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Abstract: The short-term reversal effect is a pervasive and persistent phenomenon in worldwide financial markets that has 

been found to generate abnormal returns not explainable by traditional asset pricing models. In contrast to the linear model 

employed in most studies on the short-term reversal, this article aims to establish a nonlinear framework to study the reversal 

anomaly, by using machine learning approaches. Machine learning methods including Random Forest, Adaptive Boosting, 

Gradient Boosted Decision Trees and extreme Gradient Boosting, are employed to test the profitability of the short-term strategy 

in the US and Chinese stock markets. Significant outperformances with extremely high Sharpe ratio, moderate kurtosis, and 

positive skewness are found, showing remarkable classification efficiency of the machine learning models and their applicability 

to various markets. Further studies reveal that the strategy returns can be weakened with the extension of the holding period. 

Notably, by comparing the performances of machine learning with our newly developed linear reversal strategy, the nonlinear 

methods are proved to be capable of providing a diversified model predictability with improved classification accuracy. Our 

research indicates the significant potential of machine learning in resolving the stock return and feature relationship, which can 

be helpful for quantitative traders to make profitable investment decisions.  
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1. Introduction 

The short-term reversal is a well-known anomaly in the 

financial markets that have existed for a long time. The 

phenomenon is described as that stocks with relatively low 

(high) returns over the past month or week earn positive 

(negative) abnormal returns in the following month or week, 

thus buying losers (or selling winners) would generate 

persistent profits. It is claimed that such abnormal effect 

cannot be explained by the traditional asset pricing models 

[8]. A large volume of literature has been dedicated to the 

research of the short-term reversal anomaly, especially in the 

stock market. Jegadeesh [13] documents that an 

equally-weighted portfolio that buys losers and sells winners 

from the past one-month horizon earns an average return of 

approximately 2% per month for the period from 1934 to 

1987. Using weekly stock returns, Lehmann [16] and Cooper 

[7] report similar findings. Groot et al. [22] construct a 

daily-rebalanced reversal portfolio based on the past-week 

returns and show that it yields a gross return of 61.7 basis 

points per week. The underlying reason of the reversal effect 

has been attributed to the investor overreaction [16], the 

transient liquidity shocks [4, 6, 14]. 

It is notable that most studies on the short-term reversal 

employ the linear quantile partition scheme, i.e., sorting stocks 

based on the size of a past return and building a reversal 

portfolio by buying losers (bottom quantile) and selling 

winners (top quantile). Although machine learning approaches 

have become popular in asset pricing over the past few years 

[1, 15, 20, 23], the study of the short-term reversal based on 

the machine learning is relatively primitive. Preliminary 

investigations of AI assisted momentum and reversal trading 

can be seen in Li and Tam [17], where the market state defined 
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by the returns in the past observation period is learned to 

predict the possible stock selection policies. In contrast to Li 

and Tam [17], this paper aims to establish a new nonlinear 

framework to study the short-term reversal, by predicting the 

stock classification in the look-ahead time horizon. 

Tree-based machine learning algorithms, including the 

Random Forest (RF), Adaptive Boosting (AdaBoost), Gradient 

Boosted Decision Trees (GBDT) and eXtreme Gradient 

Boosting (XGBoost), are employed to serve this objective. These 

models are trained on the past short-term return features to learn 

the target classes defined based on the future excess returns over 

a certain holding period. The trading strategy is implemented in a 

rolled training and trading scheme, where a reversal portfolio is 

constructed from the classified stocks with the help of a 

probability ranking scheme. The models are applied to the US 

and the Chinese stock markets. Testing in these countries allows 

us to compare the effectiveness of the models in a developed 

market and an emerging market. We also develop a novel linear 

reversal strategy and compare it with the machine learning 

strategies. The linear reversal strategy utilizes past returns at 

different periods over the past one month. This approach is 

different from the conventional short-term reversal strategies that 

typically rely on a single past return. By comparing the machine 

learning strategies with the linear strategy, we can identify the 

role of nonlinear information in predicting future returns. 

The modeling framework of this paper follows that of Tan, 

Yan, and Zhu [21], who use the Random Forest to illustrate 

the relationship between stock classification and underlying 

fundamentals. This paper, however, extends their work and 

include more sophisticated tree-based models such as 

AdaBoost, GBDT and XGBoost to examine the prediction 

power of the boosting algorithms. 

The contribution of this paper is threefold. Firstly, we 

employ machine learning methods to exploit the short-term 

reversal effect and find significant profitability of the 

portfolios derived from them. Secondly, a novel linear reversal 

strategy is developed based on multiple look-back periods, 

and a comparison between the linear and nonlinear 

frameworks is conducted to evaluate the nonlinear contents 

that can be informative for performance improvements. 

Finally, we implement the models in the US and the Chinese 

markets and assess the significance of this anomaly in both 

developed and emerging markets. 

The paper is organized as follows. Section 2 describes the 

methodology used in the empirical study, which includes the 

data and software, the rolled training and trading scheme, the 

feature space and labelling, the machine learning approaches, 

and the linear reversal strategy. Section 3 presents empirical 

results and discusses the main findings of our study. Section 4 

concludes. 

2. Methodology 

In order to exploit the short-term reversal effect, we build a 

machine learning framework by using the tree-based models 

including RF, AdaBoost, GBDT and XGBoost. The short-term 

stock returns are predicted and the strategy profitability is 

tested on both US and Chinese markets. We also develop a 

new linear reversal strategy to investigate the discrepancy of 

the classification efficiency between the linear and nonlinear 

algorithms. The trading scheme basically follows the work of 

Tan, Yan, and Zhu [21], the research, however, covers a much 

wider scenario of the reversal strategy. More details of the 

methodology are given below. 

2.1. Data and Software 

For the study of the US market, we use all firms listed on 

NYSE, Amex, and Nasdaq, and employ the SP500 index as a 

benchmark. The US stock data, which contains price and 

volume, are obtained on a daily basis from the Center for 

Research in Security Prices (CRSP). For the study of the 

Chinese market, we consider all stocks listed on Shenzhen and 

Shanghai Stock Exchanges and employ the CSI 500 index as 

the benchmark. The Chinese data are obtained from the Wind 

financial database in daily frequency. Any stocks that have 

been traded less than one year are eliminated from the sample. 

The preprocessing and data handling are conducted using 

MATLAB. The RF, AdaBoost and GBDT models are 

implemented using scikit-learn, a Python library that 

integrates a wide range of state-of-the-art machine learning 

algorithms for medium-scale supervised and unsupervised 

problems. The XGBoost model is implemented using the 

XGBoost library. 

2.2. Rolled Training and Trading Scheme 

The entire sample is divided into a series of training sets and 

trading sets on a rolling basis, and the out-of-sample trading 

period is from 1995.01.01 to 2018.12.31 for the US market, 

and from 2010.06.01 to 2019.03.14 for the Chinese market. 

The models are trained in each training period to make 

predictions in the subsequent trading period. 

The out-of-sample trading period is split into a series of 

non-overlapping sub-periods that consist of 60 trading days 

(approximately three months). The training set corresponding 

to each trading sub-period contains 250 trading days 

(approximately one year). In each training dataset, past returns 

of the stocks are generated to be used as input features and the 

stocks are divided into N classes based on a future excess 

return (equity return – benchmark return). These classes 

define the target variable. We set N equal to 3 for the empirical 

study. The machine learning models are trained in the training 

set and used in the subsequent trading period to predict each 

stock’s probability belonging to each class. Ten stocks with 

the highest probabilities for the first class, i.e., the class with 

the largest excess returns are selected on each trading date to 

form an equally-weighted portfolio, which is rebalanced every 

two days. All trades are assumed to be subject to a transaction 

cost of 0.1% for the US market, and 0.16% for the Chinese 

market. 

2.3. Past Return Feature Space and Labelling 

For each training period, we generate the input feature 

space and the target variable (output) as follows. 
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Input: The input feature space is a u×v matrix, where u is 

the number of samples and v is the number of features. The 

past return features are defined as follows: 
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where ��
� and ��

�  denote the close prices of stock s and the 

benchmark index at time t, respectively. Past returns up to 

twenty days, i.e., m = 1,…, 20 are considered. The past return 

features are detrended by subtracting the index return from the 

equity return. This approach is slightly different from the 

design in Tan, Yan, and Zhu [21]. 

Output: At time t, the returns of each stock ��,�
�  and the 

benchmark index ��,�
�  over the subsequent m holding days 

are calculated in Eq. (2) and (3). The holding period m is set to 

2 days in the main empirical study and is set to other values (2, 

5, 10 and 20 days) in the holding period dependence analysis. 

The excess return ���
�  is the difference between the stock 

return and the index return, as described in Eq. (4). We sort all 

the stocks on the size of the excess returns in descending order 

and equally divide them into N classes. The class label is the 

target variable that we aim to predict. 
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2.4. Machine Learning Methods 

2.4.1. Random Forest 

We construct our random forest model by following the 

conventional approach given in Breiman [3]. In principle, the 

random forest consists of many deep but uncorrelated decision 

trees built upon different samples of the data. The process of 

constructing a random forest is simple. For each decision tree, 

we first randomly generate a subset as a sample from the 

original dataset. Then, we grow a decision tree with this 

sample to its maximum depth of ��� . In each split, 

��� 	features are selected at random from all the features. This 

procedure is repeated to generate	��� decision trees. The final 

output is an ensemble of all decision trees, and the 

classification is conducted via a majority vote. We realize that 

the random feature selection might cause bias in the tree 

construction, due to the feature un-informativeness [18]. A 

more sophisticated feature selection scheme can be planned in 

the future work for the possible performance enhancement. 

Three parameters must be tuned to ensure the robustness of 

the random forest, i.e., the number of trees ���, the maximum 

depth ��� and the number of features ��� in each split. We 

perform a shallow tree construction with ��� = 3. Regarding 

the feature subsampling, we typically choose ��� = √� , 

where p is the total number of features [12]. As to the number 

of trees ��� , we set it to 100. The dependency of strategy 

performance on the number of trees (as shown in the 

Appendix) is carefully tested, where little variances on the 

daily mean returns are found indicating a proper 

hyper-parametrization and the model robustness. Note that all 

the presented model hyperparameters (including models given 

bellow) are similarly tuned to ensure the strategy validity. 

2.4.2. Adaptive Boosting 

Boosting was first introduced in Schapire [19]
 
as a method 

to integrate a bundle of weak learning models into one to 

achieve enhanced prediction accuracy. The algorithm is 

formalized in Freund and Schapire [10], and works by 

sequentially applying weak learners to re-weighted versions 

of the training data [11]. After each boosting iteration, 

misclassified examples have their weights increased, and 

correctly classified examples have their weights decreased. 

After a number of iterations, the predictions of the series of 

weak classifiers are combined by a weighted majority vote 

into a final prediction. We select decision trees as the weak 

classifier, and implement AdaBoost by setting the boosting 

iterations �� !"##�� = 70 and the learning rate &� !"##�� =
1. The depth of the tree �� !"##�� is chosen to be 3. 

2.4.3. Gradient Boosted Decision Trees 

Gradient Boosted Decision Trees (GBDT) is a variation of 

boosting introduced by Friedman [9]. It iteratively trains the 

decision tree on the classification residual from the previous 

decision tree, while simultaneously setting a shrinkage rate to 

avoid overfitting. It also employs a feature subsampling 

scheme to increase computational efficiency. To implement 

GBDT, we have to determine four parameters: the number of 

trees or boosting iterations �'"() , the depth of the tree �'"(), 

the learning rate &'"() , and the subset of features to use at 

each split *'"() . We conservatively select the number of 

trees �'"()  to be 100 to avoid overfitting, as suggested by 

the standard literature [11], and set the learning rate &'"() =
0.1. Shallow trees are constructed during the iterations with 

the depth of the tree �'"() = 3; the number of features in the 

subsampling *'"()  is chosen to be the square root of the 

total number of features, which is in line with the subsampling 

scheme in the RF. 

2.4.4. Extreme Gradient Boosting 

XGBoost is proposed as a scalable machine for tree 

boosting [5], which can be viewed as an upgraded version of 

the gradient boosted tree model by enabling an approximate 

tree learning paradigm with parallel computing. The model 

performs a second-order Taylor expansion on a regularized 

loss function and proposes a quantile sketching scheme for the 

best split finding as an alternative to the exact greedy 

algorithm, which is usually employed by the conventional tree 

learning. Since this method avoids enumerating over all the 

possible splits on all the features, the tree boosting can be 

implemented in a more computationally efficient way. We set 

the number of trees or boosting iterations �,'"##�� = 100 

and the learning rate &,'"##�� = 0.1 as done in the GBDT. 

We choose slightly deeper trees by setting the depth of the tree 

�,'"##�� = 6 , as the faster approximate learning scheme 

allows us to save the computational cost. The threshold 

.,'"##��  for the reduction of the loss function when splitting 

a leaf node is chosen to be 0.1. No subsampling procedure is 

used in the current XGBoost study. 
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2.5. Linear Reversal Strategy 

The linear reversal model is an ensemble model of 

short-term reversal strategies with different look-back periods. 

The portfolio is constructed by sorting all available stocks 

based on the Z-scores of past returns with various lags. The 

Z-score is a normalized score of a sample and is calculated by 

subtracting the population mean from an individual raw score 

and then dividing the difference by the population standard 

deviation. The Z-score is calculated for the past returns 

defined in Eq. (1) with m = 1, …, 20, and the overall Z-score is 

computed as the average of the Z-scores of all the individual 

past return features. We construct an equally-weighted 

portfolio using the ten stocks with the lowest overall Z-scores 

and rebalance it every two days. 

Table 1. Daily return characteristics and annualized risk matrices of the RF, AdaBoost, GBDT, XGBoost, and linear strategies in the US market. A transaction 

cost of 0.1% is assumed. 

 
1995.01.01-2018.12.31 

XGBoost GBDT AdaBoost RF Linear SP500 

daily mean return 0.0101 0.0095 0.0087 0.009 0.0081 0.0003 

t-statistics 22.2568 21.6390 19.1956 21.0787 17.6257 2.2692 

standard deviation 0.0351 0.0343 0.0354 0.0331 0.0359 0.0117 

skewness 1.4442 1.1365 1.5488 1.0981 1.5728 -0.0855 

kurtosis 13.3680 10.2756 17.2263 10.2654 14.9445 11.4960 

5-percent VaR 0.0387 0.0383 0.0397 0.0391 0.0402 0.0182 

maximum drawdown 0.5306 0.6352 0.5105 0.587 0.6757 0.5713 

annual return 2.5359 2.4042 2.2033 2.2621 2.0524 0.0858 

Sharpe 4.4924 4.3648 3.8681 4.2484 3.5476 0.3014 

Sortino 5.6925 5.4088 4.8065 5.1727 4.4294 0.2912 

Calmar 4.7792 3.7848 4.3159 3.8535 3.0373 0.1502 

 

3. Results and Discussions 

3.1. Case of US Market (1995.01.01 ~ 2018.12.31) 

3.1.1. Machine Learning And Linear Reversal Strategy 

Performances 

As shown in Table 1, for the US stock market, all the 

machine learning strategies and the linear reversal strategy 

significantly outperform the market during the test period 

from 1995.01.01 to 2018.12.31. The portfolios earn mean 

daily returns around 1%, which is equivalent to a tremendous 

annualized mean return of 200%. The associated t-statistic 

indicates that the mean returns are significantly different from 

0. Note that all the strategies exhibit positive skewness, which 

is a desirable property for investors. The 5-percent VaR is 

3.87%, 3.83%, 3.97%, 3.91%, and 4.02% for the XGBoost, 

GBDT, AdaBoost, RF, and linear strategy, respectively, which 

are about twice the level of the market. The greater VaR can be 

attributed to the enlarged volatility, as evidenced by the 

standard deviation. 

 

Figure 1. Net asset values of the RF, AdaBoost, GBDT, XGBoost, and linear strategies in the US market in the sub-periods. The first row displays the net values 

of the strategies, the second row the net value of the benchmark, and the third row the net values of the strategies hedged by the index. A transaction cost of 0.1% 

is assumed. 
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Table 2. Sub-period daily return characteristics and annualized risk matrices of the RF, AdaBoost, GBDT, XGBoost, and linear strategies in the US market. A 

transaction cost of 0.1% is assumed. 

 
1995.01.01-2002.12.31 

XGBoost GBDT AdaBoost RF Linear SP500 

daily mean return 0.0191 0.0184 0.0171 0.0171 0.0153 0.0004 

t-statistics 21.6824 21.2031 19.0303 20.2297 16.269 1.4772 

standard deviation 0.0396 0.039 0.0403 0.0379 0.0421 0.012 

skewness 0.8935 0.9703 0.8978 0.8717 1.349 -0.036 

kurtosis 7.0732 7.9119 10.3651 8.1442 11.2006 5.9348 

5-percent VaR 0.0383 0.039 0.0426 0.0399 0.0435 0.0193 

maximum drawdown 0.4254 0.4252 0.3284 0.3644 0.4036 0.4915 

annual return 4.8236 4.6461 4.3021 4.3031 3.8442 0.0995 

Sharpe 7.622 7.4517 6.6846 7.1059 5.7099 0.365 

Sortino 10.2564 9.7783 8.4924 9.1345 7.4688 0.3515 

Calmar 11.3377 10.9261 13.1001 11.8088 9.5241 0.2025 

 

 
2003.01.01-2010.12.31 

XGBoost GBDT AdaBoost RF Linear SP500 

daily mean return 0.008 0.0074 0.0068 0.0072 0.0066 0.0003 

t-statistics 10.6637 9.9527 8.3142 10.2128 8.6404 0.8406 

standard deviation 0.0337 0.0332 0.0365 0.0318 0.0341 0.0134 

skewness 1.6121 1.2226 2.3931 1.1246 1.7959 0.0065 

kurtosis 15.4511 13.5733 27.1145 12.1105 20.9315 14.1975 

5-percent VaR 0.0413 0.0388 0.0387 0.0394 0.0387 0.0191 

maximum drawdown 0.5306 0.6352 0.5105 0.587 0.5502 0.5678 

annual return 2.0154 1.8548 1.7023 1.8217 1.6523 0.0633 

Sharpe 3.7159 3.4636 2.8891 3.5531 3.0009 0.1563 

Sortino 4.475 4.0084 3.5581 4.0504 3.5732 0.1522 

Calmar 3.7983 2.9199 3.3345 3.1033 3.003 0.1114 

 

 
2011.01.01-2018.12.31 

XGBoost GBDT AdaBoost RF Linear SP500 

daily mean return 0.003 0.0028 0.0024 0.0026 0.0026 0.0004 

t-statistics 4.6372 4.5554 4.0671 4.3365 4.0114 1.8338 

standard deviation 0.0295 0.0278 0.0263 0.0271 0.0293 0.0092 

skewness 2.0814 0.7732 0.6405 1.0141 1.1524 -0.4452 

kurtosis 30.3766 9.2902 8.9973 11.7468 12.0549 7.9361 

5-percent VaR 0.0381 0.0378 0.0372 0.0377 0.0393 0.0153 

maximum drawdown 0.4732 0.5793 0.4715 0.4458 0.6757 0.1978 

annual return 0.7677 0.7107 0.6023 0.6606 0.6598 0.0947 

Sharpe 1.5778 1.5449 1.3684 1.4657 1.3558 0.4436 

Sortino 1.7649 1.6961 1.4519 1.5973 1.5159 0.4186 

Calmar 1.6225 1.2268 1.2775 1.482 0.9764 0.4787 

 

To investigate the performance and the risk profile of the 

strategies in different periods, we decompose the test period 

into three sub-periods, as shown in Figure 1 and Table 2. 

The first sub-period is from 1995.01.01 to 2002.12.31, 

during which the strategies significantly outperform the 

market. Astonishingly, the portfolios earn mean daily 

returns more than 1.5% (380% when annualized) and the 

net values reach around 10
15

. The Sharpe ratios are even 

larger than 7 for the machine learning strategies. To the best 

of our knowledge, such performance is unprecedented and 

superior compared to the remarkable short-term strategy 

performance by Krauss et al. [15], who implement a 

momentum driven statistical arbitrage. Still, the strategies' 

maximum drawdowns are comparable with that of SP500, 

indicating that they do not bear a significant risk. The 

maximum drawdowns occur during the dot-com bubble 

crisis. One potential explanation for the tremendous 

performance is the absence of machine learning techniques 

until early 2000s in the US market. 

The second sub-period ranges from 2003.01.01 to 

2010.12.31. The strategies still perform superbly earning 

mean daily returns around 0.7% (annualized mean returns 

around 200%). It is however notable that the performances are 

seriously weakened compared to the former sub-period. We 

conjecture that the performance weakening is related to the 

attenuated reversal effect in the market. The strategy returns 

still exhibit a positive skewness, and the standard deviation 

and 5-percent VaR are similar to those in the first sub-period, 

which are about twice the level of the market. The maximum 

drawdown reaches 53.06%, 63.52%, 51.05%, 58.7%, and 

55.02% for the XGBoost, GBDT, AdaBoost, RF, and the 

linear strategy, respectively. These values are comparable to 

the market’s maximum drawdown which occurs during the 

global financial crisis. The Sharpe ratios of the strategies 
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remain above 3, exhibiting outstanding return-to-risk 

performances. 

The third sub-period ranges from 2011.01.01 to 2018.12.31. 

We observe further weakening of the strategies’ performances 

in this post-crisis era. The portfolios show mean daily returns 

around 0.3% (annualized returns around 70%), which are 

substantially lower compared to former sub-periods. 

Nevertheless, the strategies still outperform the market. The 

skewness is positive, but the standard deviation and 5-percent 

VaR are larger than those of the benchmark. In particular, the 

maximum drawdown of the strategy is significantly higher 

than that of the market. A year-by-year performance analysis 

reveals that the strategies perform poorly in 2011, 2014, and 

2015, with the annualized Sharpe ratios falling below 0.7 

while the maximum drawdowns reaching 40%. The poor 

performance in 2011 can be associated with the European debt 

crisis, but there are no widely-known economic events that 

can be linked to the poor performances in 2014 and 2015. We 

conjecture that the performance deterioration in this 

sub-period is associated with the attenuated anomalous effects 

in recent years. 

In all three sub-periods, the machine learning and linear 

reversal strategies yield remarkable performances. Among the 

machine learning methods, XGBoost consistently 

outperforms GBDT, AdaBoost and RF, while GBDT, 

AdaBoost and RF perform comparably with each other. It is 

notable that the linear method renders a similar performance 

to the AdaBoost and RF strategies, particularly in the third 

sub-period, the linear model even outperforms AdaBoost. The 

boosting algorithms with enhanced prediction power, such as 

GBDT and XGBoost, can still persistently outperform the 

linear model. The observation implies a diversified 

predictability of the machine learning framework, and by 

properly choosing the model system, more nonlinear 

information might be captured leading to improved 

classification efficiency. 

3.1.2. Prediction Accuracy Analysis 

In order to evaluate the prediction quality of the linear and 

nonlinear models, we conduct a class-level classification 

accuracy analysis. The classification accuracy is calculated as 

in Eq. (5), 

Accuracy = 	
)	5)6

)	5�65�	5)6
          (5) 

where TP, TN, FP and FN respectively denote the true positive, 

true negative, false positive, and false negative. For the first 

class, true positive represents samples that are in the first class 

and also predicted to be in the first class; true negative 

represents those that are not in the first class and predicted to 

be not in the first class; false positive represents those that are 

not in the first class but predicted to be in the first class; false 

negative represents those that are in the first class but 

predicted to be in another class. By definition, the linear model 

divides stocks uniformly across classes. For the machine 

learning models, each class can contain a different number of 

samples, and therefore, we reclassify stocks based on the 

probability for the first class so that they are uniformly divided 

across classes. As the XGBoost performs best among the 

machine learning models, we compare it with the linear 

reversal model. 

 

Figure 2. Classification accuracy of the XGBoost and linear reversal models in the US market in three sub-periods. 

Figure 2 demonstrates the time variation of the classification accuracy for both models. As shown in the figure, the accuracy of 

the XGBoost is slightly above the linear model in all three sub-periods, which might correspond to the 2 thousandth higher daily 

mean return compared to the linear reversal strategy. The finding is consistent with the earlier analysis where nonlinear strategies 

yield a diversified predictability with enhanced performances, suggesting a superiority of the machine learning framework. 
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Table 3. Holding period dependence of the daily return characteristics of the XGBoost strategy in the US market. 

 
1995.01.01-2018.12.31 

2 days 5 days 10 days 20 days SP500 

daily mean return 0.0101 0.0034 0.0032 0.0013 0.0003 

t-statistics 22.2568 7.8314 7.8092 3.2008 2.2692 

standard deviation 0.0351 0.0334 0.0321 0.0322 0.0117 

skewness 1.4442 1.2280 1.1528 0.9199 -0.0855 

kurtosis 13.3680 10.4733 11.5146 10.8843 11.4960 

5-percent VaR 0.0387 0.0430 0.0442 0.0457 0.0182 

maximum drawdown 0.5306 0.7859 0.6914 0.8370 0.5713 

annual return 2.5359 0.8487 0.8126 0.3342 0.0858 

Sharpe 4.4924 1.5431 1.5362 0.5951 0.3014 

Sortino 5.6925 1.8115 1.7678 0.6468 0.2912 

Calmar 4.7792 1.0800 1.1753 0.3993 0.1502 

 

3.1.3. Effects of Holding Period 

To test the effects of the holding period on portfolio 

performance, we re-implement the XGBoost strategy 

extending the portfolio rebalancing period to 5, 10 and 20 

days. As shown in Table 3, the machine learning strategy 

with the elongated holding periods can still outperform the 

index benchmark. The performance, however, is 

significantly deteriorated when the holding period is 

extended to 5 and 10 days, as revealed in the diminished 

daily mean returns and Sharpe ratios. When the holding 

period is set to 20 days, the performance is further 

deteriorated, suggesting that the past one month return 

features are not sufficient to provide enough information for 

the one-month ahead prediction. The t-statistic is also 

reduced with the holding period, but remains above 3 even 

for the 20-day holding period, indicating that the return is 

significantly different from 0. The skewness is still positive, 

but the 5-percent VaR and maximum drawdown increase 

with the holding period. The Sharpe ratio decreases from 

4.49 to 0.59 when the holding period increases from 2 to 20 

days, implying a less satisfiable return-to-risk performance. 

 

Figure 3. Net asset values of the RF, AdaBoost, GBDT, XGBoost, and linear 

strategies in the Chinese market. The first row displays the net values of the strategies, 

the second row the net value of the benchmark, and the third row the net values of the 

strategies hedged by the index. A transaction cost of 0.16% is assumed. 

Table 4. Daily return characteristics and annualized risk matrices of the RF, AdaBoost, GBDT, XGBoost, and linear strategies in the Chinese market. A 

transaction cost of 0.16% is assumed. 

 
2010.06.01-2019.03.14 

XGBoost GBDT AdaBoost RF Linear CSI 500 

daily mean return 0.0032 0.0030 0.0026 0.0023 0.0025 0.0003 

t-statistics 6.2953 5.6829 4.9534 4.8004 5.1311 0.7464 

standard deviation 0.0238 0.0242 0.0244 0.0225 0.0229 0.0171 

skewness -0.5888 -0.4489 -0.6216 -0.5813 -0.4521 -0.7951 

kurtosis 5.6187 5.5033 6.0695 6.4127 7.1845 6.3593 

5-percent VaR 0.0359 0.0389 0.0383 0.0358 0.0337 0.0278 

maximum drawdown 0.4607 0.4518 0.4695 0.4755 0.4112 0.6520 

annual return 0.8157 0.7515 0.6605 0.5893 0.6412 0.0696 

Sharpe 2.0838 1.8749 1.6249 1.5656 1.6807 0.1460 

Sortino 1.9023 1.7384 1.4773 1.4288 1.5690 0.1298 

Calmar 1.7708 1.6634 1.4069 1.2393 1.5592 0.1068 

 

3.2. Case of Chinese Market (2010.06.01-2019.03.14) 

3.2.1. Machine Learning and Linear Reversal Strategy 

Performances 

As displayed in Figure 3 and Table 4, both machine learning 

and linear reversal strategies exhibit remarkable 

outperformances compared to the benchmark in the Chinese 

market from 2010.06.01 to 2019.03.14. The portfolios earn 

mean daily returns around 0.3%, equivalent to annualized 

mean returns around 80%. The standard deviations of the 
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returns are around 2%, slightly larger than that of the market, 

whereas the 5-percent VaR is comparable to that of the 

benchmark. As opposed to the case of the US market, however, 

the skewness is negative for all the strategies, which is not 

favored by investors [2]. Nevertheless, the strategies exhibit 

moderate maximum drawdowns that are smaller than that of 

the benchmark. The Sharpe, Sortino and Calmar ratios of the 

strategies are significant, demonstrating their considerable 

return-to-risk profiles. Note that in Chinese market, XGBoost 

outperforms GBDT, AdaBoost and RF, which is similar to the 

case in US market. 

The performances in the US and the Chinese markets 

demonstrate the profit generating capacity of the tree-based 

machine learning algorithms both in developed and emerging 

markets. The strategies significantly outperform the 

benchmark and yield unprecedented return-to-risk ratios in the 

US market, although the performances are observed to decline 

in recent years. The diminishing performances can be 

attributed to the enhanced market efficiency and deteriorated 

anomalous effect. The strategies also perform remarkably in 

the Chinese market during the past 10 years, demonstrating 

the reversal strategies’ potential in emerging markets. 

Similar to the US market, the linear model again performs 

comparably with AdaBoost and RF, but underperforms GBDT 

and XGBoost, indicating that a considerable amount of 

nonlinear information contained in the short-term past returns 

can be uncovered by the boosting algorithms. 

Furthermore, the return and risk matrices from our model 

system give rise to superior profiles compared to the previous 

machine learning assisted momentum/reversal strategies [17], 

i.e., a Sharpe ratio of around 2 is achieved by XGBoost 

compared to a Sharpe of 1.68 given by SVM in Li and Tam 

[17]. Even though the prominent return may come from a 

much shorter holding period or the contribution of micro-cap 

stocks within the wider selection range, we reserve our view 

that models predicting the classification in look-ahead periods, 

rather than the market state defined from past observation 

periods, can be more robust for the profit exploitation. 

 

Figure 4. Classification accuracy of the XGBoost and linear reversal models in the Chinese market. 

3.2.2. Prediction Accuracy Analysis 

We conduct the class-level classification accuracy analysis described in 3.1.2 for the Chinese market and compare the prediction 

power of the XGBoost and linear reversal models. As shown in Figure 4, the first-class classification accuracies of the XGBoost and 

linear models are around 70%. The accuracy of the linear model lies persistently below XGBoost in the period of testing, which is in 

line with the previous findings. 

Table 5. Holding period dependence of the daily return characteristics of the XGBoost strategy in the Chinese market. 

 
2010.06.01-2019.03.14 

2 days 5 days 10 days 20 days CSI 500 

daily mean return 0.0032 0.0021 0.0012 0.0006 0.0003 

t-statistics 6.2953 4.2008 2.3970 1.1406 0.7464 

standard deviation 0.0238 0.0231 0.0232 0.0227 0.0171 

skewness -0.5888 -0.6341 -0.4696 -0.6410 -0.7951 

kurtosis 5.6187 5.3653 5.0761 5.1811 6.3593 

5-percent VaR 0.0359 0.0367 0.0401 0.0401 0.0278 

maximum drawdown 0.4607 0.5539 0.5097 0.7558 0.6520 

annual return 0.8157 0.5296 0.3032 0.1413 0.0696 

Sharpe 2.0838 1.3618 0.7422 0.3087 0.1460 

Sortino 1.9023 1.2262 0.6747 0.2724 0.1298 

Calmar 1.7708 0.9561 0.5948 0.1870 0.1068 
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3.2.3. Effects of Holding Period 

We re-implement the XGBoost strategy in the Chinese 

market extending the portfolio rebalancing period to 5, 10 and 

20 days in order to examine the impact of the holding period 

on the profitability. As shown in Table 5, increasing the 

holding period sharply attenuates the daily mean returns. The 

t-statistic is also reduced with the holding period, implying a 

less statistically significant profitability. Similar to the case in 

the US market, the 5-percent VaR and the maximum 

drawdown increase when the holding period increases. The 

maximum drawdown and the Sharpe ratio are respectively 

75.58% and 0.31 for the one-month rebalancing period, 

indicating a limited predictive power of the short-term past 

returns for a longer time horizon. 

4. Conclusions 

In this paper, we establish a new framework for machine 

learning-assisted reversal strategies by employing a variety of 

tree-based algorithms. We use short-term past returns up to a 

month to predict the future return class defined by the two-day 

ahead return, and develop a portfolio strategy that invests in 

stocks with a high probability for the high return class. The 

portfolios yield tremendous performances compared to the 

general market. They perform particularly well in the US 

market until early 2000s, showing extremely high Sharpe 

ratios, moderate kurtosis, and positive skewness. The superior 

performances in the US and Chinese markets imply that the 

machine learning based short-term reversal strategy can be 

successfully implemented in both developed and emerging 

markets. However, it should be noted that the performances 

deteriorate in recent years, which can be attributed to the 

attenuated anomalous effects and wider adoption of 

machine-learning techniques in finance. We also develop a 

novel linear reversal strategy based on multiple look-back 

periods, and investigate the discrepancy of the classification 

efficiency between the linear and nonlinear algorithms. It is 

found that the nonlinear framework is capable of providing a 

diversified predictability, and by properly choosing the model 

system, an improved classification accuracy can be readily 

achieved leading to enhanced strategy performances. 

Appendix 

Table 6. Hyperparameters employed by the RF, AdaBoost, GBDT, XGBoost models. 

 
US CHINA 

XGBoost GBDT AdaBoost RF XGBoost GBDT AdaBoost RF 

n_estimators 100 100 70 100 70 80 70 100 

max_depth 6 3 3 3 9 6 3 3 

learning_rate 0.1 0.1 1  0.1 0.1 1  

Table 7. The dependence of strategy daily mean returns on the number of trees in the RF model. Note that the hyper-parametrization is performed for both US and 

Chinese markets. 

num tree 
US China 

20 40 60 80 100 120 20 40 60 80 100 120 

daily mean return 0.009 0.0089 0.0091 0.0091 0.009 0.0089 0.0017 0.0019 0.002 0.0021 0.0023 0.0022 

 

Figure 5. Portfolio profiles for the RF model with different number of trees in both US (a) and Chinese (b) markets. 



159 Zheng Tan et al.:  A Machine Learning Approach for the Short-term Reversal Strategy  

 

 

Figure 6. Factor weight distribution in the XGBoost model for both US (a) and Chinese (b) markets. 

Note that Figure 6 shows the factor weight distribution in the XGBoost model, which is calculated from the relative influence of each variable in trees growing. 

The presented weight distributions are averages of distributions from each model trained in every training period. It is interesting that in both US and Chinese 

markets, past returns with 1 day and 20 days lags are given higher importance in determining the stock forward process. Besides, noteworthy explanatory power 

of return_5 is observed in the Chinese market, probably due to a weekly based reversal investment behavior. Compared to the linear strategy where the factor 

weight is mostly empirically defined, the machine learning offers a more appropriate framework where a more relevant feature distribution can be captured, so 

that a higher classification accuracy is achievable leading to enhanced performances. 
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