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Geomagnetic reversals at the edge of regularity
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Geomagnetic field reversals remain as one of the most intriguing problems in geophysics and are regarded
as chaotic processes resulting from a dynamo mechanism. In this article we use the polarity scale data of the
last 170 Myrs collected from the ocean floor to provide robust evidence for an inverse relationship between
the complexity of sequences of consecutive polarity intervals and the respective reversal rate. In particular,
the variability of sequences of polarity intervals reaches minimum values in the mid-Jurassic when a maximum
reversal rate is found, in the early Cretaceous preceding the Cretaceous Superchron, and twice in the last 20 Myrs.
These facts raise the possibility of epochs of high regularity in the geomagnetic field reversals. To shed light on
this process, we investigate the transition from regular to chaotic regime in a minimal model for geomagnetic
reversals. We show that even in chaotic regimes, the system retains the signature of regular behavior near to
transitions. We suggest that geomagnetic reversals have switched between different degrees of irregularity, with
a dominant periodicity of ≈70 kyrs that results from the occurrence of “ghost” limit cycles (GLCs) or unstable
periodic orbits (UPOs) immersed in a chaotic region of phase space.
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I. INTRODUCTION

The geomagnetic field is characterized by a dominant
dipole component that reverses its polarity in irregular times.
The physical mechanism driving reversals of the geomagnetic
field’s dipole is still not well understood, although it is well
established that reversals are linked to the dynamo process
that takes place on Earth’s outer core [1]. It is hypothesized
that long term changes in the reversal processes must be
linked to the evolution of the dynamo process in the Earth’s
outer core. For instance the growth of the inner core [2], and
most notably the changes in the properties of the core-mantle
boundary, could have large impacts in the reversal process
[3,4].

Polarity scales compiled from paleomagnetic data reveal a
large variability of the polarity intervals [5,6]. Short intervals
have a duration of an order of tens of thousands of years, while
exceptionally long intervals with a single polarity last O(107)
yrs and are called superchrons. These events have occurred at
least three times in the palemagnetic record. The first super-
chron is the Cretaceous Superchron, roughly from about 120
to 80 million years ago. The second one is named Kiaman Su-
perchron and occurred in the Carboniferous-Permian, roughly
between 320 and 270 million years ago. The third one is called
Moyero Superchron [7], and occurred in the Ordovician being
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the shortest of the three, lasting less than 20 million years
(485 to 463 million years ago). On the other hand, an epoch of
exceptionally fast reversal rates occurred in the mid-Jurassic
(155–170 million years ago), with an reversal rate of over 10
reversals per million years.

The statistics and variability of reversal rates is a matter
of debate. It was long assumed the reversal rates to follow a
Poisson type of renewal process. This leads to an exponential
distribution p(T ) ∝ exp(−λT ), where λ is the rate of the
process. This type of process is memoryless leading to an
independent sequence of polarity intervals, see [8,9]. Subse-
quent articles investigated the hypothesis of a Poisson process
in which the rate itself evolves in time λ = λ(t ) [10]. Carbone
et al. [11], later on, showed that the sequences of reversals
largely departs from a Poisson process. They suggested that
reversals are better modeled by a Levy-type process. This re-
sult contrasts from previous research, implying in long-range
correlations between intervals duration, with different classes
of intervals clustered in time. However, the physical mecha-
nism behind these long-range dependencies remains elusive.
Insights are provided from other natural dynamos, such as
the Sun and other stars usually operating in a quasiperiodic
cyclic manner. The Sun has a well-recorded 11 year cycle,
named Schwabe cycle, with peaks in sunspot numbers each 11
years on average occurring in antiphase with its axial dipole
dynamics [12]. Despite possessing a strong regular compo-
nent the solar cycle also displays irregular behavior such as
the Maunder Minimum, which was suggested to arise from
intermittent type of behavior [13,14]. See [15] for a compre-
hensive review. This analogy raise the question of whether the
geodynamo operates in more regular regimes similar to other
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natural dynamos, and if so, what type of signature this regime
on the edge between regular and chaotic would leave on the
observational record.

In this work we address this issue by searching for regu-
larities in the sequence of geomagnetic reversals recorded in
the last 170 Myrs using data from a well known geomagnetic
polarity scale [6]. Specifically, we assess the level of regularity
in this signal by estimating its sample entropy (SamEn) and
coefficient of variation (C). With this we provide statistical
evidence for significant variations in the signal’s regularity
at the timescale of 107 yrs. And, more importantly, we find
several periods of highly regular reversals. First, and most
noticeable, in the mid-Jurassic accompanied by an extreme
reversal rate, other in the early Cretaceous, preceding the Cre-
taceous Normal Superchron, and twice in the last 20 Myrs. All
these periods correspond to a high reversal rate. The overall
irregularity of the signal is evidenced in the large variability
in the density polarity intervals, however, we observe prefer-
ential intervals pointing out to underlying periodic processes.
Finally, we interpret these results in the framework of non-
linear dynamics by analyzing the transitions from regular to
chaotic behavior in a simple model for geomagnetic reversals.

II. MEASURES OF REGULARITY

To quantify the degree of regularity in the geomagnetic
reversals we invoke the concept of chaos from nonlinear
dynamics. Chaos is usually characterized by the exponential
separation of nearby trajectories in the system’s state space
as the time advances [16]. The rate of such separation is

quantified by the Lyapunov spectrum λi(x) [17]. Another way
of measuring the complexity of a dynamical system is the
Kolmogorov-Sinai (KS) entropy that qualitatively measures
the rate of creation of information of the system [17,18]. For
a class of dynamical systems [16], the KS entropy and the
Lyapunov spectrum are linked by the Pesin identity:

SKS =
∫ ∑

λ>0

λi(x)dχ, (1)

where χ is the ergodic invariant probability measure of the
chaotic attractor. The KS entropy is therefore the sum of all
positive Lyapunov exponents of the system.

Sample entropy: For applications to real-world data,
definition (1) needs to be adapted to overpass intrinsic diffi-
culties arising from observational procedures. For this task, a
measure called approximate entropy (ApEn) [19] and its suc-
cessor sample entropy (SamEn) [20] have been successfully
employed to quantify the amount of regularity in electrocar-
diograms [21], and cardiovascular signals in general [22]. A
comprehensive review of ApEn and SamEn is found in [23].
Here we implement SamEn to assess the level of regularities
in the dynamics of reversals of the geomagnetic field. Given
a data sample X = (x1, . . . , xN ), a subset of X of size m
is written as Xm(i) = (xi, . . . , xi+m−1) with 1 � i � i + m +
1 � N . To calculate SamEn define A = number of times
vectors with size m + 1 such that d (Xm+1( j), Xm+1(i)) < r,
and define B = number of times vectors with size m such
that d (Xm( j), Xm(i)) < r, where d (., .) is any suitable distance
(here we use the Euclidean distance). Now define

SamEn(m, R, N ) = − log
(A

B

)
= − log

[∑N−m
i=1

∑N−m
j=1, j �=1 #[d (xm+1( j), xm+1(i)) < r]∑N−m

i=1

∑N−m
j=1, j �=1 #[d (xm( j), xm(i))] < r

]
. (2)

where # denotes the number of elements in a set. In our
analysis we adopt commonly used values of r and m, namely,
m = 2 and r = 0.2σ (X ) [20], where σ (X ) denotes the stan-
dard deviation of the sample X , the results remain valid with
slight change in the used parameters (sensibility test using
different m and r parameters is provided in the Supplemental
Material [24]).

Coefficient of variation: We complement our analysis on
the dispersion of the persistence times by calculating the
coefficient of variation C = σ (X )/E(X ), where E is the ex-
pected value of the random variable X . The coefficient of
variation has an important implication for our analysis, since
for any random variable X with an exponential distribution
C(X ) = 1. Indeed, for a random variable X with exponen-
tial distribution p(X ) = λ exp(−λt ) we have E(X ) = 1/λ and
σ = √

Var(X ) = 1/λ, therefore, σ/E(X ) = 1. C(X ) �= 1 is
implied in a departure from the Poissonian property. Therefore
the coefficient of variation is a tool that enables us to evaluate
the Poissonian hypothesis [9,10].

III. DATA AND OBSERVATIONAL RESULTS

Here we use the geomagnetic polarity timescale com-
piled by Gradstein et al. [6]. Polarity timescales often rely

on measurements from different natures, for instance mag-
netostratigraphy, biostratigraphy, and radio isotope dating
[25,26]. Most precise knowledge on geomagnetic reversal
sequences is obtained from the available data of seafloor
magnetization. As the magma cools on spreading ridges, min-
erals containing iron and other magnetic materials record the
external magnetic field. The geomagnetic polarity timescale
provided by Gradstein et al. [6] is restricted to the period
when seafloor data is available, namely, starting in the mid-
Jurassic, comprising the C sequence (83 Myr–present) and
the M sequence (170–83 Myrs). The geomagnetic polarity
timescale used here is presented in Fig. 1. The determi-
nation of the duration of a polarity interval is constrained
by models of the seafloor spreading rate and complemented

FIG. 1. Geomagnetic polarity timescale presented by Gradstein
et al. [6], times with normal polarity are marked in black, while times
with reverse polarity are marked in white.
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by magnetostratigraphic data. Polarity information from the
mid-Jurassic is constrained by the Japanese lineations in the
Pacific plate. Such lineations have a faster spreading rate [27]
compared to the slow formation of the Hawaiian lineations,
used in previous polarity scales, such as [5]. Concerning the
reliability of the analyzed records, we observe that in a study
for the mid-Jurassic data from the Pacific plate [27], point
out to a particular period with problematic data (from 162 to
167 Myrs) for which the records are poorly constrained. How-
ever, for 155–162 Myrs, the same authors have reported robust
results for the polarity intervals. Besides, for this period, Grad-
stein et al. [6] use several sources of magnetostratigraphic
sequences to constrain the polarity scale. Finally, most reli-
able data, i.e., polarity intervals recorded in more than one
plate, are available already from 154.3 Myrs ago (M25 Chron)
[6,28].

With this, in Figs. 2(a) and 2(b) we show the coefficient
of variation C and SamEn, respectively. These measures are
evaluated from the geomagnetic reversals data for sequences
of 30 consecutive polarity intervals of duration �T . These
intervals are shown Figs. 2(a) and 2(b) as − log(�T ) (black
curve is not defined during the superchron when the reversal
rate approaches 0) for scaling purposes. There is an apparent
inverse relationship between the regularity of the sequences
of intervals and the corresponding reversal rate, with a par-
ticularly ordered behavior in the mid-Jurassic (≈152–165
Myrs ago). In Fig. 2(c) we show the distribution of inter-
vals with sizes restricted to �T � 600 kyrs. This histogram
reveals a clustered character in the distribution of intervals
with several peaks of occurrences, and the most frequent being
�t ≈ 70 kyrs. A possible interpretation for these peaks is the
occurrence of different dynamical regimes of the geodynamo.
Such variability of regimes could be a result of changes in
the core-mantle boundary [29], or even a stochastic resonance
[30] at which regularity is induced by the interaction of noise
and external periodic forcing.

Moreover, the most frequent interval being �T ≈ 70 kyrs
suggests that fast-reversing regimes are of high relevance
for the geodynamo. This observation is compatible with the
range of intervals found at around 155–170 Myrs ago that
are seemingly regular in accordance with Figs. 2(a) and 2(b).
More recently, Gallet et al. [31] reported a period with sim-
ilar reversal rates at the Drumian (around 504.5–500.5 Myrs
ago). Another interesting outcome of the analysis presented in
Fig. 2(a) is that C can be viewed as a measure of the Poissonity
of the distribution of reversal times, with C �= 1 compatible
with a large departure from Poissonity. This is the case in
sequences in the vicinity of the superchron nonreversing state
(≈80–120 Myrs) and in regular state near ≈160 Myrs. An
important implication of this observation is the validity of
models that describe the geomagnetic reversals as a stochastic
exit problem with Poisson times [32,33], in this case C could
be used to assess the periods in the past when these models
are compatible with the observations.

Since the determination of the duration of the polarity
intervals is subject to errors, which is especially relevant for
the pre-154.3 Myr period, it is important to test how the coeffi-
cient of variation (C) and the sample entropy (SamEn) behave
when the data are subject to random perturbations. In order to
test the robustness of our results, we introduce random errors

FIG. 2. (a) The blue curve represents coefficient of variation (C)
calculated for the geomagnetic polarity scale. (b) The red curve
stands for the sample entropy (SamEn) calculated for the geo-
magnetic polarity scale using parameters r = 0.2σ (X ) and m = 2.
The black curve in (a) and (b) represents − log(�T ) where �T
corresponds to polarity intervals. Confidence intervals with 95% con-
fidence levels are calculated by bootstrap resampling. (c) Histogram
of polarity intervals for T � 600 kyrs with the dominant ≈70 kyrs
bin highlighted in red.

to the polarity interval data set, following a few constraints: (a)
when a given polarity interval is perturbed by the error, it must
remain positive; and (b) the error should be larger for longer
polarity intervals. With these constraints we proceed in the
following way: let Xi(i = 1, 2, . . . , N ) be the random variable
representing the duration of the ith polarity interval, let εi

be a normal random variable with mean E(X ) = −σ 2/2 and
variance σ 2. The errors are then introduced multiplicatively as
X̃i = exp(εi )Xi. This corresponds to introducing multiplicative
errors with lognormal distribution, the values of the mean
and variance are chosen so that E[exp(εi )] = 1. We perform
the calculations for different values of the variance, namely,
σ = 0.1, σ = 0.2, and σ = 0.5. We see in Fig. 3 that the
time evolution of C and SamEn are not significantly affected
by including the errors, but there is a monotonic increase of
the coefficient of variation as function of the level of noise.
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FIG. 3. Robustness test of the (a) coefficient of variation (C) and
(b) sample entropy (SamEn) calculated for the geomagnetic polarity
scale using parameters r = 0.2σ (X ) and m = 2 presented as a func-
tion of the number of the interval of the polarity scale. We present
the results for levels of noise σ = 0.1 (red), σ = 0.2 (blue), and
σ = 0.5 (orange). Results show the stability of our results even for
large levels of noise (σ = 0.5). The test is performed by generating
1000 independent realizations of εi the curves in (a) and (b) result
from averaging 1000 randomly perturbed curves of C and SamEn.

This measure is very robust to the influence of the noise,
even with very strong variance (σ = 0.5) our conclusions still
remain valid. The same test was performed for the SamEn
with similar results. Since C and SamEn are measures of
organization their values increase as data become less pre-
dictable due to random errors. Consequently, the introduction
of random errors introduced in the interval duration cannot
reduce the measures C and SamEn, but only increase them.
This fact gives us an indication that the decreased values in
C and SamEn observed in the pre-154.3 Myrs era should
not be a mere artifact of the inadequacies of the data set
unless systematic/nonrandom errors have been introduced in
the polarity timescale for some reason.

Also, in face of possible uncertainties arising in the pre-
154.3 Myrs data, we focus only on particular events of high
regularity, measured by the coefficient of variation, in the last
154.3 Myrs. To implement this procedure, we calculate the
coefficient of variation for a shorter sliding window corre-
sponding to 15 consecutive intervals. Since these events are
associated with fast reversal rates, we choose to plot the data
replacing the x axis from time (in Myrs) to the number of the
polarity interval in the geomagnetic polarity timescale. With
this, the events of organized reversals that would be otherwise
squeezed in the x direction become more evident. We present
such analysis in Fig. 4. In this figure we identify four events of

FIG. 4. Reversal rate (black curve) and the logarithm of the
coefficient of variation (orange curve) as a function of the polarity in-
terval number. The epochs with organized reversals are signaled with
a red background in contrast with the disordered reversal sequences
in the vicinity of the Cretaceous Normal Superchron marked with a
blue background.

organized reversals in the last 154.3 Myrs. The first one refers
to the event around 152 Myrs, the second one occurs around
130 Myrs ago preceding the Cretaceous Normal Superchron
by about 10 million years. In more recent times two events
of organized reversals were identified at around 20 and 12
Myrs ago. All of these events are accompanied by a sub-
stantial increase in the reversal rates and are marked with a
red background in Fig. 4. On the other hand, the sequences
containing the Cretaceous Superchron are highly disordered,
this period is highlighted with a blue background in this fig-
ure. Here the inverse relationship between the coefficient of
variation and the reversal rates becomes even more evident.
This also highlights the fact that events of organized reversals
are relevant even if we exclude the extreme reversal rates of
the mid-Jurassic that can be seen in Fig. 2.

Besides, to support the occurrence of the periods with orga-
nized reversals across the most reliable part of the data set, i.e.,
in the last 154.3 Myrs, in Fig. 5 we point out the prevalence of
events of high reversal rates of ≈70 kyrs. Moreover, the multi-
peak profile of the histogram presented in Fig. 5 is interpreted
in the context of nonlinear dynamics as signatures of systems
approaching bifurcations leading to periodic behavior. Hence,
such a signature of regularity remains relevant even if the
system is in a chaotic regime.

IV. DYNAMICAL SYSTEM ANALYSIS

The use of simplified systems is of great value for the
interpretation of transitions in natural systems. For instance,
in hydrodynamical systems important dynamical features of
low dimensional models are present despite the actual system
has infinite degrees of freedom [34,35]. This is usually due
to the predominance of a few modes in a suitable spectral
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FIG. 5. Histogram of geomagnetic interval duration for the last
154.3 Myrs. This is obtained by truncating for events with a duration
of �500 kyrs.

decomposition. Estimates of the dimension of the recon-
structed attractor associated with the geomagnetic axial dipole
using embedding techniques on paleointensity data [36] indi-
cate its dynamics is indeed low dimensional (3–7 dimensions).
There are several simplified systems describing the dynam-
ics of geomagnetic reversals, including stochastic systems
in a bistable potential [32,33], stochastic systems with peri-
odic forcings leading to the stochastic resonance phenomena
[30,37]. However, we argue that a system with transitions
driven purely by noise may not be able to capture some
changes of behavior in the geomagnetic reversals such as
transitions to superchrons [38] and possibly more regular geo-
magnetic reversals states as described in the previous section.
As in [38] we share the view that the machinery of bifurca-
tion theory might be necessary to describe these changes of
behavior.

We use a reduced model for geomagnetic reversals in-
troduced by Gissinger in Ref. [39] and further analyzed in
Ref. [40]. It consists of a truncation of the magnetohydro-
dynamic equations that are consistent with the symmetry
properties of the system. It retains only the dipole and quadru-
ple components of the magnetic field, respectively, D and
Q, coupled with a symmetry-breaking flow component V .
Despite the simplicity of the model, it presents a significant
resemblance with the qualitative behavior of the geody-
namo and a surprisingly rich variety of regimes, including
periodic windows, superchronlike nonreversing states, and
irregular/chaotic reversal regimes. The ability of this simple
system in describing different behaviors of the geomagnetic
dipole is robust. Specially because it consists of a normal
form truncation respecting the symmetries of the MHD equa-
tions, therefore, the nature of the bifurcations found in this
model are also expected to occur on the geodynamo system.
In addition, Gissinger’s model was used to perform data as-
similation with coarse observations in order to estimate the
expected time for the next dipole’s reversal [41]. Compared
to other simplifications, Gissinger’s model had the best per-
formance for this task. Furthermore, we argue that stochastic
models in bistable potentials commonly used to represent

geomagnetic reversals possess smooth exit-time probability
distribution function (PDFs) [42], even in the presence of peri-
odic forcing/stochastic resonance [43]. Therefore, this type of
stochastic models are hard to relate to the type of distributions
with a seemingly singular phenomenon portrayed in Fig. 2.
Furthermore, no second harmonic of the ≈70 kyrs peak is
found in the distribution observed in Fig. 2 suggesting that
it is not due to stochastic resonance. Here we argue that the
singular peak ≈70 kyrs combined with the regular-irregular
transitions are reminiscent of bifurcations leading to chaos
in deterministic dynamical systems. Finally, the other (more
smooth) peaks observed in Fig. 2 can be related to period-
doubling bifurcations in deterministic dynamical systems.

The low dimensional model is given by

Q̇ = μQ − V D,

Ḋ = −νD + V Q,

V̇ = � − V + QD. (3)

The parameters μ, � can be seen as forcing terms on the
quadrupole Q and velocity field V components, while the
parameter ν can be seen as an effective viscosity term leading
to the dissipation of the dipole component D of the geo-
magnetic field. By performing a bifurcation analysis of this
model, Gissinger has already demonstrated the existence of
intervals in the parameter μ for which the system exhibit
stable periodic behavior, i.e., periodic windows (PWs) [40].
Here we associate the high levels of regularity observed in
Fig. 2 to the occurrence of PWs in the model. We argue that
more than just the stable periodic behavior within every PW,
the chaotic behavior of parameter regions adjacent to them
contains vestiges of their periodicity.

Before we demonstrate the occurrence of PWs in the model
describing the polarity of the geomagnetic field, we first
emphasize that their occurrence is ubiquitous across a large
variety of systems. In fact, their existence has been verified in
many mathematical models [44] and in independent labora-
tory experiments [45,46]. In addition, such PWs have been
found to occur with many different internal periods and in
many scales of dynamical systems parameter space [47–49].
With this, for the model defined in Eq. (3) with effective
viscosity at ν = 0.1, we obtain a two-dimensional stability
diagram by computing the system’s largest Lyapunov expo-
nent (λmax) [50] as a function of the parameters μ and �.
Hence, in Fig. 6 we show such a stability diagram with the
parameters leading chaotic solutions (λmax > 0) denoted in
blue and yellow, while the PWs, i.e., the parameters leading to
regular behavior (λmax < 0), are indicated in grayscale. By in-
specting this diagram, we point out the occurrence of PWs of
different sizes intermingled with parameters leading to chaos.
We remark that the PWs are also present in smaller scales of
the obtained diagram that cannot be resolved in Fig. 6.

In order to illustrate these ideas, in Fig. 7(a) we per-
form a bifurcation analysis of the system in a Poincaré
section defined as 	 = {(Q, D,V ) ∈ R3|aQ + bD = 0} with
a =

√
μ + �

√
μ/ν and b =

√
ν + �

√
ν/μ. In Fig. 7(a), for

μ ∈ [0.113, 0.118] (dashed line in Fig. 6), we observe many
PWs in a sequence, it is worth noticing that even when the
periodic orbits lose stability, become unstable periodic orbits
(UPOs), and lead to chaotic behavior, the density of points
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FIG. 6. Two-dimensional parameter space of the Gissinger’s
model defined in Eq. (8). The color code stands for the value of the
largest Lyapunov exponent λmax. Blue and yellow indicate parame-
ters leading to chaotic behavior (λmax > 0), while grayscale stands
for the PWs, i.e., regular behavior (λmax < 0). The effective viscosity
is at ν = 0.1. The dashed line indicates the parameters used in the
subsequent analysis.

continue to be higher near the dominant UPOs. In Fig. 7(b),
for the same interval of μ, we show the maximum Lyapunov
exponents (λmax), the PW corresponds to λmax < 0. Next,
in Fig. 7(c) we obtain the sample entropy (SamEn) and the
variation coefficient (C) in the fashion of Fig. 2. Both SamEn
and C efficiently capture the occurrence of PWs in the model,

FIG. 7. (a) Bifurcation diagram of the Gissinger’s model re-
vealing parameter intervals leading to periodic behavior (PWs) and
intervals leading to chaos. The bifurcation parameter μ is considered
in the interval [0.1130,0.1180]. The green dashed line corresponds
to μ1 = 0.1135, the blue dashed line indicates μ2 = 0.1137, and the
red line μ3 = 0.1131. (b) The corresponding maximum Lyapunov
exponents λmax. (c) Blue represents coefficient of variation C and red
stands for the sample entropy SamEn. The other system parameters
are fixed at ν = 0.1 and � = 0.96.

supporting the capability of these measures in detecting the
regularities of reversals data reported in Fig. 2.

In more detail, every PW in the bifurcation diagram shown
in Fig. 7(a) is delimited by a saddle-node bifurcation on its
right side and a period-doubling route to chaos on its left
side. In the chaotic regime occurring in the neighborhood of
the saddle-node bifurcation (right side), a Pomeau-Manneville
type-I intermittency scenario [51,52] gives rise to ghost limit
cycles (GLCs) [53,54]. An intermittent transient periodic be-
havior with the same periodicity of the main orbit within
the adjacent PW. On the PW’s left side, the periodic orbits
created in the PW continue to exist in an unstable way, as
an UPO [55]. Hence, for values of μ close enough to PWs
on both sides, regularity will appear in the frequency of
reversals.

UPOs can be viewed as the skeleton of a chaotic attractor,
so that statistical properties of the system can be interpreted
in terms of the properties of the UPOs [56,57]. The influence
of UPOs has been previously discussed in the context of
reversal rates of the geomagnetic field in [58]. In this study,
the authors show that the invariant probability distribution of
the system can be well approximated by the dominant UPOs
of the system. These orbits can be classified into two types:
the global UPOs are the ones that perform a reversal (crossing
the plane D = 0), and the local ones, which are responsible
for variations of the geomagnetic field without reversing in
the polarity polarity. In particular, during transitions to geo-
magnetic superchrons, it is suggested that the set of global
UPOs is destroyed. Since UPOs are saddle orbits, their stable
manifold attracts the chaotic orbits that latter get expelled
through the unstable one. For orbits sufficiently close to the
stable manifold, the motion mimics the UPO for extended
times leaving a statistical imprint in the distribution function
on the phase space. These almost periodic transients can latter
be used to trace an initial approximation of the UPO that can
be refined by iterative techniques involving the monodromy
matrix.

To better clarify the occurrence of different degrees of
regularity in the model, in Fig. 8 we explore in detail its dy-
namical behavior for the three values of μ shown in Fig. 7(a).
First, for μ1 = 0.1135, the system oscillates in a stable pe-
riodic orbit within the PW. Hence, in Fig. 8(a), we show a
state-space projection (Q × D) of such periodic oscillation
(limit cycle) and in Fig. 8(d) we show the respective time
evolution of the dipole component oscillating regularly. Next,
for μ2 = 0.1137, the system oscillates chaotically, yet, under
the effect of the ghost limit cycle (GLC). Hence, in Fig. 8(b),
in red, we show a state-space projection of the underlying
chaotic attractor and in black we show the intermittent tran-
sient periodic behavior corresponding to the GLC. In addition,
the similarity between the stable limit cycle and its ghost can
also be seen in some phases of the time evolution shown in
Fig. 8(e). Finally, for μ3 = 0.1131, the reversal dynamics is
also chaotic, however, it occurs in a parameter region where
the periodic orbit of the neighbor PW exists in an unstable
way, an UPO. In Fig. 8(c) we show in black an approximation
of this dominant UPO overlapping the chaotic attractor shown
in red. The time evolution of the dipole component D, shown
in Fig. 8(f), further illustrates the intermittent transient regular
behavior of the oscillation close to the UPO. The similarities
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FIG. 8. (Top) State-space projection of the quadruple and dipole (Q × D) polarity components of the Gissinger’s model. (a) For μ1 =
0.1135, the system oscillates periodically in a limit cycle shown in red. (b) For μ2 = 0.1137, the trajectory follows a chaotic attractor shown
in red. The intermittent transient behavior induced by the GLC is shown in black. (c) For μ3 = 0.1131, the system is also chaotic. The
correspondent chaotic attractor is shown in red, while the dominant UPO is shown in black. (Bottom) Time evolution of the model’s dipole
component. (d)–(f) For the parameters corresponding to (a)–(c). The other system parameters are fixed at ν = 0.1 and � = 0.96.

between the trajectories denoted in black in Fig. 8 express the
underlying periodicities occurring in the model.

To further illustrate the impact of GLCs and UPOs in
the long-term reversal dynamics of the model, we obtain
the distribution of time intervals �T of the model’s dipole
component D permanency in each field polarity. First, for the
model following the limit cycle (μ1 = 0.1135), in Fig. 9(a)
we show the respective distribution of time intervals �T for
each polarity of the model’s dipole component D. The sole
peak confirms the periodicity of the stable limit cycle, i.e.,
�T ≈ 56. Now, for μ1 = 0.1137, the model behaves chaot-
ically, in the presence of the GLC. Hence, in Fig. 9(b) we
show the corresponding distribution of polarity intervals �T
for this parameter region. The high frequency of the polarity
interval �T ≈ 56 indicates the high influence of the limit
cycle nearby, i.e., its ghost. Next, for μ1 = 0.1131, the model
also behaves chaotically, but in the presence of UPOs. With
this, the most frequent polarity interval shown in Fig. 9(c)
�T ≈ 56 indicates the dominance of the UPO associated with
the PW’s main periodic orbit. In addition, the presence of
multiple peaks in the diagram shown in Fig. 9(c) indicates the
occurrence of less dominant UPOs which could be associated
with the multipeak structure presented in Fig. 2(c).

V. DISCUSSIONS

Based on measures of dispersion of sequences of consec-
utive polarity intervals, we have demonstrated the existence
of signatures of regularity in the sequences of geomagnetic
reversals in the last 170 million years, this includes:

(i) The detection of periods of more organized reversal
sequences in the mid-Jurassic (160–150 Myrs) measured by
sudden decreasing in the regularity measures, i.e., the co-
efficient of variation (C) and the sample entropy (SamEn).
A sequence of more regular reversals is also seen at the
early Cretaceous (≈130 Myrs) preceding the Cretaceous Nor-
mal Superchron. Other events detected by the implemented
measures occurs twice in the last 20 Myrs, one around 20

Myrs ago and the other around 12 Myrs ago. The degree of
regularity of the sequences of geomagnetic reversals has an
inverse relationship with the reversal rate. Every reduction in
the measures of the regularity of subsequence of geomagnetic
reversals corresponds to an increased reversal rate. On the
other hand, periods of very low reversal rates, such as in
the vicinity of the superchron, correspond to higher values of
these measures.

(ii) The presence of a predominant fast-reversing rate pe-
riod of ≈70 kyrs corresponding to the highest peak in the
histogram. This predominance is seen even if we exclude the
fastest reversing period pre-154.3 Myrs (see Figs. 2 and 5).

(iii) The multipeak aspect of the histogram of geomagnetic
polarity interval durations.

The existence of periods with high reversal rates in the
geodynamo has a very significant impact on the statistics of
chron duration [see histogram in Figs. 2(c) and 5]. A fast re-
versing rate period of ≈70 kyrs corresponds to the largest peak
in the histogram. While the clustering pattern in the statistics
of intervals was already observed by [11] and may suggest
the existence of different regimes in the geodynamo. This fast
reversing and regular state are therefore highly relevant for the
statistics of reversals.

The analogy with a simple model for the geomagnetic
reversal [39] shows that bifurcations of the system may lead
to periodic windows in which the chaotic attractor collapses to
a limit cycle. This is caused by either a period-doubling route
or by a type-I Pomeu Manneville intermittency. We show that
even in the chaotic regime when the parameters are close to a
periodic window, the limit-cycle ghost (GLCs) still impacts
the dynamics leading to a large peak in the histogram of
residence times, see Fig. 2(c). This suggests that even when
the geodynamo operates in a chaotic regime the effects of
GLCs, or UPOs can be felt, given that the system is close
enough to a periodic window. Therefore, the large peak of
≈70 kyrs in Fig. 2(c) could either be the signature of a limit
cycle itself, its ghost, or its correspondent UPO. Furthermore,
we emphasize that it may be difficult to directly observe the
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FIG. 9. The distribution of polarity intervals �T of the
Gissinger’s model [Eq. (3)]. (a) For μ1 = 0.1135, the system oscil-
lates periodically in a limit cycle. (b) For μ2 = 0.1137, the model
oscillates chaotically close to a GLC. (c) For μ3 = 0.1131, the sys-
tem is also chaotic, but an UPO dominates the dynamics. The other
system parameters are fixed at ν = 0.1 and � = 0.96.

underlying stable periodic behavior from the polarity records,
specially due to the system’s parameters drifting through such
smaller PWs. Nevertheless, we have demonstrated that overall
effects of such stable periodicities can still be assessed.

The mechanism behind the variability of the duration of
geomagnetic chrons is still elusive and it is, to a large extent,
an open problem. Numerical geodynamo models suggest that
the frequency of reversals depends crucially on the properties
of the core-mantle boundary (CMB), in particular the heat
flow in this interface [3]. Additionally, the geometry of the
distribution of heat flux in the core-mantle boundary may be of

high importance for the geodynamo, with evidence showing
correlations with the tectonic process [59]. An inverse rela-
tionship between the degree of dipolarity of the geomagnetic
field and the reversal rates was found in [60] which also
coincides with the estimated heat flux at the CMB. Long term
changes in this pattern may, therefore, alter the regime of
operation of the dynamo.

It is also important to determine whether the peak at the
histogram with ≈70 kyrs has some relation with external
forcing or if it results solely from the nonlinear variability of
the system. Consolini and De Michelis [30] suggested that the
100 kyrs Millankovich orbital cycles could play a role in de-
termining the frequency of reversals. In addition, they argued
that stochastic resonance could also play a role and suggested
that the distribution of polarity intervals is described as a
superposition of Gaussians. Each one centered at multiples of
a fundamental frequency T = 100 kyrs. This frequency has
also been reported in the literature in inclination and intensity
data [61].

The hypothesis of the Earth’s orbital dynamics acting as
one of the forcing mechanisms to the long-term geomagnetic
field behavior remains a contentious subject in literature [61].
Some studies (e.g., [62]) advocated that the precessionally
driven energy supply would not be significant to empower the
outer core/mantle relative motion. However, it has been ques-
tioned more recently by other authors (e.g., [63]), indicating
that the effect of orbital forcing on the geodynamo’s energy
budget cannot be ruled out. In the hypothesis of an orbitally
driven origin of the 70 kyrs signal, it cannot be straightfor-
wardly attributed to one of the Earth’s orbital parameters.
Nevertheless, a similar multimillennial-scale quasiperiodic-
ity has been reported as possibly resulted from distinctive
processes—for instance, as a transient frequency associated
with the eccentricity-precession modulation [64], as well as a
short-eccentricity cycle expression during the minimal ampli-
tude of the long-eccentricity cycle [65]. The lack of a clear
evidence for a orbital forcing with period of ≈70 kyrs, and
absence of a peak in a multiple of the fundamental period
suggest that it is probably not a result of stochastic resonance.
However, whether other peaks in the histogram in Fig. 2 arise
purely from the internal geodynamo dynamics or some self-
organizing/resonance associated with external orbital forcing,
as in [30], remains to be investigated in future observational,
theoretical, and numerical studies.
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