. 4 shows the convergence properties of the Sphenix scheme
on this problem, using the pressure field in this case as the conver-
gence variable. Compared to a scheme without artificial conduction
(dotted lines), the Sphenix scheme shows significantly improved
convergence and a lower norm in the contact discontinuity, without
sacrificing accuracy in other regions.

5.2 Sedov-Taylor blastwave

The Sedov-Taylor blastwave (Sedov blast; Taylor 1950; Sedov
1959) follows the evolution of a strong shock front through an ini-
tially isotropic medium. This is a highly relevant test for cosmolog-
ical simulations, as this is similar to the implementations used for
sub-grid (below the resolution scale) feedback from stars and black
holes. In SPH schemes this effectively tests the artificial viscosity
scheme for energy conservation; if the scheme does not conserve
energy the shock front will be misplaced.

5.2.1 Initial conditions

Here, we use a glass file generated by allowing a uniform grid of
particles to settle to a state where the kinetic energy has stabilised.
The particle properties are then initially set such that they represent
a gas with adiabatic index γ = 5/3, a uniform pressure of P0 =

10−6, density ρ0 = 1, all in a 3D box of side-length 1. Then, the
n = 15 particles closest to the centre of the box have energy E0 =

1/n injected into them. This corresponds, roughly, to a temperature
jump of a factor of ∼ 105 over the background medium.

5.2.2 Results

Fig. 5 shows the particle properties of the highest resolution ini-
tial condition (1283) at t = 0.1 against the analytic solution. The
Sphenix scheme closely matches the analytic solution in all parti-
cle fields, with the only deviation (aside from the smoothed shock
front, an unavoidable consequence of using an SPH scheme) be-
ing a slight upturn in pressure in the central region (due to a small

Figure 6. L1 Convergence with mean smoothing length for various particle
fields in the Sedov-Taylor blastwave test, measured at t = 0.1 against the
analytic solution within the purple band of Fig. 5. Each set of points shows
a measured value from an individual simulation, with the lines showing a
linear fit to the data in logarithmic space. Dotted lines for the simulation
without conduction are not shown as they lie exactly on top of the lines
shown here.

amount of conduction in this region). Of particular note is the posi-
tion of the shock front matching exactly with the analytic solution,
showing that the scheme conserves energy in this highly challeng-
ing situation thanks to the explicitly symmetric artificial viscosity
equation of motion. The Sphenix scheme shows qualitatively simi-
lar results to the PHANTOM scheme on this problem (Price et al.
2018).

SPH schemes in general struggle to show good convergence
on shock problems due to their inherent discontinuous nature. Ideal
convergence for shocks with the artificial viscosity set-up used in
Sphenix is only first order (i.e. L1 ∝ h).

Fig. 6 shows the L1 convergence for various fields in the
Sedov-Taylor blastwave as a function of mean smoothing length.
Convergence here has a best-case of L1(v) ∝ h1/2 in real terms,
much slower than the expected L1 ∝ h−1. This is primarily due to
the way that the convergence is measured; the shock front is not
resolved instantaneously (i.e. there is a rise in density and velocity
over some small distance, reaching the maximum value at the true
position) at the same position as in the analytic solution. However,
all resolution levels show an accurately placed shock front and a
shock width that scales linearly with resolution (see Appendix D
for more information).

5.3 Gresho-Chan vortex

The Gresho-Chan vortex (Gresho & Chan 1990) is typically used
to test for the conservation of vorticity and angular momentum,
and is performed here in two dimensions. Generally, it is expected
that the performance of SPH on this test is more dependent on the
kernel employed (see Dehnen & Aly 2012), as long as a sufficient
viscosity-suppressing switch is used.

5.3.1 Initial conditions

The initial conditions use a two dimensional glass file, and treat the
gas with an adiabatic index γ = 5/3, constant density ρ0 = 1, in a
square of side-length 1. The particles are given azimuthal velocity

vφ =


5r r < 0.2
2−5r 0.2 ≤ r < 0.4
0 r ≥ 0.4

(36)
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Figure 7. Gresho vortex at t = 1.3 after one rotation of the vortex peak
with the Sphenix scheme using a background resolution of 5122 and with
a mach number ofM = 0.33. Here the blue points show all particles in the
volume, the purple band the region used for convergence testing in Fig. 8,
and the purple dashed line shows the analytic solution. The viscosity switch
panel shows a very low maximal value (0.15) relative to the true maximum
allowed by the code (αV B = 2.0), with the mean value (orange points with
error bars indicating one standard deviation of scatter) of around 0.02 show-
ing an excellent activation of the viscosity reducing switches throughout the
Sphenix scheme.

with the pressure set so that the system is in equilibrium as

P0 =


5 + 12.5r2 r < 0.2
9 + 12.5r2 −20r + 4log(5r) 0.2 ≤ r < 0.4
3 + 4log(2) r ≥ 0.4

(37)

where r =
√

x2 + y2 is the distance from the box centre.

5.3.2 Results

Fig. 7 shows the state of a high resolution (using a glass contain-
ing 5122 particles) result after one full rotation at the peak of the
vortex (r = 0.2, t = 1.3). The vortex is well supported, albeit with
some scatter, and the peak of the vortex is preserved. There has
been some transfer of energy to the centre with a higher density
and internal energy than the analytic solution due to the viscos-
ity switch (shown on the bottom right) having a very small, but
nonzero, value. This then allows for some of the kinetic energy to
be transformed to thermal, which is slowly transported towards the
centre as this is the region with the lowest thermal pressure.

Fig. 8 shows the convergence properties for the vortex, with
the Sphenix scheme providing convergence as good as L1 ∝ h0.7 for
the azimuthal velocity. As there are no non-linear gradients in in-
ternal energy present in the simulation there is very little difference
between the simulations performed with and without conduction at
each resolution level due to the non-activation of equation 31. This
level of convergence is similar to the the rate seen in Dehnen & Aly
(2012) implying that the Sphenix scheme, even with its less com-
plex viscosity limiter, manages to recover some of the benefits of
the more complex Inviscid scheme thanks to the novel combination
of switches employed.

5.4 Noh problem

The Noh (1987) problem is known to be extremely challenging,
particularly for particle-based codes, and generally requires a high
particle number to correctly capture due to an unresolved conver-
gence point. It tests a converging flow that results in a strong radial

Figure 8. L1 Convergence with mean smoothing length for various parti-
cle fields in the Gresho vortex test, measured against the analytic solution
within the shaded region of Fig. 7. Each set of points shows a measured
value from an individual simulation, with the lines showing a linear fit to
the data in logarithmic space. The solid lines show results obtained with the
full Sphenix scheme, with dotted lines showing the results with the artificial
conduction scheme disabled.

Figure 9. Noh problem simulation state at t = 0.6, showing a random sub-set
of 1/100th of all of the particles plotted as blue points, the analytical solution
as a dashed purple line, and binned quantities as orange points with error
bars showing one standard deviation of scatter in that bin. The background
shaded band shows the region considered for convergence in Fig. 11, with
this figure showing the highest resolution simulation performed, using 5123

particles. This simulation state is also visualised in Fig. 10.

shock. This is an extreme, idealised, version of an accretion shock
commonly present within galaxy formation simulations.

5.4.1 Initial conditions

There are many ways to generate initial conditions, from very sim-
ple schemes to schemes that attempt to highly optimise the particle
distribution (see e.g. Rosswog 2020a). Here, we use a simple ini-
tial condition, employing a body-centred cubic lattice distribution
of particles in a periodic box. The velocity of the particles is then
set such that there is a convergent flow towards the centre of the
box,

~v = −
~C− ~x

| ~C− ~x|
(38)

with ~C = 0.5L(1,1,1), where L is the box side-length, the coordi-
nate at the centre of the volume. This gives every particle a speed
of unity, meaning those in the centre will have extremely high rela-
tive velocities. We cap the minimal value of | ~C− ~x| to be 10−10L to
prevent a singularity at small radii.

The simulation is performed in a dimensionless co-ordinate
system, with a box-size of L = 1.
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10 Borrow et al.

Figure 10. A density slice through the centre of the Noh probeem at t =

0.6 corresponding to the particle distribution shown in Fig. 9. The Sphenix
scheme yields almost perfect spherical symmetry for the shock, but does not
capture the expected high density in the central region, likely due to lower
than required artificial conductivity (see Appendix E for more information).

Figure 11. L1 convergence test for various particle properties at t = 0.6 for
the Noh problem, corresponding to the particle distribution shown in Fig. 9.
The lines without conduction are not shown here as there is little difference
between the with and without conduction case, due to the extremely strong
shock present in this test (leading to low values of the viscosity alpha, equa-
tion 34).

5.4.2 Results

The state of the simulation is shown at time t = 0.6 in Fig. 9 and
visualised in Fig. 10, which shows the radial velocity, which should
be zero inside of the shocked region (high density in Fig. 10), and
the same as the initial conditions (i.e. -1 everywhere) elsewhere.
This behaviour is captured well, with a small amount of scatter,
corresponding to the small radial variations in density shown in the
image.

The profile of density as a function of radius is however less
well captured, with some small waves created by oscillations in
the artificial viscosity parameter (see e.g. Rosswog 2020b, for a
scheme that corrects for these errors). This can also be seen in the
density slice, and is a small effect that also is possibly exacerbated
by our non-perfect choice of initial conditions, but is also present in
the implementation shown in Rosswog (2020a). The larger, more
significant, density error is shown inside the central part of the
shocked, high-density, region. This error is ever-present in SPH
schemes, and is likely due to both a lack of artificial conduction
in this central region (as indicated by Noh 1987, note the excess
pressure in the centre caused by ‘wall heating’) and the unresolved
point of flow convergence.

Figure 12. The density field for the square test at t = 4, shown at various
resolution levels (different columns, numbers at the top denote the number
of particles in the system) and with various modifications to the underlying
SPH scheme (different rows). The dashed line shows the initial boundary
of the square that would be maintained with a perfect scheme due to the
uniform pressure throughout. The white circle at the centre of the square
shows a typical smoothing length for this resolution level. Vertically, the
scheme with no conduction is shown at the top, with the Sphenix scheme in
the middle and a scheme with the conduction coefficient set to the maximum
level throughout at the bottom. The schemes with conduction maintain the
square shape significantly better than the one without conduction, and the
Sphenix limiters manage to provide the appropriate amount of conduction
to return to the same result as the maximum conduction case.

The Noh problem converges well using Sphenix, with better
than linear convergence for the radial velocity (Fig. 11; recall that
for shocks SPH is expected to converge with L1 ∝ h).

This problem does not activate the artificial conduction in the
Sphenix implementation because of the presence of equation (34)
reducing conductivity in highly viscous flows, as well as our some-
what conservative choice for artificial conduction coefficients (see
Appendix E for more details on this topic). However, as these are
necessary for the practical functioning of the Sphenix scheme in
galaxy formation simulations, and due to this test being highly ar-
tificial, this outcome presents little concern.

5.5 Square test

The square test, first presented in Saitoh & Makino (2013), is a
particularly challenging test for schemes like Sphenix that do not
use a smoothed pressure in their equation of motion, as they typi-
cally lead to an artificial surface tension at contact discontinuities
(the same ones that lead to the pressure blip in Section 5.1). This
test is a more challenging variant of the ellipsoid test presented in
Heß & Springel (2010), as the square includes sharp corners which
are more challenging for conduction schemes to capture.

5.5.1 Initial conditions

The initial conditions are generated using equal mass particles. We
set up a grid in 2D space with n×n particles, in a box of size L = 1.
The central 0.5×0.5 square is set to have a density of ρC = 4.0, and
so is replaced with a grid with 2n × 2n particles, with the outer
region having ρO = 1.0. The pressures are set to be equal with
PC = PO = 1.0, with this enforced by setting the internal energies
of the particles to their appropriate values. All particles are set to
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Sphenix 11

Figure 13. Density map of the standard Kelvin-Helmholtz 2D test at various
resolutions (different columns, with the number of particles in the volume
at the top) and at various times (different rows showing times from t = τKH
to t = 10τKH). Despite this being a challenging test for SPH, the instability
is captured well at all resolutions, with higher resolution levels capturing
finer details.

be completely stationary in the initial conditions with ~v = 0. The
initial conditions are not allowed to relax in any way.

5.5.2 Results

Fig. 12 shows the square test at t = 4 for four different resolution
levels and three different variations on the Sphenix scheme. By this
time the solutions are generally very stable. The top row shows the
Sphenix scheme without any artificial conduction enabled (this is
achieved by setting αD,max to zero) and highlights the typical end
state for a Density-Energy SPH scheme on this problem. Artificial
surface tension leads to the square deforming and rounding to be-
come more circular.

The bottom row shows the Sphenix scheme with the artificial
conduction switch removed; here αD,min is set to the same value as
αD,max = 1. The artificial conduction scheme significantly reduces
the rounding of the edges, with a rapid improvement as resolution
increases. The rounding present here only occurs in the first few
steps as the energy outside the square is transferred to the boundary
region to produce a stable linear gradient in internal energy.

Finally, the central row shows the Sphenix scheme, which
gives a result indistinguishable from the maximum conduction sce-
nario. This is despite the initial value for the conduction coefficient
αD = 0, meaning it must ramp up rapidly to achieve such a sim-
ilar result. The Sphenix result here shows that the choices for the
conduction coefficients determined from the Sod tube (Section 5.1)
are not only appropriate for that test, but apply more generally to
problems that aim to capture contact discontinuities.

5.6 2D Kelvin-Helmholtz instability

The two dimensional Kelvin-Helmholtz instability is presented be-
low. This test is a notable variant on the usual Kelvin-Helmholtz
test as it includes a density jump at constant pressure (i.e. yet an-
other contact discontinuity). This version of the Kelvin-Helmholtz

instability is performed in two dimensions. A recent, significantly
more detailed, study of Kelvin-Helmholtz instabilities within SPH
is available in Tricco (2019). In this section we focus on qualitative
comparisons and how the behaviour of the instability changes with
resolution within Sphenix.

5.6.1 Initial conditions

The initial conditions presented here are similar to those in Price
(2008), where they discuss the impacts more generally of the inclu-
sion of artificial conduction on fluid mixing instabilities. This is set
up in a periodic box of length L = 1, with the central band between
0.25 < y < 0.75 set to ρC = 2 and vC,x = 0.5, with the outer region
having ρO = 1 and vO,x = −0.5 to set up a shear flow. The pressure
PC = PO = 2.5 is enforced by setting the internal energies of the
equal mass particles. Particles are initially placed on a grid with
equal separations. This is the most challenging version of this test
for SPH schemes to capture as it includes a perfectly sharp contact
discontinuity; see Agertz et al. (2007) for more information.

We then excite a specific mode of the instability, as in typi-
cal SPH simulations un-seeded instabilities are dominated by noise
and are both unpredictable and unphysical, preventing comparison
between schemes.

5.6.2 Results

Fig. 13 shows the simulation after various multiples of the Kelvin-
Helmholtz timescale for the excited instability, with τKH given by

τKH =
(1 +χ)λ

v̄
√
χ

(39)

where χ = ρC/ρO = 2 is the density contrast, v̄ = vI,x − vO,x = 1
the shear velocity, and λ = 0.5 the wavelength of the seed per-
turbation along the horizontal axis (e.g Hu et al. 2014). The fig-
ure shows three initial resolution levels, increasing from left to
right. Despite this being the most challenging version of the Kelvin-
Helmholtz test (at this density contrast) for a Density-Energy based
SPH scheme, the instability is captured well at all resolutions,
with higher resolutions allowing for more rolls of the ‘swirl’ to
be captured. In particular, the late-time highly mixed state shows
that with the conduction removed after a linear gradient in inter-
nal energy has been established, the Sphenix scheme manages to
preserve the initial contact discontinuity well. Due to the presence
of explicit artificial conduction, Sphenix seems to diffuse more than
other schemes on this test (e.g. Hu et al. 2014; Wadsley et al. 2017),
leading to the erausre of some small-scale secondary instabilities.

The non-linear growth rate of the swirls is resolution depen-
dent within this test, with higher-resolution simulations showing
faster growth of the largest-scale modes. This is due to better cap-
turing of the energy initially injected to perturb the volume to pro-
duce the main instability, with higher resolutions showing lower
viscous losses.

Fig. 14 shows a different initial condition where the density
contrast χ = 8, four times higher than the one initially presented.
Because SPH is fundamentally a finite mass method, and we use
equal-mass particles throughout, this is a particularly challenging
test as the low-density region is resolved by so few particles. Here
we also excite an instability with a wavelength λ= 0.125, four times
smaller than the one used for the χ = 2 test. This value is chosen for
two reasons; it is customary to lower the wavelength of the seeded
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12 Borrow et al.

Figure 14. The same as Fig. 13, but this time using initial conditions with
a significantly higher (1:8 instead of 1:2) density contrast. The initial in-
stabilities are captured well at all resolution levels, but at the lowest level
they are rapidly mixed by the artificial conduction scheme due to the lack
of resolution elements in the low-density region.

instability as the density contrast is increased when grid codes per-
form this test as it allows each instability to be captured with the
same number of cells at a given resolution level; and also to ensure
that this test is as challenging as is practical for the scheme.

Sphenix struggles to capture the instability at very low res-
olutions primarily due to the lack of particles in the low-density
flow (an issue also encountered by Price 2008). In the boundary re-
gion the artificial conduction erases the small-scale instabilities on
a timescale shorter than their formation timescale (as the boundary
region is so large) and as such they cannot grow efficiently. As the
resolution increases, however, Sphenix is able to better capture the
linear evolution of the instability, even capturing turn-overs and the
beginning of nonlinear evolution for the highest resolution.

5.7 Blob test

The Blob test is a challenging test for SPH schemes (see
Klein, McKee & Colella 1994; Springel 2005) and aims to repli-
cate a scenario where a cold blob of gas falls through the hot
IGM/CGM surrounding a galaxy. In this test, a dense sphere of cold
gas is placed in a hot, low density, and supersonic wind. Ideally, the
blob should breakup and dissolve into the wind, but Agertz et al.
(2007) showed that the inability of traditional SPH schemes to ex-
change entropy between particles prevents this from occurring. The
correct, specific, rate at which the blob should mix with its sur-
roundings, as well as the structure of the blob whilst it is breaking
up, are unknown.

5.7.1 Initial conditions

There are many methods to set up the initial conditions for the Blob
test, including some that excite an instability to ensure that the blob
breaks up reliably (such as those used in Hu et al. 2014). Here we
excite no such instabilities and simply allow the simulation to pro-
ceed from a very basic particle set-up with a perfectly sharp contact
discontinuity. The initial conditions are dimensionless in nature, as

Figure 15. Time-evolution of the blob within the supersonic wind at various
resolution levels (different columns; the number of particles in the whole
volume is noted at the top) and at various times (expressed as a function
of the Kelvin-Helmholtz time for the whole blob τKH; different rows). The
projected density is shown here to enable all layers of the three dimen-
sional structure to be seen. At all resolution levels the blob mixes with the
surrounding medium (and importantly mixes phases with the surrounding
medium), with higher resolution simulations displaying more thermal insta-
bilities that promote the breaking up of the blob.

the problem is only specified in terms of the Mach number of the
background medium and the blob density contrast.

To set up the initial particle distribution, we use two body
centred cubic lattices, one packed at a high-density (for the blob,
ρblob = 10) and one at low density (for the background medium,
ρbg = 1). The low-density lattice is tiled four times in the x direc-
tion to make a box of size 4× 1× 1, and at [0.5,0.5,0.5] a sphere
of radius 0.1 is removed and filled in with particles from the high-
density lattice. The particles in the background region are given a
velocity of vbg = 2.7 (with the blob being stationary), and the inter-
nal energy of the gas everywhere is scaled such that the background
medium has a mach number ofM = 2.7 and the system is in pres-
sure equilibrium everywhere.

5.7.2 Results

The blob is shown at a number of resolution levels at various times
in Fig. 15. At all resolution levels the blob mixes well with the
background medium after a few Kelvin-Helmholtz timescales (see
equation 39 for how this is calculated; here we assume that the
wavelength of the perturbation is the radius of the blob).6 The rate
of mixing is consistent amongst all resolution levels, implying that
the artificial conduction scheme is accurately capturing unresolved
mixing at lower resolutions.

The rate of mixing of the blob is broadly consistent with
that of modern SPH schemes and grid codes, however our set
of initial conditions appear to mix slightly slower (taking around
∼ 4− 6τKH to fully mix) than those used by other contemporary
works (Agertz et al. 2007; Read & Hayfield 2012; Hu et al. 2014),

6 Note that here the Kelvin-Helmholtz timescale is 1.1 times the cloud
crushing timescale (Agertz et al. 2007).
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Sphenix 13

possibly due to the lack of perturbation seeding (see Read et al.
2010, Appendix B for more details). When testing these initial con-
ditions with a scheme that involves a Riemann solver or a Pressure-
based scheme (see Appendix F) the rate of mixing is qualitatively
similar to the one presented here. Sphenix is unable to fully cap-
ture the crushing of the blob from the centre outwards seen in grid
codes and other SPH formulations using different force expressions
(Wadsley et al. 2017), rather preferring to retain a ‘plate’ of dense
gas at the initial point of the blob that takes longer to break up.
A potential explanation for this difference is some residual surface
tension in Sphenix. In these highly dynamic situations, it may not
be possible for the artificial conduction to establish a smooth in-
ternal energy profile rapidly enough for small-scale instabilities on
the surface to assist in the breakup of the blob.

At low resolutions it is extremely challenging for the method
to capture the break-up of the blob as there are very few particles in
the background medium to interact with the blob due to the factor
of 10 density contrast.

5.8 Evrard collapse

The Evrard collapse (Evrard 1988) test takes a large sphere of self-
gravitating gas, at low energy and density, that collapses in on itself,
causing an outward moving accretion shock. This test is of partic-
ular interest for cosmological and astrophysical applications as it
allows for the inspection of the coupling between the gravity and
hydrodynamics solver.

5.8.1 Initial conditions

Gas particles are set up in a sphere with an adiabatic index of
γ = 5/3, sphere mass M = 1, sphere radius R = 1, initial density
profile ρ(r) = 1/2πr, and in a very cold state with u = 0.05, with the
gravitational constant G = 1. These initial conditions are created in
a box of size 100, ensuring that effects from the periodic boundary
are negligible. Unfortunately, due to the non-uniform density pro-
file, it is considerably more challenging to provide relaxed initial
conditions (or use a glass file). Here, positions are simply drawn
randomly to produce the required density profile.

The Evrard collapse was performed at four resolution levels,
with total particle numbers in the sphere being 104, 105, 106, and
107. The gravitational softening was fixed at 0.001 for the 106 reso-
lution level, and this was scaled with m−1/3 with m the particle mass
for the other resolution levels. The simulations were performed
once with artificial conduction enabled (the full Sphenix scheme),
and once with it disabled.

5.8.2 Results

The highest resolution result (107 particles) with the full Sphenix
scheme is shown in Fig. 16. This is compared against a high res-
olution grid code7 simulation performed in 1D, and here Sphenix
shows an excellent match to the reference solution. The shock at
around r = 10−1 is sharply resolved in all variables, and the den-
sity and velocity profiles show excellent agreement. In the centre
of the sphere, there is a slight deviation from the reference so-
lution for the internal energy and density (balanced to accurately

7 HydroCode1D, see https://github.com/bwvdnbro/HydroCode1D
and the Swift repository for more details.

capture the pressure in this region) that remains even in the simu-
lation performed without artificial conduction (omitted for brevity,
as the simulation without conduction shows similar results to the
simulation with conduction, with the exception of the conduction
reducing scatter in the internal energy profile). This is believed to
be an artefact of the initial conditions, however it was not remedied
by performing simulations at higher resolutions.

The convergence properties of the Evrard sphere are shown in
Fig. 17. The velocity profile shows a particularly excellent result,
with greater than linear convergence demonstrated. The thermody-
namic properties show roughly linear convergence. Of particular
note is the difference between the convergence properties of the
simulations with and without artificial conduction; those with this
feature of Sphenix enabled converge at a more rapid rate. This is pri-
marily due to the stabilising effect of the conduction on the internal
energy profile. As the particles are initially placed randomly, there
is some scatter in the local density field at all radii. This is quickly
removed by adiabatic expansion in favour of scatter in the internal
energy profile, which can be stabilised by the artificial conduction.

5.9 nIFTy cluster

The nIFTy cluster comparison project, Sembolini et al. (2016), uses
a (non-radiative, cosmological) cluster-zoom simulation to evalu-
ate the efficacy of various hydrodynamics and gravity solvers. The
original paper compared various types of schemes, from traditional
SPH (Gadget, Springel 2005) to a finite volume adaptive mesh re-
finement scheme (RAMSES, Teyssier 2002). The true answer for
this simulation is unknown, but it is a useful case to study the dif-
ferent characteristics of various hydrodynamics solvers.

In Fig. 18 the Sphenix scheme is shown with and with-
out artificial conduction against three reference schemes from
Sembolini et al. (2016). Here, the centre the cluster was found us-
ing the VELOCIraptor (Elahi et al. 2019) friends-of-friends halo
finder, and the particle with the minimum gravitational potential
was used as the reference point.

The gas density profile was created using 25 equally log-
spaced radial bins, with the density calculated as the sum of the
mass within a shell divided by the shell volume. Sphenix scheme
shows a similar low-density core as AREPO, with the no conduc-
tion scheme resulting in a cored density profile similar to the tradi-
tional SPH scheme from Sembolini et al. (2016).

The central panel of Fig. 18 shows the ‘entropy’ profile of the
cluster; this is calculated as Tn−2/3

e with ne the electron density (as-
suming primordial gas, this is ne = 0.875ρ/mH with mH the mass
of a hydrogen atom) and T the gas temperature. Each was calcu-
lated individually in the same equally log-spaced bins as the den-
sity profile, with the temperature calculated as the mass-weighted
temperature within that shell. The rightmost panel shows this mass-
weighted temperature profile, with Sphenix showing slightly higher
temperatures in the central region than AREPO, matching G2-
anarchy instead. This high-temperature central region, along with a
low-density centre, lead to the ‘cored’ (i.e. flat, with high values of
entropy, at small radii) entropy profile for Sphenix.

The cored central entropy profile with Sphenix is attained pri-
marily due to the artificial conduction scheme and is not due to the
other improvements over the traditional SPH base scheme (includ-
ing for example the artificial viscosity implementation). We note
again that there was no attempt to calibrate the artificial conduction
scheme to attain this result on the nIFTy cluster, and any and all
parameter choices were made solely based on the Sod shock tube
in Section 5.1.
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14 Borrow et al.

Figure 16. State of the Evrard sphere at t = 0.8 for a resolution of 107 particles. A random sub-set of 1/10th of the particles is shown in blue, with the solution
from a high resolution 1D grid code shown as a purple dashed line. The orange points with error bars show the median within a radial equally log-spaced bin
with the bar showing one standard deviation of scatter. The shaded band in the background shows the region considered for the convergence test in Fig. 17.

Figure 17. L1 convergence for various gas properties for the Evrard col-
lapse sphere at t = 0.8. The region considered for convergence here is the
purple band shown in Fig. 16. The Sphenix scheme is shown with the points
and linear fits in solid, and the same scheme is shown with artificial conduc-
tion turned off as dotted lines. Artificial conduction significantly improves
convergence here as it helps stabilise the thermal properties of the initially
randomly placed particles.

In Fig. 19, a projected mass-weighted temperature image of
the cluster is shown. The image demonstrates how the artificial
conduction present in the Sphenix scheme promotes phase mixing,
resulting in the cored entropy profile demonstrated in Fig. 18.

The temperature distribution in the SPH simulation without
conduction appears noisier, due to particles with drastically differ-
ent phases being present within the same kernel. This shows how
artificial conduction can lead to sharper shock capture as the parti-
cle distribution is less susceptible to this noise, enabling a cleaner
energy transition between the pre- and post-shock region.

6 CONCLUSIONS

We have presented the Sphenix SPH scheme and its performance
on seven hydrodynamics tests. The scheme has been demonstrated
to show convergent (with resolution) behaviour on all these tests.
In summary:

(i) Sphenix is an SPH scheme that uses Density-Energy SPH as
a base, with added artificial viscosity for shock capturing and arti-
ficial conduction to reduce errors at contact discontinuities and to
promote phase mixing.

(ii) A novel artificial conduction limiter allows Sphenix to be
used with energy injection feedback schemes (such as those used
in EAGLE) by reducing conduction across shocks and other regions
where the artificial viscosity is activated.

(iii) The artificial viscosity and conduction scheme coefficients

were determined by ensuring good performance on the Sod Shock
tube test, and remain fixed for all other tests.

(iv) The modified Inviscid SPH (Cullen & Dehnen 2010)
scheme captures strong shocks well, ensuring energy conservation,
as shown by the Sedov-Taylor blastwave test, but the smooth nature
of SPH prevents rapid convergence with resolution.

(v) The use of the Balsara (1989) switch in Sphenix was shown
to be adequate to ensure that the Gresho-Chan vortex is sta-
ble. Convergence on this test was shown to be faster than in
Cullen & Dehnen (2010).

(vi) The artificial conduction scheme was shown to work ad-
equately to capture thermal instabilities in both the Kelvin-
Helmholtz and Blob tests, with contact discontinuities well pre-
served when required.

(vii) Sphenix performed well on both the Evrard collapse and
nIFTY cluster problems, showing that it can couple to the FMM
gravity solver in Swift and that the artificial conduction scheme
can allow for entropy cores in clusters.

(viii) Sphenix is implemented in the Swift code and is available
fully open source to the community.

Sphenix hence achieves its design goals; the Lagrangian na-
ture of the scheme allows for excellent coupling with gravity; the
artificial conduction limiter allows the injection of energy as in the
EAGLE sub-grid physics model; and the low cost-per-particle and
lack of matrices carried on a particle-by-particle basis provide for a
very limited computational cost (see Borrow et al. 2019, for a com-
parison of computational costs between a scheme like Sphenix and
the GIZMO-like schemes also present in Swift).
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Figure 18. Thermodynamics profiles for the nIFTy cluster at z = 0 with five codes and schemes. The solid lines show those simulated with Swift, with the
blue line showing the full Sphenix scheme, and the orange line showing Sphenix without artificial conduction . The dashed lines were extracted directly from
Sembolini et al. (2016) and show a modern Pressure-Entropy scheme (G2-anarchy; Schaye et al. 2015, appendix A), a moving mesh finite volume scheme
(AREPO; Springel 2010), and a traditional SPH scheme (G3-music; Springel 2005).

Figure 19. Image of the nIFTY cluster, as a projected mass-weighted tem-
perature map, shown for the Sphenix scheme with (top) and without artificial
conduction enabled (bottom). The image shows a 5 Mpc wide view, centred
on the most bound particle in the halo.

SOFTWARE CITATIONS

This paper made use of the following software packages:

(i) Swift (Schaller et al. 2018)
(ii) python (van Rossum & Drake Jr 1995), with the following

libraries

(a) numpy (Harris et al. 2020)
(b) scipy (SciPy 1.0 Contributors et al. 2020)
(c) numba (Lam, Pitrou & Seibert 2015)
(d) matplotlib (Hunter 2007)
(e) swiftsimio (Borrow & Borrisov 2020)

DATA AVAILABILITY

All code and initial conditions used to generate the simulations is
open source as part of Swift version 0.9.0 (Schaller et al. 2018).8

As the simulations presented in this paper are small, test, simula-
tions that can easily be repeated, the data is not made immediately
available.

8 Available from http://swift.dur.ac.uk,
https://gitlab.cosma.dur.ac.uk/swift/swiftsim, and
https://github.com/swiftsim/swiftsim.
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Figure A1. Cost per particle (in bytes) for four different hydrodynamics
models (see text for details). Percentages are give relative to the Traditional
(similar to Gadget-2, with no artificial conduction and fixed artificial vis-
cosity coefficients) model.

APPENDIX A: PARTICLE COSTS

Different SPH models require different information stored per par-
ticle. Compared to a basic, ‘Traditional’ SPH model, Sphenix re-
quires a small amount of extra data to store things like the particle-
carried artificial conduction and viscosity coefficients. The amount
of data required increases for more complex models, such as those
making use of the full shear tensor, like Wadsley et al. (2017), or
additional corrections, like Rosswog (2020b). SPH models using an
ALE (Arbitrary Lagrangian-Eulerian) framework (see Vila 1999)
require even more information as the particles carry flux informa-
tion for use in the Riemann solver.

The amount of data required to store a single element in mem-
ory is of upmost importance when considering the speed at which a
simulation will run. SPH codes, and Swift in particular, are bound
by the memory bandwidth available, rather than the costs associ-
ated with direct computation. This means any increase in particle
cost corresponds to a linear increase in the required computing time
for simulation; this is why keeping the particles lean is a key re-
quirement of the Sphenix model. Additionally, in large simulations
performed over many nodes, the bandwidth of the interconnect can
further become a limitation and hence keeping the memory cost of
particles low is again beneficial.

In Fig. A1 we show the memory cost of four models: Tra-
ditional SPH (similar to to the one implemented in Gadget-2;
Springel 2005), Sphenix, a model with the full shear matrix, and
a SPH-ALE model similar to GIZMO-MFM (Hopkins 2015), all
implemented in the Swift framework. We see that Sphenix only
represents a 25% increase in memory cost per particle for signifi-
cant improvement over the traditional model.

APPENDIX B: CONDUCTION SPEED

The conduction speed (Eqn. 26) in Sphenix was primarily selected
for numerical reasons. In a density based scheme, it is common
to see significant errors around contact discontinuities where there
are large changes in density and internal energy simultaneously to
produce a uniform pressure field. In Fig. 3 we demonstrated the
performance of the Sphenix scheme on one of these discontinuities,
present in the Sod Shock.

In Fig. B1 we zoom in on the contact discontinuity, this time
using glass files for the base initial conditions (of resolution 323

and 643), allowing for a more even distribution of particles along
the horizontal axis. We use five different models,

• Sphenix, the full Sphenix model using the conduction speed
from Eqn. 26.
• Pressure Term, which uses only the pressure-based term from

Eqn. 26.
• Velocity Term, which only uses the velocity-based term from

Eqn. 26.
• No Conduction, which sets the conduction speed to zero.
• Max Conduction, which sets αD to unity everywhere, and uses

the conduction speed from Eqn. 26.

The first thing to note here is that the pressure term provides the
vast majority of the conduction speed, highlighting the importance
of this form of bulk conduction in Sphenix and other models em-
ploying a density based equation of motion. Importantly, the con-
duction allows for the ‘pressure blip’ to be reduced to a level where
there is no longer a discontinuity in pressure (i.e. there is a smooth
gradient with x). Although the velocity term is able to marginally
reduce the size of the blip relative to the case without conduction,
it is unable to fully stabilise the solution alone. Pressure blips can
lead to large pressure differences between individual particles, then
leading to the generation of a divergent flow around the point where
the contact discontinuity resides. This is the primary motivation for
the inclusion of the velocity divergence-based term in the conduc-
tion speed. Along with the conduction limiter (see Eqn. 28 for the
source term), if there is a large discontinuity in internal energy that
is generating a divergent flow (and not one that is expected to do so,
such as a shock), the velocity-dependent term can correct for this
and smooth out the internal energy until the source of divergence
disappears.

B1 Alternative Conduction Speeds

The Sphenix conduction speed (Eqn. 26) contains two components:
one based on pressure differences and one based on a velocity com-
ponent. In Sphenix, as in a number of other models, this velocity
component really encodes compression or expansion along the axis
between particles.

The motivation for some alternative schemes (e.g. those pre-
sented in Wadsley et al. 2008, 2017) is shear between particles. To
test if we see significant differences in our tests, we formulate a
new conduction speed,

vD,i j =
αD,i j

2

 |~vi j × ~xi j|

|~xi j|
+

√
2
|Pi −P j|

ρ̂ j + ρ̂ j

 . (B1)

that focuses on capturing the shear component of the velocity be-
tween two particles.

We again test this new formulation on some of our example
problems. First, the nIFTy cluster, presented in Fig. B2, shows lit-
tle difference between the two formulations, with both providing a
solution similar to other modern SPH schemes and grid codes.

The Kelvin-Helmholtz test again shows little difference (Fig.
B3), although there is a slightly increased growth rate of the pertur-
bation at late times for the shear formulation.

We find no discernible difference between the two formula-
tions on the blob test, as this is mainly limited by the choice of
Density-SPH as the base equation of motion to correctly capture
the initial break up of the blob from the centre outwards.
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Figure B1. The pressure contact discontinuity in the Sod Shock (Fig. 3) at a resolution of 323 and 643, but using glass files instead of the BCC lattices (this
leads to significantly increased particle disorder, but more evenly distributes particles in the x direction enabling this figure to be clearer). Here we show a
zoomed-in representation of all particles (blue points) against the analytical solution (purple dashed line). Each sub-figure shows the simulation at the same
time t = 0.2, but with different forms for the conduction velocity (see text for details).

Figure B2. Reproduction of Fig. 18 but including the line (red) for the version of Sphenix performed with an explicit shear component in the conduction speed.
We see no qualitative differences between the two models, with them both providing an entropy core at a similar level.

Figure B3. Kelvin-Helmholtz test with a density contrast of ρC = 2 as in
Fig. 13, shown at t = 2τKH (top) and t = 4τKH (bottom). We show on the
left the simulation with the shear-based conduction speed, and again the
compression-based speed on the right. No significant qualitative differences
are seen between the two models.

APPENDIX C: MAINTENANCE OF HYDROSTATIC
BALANCE

The form of the conduction speed used in Sphenix based on
pressure differences (Eqn. 26) has been conjectured to not allow
for the maintenance of a pressure gradient against some exter-
nal body force (for example a halo in hydrostatic equilibrium;
Sembolini et al. 2016). The main concern here is that the pressure
difference form of the conduction speed may allow thermal energy
to travel down into the gravitational potential, heating the central
regions of the halo. As Sphenix uses an additional limiter (Eqn. 28
for the source term) that only activates conduction in regions where
the internal energy gradient cannot be represented by SPH anyway,
this may be less of a concern. Additionally, there will be no con-
duction across accretion shocks due to the limiter in Eqn. 33.

In Fig. C1 we show an idealised simulation of an adiabatic
halo with an NFW (Navarro et al. 1996) dark matter density pro-
file, and gas in hydrostatic equilibrium. The halo uses a fixed NFW
potential in the background, with a mass of 1013 M�, concentration
7.2, and a stellar bulge fraction of 1%. The halo has a gas mass of
1.7× 1012 M�, resolved by 1067689 particles with varying mass
from 105 to 1.7×1012 M� with the highest resolution in the centre.

The gas in the halo is set up to be isothermal, following
(Stern et al. 2019),

d ln P
d lnr

= −γ
v2

c

c2
s

(C1)

where vc is the circular velocity of the halo. The condition used to
set the initial temperatures is vc = cs, and to get the correct normal-
isation for pressure and density the gas fraction at R500,crit is used
following Debackere et al. (2020).

Fig. C1 shows that there is little difference between the re-
sult with conduction, and without. There is a small offset in the
centre where the simulation with conduction has a slightly higher
energy and slightly lower density, giving a very small overall offset
in pressure. This figure is shown at t = 5 Gyr, much longer than any
realistic cluster of a similar mass would go without accretion or
some other external force perturbing the pressure profile anyway.
Finally, the conduction allows the noisy internal energy distribu-
tion (and additionally density distribution) to be normalised over
time thanks to the inclusion of the pressure differencing term.

APPENDIX D: SEDOV BLAST

In Fig. 6 we presented the convergence properties of the Sedov blast
with the Sphenix scheme. The scheme only demonstrated conver-
gence as L1(v) ∝ h∼0.5, which is much slower than the expected
convergence rate of L1 ∝ h1 for shock fronts in SPH (that is demon-
strated and exceeded in the Noh problem in Fig. 11). This is, how-
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Figure C1. Profiles of the idealised NFW halo (of mass ≈ 1013 M�, at a gas particle mass resolution of 105 M�) at t = 5 Gyr after the initial state. Blue points
show every particle in the simulation without artificial conduction enabled, with orange showing the simulation with conduction enabled. Here the conduction
can allow for a reduction in the scatter in internal energy without leading to significant conduction into the centre. The offset seen in the centre of about a
factor of 1.5x originates from the smoothing of the kink around ≈ 0.7 kpc during the initial settling of the halo, and remained stable from that point at around
≈ t = 0.5 Gyr until the end of the simulation.

Figure D1. The density profile of the Sedov blasts initially presented in Fig. 6. The blue points show the positions of every particle in the volume, the purple
dashed line the analytical prediction, and the orange points binned means with error bars showing one standard deviation. The shaded band is the region over
which the convergence properties were measured. The text at the top notes the total number of particles in each volume.

ever, simply an artefact of the way that the convergence is mea-
sured.

In Fig. D1 we show the actual density profiles of the shock
front, by resolution (increasing as the subfigures go to the right).
Note here that the width of the shock front (from the particle
distribution to the right of the vertical line to the vertical line
in the analytical solution) does converge at the expected rate of
L1 ∝ 1/n1/3 ∝ h with n the number of particles in the volume (in
3D).

The Sedov blast, unlike the Noh problem and Sod tubes, does
not aim to reproduce a simple step function in density and velocity,
but also a complex, expanding, post-shock region. The L1 conver-
gence is measured ‘vertically’ in this figure, but it is clear here that
the vertical deviation from the analytical solution is not represen-
tative of the ‘error’ in the properties of a given particle, or in the
width of the shock front. Small deviations in the position of the
given particle could result in changes of orders of magnitude in the
value of the L1 norm measured for it.

Because of this, and because we have demonstrated in other
sections that Sphenix is able to converge on shock problems at
faster than first order, we believe the slow convergence on the Se-
dov problem to be of little importance in practical applications of
the scheme.

APPENDIX E: CONDUCTION IN THE NOH PROBLEM

In §5.4 we presented the Noh problem, and showed that the Sphenix
scheme (like other SPH schemes in general) struggles to capture the
high density in the central region due to so-called ‘wall heating’.

The Sphenix scheme includes a switch to reduce artificial con-
duction in viscous flows. This is, as presented in §4, to allow for the
capturing of energetic feedback events. It does, however, lead to a
minor downside; the stabilising effect of the conduction in these
shocks is almost completely removed. Usually, the artificial con-
duction lowers the dispersion in local internal energy values, and
hence pressures, allowing for a more regular particle distribution.

In Fig. E1 we show three re-simulations of the Noh problem
(at 2563 resolution) with three separate schemes. The first, the full
Sphenix scheme, is simply a lower resolution version of Fig. 10.
The second, ‘No Conduction Limiter’, is the Sphenix scheme, but
with Equation 34 removed; i.e. the particle-carried artificial con-
duction coefficient depends solely on the local internal energy field
(through ∇2u and Eqn. 28), instead of also being mediated by the
velocity divergence field. The final case, ‘Fixed αD = 1.0’, shows
the case where we remove all conduction switches and use a fixed
value for the conduction αD of 1.0. The former two look broadly
similar, suggesting that the post-shock region is not significantly
affected by the additional Sphenix conduction limiter.

The final panel, however, shows the benefits available to a hy-
pothetical scheme that can remove the artificial conduction switch;
the central region is able to hold a significantly higher density
thanks to energy being conducted out of this region, allowing the
pressure to regularise. In addition to the above, this case shows
significantly weaker spurious density features (recall that the post-
shock, high-density, region should have a uniform density) because
these have been regularised by the conduction scheme.

We present this both to show the drawbacks of the Sphenix ar-
tificial conduction scheme, and to show the importance of demon-
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Figure E1. Density slice through the centre of the Noh problem (analogue of Fig. 10) shown for three different artificial conduction schemes (see text). The
colour bar is shared between all, and they all use the same, 2563, initial condition, and are also all shown at t = 0.6. The case with the fixed, high, conduction
coefficient (right) shows the smallest deviation in density in the centre, as the conduction can treat the wall heating present in this test.

Figure F1. A repeat of Fig. 15 but using a ‘traditional’ SPH scheme without
diffusive switches.

strating test problems with the same switches that would be used in
a production simulation.

APPENDIX F: BLOB TEST

In Fig. 15 we demonstrated the performance of the Sphenix scheme
on an example ‘blob’ test. Here, we show how the same initial con-
ditions are evolved using two schemes: a ‘traditional SPH’ scheme
with fixed artificial viscosity (αV = 0.8) and no artificial conduc-
tion (e.g. Monaghan 1992)9, and a SPH-ALE (Vila 1999) scheme
similar to GIZMO-MFM10 (Hopkins 2015) with a diffusive slope
limiter. This is in an effort to demonstrate how the initial conditions
are evolved with a minimally viable non-diffusive scheme, through
to what could be considered the most diffusive viable scheme.

Fig. F1 shows the result of the blob test with the traditional
SPH scheme. Here, as expected, there is a severe lack of mixing,
with the artificial surface tension holding the blob together even at
the highest resolutions. The lack of phase mixing also contributes
to a lack of overall mixing, with the stripped trails (shown most

9 The minimal scheme in Swift.
10 The gizmo-mfm scheme in Swift with a HLLC Riemann solver.

Figure F2. A repeat of Fig. 15 but using an SPH-ALE scheme with a dif-
fusive slope limiter. Note however that this is one step lower in resolution,
due to the additional computational cost required to perform a simulation
including a Riemann solver.

clearly at t = 3τKH) adiabatically expanding but crucially remaining
distinct from the hot background medium.

Fig. F2 shows the result of the blob test with the SPH-ALE
(GIZMO-MFM) scheme. This scheme is known to be highly dif-
fusive (due to the less conservative slope limiter employed in the
Swift implementation). This follows closely the results seen in e.g.
Agertz et al. (2007) for diffusive grid-based codes. Here, the blob
is rapidly shattered, and then dissolves quickly into the surrounding
media, especially at the lowest resolutions.

The Sphenix results in Fig. 15 showed that the blob mixed with
the surrounding media, but at a less rapid rate than in the SPH-ALE
case. This is somewhat expected, given the trade-off required in the
artificial conduction switches (Eqn. 34). We do note, however, that
no analytical solution exists for the blob test, and as such all of
these comparisons may only be made qualitatively.

In Fig. F3 we examine the effect of removing the conduction
limiter from the Sphenix implementation (i.e. Eqn. 34 is removed,
allowing αD to vary irrespective of the values of αV ). We see that
the inclusion of the limiter does slightly reduce the rate of initial
mixing within the blob, but that the effect of the limiter is not par-
ticularly strong within this case.
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Figure F3. The evolution of a single blob (using the medium resolution, 2116547 particle, initial conditions from Fig. 15), to illustrate the effect of turning off

the conduction limiter (Eqn. 34; bottom row) in comparison to the full Sphenix scheme (top row). The limiter suppresses some of the initial mixing during the
cloud crushing, but does not cause significant qualitative changes in the mixing of the cloud.
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