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Embedded surfaces with infinite cyclic knot group

ANTHONY CONWAY

MARK POWELL

We study locally flat, compact, oriented surfaces in 4–manifolds whose exteriors
have infinite cyclic fundamental group. We give algebraic topological criteria for two
such surfaces, with the same genus g, to be related by an ambient homeomorphism,
and further criteria that imply they are ambiently isotopic. Along the way, we
provide a classification of a subset of the topological 4–manifolds with infinite cyclic
fundamental group, and we apply our results to rim surgery.

57K40, 57N35

1 Introduction

We study locally flat embeddings of compact, orientable surfaces in compact, oriented,
simply connected topological 4–manifolds, where the complement of the surface has
infinite cyclic fundamental group. Extending the terminology for knotted spheres, we
call this group the knot group, so we shall study knotted surfaces with knot group Z,
or Z–surfaces.

We will present algebraic criteria for pairs of Z–surfaces to be ambiently isotopic.
As part of the proof we obtain an algebraic classification of a certain subset of the
4–manifolds with boundary and fundamental group Z, simultaneously generalising
work of Freedman and Quinn [15] on the closed case, and of Boyer [5] on simply
connected 4–manifolds with nonempty boundary; see Section 1.7. We apply our results
to show that in simply connected 4–manifolds, 1–twisted rim surgery on a surface with
knot group Z yields a topologically ambiently isotopic surface, extending results of
Kim and Ruberman [31] and Juhász, Miller and Zemke [24]; see Section 1.5.
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740 Anthony Conway and Mark Powell

1.1 Surfaces in S 4 and D4

We start with our main results on surfaces in S4 and D4 as the most important special
cases, before going on to explain more general statements for surfaces in any simply
connected 4–manifold.

Theorem 1.1 Any two locally flat , embedded , closed , orientable and genus g ¤ 1; 2

surfaces †0; †1 � S4 with �1.S
4 n†i/Š Z for i D 0; 1 are topologically ambiently

isotopic.

Theorem 1.2 Let K be an Alexander polynomial one knot in S3. Any two locally flat ,
embedded , compact , orientable genus g¤ 1; 2 surfaces†0; †1�D4 with boundary K

and �1.D
4 n†i/Š Z for i D 0; 1 are topologically ambiently isotopic rel boundary.

In a previous paper, we proved Theorem 1.2 in the genus-zero case [10, Theorem 1.2].
With regards to Theorem 1.1, a genus g surface † � S4 is unknotted if it bounds
a locally flat, embedded handlebody in S4. The unknotting conjecture for locally
flat surfaces posits that a locally flat, embedded, closed, oriented surface † � S4 is
unknotted if and only if �1.S

4 n �†/D Z. The forwards direction holds because any
two embeddings of a handlebody in S4 are ambiently isotopic, so an unknotted surface
is ambiently isotopic to a standard embedding. For the reverse direction, Freedman and
Quinn [15, Theorem 11.7A] proved the g D 0 case of 2–knots, when †Š S2, while
Hillman and Kawauchi [22] claimed it for g � 1. Theorem 1.1 offers a new proof for
surfaces of genus g � 3. We also give new proofs for the g D 0 cases, but it should be
noted that this specialisation produces somewhat similar proofs to those of Freedman
and Quinn and our previous work [10].

Our proof of Theorem 1.1 differs from that of Hillman and Kawauchi in [22], who
do not have any genus restrictions. In particular, in a key step in the proof, one
considers a closed 4–manifold M built from the two surface exteriors, and shows
that M is homeomorphic to S1 � S3 # #2g

iD1
S2 � S2. To see this, we control the

ZŒZ�–valued intersection form of M , whereas [22, Proof of Lemma 3.1] just calculates
the Z–valued intersection form, and appeals to separate work of Kawauchi [27], in
which it was claimed that every closed, spin 4–manifold with fundamental group Z

splits as S1 �S3 # X , where X is a closed, simply connected 4–manifold. It would
follow from this claim that computing the Z–valued form suffices. A mistake in [27]
was found by Hambleton and Teichner [21]. Although Kawauchi later updated his
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Embedded surfaces with infinite cyclic knot group 741

theorem [28] to include the hypothesis that the Z–intersection form be indefinite, which
is the case for the 4–manifolds arising in [22], the consensus in the community seems
to be that an independent account is also desirable.

1.2 Surfaces in simply connected 4–manifolds with boundary S 3

To fix our terminology, throughout the article, by a 4–manifold we shall always mean
a compact, connected, oriented, topological 4–manifold with connected boundary.
Surfaces will always be compact, connected, and orientable. We will consider locally
flat, embedded, closed, oriented surfaces†�X with X a closed 4–manifold, and locally
flat properly embedded surfaces †�N , where N is a 4–manifold with boundary S3

and @†DK � S3 is a fixed knot. The exteriors of such surfaces will be denoted by
X† and N† respectively.

Next we formulate our most general statement, for the nonempty boundary case, pairs of
surfaces †i �N , where @†i � @N D S3 is a fixed knot. Theorem 1.2 is an immediate
consequence of Theorem 1.3 below, which we state after introducing the prerequisites.
One quickly deduces consequences for closed surfaces in closed 4–manifolds X , in
particular Theorem 1.1, by removing an unknotted .D4;D2/ pair from .X; †/, as we
will explain in Section 1.3.

Given a compact, oriented 4–manifold M with �1.M /Š Z, we write �1.M /D Z to
mean that we have chosen an isomorphism between �1.M / and Z. In the case of the
exterior X† or N† of an oriented surface †, such an identification is determined by the
orientations on † and on X or N respectively. Set ƒ WD ZŒt˙1� and write H�.M Iƒ/

for the homology of the infinite cyclic cover zM of M , considered as a ƒ–module.
Taking signed intersections in zM endows the homology ƒ–module H2.M Iƒ/ with a
sesquilinear Hermitian intersection form

�M WH2.M Iƒ/�H2.M Iƒ/!ƒ:

The adjoint of �M is the ƒ–module homomorphism

y�M WH2.M Iƒ/! Homƒ.H2.M Iƒ/;ƒ/DWH2.M Iƒ/
�:

If two 4–manifolds M0;M1 with infinite cyclic fundamental group are orientation-
preserving homeomorphic, then their ƒ–intersection forms are isometric. That is, there
exists an isomorphism F W H2.M0Iƒ/

Š�! H2.M1Iƒ/ such that y�M0
D F�y�M1

F .
We write F W �M0

Š �M1
and call F an isometry.

Geometry & Topology, Volume 27 (2023)



742 Anthony Conway and Mark Powell

Let Y be a compact oriented 3–manifold, and let ' W �1.Y /� Z be an epimorphism.
Associated with this data, there is a ƒ–module H1.Y Iƒ/, called the Alexander module,
which is the first homology group of the infinite cyclic cover associated to ker.'/. If this
module is torsion over ƒD ZŒt˙1�, then it is endowed with a sesquilinear Hermitian
Blanchfield form

BlY WH1.Y Iƒ/�H1.Y Iƒ/!Q.t/=ƒ:

More details on this pairing appear in Section 3.1, but we note that BlY should be
thought of as the analogue of the linking pairing of a Q–homology sphere on the level
of infinite cyclic covers.

As we recall in Sections 2 and 3, if M0;M1 are 4–manifolds with �1.Mi/ D Z

whose boundaries @Mi have torsion Alexander modules, and if �1.@Mi/! �1.Mi/ is
surjective for i D 0; 1, then an isometry F W �M0

Š �M1
of the ƒ–intersection forms

induces an isometry of the Blanchfield forms of the boundary,

@F W .H1.@M0Iƒ/;Bl@M0
/ Š�! .H1.@M1Iƒ/;Bl@M1

/:

Here is the construction: via universal coefficients, Poincaré–Lefschetz duality, and the
long exact sequence of a pair, the composition

H2.Mi Iƒ/
�
ŠH 2.Mi Iƒ/ŠH2.Mi ; @Mi Iƒ/

ı
�!H1.@Mi Iƒ/

induces an identification coker.y�Mi
/ŠH1.@Mi Iƒ/, and the map

F�� WD .F�/�1
WH2.M0Iƒ/

�
!H2.M1Iƒ/

�

induces @F W coker.y�M0
/! coker.y�M1

/.

Now we focus on the case where MiDN†i
are surface exteriors, with N a compact, sim-

ply connected 4–manifold with boundary S3. The boundary @N†i
is homeomorphic to

MK ;g WDEK [@ .†g;1 �S1/;

where EK D S3 n �.K/ is the knot exterior and †g;1 denotes the (abstract) genus g

surface with one boundary component. In Proposition 5.7, we show that every auto-
morphism h of the Blanchfield pairing BlMK;g

decomposes as hK ˚ h†, where hK is
an automorphism of BlK WD BlEK

and h† is an automorphism of Bl†g;1�S1 .

Let fK W EK ! EK be an orientation-preserving homeomorphism that is the iden-
tity on @EK . Extend fK via the identity on �K to an orientation-preserving self-
homeomorphism of S3. The mapping class group of S3 is trivial, so there is an
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Embedded surfaces with infinite cyclic knot group 743

isotopy ‚.fK / W S
3 � Œ0; 1�! S3 between the extension and the identity, such that

‚.fK /jS3�f0g D Id and ‚.fK /jEK�f1g D fK .

Here is the central theorem of the paper on embedded surfaces with knot group Z.

Theorem 1.3 Let X be a closed , simply connected and oriented 4–manifold , let
N D X n VD4 be a punctured X , and let K � S3 D @N be a knot. Let †0; †1 � N

be two locally flat , embedded , compact , oriented genus g surfaces with the same
oriented boundary K and �1.N†i

/ D Z for i D 0; 1. Suppose there is an isometry
F W �N†0

Š �N†1
and write @F D hK ˚ h†.

� If hK is induced by an orientation-preserving homeomorphism fK WEK !EK

that is the identity on @EK , then fK extends to an orientation-preserving homeo-
morphism of pairs

.N; †0/
Š�! .N; †1/

inducing the given isometry F WH2.N†0
Iƒ/ŠH2.N†1

Iƒ/.

� If in addition N D D4, then for any choice of isotopy ‚.fK /, the surfaces
†0 and †1 are topologically ambiently isotopic via an ambient isotopy of D4

extending ‚.fK /.

In particular note that if hK D Id, then we can take fK D Id and ‚fK
the constant

isotopy, so that the homeomorphism of pairs in the first item can be assumed to fix the
boundary pointwise, and the ambient isotopy in the second item can be assumed to be
rel boundary.

In general, �N†0
and �N†1

need not be isometric, even for N D D4, as shown by
examples due to Oba [43].

The deduction of the last item uses Alexander’s coning trick, which shows that every
homeomorphism of D4 that restricts to the identity on @D4 is topologically isotopic to
the identity. So in D4, a homeomorphism of pairs can be upgraded to a topological
ambient isotopy. See Section 5.3 for details.

As explained in Section 1.5 below, we will apply Theorem 1.3 to 1–twisted rim surgery,
a method which has been effective at producing exotic embeddings of surfaces. In
Section 1.6, we also apply Theorem 1.3 to study Seifert surfaces that are pushed in
to D4. Further applications can be obtained by finding classes of knots K for which
every automorphism of the Blanchfield pairing is realised by a symmetry of the knot
exterior EK .

Geometry & Topology, Volume 27 (2023)



744 Anthony Conway and Mark Powell

1.3 Ambient isotopy in closed 4–manifolds

For closed surfaces embedded in closed, simply connected 4–manifolds, by applying the
classification of self-homeomorphisms due to Kreck [36], Perron [44] and Quinn [45],
we can potentially upgrade a homeomorphism of pairs obtained from Theorem 1.3
to an ambient isotopy. The theorem (see [45] or [15, Theorem 10.1]) is that two
self-homeomorphisms of a closed, simply connected 4–manifold are isotopic if and
only if they induce the same self-isomorphism on second homology. An analogous
classification of homeomorphisms for simply connected 4–manifolds with boundary
has not yet been proven.

Theorem 1.4 Let X be a closed , simply connected , oriented 4–manifold. Let
†0; †1 � X be two locally flat , embedded , closed , oriented genus g surfaces with
�1.X†i

/D Z for i D 0; 1.

(i) If the intersection forms �X†0
and �X†1

are isometric via an isometry F , then
there is an orientation-preserving homeomorphism of pairs

ˆ W .X; †0/
Š�! .X; †1/

inducing the given isometry ˆ� D F WH2.X†0
Iƒ/ŠH2.X†1

Iƒ/.

(ii) The isometry F induces an isometry FZ W H2.X / ! H2.X / of the standard
intersection form QX of X . The surfaces†0 and†1 are topologically ambiently
isotopic if and only if FZ D Id.

With regards to (ii), Lemma 5.10 furnishes details of how the isometry F W �†0
Š �†1

induces an isometry FZ of the standard intersection form QX . Theorem 1.4 also has
applications to rim surgery, as we explain in Section 1.5.

Theorem 1.4(i) follows from Theorem 1.3. Here is a short outline; see Section 5.4 for
details. After an isotopy, we assume†0 and†1 coincide on a disc D2. Remove an open
neighbourhood of this common disc . VD4; VD2/ from .X; †i/ to obtain a pair .N; z†i/,
with @N Š S3 and @z†i an unknot K. The exterior of †i in X equals the exterior of
z†i in N , so the assumptions of Theorem 1.3 hold. Here, since the unknot has trivial
Alexander module, hK D Id and so we take fK D Id. Then Theorem 1.3 produces a
homeomorphism of pairs .N; z†0/Š .N; z†1/ rel boundary, which we complete with
the identity on the missing 4–ball to prove (i). Deducing (ii) uses the classification of
homeomorphisms from [45] and [15, Theorem 10.1] mentioned above.
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Embedded surfaces with infinite cyclic knot group 745

Remark 1.5 It is worth contrasting Theorem 1.4 with a result of Sunukjian. Indeed,
[49, Theorem 7.2] shows that closed surfaces †0; †1 � X of the same genus with
knot group Z are topologically isotopic provided b2.X / � j�.X /j C 2. Thus, when
X is “big enough”, restrictions on the equivariant intersection form are not needed to
establish isotopy.

1.4 Deducing Theorems 1.1 and 1.2 from Theorems 1.3 and 1.4

In the closed case, with X D S4, if we have an isometry F of the intersection form of
X†0
D S4

†0
and X†1

D S4
†1

then the map FZ WH2.S
4/!H2.S

4/ is automatically
the identity automorphism.

For the case with nonempty boundary, with N DD4, Alexander polynomial one implies
that H1.EK Iƒ/D 0, so hK D Id automatically, and we may take fK WEK !EK also
to be the identity.

Therefore, in both cases, it suffices to find an isometry between the intersection forms
of the surface exteriors. It is an open question whether this is true in general. For genus
zero, ie for discs and spheres, this is automatically the case since the ƒ–coefficient
second homology of the surface exterior vanishes. Therefore the genus-zero cases of
Theorems 1.1 and 1.2, due to [15, Theorem 11.7A] and [10, Theorem 1.2], respectively,
follow from Theorems 1.3 and 1.4.

For genus at least three, our strategy to show that the intersection forms are isometric is
as follows. As explained above, the exterior of a closed surface in S4 can be considered
as the exterior of a properly embedded surface in D4, so we discuss only the latter
case.

By [2, Theorem 5] (see also Theorem A.1), †0 and †1 are stably equivalent, meaning
that they become isotopic after adding some number of trivial tubes. Therefore the
intersection forms of �D4

†0

and �D4
†1

satisfy �D4
†0

˚H˚n
2
Š �D4

†1

˚H˚n
2

for some
n� 0, where

H2 WD

�
0 t � 1

t�1� 1 0

�
:

Then provided g is at least three we are able to leverage algebraic cancellation results
for hyperbolic forms from Bass [1] (see also Crowley and Sixt [12], Hambleton and
Teichner [21], Khan [29] and Magurn, van der Kallen and Vaserstein [41]) to improve
such a stable isometry to an isometry. While we refer to Section 7.1 for details, we
record one of the aforementioned intermediate results as it might be of independent
interest.
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746 Anthony Conway and Mark Powell

Proposition 1.6 Let X be a closed , simply connected , oriented 4–manifold. Let
†0; †1 � N D X n VD4 be two locally flat , properly embedded , compact , oriented
genus g surfaces with boundary the same oriented knot K � S3, and �1.N†i

/DZ for
i D 0; 1. There exists an integer n� 0 and an isometry

�N†0
˚H˚n

2
Š �N†1

˚H˚n
2
:

Whereas Theorems 1.1 and 1.2 hold for g ¤ 1; 2, Proposition 1.6 leads to some
results for arbitrary g. Indeed, Corollary 6.6 shows that for any genus g surface
† � N D X n VD4 with knot group Z and @† an Alexander polynomial one knot,
�N† ˚ H˚n

2
Š QX ˚ H˚.gCn/

2
for some n � 0, where QX denotes the standard

intersection form of X . The same result holds for closed surfaces †� X with knot
group Z.

1.5 Application to rim surgery

Rim surgery is an effective way to produce smoothly inequivalent embeddings of
surfaces; see Fintushel and Stern [14], Juhász, Miller and Zemke [24], Kim [30], Kim
and Ruberman [31] and Mark [42]. Given a locally flat embedded closed oriented
surface † in a closed 4–manifold X , a knot J � S3 and simple closed curve ˛ �†,
n–roll m–twist rim surgery outputs another locally flat embedded closed oriented
surface †m

n .˛;J /�X . The case where mD 0; nD 0 was first introduced by Fintushel
and Stern [14], while m–twisted rim surgery was introduced by Kim [30], and n–roll
m–twist rim surgery first appeared in Kim and Ruberman [32].

Kim and Ruberman [32, Theorem 1.3 and Proposition 3.1] showed that if X is a simply
connected 4–manifold, �1.X†/ D Zd is a finite cyclic group and .m; d/ D 1, then
†m

n .˛;J / and † are topologically isotopic. In order to extend this to infinite cyclic fun-
damental groups, we consider n–roll 1–twist rim surgery, and set†n.˛;J / WD†

1
n.˛;J /.

In this case if �1.X†/DZ, then also �1.X†n.˛;J //DZ. Our first result on rim surgery
then reads as follows.

Theorem 1.7 Let X be a closed , simply connected 4–manifold , let † � X be a
locally flat , embedded , orientable surface with knot group Z, let ˛ � † be a simple
closed curve , let J be a knot , and let n 2 Z. Then the surfaces † and †n.˛;J / are
topologically ambiently isotopic.

Geometry & Topology, Volume 27 (2023)



Embedded surfaces with infinite cyclic knot group 747

For good fundamental groups �1.X n†/ and J a slice knot, Kim and Ruberman showed
in [31, Theorem 4.5] that there is a homeomorphism of pairs .X; †/Š .X; †0.˛;J //,
so for �1.X n†/Š Z our result is an extension.

Rim surgery is also defined for a properly embedded surface in a 4–manifold N with
boundary. Juhász, Miller and Zemke [24, Corollary 2.7] showed that if † � N is a
properly embedded locally flat oriented surface, and if ˛ bounds a locally flat disc
in N†, then †0.˛;J / is topologically isotopic to †. In the case where † has knot
group Z, we generalise this result as follows.

Theorem 1.8 Let X be a closed , simply connected 4–manifold , and let N WDX n VD4

be a punctured X . Let †�N be a locally flat , properly embedded , orientable surface
with knot group Z, let ˛ �† be a simple closed curve , let J be a knot , and let n 2 Z

be an integer. There is a rel boundary orientation-preserving homeomorphism of pairs

.N; †/ Š�! .N; †n.˛;J //:

If N D D4, then the surfaces † and †n.˛;J / are topologically ambiently isotopic
rel boundary.

Note that in both of the previous two results, we have no restrictions on the genera of
the surfaces. This is because we show that the ƒ–intersection forms of N†n.˛;J / and
N† coincide, allowing us to apply the first item of Theorem 1.3, for which there is no
genus restriction.

For the case N D D4, Theorem 1.8 means that the construction of exotic surfaces
in [24] applies more generally than realised in that article, because the condition that ˛
bounds a locally flat embedded disc in N† is not needed.

1.6 Application to pushed-in Seifert surfaces

Pushing a Seifert surface for a knot K into D4 yields a surface with knot group Z. It
is then intriguing to wonder whether any two Seifert surfaces of the same genus for
a knot K become isotopic once pushed into D4; see for instance Problem 1.20(C) of
Kirby [33] and Section 6 of Livingston [40]. In Theorem 7.11, relying on Theorem 1.3,
we show that this is the case for Alexander polynomial one knots.

Theorem 1.9 If F0;F1 �D4 are genus g pushed-in Seifert surfaces for an Alexander
polynomial one knot K, then they are topologically ambiently isotopic rel boundary.
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748 Anthony Conway and Mark Powell

This result provides another setting where we are able to obtain results for g D 1; 2. In
particular, it rules out the most naive potential counter examples to the conjecture that
Theorem 1.2 holds for Z–surfaces of any genus.

1.7 A classification result for topological 4–manifolds

Several of the steps from the proof of Theorem 1.3 fit in a classification scheme that
applies to a wider class of 4–manifolds than surface exteriors. We state the resulting
theorem, which is analogous to Boyer’s classification [5] for the simply connected case.

We say that a compact, oriented, topological 4–manifold M with nonempty connected
boundary has ribbon boundary if the inclusion induced map � W �1.@M /! �1.M / is
surjective. For example, in simply connected 4–manifolds, (connected) surface exteriors
with infinite cyclic fundamental group have ribbon boundaries. Set ƒ WDZŒt˙1�. If we
have an identification �1.M /D Z, then we have infinite cyclic covers zM !M and
@ zM ! @M and ƒ–modules H�.M Iƒ/DH�. zM / and H�.@M Iƒ/DH�.@ zM /.

Let M0 and M1 be two 4–manifolds with infinite cyclic fundamental group, whose
boundaries are ribbon and have ƒ–torsion Alexander modules. Fix an orientation-
preserving homeomorphism f W @M0! @M1 that intertwines the inclusion induced
maps 'i W�1.@Mi/�Z, and an isometry F W .H2.M0Iƒ/; �M0

/! .H2.M1Iƒ/; �M1
/

of the ƒ–valued intersection forms �M0
and �M1

. As described in Section 3.4 below,
f and F induce isometries of the boundary Blanchfield forms:

f�; @F W .H1.@M0Iƒ/;Bl@M0
/! .H1.@M1Iƒ/;Bl@M1

/:

We call .f;F / a compatible pair if f and F induce the same isometry. For conciseness,
we write

HomeoC' .@M0; @M1/ WD ff 2 HomeoC.@M0; @M1/ j '1 ıf� D '0g

for the set of orientation-preserving homeomorphisms of the boundaries that intertwine
the maps to Z.

Recall that the Kirby–Siebenmann invariant ks.Mi/2Z=2 is the unique obstruction for
the stable tangent bundle Mi!BTOP to lift to Mi!BPL, or equivalently for Mi to be
smoothable after adding copies of S2�S2; see Freedman and Quinn [15, Theorem 8.6]
and Friedl, Nagel, Orson and Powell [17, Section 8]. This is relevant in the next theorem
for the nonspin case; note that for 4–manifolds with fundamental group Z, whether or
not they are spin is determined by the intersection pairing.
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Embedded surfaces with infinite cyclic knot group 749

Theorem 1.10 Suppose M0 and M1 are two compact , oriented 4–manifolds with
�1.Mi/D Z for i D 0; 1, whose boundaries are ribbon and have ƒ–torsion Alexander
modules. Let f 2HomeoC' .@M0; @M1/ be a homeomorphism and let F W�M0

Š�M1
be

an isometry. If M0 and M1 are not spin , assume that the Kirby–Siebenmann invariants
satisfy ks.M0/D ks.M1/ 2 Z=2. Then the following assertions are equivalent :

(i) The pair .f;F / is compatible.

(ii) The homeomorphism f extends to an orientation-preserving homeomorphism

ˆ WM0
Š�!M1

inducing the given isometry F WH2.M0Iƒ/ŠH2.M1Iƒ/.

Remark 1.11 Theorem 1.10 should be compared with both Boyer’s classification [5]
of simply connected 4–manifolds with boundary and with Freedman and Quinn’s
classification [15] of closed 4–manifolds with infinite cyclic fundamental group. Boyer
uses a notion, similar to our compatible pairs, which he calls morphisms. In a nutshell,
given simply connected 4–manifolds M0;M1 with rational homology spheres as their
boundaries, Boyer [5, Theorem 0.7 and Proposition 0.8] shows that a morphism .f;F /

can be extended to a homeomorphism M0!M1. Note that Boyer’s methods differ
from ours, as he does not use the union of forms. On the other hand, Freedman and
Quinn [15, Theorem 10.7A] show that closed 4–manifolds with infinite cyclic funda-
mental groups are classified by their ƒ–intersection form and their Kirby–Siebenmann
invariant; see also Stong and Wang [48] and Hambleton, Kreck and Teichner [20].

A major step in the proof of Theorem 1.10 is the following intermediate result, which
might be of independent interest; a more detailed statement and a proof can be found
in Theorem 3.12.

Theorem 1.12 Suppose M0 and M1 are two compact , oriented 4–manifolds with
�1.Mi/D Z for i D 0; 1, whose boundaries are ribbon and have ƒ–torsion Alexander
modules. Let .f;F / be a compatible pair. If M0 and M1 are not spin , assume that
the Kirby–Siebenmann invariants satisfy ks.M0/D ks.M1/ 2 Z=2. Then there is an
orientation-preserving homeomorphism

M0[f �M1 Š S1
�S3 #

a

#
iD1

S2
�S2 #

b

#
jD1

S2
z�S2

for some a; b with aC b D b2.M0/. If M0 and M1 are spin , then b D 0.
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750 Anthony Conway and Mark Powell

Remark 1.13 We compare Theorem 1.12 with a particular case of a result due to
Hambleton and Teichner [21]. Hambleton and Teichner show that if M is a closed,
oriented, topological 4–manifold with infinite cyclic fundamental group and with
b2.M /� j�.M /j � 6, then M is homeomorphic to the connected sum of S1 � S3

with a unique closed, simply connected 4–manifold [21, Corollary 3]. In most cases,
this result is stronger than Theorem 1.12. However, there are some situations (such
as the union of two genus one surface exteriors X†0

;X†1
� S4 with �1.X†i

/D Z

for i D 0; 1) where Theorem 1.12 applies while [21, Corollary 3] does not. Finally,
note that Sunukjian [49, Theorem 7.2] has used these results to study closed surfaces
†�X with �1.X n �†/D Z in closed 4–manifolds that satisfy b2.X /� j�.X /jC 6.

1.8 Isometries of the Blanchfield form

Theorem 1.10 provides a criterion for extending a homeomorphism f W @M0! @M1

to a homeomorphism M0 !M1: one must fit f into a compatible pair. However,
in practice, finding compatible pairs is difficult and so we provide some sufficient
conditions for their existence.

Recall that if V is a 4–manifold with �1.V /D Z whose boundary Y D @V is ribbon
and has torsion Alexander module, then an isometry F of the ƒ–intersection form �V

induces an isometry

@F W .H1.Y Iƒ/;BlY / Š�! .H1.Y Iƒ/;BlY /:

We write Aut.�V / and Aut.BlY / for the groups of isometries of �V and BlY , and note
that there is a left action of Aut.�V / on Aut.BlY / given by F � hD h ı @F�1. We will
be interested in a quotient of the orbit set

Aut.BlY /=Aut.�V /:

In order to find compatible pairs, we need to know when an isometry of the Blanchfield
form is induced by a homeomorphism. As we have already alluded to, we note in
Proposition 3.7 that any homeomorphism f 2 HomeoC' .Y / induces a ƒ–isometry f�
of BlY by lifting f to the infinite cyclic covers. Here, HomeoC' .Y / WDHomeoC' .Y;Y /
denotes the set of orientation-preserving self-homeomorphisms of Y that intertwine
the map �1.Y /! Z. The assignment .f;F / � hD f� ı h ı @F�1 then gives rise to a
left action

HomeoC' .Y /�Aut.�V /Õ Aut.BlY /:
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We return to our 4–manifolds M0 and M1, whose boundaries are ribbon and have
torsion Alexander module. If M0 and M1 are orientation-preserving homeomorphic,
then a compatible pair exists; recall Theorem 1.10. Assuming that we are given a home-
omorphism f 0 2HomeoC' .@M0; @M1/ and an isometry F 0 W �0 Š �1, Proposition 3.14
notes that .f 0;F 0/ gives rise to a compatible pair .f;F / if the composition f 0� ı@F

0�1

is trivial in Aut.Bl@M1
/=HomeoC' .@M1/�Aut.�M1

/. Using this result, we obtain the
following consequence of Theorem 1.10.

Theorem 1.14 Suppose M0 and M1 are two compact , oriented 4–manifolds with
�1.Mi/D Z for i D 0; 1, whose boundaries are ribbon and have ƒ–torsion Alexander
modules. Assume M0 and M1 have orientation-preserving homeomorphic boundaries ,
via a homeomorphism that intertwines the maps to Z, and isometric intersection forms.
If the orbit set

Aut.Bl@M1
/=HomeoC' .@M1/�Aut.�M1

/

is trivial , then there is an orientation-preserving homeomorphism M0 ŠM1.

Theorem 1.14 is helpful to summarise a programme to prove that two 4–manifolds M0

and M1 (with infinite cyclic fundamental group and identical ribbon boundaries with
torsion Alexander modules) are homeomorphic:

(i) Decide whether the ƒ–intersection forms �M0
and �M1

are isometric.

(ii) Show that the orbit set Aut.Bl@M1
/=HomeoC' .@M1/�Aut.�M1

/ is trivial.

To illustrate this paradigm, we explain how Theorem 1.3 can be applied to classify
Z–surfaces for some knots purely in terms of their intersection pairings. For any knot
K � S3, multiplication by a monomial ˙tk gives rise to an automorphism of its
Blanchfield pairing BlEK

on the exterior of the knot. For some knots K, these are the
only automorphisms, and in this case we obtain a simpler classification of Z–surfaces,
ie locally flat, oriented surfaces † in N with �1.N†/Š Z, with boundary K.

Corollary 1.15 Let X be a closed , simply connected , oriented 4–manifold , and
let N WD X n VD4 be a punctured X . Let †0 and †1 be two Z–surfaces in N with
the same genus and oriented boundary, so @†0 D @†1 D K � S3. Suppose that
Aut.BlEK

/� f˙tk j k 2 Zg.

(i) There is a rel boundary homeomorphism of pairs .N; †0/Š .N; †1/ if and only
if there is an isometry �N†0

Š �N†1
.

(ii) If N DD4, then †0 and †1 are ambiently isotopic rel boundary if and only if
there is an isometry �D4

†0
Š �D4

†1
.
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Proof Let F W �N†0

Š�! �N†1
be an isometry. Consider the isomorphism g WD

@F jH1.EK Iƒ/ induced on the Alexander module of K. It is an automorphism of the
Blanchfield form and therefore by the hypothesis on Aut.BlEK

/, g is multiplication
by ˙tk for some k 2 Z. Precompose F with multiplication by ˙t�k , to obtain a new
isometry inducing Id on H1.EK Iƒ/. Then apply Theorem 1.3 with fK D Id.

Remark 1.16 If the Alexander module H1.EK Iƒ/ is cyclic with order �K , then
the automorphisms of the Blanchfield pairing can be computed directly as follows.
Suppose that BlK .1; 1/D b=�K 2Q.t/=ƒ for some b 2ƒ. Then

Aut.BlEK
/D fŒp� 2ƒ=�ƒ j Œp � xp � b�D Œb� 2ƒ=�ƒg:

In particular, for K D˙T2;3 a trefoil, it is not too hard to compute that Aut.BlEK
/D

f˙tk j k D�1; 0; 1g, so that Corollary 1.15 applies to classify all Z–surfaces with
boundary a trefoil in terms of the isometry type of the intersection pairing.

Organisation

In Section 2, we review some notions on linking forms and define the union of Hermitian
forms over ƒ. In Section 3, we show how this algebraic union can be used to express
the intersection form of a union of two 4–manifolds; we also prove Theorem 1.12. In
Section 4, we prove Theorem 1.10, our partial classification result for 4–manifolds
with infinite cyclic fundamental group. In Section 5, we prove Theorems 1.3 and 1.4,
our main results on properly embedded surfaces in simply connected 4–manifolds.
In Section 6, we discuss the equivariant intersection forms for surfaces with knot
group Z, before focusing on surfaces in S4 and D4 in Section 7, where we prove
Theorems 1.1 and 1.2. In Section 8, we prove Theorems 1.7 and 1.8 on rim surgery.
In the appendix, we adapt the work of Baykur and Sunukjian to properly embedded
surfaces in 4–manifolds with boundary.
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Conventions
(i) From now on, all manifolds are assumed to be compact, connected, based and

oriented; if a manifold has a nonempty boundary, then the basepoint is assumed
to be in the boundary. We work in the topological category with locally flat
embeddings unless otherwise stated.

(ii) X will always denote a closed, simply connected, oriented 4–manifold and we
will write N WDX n VD4 for the complement of an open ball VD4 �X .

(iii) A Z–surface † will always refer to a compact, connected, oriented, locally flat,
embedded surface in a 4–manifold, whose knot group is isomorphic to Z; a
surface †�X is understood to be closed, while a surface †�N is understood
to be properly embedded.

(iv) If P is manifold and Q � P is a submanifold with tubular neighbourhood
�Q � P , then PQ WD P n �Q will always denote the exterior of Q in P . The
only exception to this is that the exterior of a knot K in S3 will be denoted by
EK instead of S3

K
.

(v) Throughout the article, we set ƒ WD ZŒt˙1� for the ring of Laurent polynomials
and Q WDQ.t/ for its field of fractions.

(vi) For a manifold X , we write �1.X /D Z to mean that there is an isomorphism
�1.X /Š Z, and that we have fixed a choice of such an isomorphism. For the
exterior of a Z–surface, the orientations on X and † determine an identification
of the fundamental group with Z. The choice of map �1.X /DZ determines an
isomorphism ZŒ�1.X /�!ƒ, which we use to define homology and cohomology
with ƒ coefficients.

(vii) We write p 7! xp for the involution on ƒ induced by sending t 7! t�1 and
extending linearly. Given a ƒ–module H , we write H for the ƒ–module whose
underlying abelian group is H but with module structure given by p � hD xph

for h 2H and p 2ƒ.

(viii) We write H� WD Homƒ.H; ƒ/.

(ix) For any ring R, elements of Rn are considered as column vectors.

(x) Let f WX!Y be a morphism in a category C, and let F WC!D be a contravariant
functor. Assume that F.f / is invertible. We shall often write the induced
morphism in D as f � D F.f /, and denote its inverse by f �� WD .f �/�1 D

F.f /�1.

Geometry & Topology, Volume 27 (2023)



754 Anthony Conway and Mark Powell

2 The union of forms along isometries of their boundary
linking forms

We develop the theory required for computing the intersection form of a closed
4–manifold obtained as the union of two compact 4–manifolds along their common
boundary. Here is a summary of this section. In Section 2.1, we review the boundary
linking form of a Hermitian form. In Section 2.2, we discuss isometries of Hermitian
forms and linking forms. In Section 2.3, we study the union of two Hermitian forms
over ƒ WD ZŒt˙1�. In Section 2.4, we provide a condition for this union to admit a
metaboliser.

2.1 The boundary of Hermitian forms and their isometries

We fix our terminology on Hermitian forms, linking forms and their boundaries. Refer-
ences include [47, Section 3.4] and [12, Section 6].

A Hermitian form over ƒ is a pair .H; �/, where H is a free ƒ–module and

� WH �H !ƒ

is a sesquilinear Hermitian pairing. Here by sesquilinear, we mean that �.px; qy/D

p�.x;y/xq for all x;y 2H and all p; q 2ƒ. By Hermitian, we mean that �.y;x/D
�.x;y/ for all x;y 2H . The adjoint of � is the ƒ–linear map

y� WH ! Homƒ.H; ƒ/DWH�

such that y�.y/.x/ D �.x;y/. A Hermitian form is nondegenerate if its adjoint is
injective and nonsingular if its adjoint is an isomorphism. The standard hyperbolic
form is

HC.ƒ/ WD

�
ƒ˚ƒ;

�
0 1

1 0

��
:

Remark 2.1 If .H; �/ is a nondegenerate Hermitian form, then coker.y�/ is a torsion
ƒ–module. This can be seen by tensoring the following exact sequence with the field
of fractions Q WDQ.t/ of ƒ:

0!H
y�
,�!H�! coker.y�/! 0:

A linking form .T; ˇ/ over ƒ consists of a torsion ƒ–module T together with a
sesquilinear Hermitian form ˇ W T �T !Q=ƒ. The adjoint of ˇ is the ƒ–linear map
y̌WT!Homƒ.T;Q=ƒ/ such that y̌.y/.x/Dˇ.x;y/. A linking form is nondegenerate
if its adjoint is injective and nonsingular if its adjoint is an isomorphism.
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Definition 2.2 The boundary linking form of a nondegenerate Hermitian form .H; �/

over ƒ is the linking form .coker.y�/; @�/, where @� is defined as

@� W coker.y�/� coker.y�/!Q=ƒ; .Œx�; Œy�/ 7!
1

s
.y.z//;

where, since coker.y�/ is ƒ–torsion, there exists an s 2 ƒ and a z 2 H such that
sx D y�.z/.

It is not difficult to show that @� is independent of the choices involved, and is sesquilin-
ear and Hermitian. We conclude with two remarks that we will use throughout this
section.

Remark 2.3 Let .H; �/ be a Hermitian form, and set HQ WD H ˝ƒ Q. Since H

is free, we can identify Homƒ.H; ƒ/˝ƒ Q with H�
Q
WD HomQ.HQ;Q/. As stated

in Remark 2.1, if .H; �/ is nondegenerate, then coker.y�/ is a torsion ƒ–module and
therefore y�Q WD

y�˝ƒ IdQ WHQ!H�
Q

is a nonsingular Hermitian form over Q.

Using this remark, we describe an equivalent definition of the boundary linking form.

Remark 2.4 The boundary linking form of a nondegenerate Hermitian form .H; �/

can be described as @�.Œx�; Œy�/D y.y��1
Q .x// for Œx�; Œy� 2 coker.y�/. Choose a basis

bD .ei/
n
iD1

for H and endow Homƒ.H; ƒ/ with the dual basis b�. If Aij D �.ei ; ej /

is a Hermitian matrix representing �, then A is a matrix for y� and @�.Œx�; Œy�/ D
y.y��1

Q
.x// D .A�1x/T xy D xT A�1 xy. For future reference, note that since A is

Hermitian, we have ADAT .

2.2 Isometries of forms

We discuss isometries of Hermitian forms and linking forms. References include
[47, Section 3.4] and [12, Section 6].

Let .H0; �0/ and .H1; �1/ be Hermitian forms over ƒ. A ƒ–linear isomorphism
F W H0 ! H1 is an isometry if �1.F.x/;F.y// D �0.x;y/ for all x;y 2 H0. Let
Iso.�0; �1/ denote the set of isometries between the Hermitian forms .H0; �0/ and
.H1; �1/, and let Aut.�/ WD Iso.�; �/ denote the group of self-isometries of a Hermitian
form .H; �/.

We make the analogous definitions for linking forms. Let .T0; ˇ0/ and .T1; ˇ1/ be
two linking forms over ƒ. A ƒ–linear isomorphism h W T0 ! T1 is an isometry

Geometry & Topology, Volume 27 (2023)



756 Anthony Conway and Mark Powell

if ˇ1.h.x/; h.y// D ˇ0.x;y/ for all x;y 2 T0. We let Iso.ˇ0; ˇ1/ denote the set of
isometries between the linking forms .T0; ˇ0/ and .T1; ˇ1/, and let Aut.ˇ/ WD Iso.ˇ; ˇ/
denote the group of self-isometries of a linking form .T; ˇ/.

An isomorphism F WH0!H1 induces an isomorphism F�� WD .F�/�1 WH�
0
!H�

1
.

If additionally, the isomorphism F 2 Iso.�0; �1/ is an isometry, then F�� descends to
an isomorphism

@F WD F�� W coker.y�0/! coker.y�1/:

For later use, we note that F W .H0; �0/ ! .H1; �1/ is an isometry if and only if
y�0 D F�y�1F . Next, we verify that @F is an isometry of the boundary linking forms.

Lemma 2.5 If F W .H0; �0/! .H1; �1/ is an isometry of nondegenerate Hermitian
forms , then @F is an isometry of linking forms:

@F W .coker.y�0/; @�0/! .coker.y�1/; @�1/:

This construction provides a map

@ W Iso.�0; �1/! Iso.@�0; @�1/;

which is a homomorphism on automorphism groups.

Proof Given Œx�; Œy� 2 coker.y�0/, there exist s 2ƒ and z 2H0 such that sx D y�0.z/ .
Since F is an isometry, it follows that sF��.x/D F��y�0.z/D y�1F.z/. We can now
conclude that @F is an isometry because

@�1.@F.Œx�/; @F.Œy�//D @�1.F
��.Œx�/;F��.Œy�//

D
1

s
F��.y/F.z/

D
1

s
y.z/

D @�0.Œx�; Œy�/:

The last assertion follows from the equality .G ıF /�� DG�� ıF��.

Using Lemma 2.5, we are led to the following definition.

Definition 2.6 The boundary of an isometry F W .H0; �0/! .H1; �1/ of nondegenerate
Hermitian forms is the isometry of linking forms

@F W @.H0; �0/! @.H1; �1/:
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2.3 The union of nondegenerate Hermitian forms

We define the union of two Hermitian forms .H0; �0/ and .H1; �1/ over ƒ along an
isometry of their boundary linking forms. The definition is inspired by [11, Chapter 3],
which was concerned with forms over the integers.

We describe the main construction of this subsection. In what follows, for i D 0; 1, we
use �i WH

�
i ! coker.y�i/ to denote the canonical projections.

Construction 2.7 Let .H0; �0/ and .H1; �1/ be two nondegenerate Hermitian forms
overƒ, and let h W .coker.y�0/; @�0/! .coker.y�1/; @�1/ be an isometry of their boundary
linking forms. Consider the pair .H; �/ with

H WD ker.h�0��1 WH
�
0 ˚H�1 ! coker.y�1//;

�

��
x0

x1

�
;

�
y0

y1

��
D

1

s0
y0.z0/�

1

s1
y1.z1/ 2Q;

where since coker.y�i/ is torsion, there exist si 2ƒ and zi 2Hi such that sixi D
y�i.zi/.

Since the Hermitian forms �0 and �1 are nondegenerate, it is not difficult to prove that
the pairing � does not depend on the choice of s0; s1; z0; z1.

The next proposition establishes some facts about the pairing .H; �/.

Proposition 2.8 The pair .H; �/ from Construction 2.7 has the following properties.

(i) For .x0;x1/; .y0;y1/ 2H , the pairing � can equivalently be defined as

�

��
x0

x1

�
;

�
y0

y1

��
D y0.y�

�1
0;Q.x0//�y1.y�

�1
1;Q.x1//:

(ii) If we choose bases for H0;H1 and dual bases for H�
0
;H�

1
and let A0;A1 be

Hermitian matrices representing �0; �1, then

�

��
x0

x1

�
;

�
y0

y1

��
D xT

0 A�1
0 xy0�xT

1 A�1
1 xy1:

(iii) The pairing � is sesquilinear , Hermitian and takes values in ƒ.

(iv) The following two maps , which we abridge by y�0; y�1, are injective:

.H0; �0/

�
y�0

0

�
,��! .H; �/

�
0
y�1

�
 ��- .H1;��1/:

Furthermore , these maps satisfy y�0.H0/
? D y�1.H1/.
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Proof To prove the first assertion, notice that since �i;Q is a nonsingular pairing for
iD0; 1, we can write y��1

i;Q
.xi/D zi=si for some zi 2H and some si 2ƒ. Consequently,

y�i.zi/ D sixi and we have .1=si/yi.zi/ D yi.y�
�1
i;Q
.xi//, as desired. This proves the

first assertion. The second assertion now follows as in Remark 2.4.

We prove the third assertion. The fact that � is sesquilinear and Hermitian follows from
the second assertion and the fact that A�1

0
and A�1

1
are Hermitian. Next, using the

definition of the boundary linking forms @�0 and @�1 from Definition 2.2, we have

�

��
x0

x1

�
;

�
y0

y1

��
D @�0.Œx0�; Œy0�/� @�1.Œx1�; Œy1�/ mod ƒ:

By definition of H , we have hŒx0�D x1 and hŒy0�D y1. Then since h is an isometry,
this latter expression vanishes:

@�0.Œx0�; Œy0�/� @�1.Œx1�; Œy1�/� @�0.Œx0�; Œy0�/� @�1.hŒx0�; hŒy0�/

� @�0.Œx0�; Œy0�/� @�0.Œx0�; Œy0�/� 0 2Q=ƒ:

It follows that � takes values in ƒ, concluding the proof of the third assertion. We now
prove the fourth assertion. First, we check that y�0 is an isometric embedding; the proof
for y�1 is identical. Since the pairings are nondegenerate, the maps are injective and
given z0; z

0
0
2H0, we have

�

��
y�0.z0/

0

�
;

�
y�0.z

0
0
/

0

��
D y�.z00/.z0/D �0.z0; z

0
0/:

It remains to check that y�0.H0/
? D y�1.H1/. The inclusion y�0.H0/

? � y�1.H1/ is
clear and so we prove the inclusion y�0.H0/

? � y�1.H1/. Assume that .x0;x1/ 2H

(with sx0 D
y�0.z0/) satisfies, for all a0 2H0,

0D �

��
x0

x1

�
;

�
y�0.a0/

0

��
D

1

s
y�0.a0/.z0/D

1

s
�0.z0; a0/ 2ƒ:

As �0 is nondegenerate, this implies that z0 D 0 and therefore x0 D 0. But since
.x0;x1/ 2 H , we also have Œx1�D hŒx0�D 0 and so x1 D

y�1.z1/ for some z1 2 H1.
We therefore conclude that y�0.H0/

? D y�1.H1/, establishing the proposition.

Note that Proposition 2.8 does not contain a statement about theƒ–module H being free.
Since we defined Hermitian forms over free ƒ–modules, a Hermitian module .H; �/
will refer to a pair consisting of a finitely generated ƒ–module H and a sesquilinear
Hermitian pairing � WH �H !ƒ; we drop the requirement that H be free.
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Definition 2.9 Let .H0; �0/ and .H1; �1/ be two nondegenerate Hermitian forms
overƒ, and let h W .coker.y�0/; @�0/! .coker.y�1/; @�1/ be an isometry of their boundary
linking forms. The union of .H0; �0/ and .H1; �1/ along h is the Hermitian module
.H0[h H1; �0[h��1/ described in Construction 2.7 and Proposition 2.8:

H0[h H1 WD ker.h�0��1 WH
�
0 ˚H�1 ! coker.y�1//;

�0[h��1

��
x0

x1

�
;

�
y0

y1

��
D

1

s0
y0.z0/�

1

s1
y1.z1/ 2ƒ;

where, since coker.y�i/ is torsion, there exist si 2ƒ and zi 2Hi such that sixi D
y�i.zi/.

Remark 2.10 We briefly discuss the nonsingularity of .H0 [h H1; �0 [h ��1/.
Proposition 2.8 contains no statement about .H; �/ WD .H0[h H1; �0[h��1/ being
nonsingular. While this holds over the integers [11, Lemma 3.6] and in the topological
setting of Proposition 3.9, we will not prove it in the algebraic generality of this section.
If y� WH Š�! Homƒ.H; ƒ/DWH� is nonsingular, then H must be free, since for any
finitely generated ƒ–module H , the dual H� is free [3, Lemma 2.1].

Given a ƒ–module H , we set H� WD Homƒ.H; ƒ/. If H is free, then there is a ƒ–
linear evaluation isomorphism ev WH !H�� given by evx.'/D '.x/, where x 2H

and ' 2H�. The next remark uses ev to describe the adjoint of �0[h��1.

Remark 2.11 Let .H0; �0/ and .H1; �1/ be two nondegenerate Hermitian forms
over ƒ, and let h 2 Iso.@�0; @�1/ be an isometry. The adjoint of � WD �0 [h ��1 is
given by

y� WH0[h H1! .H0[h H1/
�;

�
y0

y1

�
7! .ev ev/

�
y��1

0;Q
0

0 �y��1
1;Q

��
y0

y1

�
:

This follows by combining the definition of ev with the second and third items of
Proposition 2.8. Indeed, for .x0;y0/ 2H0[h H1, we have

�

��
x0

x1

�
;

�
y0

y1

��
D �

��
y0

y1

�
;

�
x0

x1

��
D x0.y�

�1
0;Q
.y0//�x1.y�

�1
1;Q
.y1//

D .evy��1
0;Q

.y0/ ev�y��1
1;Q

.y1//

�
x0

x1

�
D y�

�
y0

y1

��
x0

x1

�
:

We conclude this section by describing how the union interacts with boundary isometries.
The proof follows immediately from the definitions and is left to the reader.

Geometry & Topology, Volume 27 (2023)



760 Anthony Conway and Mark Powell

Proposition 2.12 Let .H0; �0/, .H1; �1/ be Hermitian forms , and h 2 Iso.@�0; @�1/

be an isometry. If F 2 Iso.�0; �1/ is an isometry, then F��˚ Id induces an isometry

.H0; �0/[h .H1;��1/! .H1; �1/[hı@F�1 .H1;��1/:

2.4 Lagrangian complements

This subsection provides a criterion for a union of Hermitian forms to be metabolic.
It motivates the notion of a compatible pair, which will be introduced in the next
subsection. The idea for this criterion stems from work of Kreck [37, Proposition 8]
and Crowley and Sixt [12, Theorem 5.11], and their work on the monoid `2qC1.ZŒ��/.

A Lagrangian for a nonsingular Hermitian form .H; �/ is a direct summand L�H

such that L? DL. A nonsingular Hermitian form that admits a Lagrangian is called
metabolic. A Lagrangian complement for a half-rank direct summand V � .H; �/ is a
Lagrangian of .H; �/ such that L˚V DH .

In the next proposition, for an isomorphism F WH0!H1 we consider the graph

�F�� D f.x;F
��.x// j x 2H�0 g �H�0 ˚H�1 :

Since, by definition of @F , we have @F.x/�F��.x/D F��.x/�F��.x/D 0, we
deduce the inclusions �F�� � ker.@F ı�0��1/DH0[@F H1 �H�

0
˚H�

1
.

Proposition 2.13 Let F W .H0; �0/! .H1; �1/ be aƒ–isometry such that �0[@F ��1

is nonsingular. The graph �F�� �H0[@F H1 is a Lagrangian complement for y�0.H0/:

H0[@F H1 D
y�0.H0/˚�F�� :

Proof Set � WD �0 [@F ��1. We show that �F�� is a Lagrangian. To see that
�F�� � �

?
F��

, we must show that for all x0;y0 2H�
0

,

�

��
x0

F��.x0/

�
;

�
y0

F��.y0/

��
D 0:

Pick s0 2 ƒ and z0 2 H0 so that s0x0 D
y�0.z0/. We apply F�� to both sides of

this equation. Since F is an isometry, we have F�y�1F D y�0, and we therefore
obtain s0F��.x0/D y�1.F.z0//. Using the definition of �, we now obtain the desired
conclusion:

�

��
x0

F��.x0/

�
;

�
y0

F��.y0/

��
D

1

s0
y0.z0/�

1

s0
F��.y0/.F.z0//D 0:
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Next, we show that �?
F��
� �F�� . We therefore assume that .x0;x1/ 2H0[@F H1

satisfies, for all y0 2H�
0

, the equation

�

��
x0

x1

�
;

�
y0

F��.y0/

��
D 0;

and we must show that x1 D F��.x0/. Pick s0; s1 2 ƒ, z0 2 H0 and z1 2 H1 so
that s0x0 D

y�0.z0/ and s1x1 D
y�1.z1/. We have s0F��.x0/ D y�1.F.z0//. Use

consecutively the definition of � and the definition of pullback to obtain

0D �

��
x0

x1

�
;

�
y0

F��.y0/

��
D y0

�
z0

s0

�
�F��.y0/

�
z1

s1

�
D y0

�
z0

s0

�F�1

�
z1

s1

��
:

Since this equation holds for all y0, we deduce that

z0

s0

D F�1

�
z1

s1

�
:

Using that F is an isometry, as well as the definitions of s0, s1, z0 and z1, we obtain
the desired equation:

x0 D
y�0

�
z0

s0

�
D y�0

�
F�1

�
z1

s1

��
D F�

�
y�1

�
z1

s1

��
D F�.x1/:

To conclude the proof that �F�� is a Lagrangian, it remains to show that it is a direct
summand of H WD ker.@F ı�0��1/. In fact, we will show that

y�0.H0/˚�F�� DH:

First we establish the inclusion y�0.H0/C�F�� �H . To do so, we must prove that
the sum of arbitrary elements .y�0.z0/; 0/ 2 y�0.H0/ and .y;F��.y// 2 �F�� belongs
to H . In other words, we must show that @F Œy�0.z0/C y�D ŒF��.y/�. This uses the
fact that F�� induces @F (by Definition 2.6) and the fact that, since F is an isometry,
F�� ı y�0.z0/ D y�1.F.z0// belongs to im.y�1/ and so the class ŒF�� ı y�0.z0/� must
vanish in the quotient coker.y�1/:

@F Œy�0.z0/Cy�D ŒF��y�0.z0/�C ŒF
��.y/�D ŒF��.y/�:

Next, we prove the reverse inclusion, namely that H � y�0.H0/C�F�� . To show this,
we must write .x;y/ 2H as a sum of an element in y�0.H0/ with an element in �F�� .
Consider the decomposition

.x;y/D .x�F�.y/; 0/C .F�.y/;y/:

The second term certainly lies in �F�� , so we need to argue that the first term lies
in y�0.H0/. Since .x;y/ 2H , we know that @F Œx�D Œy� in coker.y�1/. It follows that
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F��.x/� y 2 H�
1

belongs to im.y�1/. Since F is an isometry, this is equivalent to
saying that x�F�.y/ 2 im.y�0/, as desired.

Having proved that y�0.H0/C�F�� DH , it remains to check that y�0.H0/\�F�� D 0

(so that the sum is direct): if .y�0.x0/; 0/D .x;F
��.x// belongs to this intersection,

then F��.x/D 0 and therefore 0D x D y�0.x0/. This proves Proposition 2.13.

3 The intersection form of the union of two 4–manifolds

We start our study of 4–manifolds with infinite cyclic fundamental group and of their
ƒ–intersection forms. First, recall the following definition from the introduction.

Definition 3.1 A 4–manifold M has ribbon boundary if @M is nonempty and path-
connected, and the map �1.@M /! �1.M / induced by the inclusion is surjective.

Here is a summary of Section 3. In Section 3.1, we show that if M is a 4–manifold
with infinite cyclic fundamental group whose boundary is ribbon and has torsion
Alexander module, then the boundary linking form @�M of �M is isometric to minus
the Blanchfield form of @M . In Section 3.2, we describe when homeomorphisms of
3–manifolds induce isometries of the Blanchfield pairing. In Section 3.3 we show
that the ƒ–intersection form of a union of two manifolds can be expressed using
the algebraic union from Section 2.3. In Section 3.4, we introduce the notion of a
compatible pair and prove Theorem 1.12 from the introduction.

3.1 The boundary of the intersection form

If a 4–manifold M with �1.M /D Z has ribbon boundary and ƒ–torsion Alexander
module, then @M is endowed with a sesquilinear Hermitian nonsingular linking form
over ƒ, namely the Blanchfield form

Bl@M WH1.@M Iƒ/�H1.@M Iƒ/!Q=ƒ:

This subsection establishes that the boundary linking form of the ƒ–intersection form
of M is isometric to minus the Blanchfield form of @M . Since results of this form
are known (see eg [4, Theorem 2.6]), we only outline the argument so as to fix some
notation for later use.

We collect some homological facts about 4–manifolds with infinite cyclic fundamental
group.
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Lemma 3.2 Let M be a 4–manifold with �1.M /D Z. When @M is nonempty, we
assume it is ribbon and has torsion Alexander module H1.@M Iƒ/. The following
assertions hold :

(i) H0.M Iƒ/Š Z and , if @M ¤∅, then H2.@M Iƒ/Š Z.

(ii) The ƒ–modules H1.M Iƒ/, H1.M; @M Iƒ/ and H3.M Iƒ/ all vanish.

(iii) The ƒ–modules H2.M Iƒ/ and H2.M; @M Iƒ/ are free.

(iv) When @M D ∅, the ƒ–intersection form �M is nonsingular , whereas for
@M ¤∅, �M is nondegenerate , and any matrix representing it presents the
Alexander module of @M .

Proof Throughout this proof we use that since the manifold has fundamental group Z,
homology with ƒ–coefficients can be computed as the homology of the universal cover.
Since universal covers are 1–connected, we immediately deduce that H0.M Iƒ/Š Z

and H1.M Iƒ/ D 0. If the boundary is nonempty, the long exact sequence of the
pair shows that H1.M; @M Iƒ/ D 0; here we used that @M is connected, as as-
sumed in Definition 3.1. For later use, we also note that H0.M; @M Iƒ/ D 0, also
owing to the fact that @M is connected. As H1.@M Iƒ/ is torsion, we have that
Homƒ.H1.@M Iƒ/;ƒ/D 0, and thus H2.@M Iƒ/ Š Ext1ƒ.H0.@M Iƒ/;ƒ/ Š Z by
duality and the universal coefficient spectral sequence [39, Theorem 2.3]. Since
Hi.M; @M Iƒ/D 0 for i D 0; 1, duality and the universal coefficient spectral sequence
(UCSS for short) also show that H3.M Iƒ/ D H 1.M; @M Iƒ/ D 0. Thus we have
proved the first two assertions; we now prove the third. Poincaré duality and the UCSS
imply that

H2.M Iƒ/ŠH 2.M; @M Iƒ/Š Homƒ.H2.M; @M Iƒ/;ƒ/;

H2.M; @M Iƒ/ŠH 2.M Iƒ/Š Homƒ.H2.M Iƒ/;ƒ/:

Since the dual of a finitely generated ƒ–module is free [3, Lemma 2.1], we deduce
that these second homology modules are free over ƒ. This proves the third assertion
and also establishes the fourth, namely that in the closed case, the ƒ–intersection form
is nonsingular. Finally, when the boundary is nonempty, the map

ZŠH2.@M Iƒ/!H2.M Iƒ/

is the zero map (since H2.M Iƒ/ is free) and therefore the intersection form is nonde-
generate; it presents H1.@M Iƒ/ because we established that H1.M Iƒ/D 0.

In the case with nonempty connected boundary, we fix bases for the free ƒ–modules
H2.M Iƒ/ and H2.M; @M Iƒ/.

Geometry & Topology, Volume 27 (2023)



764 Anthony Conway and Mark Powell

Remark 3.3 Let M be a 4–manifold with �1.M / D Z whose boundary is ribbon
and has torsion Alexander module. Fix a basis b for H WD H2.M Iƒ/, endow
the dual H� WD Homƒ.H; ƒ/ with the dual basis b�, and equip H2.M; @M Iƒ/

with the basis PD ı ev�1.b�/ coming from the isomorphisms ev WH 2.M Iƒ/!H�

and PD WH 2.M Iƒ/!H2.M; @M Iƒ/. A short computation shows that if the matrix A

is defined as Aij WD �M .bi ; bj /, then AT D A is a matrix for y�M WH !H�; recall
Remark 2.1. The same conclusion holds for the map H !H2.M; @M Iƒ/ induced
by the inclusion [9, Section 5.2]. As mentioned in the fourth item of Lemma 3.2, the
connecting homomorphism ı in the long exact sequence of the pair .M; @M /, together
with Poincaré duality and the evaluation map, determines a map

DM W coker.y�M /D coker.AT / Š�!H1.@M Iƒ/; Œx� 7! ı ıPD ı ev�1.x/;

where x 2H2.M Iƒ/
�. The map DM is well-defined and an isomorphism. That it is

well-defined follows from a diagram chase in the next diagram, in which all homology
has ƒ coefficients. The left two vertical maps are isomorphisms, and therefore by the
five lemma so is DM . To help the reader to parse the basis choices above, we also
indicate the matrices representing the maps on the left of the diagram:

(1)

0 // H2.M /
y�M

AT

//

IdI

��

H2.M /� //

PD ı ev�1I

��

coker.y�M / //

DM

��

0

0 // H2.M /
j

AT

// H2.M; @M /
ı
// H1.@M / // 0

Next, we briefly recall the definition of the Blanchfield pairing, referring to [9; 18] as
references in which the conventions are identical to ours.

Definition 3.4 Let N be a closed 3–manifold with an epimorphism ' W �1.N /� Z

such that the resulting Alexander module is ƒ–torsion. The adjoint of the Blanchfield
pairing is defined by the composition

H1.N Iƒ/
Š

PD�1
��!H 2.N Iƒ/

Š

BS�1
��!H 1.N IQ=ƒ/

Š

ev��! Homƒ.H1.N Iƒ/;Q=ƒ/

of the inverse of Poincaré duality, the inverse of a Bockstein homomorphism, and the
evaluation map. The Blanchfield pairing is a nonsingular linking form, so in particular
it is sesquilinear and Hermitian.

Now we can prove the main result of this subsection.
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Proposition 3.5 Let M be a 4–manifold with �1.M /D Z whose boundary is ribbon
and has torsion Alexander module. The map DM defined in Remark 3.3 induces an
isometry

DM W @.H2.M Iƒ/; �M /D .coker.y�M /; @�M / Š�! .H1.@M Iƒ/;�Bl@M /:

Proof Choose bases for H2.M Iƒ/ and H2.M; @M Iƒ/ as in Remark 3.3, and use
the notation of that remark. The same argument as in [9, Section 5] shows that the
following diagram (with exact columns) commutes:

0

��

0

��

H2.M Iƒ/�H2.M Iƒ/
.x;y/ 7!�xT Axy

//

AT�AT

��

ƒ

��

H2.M; @M Iƒ/�H2.M; @M Iƒ/
.x;y/7!�xT A�1 xy

//

ı�ı
��

Q

��

H1.@M Iƒ/�H1.@M Iƒ/

��

Bl@M
// Q=ƒ

��

0 0

In particular, the isomorphism

DM W coker.y�M /D coker.AT / Š�!H1.@M Iƒ/

induced by ı and discussed in Remark 3.3 is an isometry between the linking forms
.coker.y�M /; @�M / and .H1.@M Iƒ/;�Bl@M /. Here we are using the characterisation
of @�M from Remark 2.4.

The next remark records that the presence of a minus sign in Proposition 3.5 is immate-
rial once one passes to isometry groups, and defines the bijection D# which identifies
the two isometry groups.

Remark 3.6 Given linking forms .H0; ˇ0/ and .H1; ˇ1/, observe that canonically
we have Iso.ˇ0; ˇ1/D Iso.�ˇ0;�ˇ1/; the presence of the minus sign has no effect.
In particular if M0 and M1 are 4–manifolds with �1.Mi/ D Z for i D 0; 1, whose
boundaries are ribbon and have torsion Alexander modules, then we can use the maps
Di WDDMi

from Proposition 3.5 to obtain an identification

D#
W Iso.@�M0

; @�M1
/ Š�! Iso.Bl@M0

;Bl@M1
/; zf 7!D1 ı

zf ıD�1
0 :
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3.2 Homeomorphisms and isometries

In this short subsection, we provide a condition for a homeomorphism between 3–
manifolds to induce an isometry of Blanchfield forms.

Proposition 3.7 Suppose that Y 3
0
;Y 3

1
are 3–manifolds equipped with epimorphisms

'i W �1.Yi/� Z and assume that the resulting Alexander modules H1.Yi Iƒ/ are
ƒ–torsion for i D 0; 1. If an orientation-preserving homotopy equivalence f WY 3

0
!Y 3

1

satisfies '1 ıf� D '0 on �1.Y0/, then it induces an isometry between the Blanchfield
forms:

f� W .H1.Y0Iƒ/;BlY0
/! .H1.Y1Iƒ/;BlY1

/:

Proof Since we assumed that '1 ı f� D '0, the homotopy equivalence f induces
ƒ–isomorphisms f� WH�.Y0Iƒ/! H�.Y1Iƒ/ (and similarly on cohomology). The
fact that f has degree one, together with the naturality of the UCSS and the Bockstein
homomorphism, ensures that f� intertwines the Blanchfield pairings, concluding the
proof of the proposition.

For pairs .Y0; '0/ and .Y1; '1/ as in the statement of Proposition 3.7, we consider
those orientation-preserving homeomorphisms that intertwine the 'i :

HomeoC' .Y0;Y1/D ff 2 HomeoC.Y0;Y1/ j '1 ıf� D '0g:

In the case where .Y0; '0/D .Y1; '1/, we simply write HomeoC' .Y0/ for the resulting
group.

3.3 Algebraic unions and topological unions

In this subsection, we show that under favourable conditions, the ƒ–intersection
form of a union of two 4–manifolds can be expressed using the algebraic union of
Hermitian forms from Section 2.3. For that however, given two manifolds M0;M1 with
�1.Mi/D Z, we need to verify that �1.M0 [f �M1/D Z. Here and from now on,
when �i.Mi/ D Z, we take 'i W �1.@Mi/! �1.Mi/ D Z to be the map induced by
the inclusion. Thus, when we write HomeoC' .@M0; @M1/, it is with respect to these
inclusion induced maps.

Lemma 3.8 If f 2 HomeoC' .@M0; @M1/ is a homeomorphism where M0;M1 are
4–manifolds with ribbon boundaries and �1.Mi/D Z, then �1.M0[f �M1/D Z.
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Proof In order to apply van Kampen’s theorem, for i D 0; 1 we write �1.Mi/DZhtii,
so that �1.M0[f �M1/ is generated by t0; t1. Consider the commutative diagram

�1.@M0/
f�;Š

//

'0

$$ $$

�0
����

�1.@M1/

�1
����

'1

zzzz

�1.M0/ Zht0i
 0;Š

// Zhti Zht1i
 1;Š

oo �1.M1/

Here, for j D 0; 1, �j W�1.@Mj /!�1.Mj / is the inclusion induced map and  j W tj 7! t .
In the group �1.M0 [f �M1/, the relations identify �1f�.g/ with �0.g/ for every
g 2 �1.@M0/. Since �0 is surjective, there is a � 2 �1.@M0/ with �0.�/ D t0. We
deduce that in �1.M0[f �M1/, the relations identify t0D '0.�/ with �1.f�.�//D tn

1

for some n. Under the identification given by the  i and using that '0.�/D '1.f�.�//,
we deduce that nD 1. Thus �1.M0[f �M1/ is cyclic. For every g 2 �1.@M0/, we
have �0.g/D tm

0
for some m, and the same reasoning as above shows that �0.g/D tm

0
is

identified with �1.f�.g//D tm
1

in �1.M0[f �M1/. It follows that �1.M0[f �M1/

is isomorphic to ht0; t1 j t0 D t1i Š Z.

Next, we prove the main result of this section, after setting up some notation. Con-
tinuing with the setting of Lemma 3.8, we write M WD M0 [f �M1. Note that
y�M WH2.M Iƒ/!H2.M Iƒ/

� is an isomorphism because @M D∅; recall the fourth
item of Lemma 3.2. This endows H2.M Iƒ/

� with a Hermitian form, which we shall
denote by ��1

M
.

For i D 0; 1, we set y�i WD
y�Mi

, and as above we write Di WD DMi
. Combining

Propositions 3.5 and 3.7, we have an isometry

zf� W coker.y�0/
D0
�!H1.@M0Iƒ/

f�
�!H1.@M1Iƒ/

D�1
1
��! coker.y�1/;

which satisfies D#. zf�/D f�.

Proposition 3.9 Let M0;M1 be two 4–manifolds with �1.Mi/DZ for iD0; 1, whose
boundaries are ribbon and have torsion Alexander modules. Given a homeomorphism
f 2HomeoC' .@M0; @M1/, set M WDM0[f �M1, and let �j WMi!M be the inclusion.
The map �

��
0

��
1

�
WH2.M Iƒ/

�
!H2.M0Iƒ/

�
˚H2.M1Iƒ/

�

induces an isometry

(2) .H2.M Iƒ/
�; ��1

M / Š�! .H2.M0Iƒ/[ zf�
H2.M1Iƒ/; �M0

[ zf�
��M1

/:

Geometry & Topology, Volume 27 (2023)



768 Anthony Conway and Mark Powell

Furthermore , the map y�M induces an isometry .H2.M Iƒ/; �M /!.H2.M Iƒ/
�; ��1

M
/,

which , using the identification from (2), makes the following diagram commute:

(3)

.H2.M0Iƒ/; �M0
/
� � �0

//

v�
y�M0

))

.H2.M Iƒ/; �M /

y�MŠ

��

.H2.M1Iƒ/;��M1
/? _

�1
oo

hHy�M1

uu

.H2.M0Iƒ/[ zf�
H2.M1Iƒ/; �M0

[ zf�
��M1

/

In particular , H2.M0Iƒ/[ zf�
H2.M1Iƒ/ is a free ƒ–module and �M0

[ zf�
��M1

is
nonsingular.

Proof Lemma 3.8 implies that �1.M / D Z. Consider the following commutative
diagram in which the first and third rows are exact and ƒ coefficients are understood:

(4)

0 //H2.M0/˚H2.M1/
.�0 �1/

//

j0˚j1

��

H2.M / //

PD�1
M

��

H1.@M1/ // 0

H2.M0; @M0/˚H2.M1; @M1/

PD�1
M0
˚�PD�1

M1
��

H 2.@M1/ H 2.M0/˚H 2.M1/
f �� incl�

0
� incl�

1
oo

Š ev˚ ev

��

H 2.M /

�
��
0

��
1

�
oo

Š ev

��

0oo

H2.M0/
�˚H2.M1/

� H2.M /�

�
��
0

��
1

�
oo

We justify the three zeros that appear. In the first row, the rightmost zero comes from
the fact that H1.Mi Iƒ/ D 0 for i D 0; 1 by the second item of Lemma 3.2. For
the leftmost zero of the first row, the first and third items of Lemma 3.2 respectively
imply that H2.@Mi Iƒ/D Z is ƒ–torsion and that H2.Mi Iƒ/ is free. It follows that
the inclusion induced homomorphism H2.@Mi Iƒ/!H2.Mi Iƒ/ is zero. The same
argument explains the appearance of the zero in the third row: H 2.M Iƒ/ is free
and H 1.@M1Iƒ/ is ƒ–torsion. The commutativity of the middle square follows by
applying [7, Lemma 8.2] with K DM0 and LDM1, as well as applying excision to
the pairs .M;M nMi/.

Our next aim is to simplify the diagram in (4). We write �i WH2.Mi Iƒ/
�! coker.y�i/

for the canonical projection.
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Claim 1 The isometry zf� W coker.y�0/
Š�! coker.y�1/ fits in the diagram

(5)

0 //
H2.M0Iƒ/
˚

H2.M1Iƒ/

. �0 �1 /
//

y�0˚�
y�1

��

H2.M Iƒ/

Š y�M

��

// H1.@M1Iƒ/

coker.y�1/
H2.M0Iƒ/

�

˚

H2.M1Iƒ/
�

zf��0��1
oo H2.M Iƒ/

�

�
��
0

��
1

�
oo 0oo

where the rows are exact and the square is commutative.

Proof The two vertical compositions in (4) are by definition y�0 ˚ �
y�1 and y�M ,

respectively. Thus the exactness of the top row and the commutativity of the square
follow from (4). It therefore remains to establish the exactness of the bottom row in (5).
A second look at (4) shows a similar exact sequence with cohomology instead of duals
and H 2.@M1Iƒ/ instead of coker.y�1/. We shall produce the commuting square

(6)

H 2.@M1Iƒ/

G1Š
��

H 2.M0Iƒ/˚H 2.M1Iƒ/
f �� incl�

0
� incl�

1
oo

Š ev˚ ev
��

coker.y�1/ H2.M0Iƒ/
�˚H2.M1Iƒ/

�
zf��0��1

oo

that can be appended to the bottom left of (4). The claim will then follow immediately.

We define isomorphisms Gi , for i D 0; 1, as the composition

Gi WDD�1
i ıPD WH 2.@Mi Iƒ/

Š�!H1.@Mi Iƒ/
Š�! coker.y�i/:

The map Gi agrees with the rightmost vertical downwards composition (inverting Di)
in the next diagram. Again ƒ coefficients are understood, and the rows are exact:

(7)

0 // H 2.Mi ; @Mi/
j�

i
//

ŠPD
��

H 2.Mi/
incl�

i
//

PD Š

��

H 2.@Mi/ //

PD Š

��

0

0 // H2.Mi/
ji

// H2.Mi ; @Mi/
ıi

// H1.@Mi/ // 0

0 // H2.Mi/
y�i

//

Id

H2.Mi/
�

�i
//

PD ı ev�1Š

OO

coker.y�i/ //

DiŠ

OO

0
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The diagram commutes by the definition of y�i as ev ıPD�1
ıji , and using standard

naturality of Poincaré duality; for the bottom right square, one uses the definition of
Di from Remark 3.3. Via Gi and ev, the concatenation of the two squares on the right
identifies the maps �i and incl�i . That is, for i D 0; 1,

(8) Gi ı incl�i D �i ı ev WH 2.Mi Iƒ/! coker.y�i/:

This shows that the bottom left square in the following diagram commutes. This
diagram again has ƒ coefficients and vertical maps isomorphisms:

(9)

H1.@M0Iƒ/
f�

Š
//

PD�1Š
��

H1.@M1Iƒ/

PD�1Š
��

H 2.M0/
incl�

0
//

ev Š
��

H 2.@M0/
f ��

Š
//

G0 Š
��

H 2.@M1/

ŠG1
��

H2.M0/
�

�0
// coker.y�0/

zf�

Š
// coker.y�1/

Commutativity of the top right square follows from naturality of Poincaré duality and
the fact that all four maps are isomorphisms. Using this and that Di D PD ıG�1

i for
i D 0; 1, starting with the definition of zf� W coker.y�0/! coker.y�1/ we obtain

zf� DD�1
1 ıf� ıD0 DG1 ıPD�1

ıf� ıPD ıG�1
0 DG1 ıf

��
ıG�1

0 :

In other words, the bottom right square of (9) commutes.

Therefore the bottom of diagram (9) yields G1 ıf
�� ı incl�0 D zf� ı�0 ıev. Subtracting

(8) with i D 1, we obtain the desired commutative square (6). The diagram in (5) then
follows from the combination of (4) and (6), completing the proof of the claim.

Now we write T WDH1.@M1Iƒ/, as well as Hi WDH2.Mi Iƒ/ for i D 0; 1. We also set
V WDH2.M Iƒ/

� and identify H2.M Iƒ/ with the double dual H2.M Iƒ/
�� D V �

via the evaluation isomorphism ev. With this notation, the diagram from Claim 1 leads
to the following commutative diagram in which both rows are exact:

(10)

0 // H0˚H1

. ev ev /
//

y�0˚�
y�1

��

V �

Š y�M

��

// T

coker.y�1/ H�
0
˚H�

1

zf��0��1
oo Voo 0oo
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Identify V DH2.M Iƒ/
� with ker. zf��0��1/ and view it as a subspace of H�

0
˚H�

1
.

The diagram in (10) therefore yields the equation

(11)
�
y�0 0

0 �y�1

�
D y�M ı .ev ev/:

Since Lemma 3.2 implies that H2.M Iƒ/ is a free ƒ–module and H1.M Iƒ/D 0, we
may identify H 2.M IQ/ with H 2.M Iƒ/˝ƒQ, and similarly for

H 2.Mi ; @Mi IQ/ŠH 2.Mi ; @Mi Iƒ/˝ƒQ and H 2.Mi IQ/ŠH 2.Mi Iƒ/˝ƒQ

for i D 0; 1. As a consequence, we may identify the tensored up intersection pairings
�M ˝ƒ IdQ and �i ˝ƒ IdQ with the nonsingular Q–valued intersections pairings
on H2.M IQ/ and H2.Mi IQ/. Since y�M is invertible by Lemma 3.2, we deduce
from (11) that

y��1
M D .ev ev/ ı

�
y��1

0;Q
0

0 �y��1
1;Q

�
:

As noted in Remark 2.11, this is precisely the adjoint of �0[ zf�
��1.

We have thus proved that the inclusions �0 and �1 induce an isometry

.H2.M Iƒ/
�; ��1

M /Š .H0[ zf�
H1; �0[ zf�

��1/:

Now, since ��
M
D �M , a quick verification shows that the isomorphism

y�M WH2.M Iƒ/!H2.M Iƒ/
�

induces an isometry between the forms .H2.M Iƒ/; �M / and .H2.M Iƒ/
�; ��1

M
/.

Indeed, writing H WDH2.M Iƒ/, this follows from the following commutative diagram:

H
y�M

Š
//

y�M
��

H�

y��1
M
��

H� H
Š

y��
M
Dy�M

oo

The commutativity of the diagram in (3) follows from the commutativity of (10): we
have shown that .H0 [ zf�

H1; �0 [ zf�
��1/ Š .H2.M Iƒ/; �M / and, recalling that

.ev; ev/D .�0; �1/, the diagram in (10) gives y�M ı �0.x0; 0/D y�0.x0; 0/, leading to the
commutativity of the left-hand triangle of (3); the reasoning for the right-hand triangle
is identical.

Geometry & Topology, Volume 27 (2023)



772 Anthony Conway and Mark Powell

3.4 Compatible pairs

Throughout this section, M0 and M1 are 4–manifolds with �1.Mi/ D Z for i D

0; 1, whose boundaries are ribbon and have torsion Alexander modules. This section
introduces a notion of compatibility for an isometry F W H2.M0Iƒ/! H2.M1Iƒ/

and a homeomorphism f W @M0 ! @M1. We then prove Theorem 1.12 from the
introduction.

Since the boundaries are ribbon, and we have identifications �1.Mi/DZ, the inclusions
@Mi ,!Mi induce surjections 'i W �1.Mi/� Z for i D 0; 1. Recall from Section 3.2
that we set

HomeoC' .@M0; @M1/D ff 2 HomeoC.@M0; @M1/ j '1 ıf� D '0g:

Proposition 3.7 ensures that a homeomorphism f 2 HomeoC' .@M0; @M1/ induces
an isometry f� 2 Iso.Bl@M0

;Bl@M1
/ of the Blanchfield forms. On the other hand,

recall from Lemma 2.5 that an isometry F 2 Iso.�M0
; �M1

/ of the ƒ–intersection
forms of M0 and M1 induces an isometry @F D F�� of the boundary linking forms.
Using Proposition 3.5, we identify these boundary linking forms with minus the
corresponding Blanchfield forms, so that using Remark 3.6 we may consider D#.@F /2

Iso.Bl@M0
;Bl@M1

/.

Definition 3.10 An orientation-preserving homeomorphism f 2HomeoC' .@M0; @M1/

is compatible with an isometry F 2 Iso.�M0
; �M1

/ if, using the identification D# from
Remark 3.6, we have

D#.@F /D f� W .H1.@M0Iƒ/;Bl@M0
/! .H1.@M1Iƒ/;Bl@M1

/:

In this case, the pair .f;F / is called a compatible pair.

The next proposition shows that the existence of a compatible pair is a necessary condi-
tion for a homeomorphism f 2 HomeoC' .@M0; @M1/ to extend to a homeomorphism
M0! M1.

Proposition 3.11 Let f 2 HomeoC' .@M0; @M1/ be a homeomorphism , and let F 2

Iso.�M0
; �M1

/ be an isometry. If f extends to an orientation-preserving homeomor-
phism ˆ WM0

Š�!M1 that induces F , then .f;F / is a compatible pair.

Proof Write �i WD �Mi
and Di WDDMi

for i D 0; 1. The homeomorphism ˆ induces
an isomorphism ˆ� W �1.M0/! �1.M1/. By the assumption on f , the isomorphisms
�1.Mi/ D Z are such that ˆ� intertwines them. This follows because in the next
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diagram both triangles, the top square, and the large outside square commute:

�1.@M0/
f�
//

��

'0

""

�1.@M1/

��

'1

||

�1.M0/
ˆ�

// �1.M1/

Z Z

It follows that the bottom square commutes too. By assumption ˆ induces the maps

F WH2.M0Iƒ/
Š�!H2.M1Iƒ/ and F�� WH2.M0Iƒ/

� Š�!H2.M1Iƒ/
�:

By Lemma 2.5 the map F�� induces an isometry

@F W .coker.y�0/; @�0/
Š�! .coker.y�1/; @�1/:

We assert that @F fits into a commuting diagram of isometries

(12)

coker.y�0/
@F

Š
//

D0Š

��

coker.y�1/

D1Š

��

H1.@M0Iƒ/
f�

Š
// H1.@M1Iƒ/

The maps Di are isometries by Proposition 3.5, and the map f� in the bottom row is an
isometry by Proposition 3.7. By definition of D#, commutativity of the diagram (12)
is equivalent to D#.@F /D f�, ie to the fact that .f;F / is a compatible pair. To show
that (12) commutes, we use the next diagram, in which all homology groups have ƒ
coefficients and the rightmost horizontal maps are all surjections:

H2.M0/ H2.M0/
� coker.y�0/

H2.M1/ H2.M1/
� coker.y�1/

H2.M0/ H2.M0; @M0/ H1.@M0/:

H2.M1/ H2.M1; @M1/ H1.@M1/

y�0

F�

Š Id PD ı ev�1Š

F��

Š

@F

Š

D0Š
y�1

IdD

j0

F�

Š

F�

Š

f�

Š

j1

PD ı ev�1Š D1Š

The map @F W coker.y�0/! coker.y�1/ is by definition the map induced by the upper
part of the diagram. The squares in the leftmost cube commute either trivially, by
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the definition of y�i , or by naturality of Poincaré duality. The potentially contentious
point is the latter justification: naturality in fact says that F� ı PDM0

ıF� D PDM1
.

But since F� is an isomorphism, with inverse F��, it follows that the middle vertical
square commutes as shown. A straightforward diagram chase now shows, as desired,
that the rightmost vertical square, which is equivalent to (12), also commutes. This
completes the proof that .f;F / is a compatible pair.

The next result shows that the existence of a compatible pair .f;F / imposes strong
restrictions on the topology of M WDM0 [f �M1. This is Theorem 1.12 from the
introduction.

Theorem 3.12 Let .f;F / be a compatible pair. If M0 and M1 are not spin , assume
that the Kirby–Siebenmann invariants satisfy ks.M0/D ks.M1/ 2 Z=2. Then there is
an orientation-preserving homeomorphism

M WDM0[f �M1 Š S1
�S3 #

a

#
iD1

S2
�S2 #

b

#
jD1

S2
z�S2

for some a, b with aC b D b2.M0/. If M0 and M1 are spin , then b D 0.

Moreover , it can be assumed that the ƒ–isometry induced by this homeomorphism
takes the Lagrangian y��1

M
.�F��/�H2.M Iƒ/ to the Lagrangian that is generated by

fŒfptg �S2�gb2.M0/
iD1

.

Proof Lemma 3.8 establishes that �1.M / D Z. Proposition 3.9 proves that �M is
isometric to �M0

[ zf�
��M1

. We have �M0
[ zf�
��M1

D �M0
[@F ��M1

because the
pair .f;F / is compatible. It follows from Proposition 2.13 that �M0

[@F ��M1
is

metabolic with �F�� as a Lagrangian. We deduce that M is a closed 4–manifold with
�1.M /D Z and metabolic ƒ–intersection form. The (nonsingular) intersection form
of M (which can be obtained from �M by setting t D 1) is therefore isometric to�

0 1

1 0

�̊ a

˚

�
0 1

1 1

�̊ b

for some a; b. As ks.M0/D ks.M1/, by additivity of the Kirby–Siebenmann invariant
[17, Theorem 8.2] under gluing it follows that ks.M /D 0. Apart from the statement
that b D 0 for Mi spin, the theorem now follows from the classification of closed
4–manifolds with infinite cyclic fundamental group due to [15, Theorem 10.7A(2)]
and [48]: every isometry between the ƒ–intersection forms of two closed, oriented
4–manifolds with fundamental group Z can be realised by a homeomorphism.
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Now assume that M0 and M1 are spin. To show that b D 0, it is sufficient to show that
�M is hyperbolic, as the result will then once again follow from [15, Theorem 10.7A(2)]
and [48]. We already argued that �M is isometric to �M0

[@F ��M1
because the pair

.f;F / is compatible. Applying Proposition 2.12 to the isometry hD@F , this latter form
is isometric to �M1

[Id��M1
. The identity certainly belongs to HomeoC' .@M1; @M1/

and so a second application of Proposition 3.9 ensures that �M1
[Id��M1

is isometric
to �M1[Id�M1

. Summarising, we have the following sequence of isometries:

(13) �M Š �M0[ zf�
�M1
Š �M0

[@F ��M1
Š �M1

[Id��M1
Š �M1[Id�M1

:

Since M1 is spin, the double DM1 WD M1 [Id �M1 is also spin. As �2.DM1/ D

H2.DM1Iƒ/ is free (by the third item of Lemma 3.2 and Lemma 3.8) and DM1 is
spin, it follows from [26, Remark 1.7] that �DM1

is even, meaning that �DM1
D qCxq

for some sesquilinear form q. Since �DM1
and �M are isometric by (13), it follows

that �M is even. Now since �M is an even metabolic nonsingular Hermitian form on a
finitely generated free ƒ–module, it is hyperbolic by [34, Corollary 3.7.3] with �F��

as a Lagrangian.

We make the Lagrangian y��1
M
.�F��/�H2.M Iƒ/ somewhat more concrete. In the

setting of Theorem 3.12, combine the inclusion induced maps as

�D .�0 �1/WH2.M0Iƒ/˚H2.M1Iƒ/!H2.M Iƒ/:

We record the following fact; compare with [5, Proposition 4.2] in the simply connected
case.

Lemma 3.13 The Lagrangian y��1
M
.�F��/ �H2.M Iƒ/ contains the graph ��F of

the isometry �F WH2.M0Iƒ/!H2.M1Iƒ/.

Proof Given x0 2H2.M0Iƒ/, we have

�

�
x0

�F.x0/

�
D y��1

M

�
y�M0

.x0/
y�M1

.F.x0//

�
D y��1

M

�
y�0.x0/

F��.y�M0
.x0//

�
:

Here, the first equality holds by the commutativity of the diagram in (10), while the
second holds because F is an isometry. It follows that ��F �

y��1
M
.�F��/, as desired.
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We introduce some notation needed to provide a sufficient criterion to produce compat-
ible pairs. Under the identification Aut.@�M1

/D Aut.Bl@M1
/ as in Remark 3.6, there

is a left action�
HomeoC' .@M1/�Aut.�M1

/
�
�Aut.Bl@M1

/! Aut.Bl@M1
/;

.f;F / � h WD f� ı h ı @F�1:

The next proposition gives a criterion to find a compatible pair.

Proposition 3.14 For M0 and M1 as above , if there exist f 2 HomeoC' .@M0; @M1/

and F 2 Iso.�M0
; �M1

/, and if the orbit set

Aut.Bl@M1
/=HomeoC' .@M1/�Aut.�M1

/

is trivial , then a compatible pair .f 0;F 0/ exists.

Proof The composition f�ı@F�1 is an isometry of @�M1
ŠBl@M1

. By the assumption,
there exist a homeomorphism g 2HomeoC' .@M1/ and an isometry G 2Aut.�M1

/ such
that we have f� ı @F�1 D g�1

� ı @G. Equivalently, we can write .Ag ıf /� D @.G ıF /

and consequently the pair .f 0;F 0/ WD .g ıf;G ıF / is compatible.

4 Partial classification of compact 4–manifolds with
fundamental group Z

In this section, we prove Theorem 1.10 from the introduction. The proof of this result
was inspired by [5] and [37].

Theorem 4.1 Let M0 and M1 be two 4–manifolds with �1.Mi/ D Z for i D 0; 1,
whose boundaries are ribbon and have torsion Alexander modules. Suppose that
f 2 HomeoC' .@M0; @M1/ is an orientation-preserving homeomorphism , and suppose
that F 2 Iso.�M0

; �M1
/ is an isometry. If M0 and M1 are not spin , assume that the

Kirby–Siebenmann invariants satisfy ks.M0/ D ks.M1/ 2 Z=2. Then the following
assertions are equivalent :

(i) The pair .f;F / is compatible.

(ii) The homeomorphism f extends to an orientation-preserving homeomorphism

ˆ WM0
Š�!M1

inducing the given isometry F WH2.M0Iƒ/ŠH2.M1Iƒ/.
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Proof Proposition 3.11 shows that (ii) implies (i). To prove the converse, given a com-
patible pair .f;F /, we must therefore establish the existence of a homeomorphism ˆ.
Under this assumption, and in the nonspin case assuming that the Kirby–Siebenmann
invariants coincide, we saw in Theorem 3.12 that for some a; b such that aCbDb2.M0/,
there is a homeomorphism

M0[f �M1 Š S1
�S3 #

a

#
iD1

S2
�S2 #

b

#
iD1

S2
z�S2:

Define M WDM0[f �M1. With this notation, Theorem 3.12 additionally states that
this homeomorphism takes the Lagrangian y��1

M .�F��/�H2.M Iƒ/ to the Lagrangian
generated by the spheres fŒfptg�S2�g

b2.M0/
iD1

. Consider the 5–dimensional null-bordism
for M given by

W WD S1
�D4 \

a

\
iD1

S2
�D3 \

b

\
iD1

S2
z�D3;

where S2 z�D3 denotes the twisted linear D3 bundle over S2. We prove that W is
an h–cobordism; it will then automatically be an s–cobordism as Wh.Z/ D 0. As
Hi.W;M0Iƒ/D 0 for i ¤ 2; 3, we must show that H2.W;M0Iƒ/D 0 for i D 2; 3.

Use D3
1=2
�D3 to denote a 3–ball of smaller radius inside D3. Choosing the obvious

set of generators for H2.W Iƒ/ and representing them by embedded spheres, we obtain

U WD
a

\
iD1

S2
�D3

1=2 \
b

\
iD1

S2
z�D3

1=2 �W:

Note that H�.U Iƒ/DH�.W Iƒ/ and H�.@U Iƒ/DH�.M Iƒ/. In particular, under
this identification, we have

(14) ker
�
H2.M Iƒ/

j
!H2.W Iƒ/

�
D im.H3.U; @U Iƒ/!H2.@U Iƒ//

D y��1
M .�F��/:

In what follows, we identify H3.U; @U Iƒ/ with its image in H2.@U Iƒ/ allowing
ourselves for instance to write H3.U; @U Iƒ/ � H2.@U Iƒ/. We also think of the
adjoint y�M of the intersection form on M as having H2.@U Iƒ/ as its domain.

Claim 2 The connecting homomorphism

@0 WH3.W n VU ;M0 t @U Iƒ/!H2.M0Iƒ/;

which arises from the long exact sequence of the triple .W n VU ;M0 t @U; @U /, is an
isomorphism.
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Proof of Claim 2 It suffices to note that by excision and by our choice of U and W ,
we have Hi.W n VU ; @U Iƒ/ŠHi.W;U Iƒ/D 0 for i D 2; 3.

Claim 3 The following diagram commutes:

H2.M0Iƒ/
� �
y�0
// .H2.M0Iƒ/[@F H2.M1Iƒ/; �0[@F��1/ �F��

? _oo

H3.W n VU ;M0t@U Iƒ/

@0Š

OO

� � // .H2.@U Iƒ/; �@U /

Š y�M

OO

H3.U; @U Iƒ/? _oo

Š y�M

OO

Proof of Claim 3 The commutativity of the right square follows from (14), and so we
focus on the left square. Consider the long exact sequence of the triples

.W n VU ;M0 t @U; @U / and .W n VU ;M0 t @U;M0/:

The portions of interest can be seen in the two horizontal rows of the following diagram,
where ƒ coefficients are understood:

(15)

H3.W n VU ; @U /D0 // H3.W n VU ;M0t@U /
@0
// H2.M0/

�0

��

//

� r

y�0

##

0DH2.W n VU ; @U /

H2.M /
Š

y�M

//

H2.M0/

[@F

H2.M1/

H3.W n VU ;M0/D0 // H3.W n VU ;M0t@U / // H2.@U / //

y�M

Š

::

H2.W n VU ;M0/

The claim will follow from the central portion of the diagram, once we explain all its
features and its commutativity. The zeros in the first row are a consequence of Claim 2.
The bottom leftmost zero is stated in Kreck’s work [37, page 734], but we outline a
proof in this setting. The exact sequence of the triple .W n VU ;M1t@U;M1/, together
with a Mayer–Vietoris argument, give rise to an isomorphism

H1.W n VU ;M1 t @U Iƒ/ŠH0.@U Iƒ/Dƒ:

Similarly, using the long exact sequence of the triple .W n VU ;M1t@U; @U /, we deduce
that H2.W n VU ;M1t@U Iƒ/D 0. Since we also have H0.W n VU ;M1t@U Iƒ/D 0,
Poincaré duality and the UCSS imply that

H3.W n VU ;M0Iƒ/DH 2.W n VU ;M1 t @U Iƒ/D 0:
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To establish the claim, it only remains to show that the diagram in (15) is commutative.
The middle square clearly commutes. Proposition 3.9 establishes the commutativity
of the triangles but with H2.M0/ [ zf�

H2.M1/ in place of H2.M0/ [@F H2.M1/.
However, since .f;F / is a compatible pair, these two modules are isomorphic. This
concludes our explanation of the diagram in (15) and concludes the proof of Claim 3.

Write A and B for the images of H3.U; @U Iƒ/ and H3.W n VU IM0 t @U Iƒ/ in
H2.@U Iƒ/. As Proposition 2.13 implies that

H2.M0Iƒ/[@F H2.M1Iƒ/D �F�� ˚H2.M0Iƒ/;

we deduce from Claim 3 that

H2.@U Iƒ/DA˚B:

Assemble the long exact sequence of the triple .W n VU ;M0 t @U;M0/ and the long
exact sequence of the triple .W;W n VU ;M0/ into the following diagram, based on that
from [37, page 738], in which ƒ–coefficients are understood:

0

��

B ŠH3.W n VU ;M0 t @U /

��

AŠH3.U; @U / //

Š
��

H2.@U /

��

0 // H3.W;M0/ // H3.W;W n VU / // H2.W n VU ;M0/ //

��

H2.W;M0/ // 0

0

Here, the left vertical isomorphism comes from excision. Since H2.@U Iƒ/DA˚B,
the right–down composition A!H2.W n VU ;M0Iƒ/ is an isomorphism. It follows that
the central map in the long row is an isomorphism, and therefore Hi.W;M0Iƒ/D 0 for
i D 2; 3. Thus W is a relative h–cobordism, and therefore an s–cobordism, as desired.

Since Z is a good group, by the topological s–cobordism theorem [15, Theorem 7.1A]
M0 and M1 are homeomorphic via a homeomorphism ˆ that extends f . It remains
to show that ˆ induces the isometry F on H2.�Iƒ/. The inclusions of M0;M1 into
M DM0[f �M1 �W give rise to the homomorphism

H2.M0/˚H2.M1/
�D.�0 �1/
�����!H2.M /

j
�!H2.W /:
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Set ji D j ı �i ; these are isomorphisms because W is an s–cobordism. By def-
inition j�1

1
j0 is the isometry induced by the homeomorphism ˆ. We noted that

H2.U Iƒ/DH2.W Iƒ/ as well as H2.@U Iƒ/DH2.M Iƒ/. We also noted in (14)
that ker.j /D y��1

M
.�F��/. Using Lemma 3.13, we deduce that �.��F /� ker.j /. This

inclusion implies that for all x0 2H2.M0Iƒ/,

0D j �

�
x0

�F.x0/

�
D j �0.x0/� j �1.F.x0//D j0.x0/� j1.F.x0//:

Since the ji are isomorphisms, we obtain the desired conclusion: j�1
1

j0.x0/D F.x0/.
This concludes the proof of Theorem 4.1.

5 Knotted surfaces in simply connected 4–manifolds

The goal of this section is to use Theorem 4.1 to prove Theorems 1.3 and 1.4 from the
introduction. Recall from our conventions that X refers to a closed, simply connected,
oriented 4–manifold, while N DX n VD4, and† always denotes a Z–surface of genus g

either embedded in X or properly embedded in N (recall that a Z–surface refers to an
oriented surface whose knot group is Z).

This section is organised as follows. In Section 5.1, we collect some initial facts
concerning Z–surfaces. Section 5.2 then shows that any isometry of Bl†g;1�S1 can be
realised by a homeomorphism of †g;1�S1 (allowing us to construct a compatible pair
between Z–surfaces exteriors N†0

and N†1
). In Sections 5.3 and 5.4, respectively, we

prove Theorems 1.3 and 1.4 from the introduction.

5.1 Facts about Z–surfaces

Lemma 5.1 If †�N is a Z–surface , then it is null-homologous.

Proof We must show that Œ†; @†�D 0 2H2.N; @N /. The intersection form QN pairs
H2.N; @N / with H2.N / nonsingularly because N is simply connected. Thus, it is
equivalent to show that QN .Œ†; @†�;x/ D 0 for every class x 2 H2.N /. Represent
such an x 2 H2.N / by a closed surface S � N that intersects † transversely in
points p1; : : : ;pn, so that QN .Œ†; @†�;x/ D

Pn
iD1 ".pi/, where ".pi/ D ˙1. Now

the intersection S \N† is a properly embedded surface in N† with oriented boundary
(homologous to)

Pn
iD1 ".pi/�†. This implies that

Pn
iD1 ".pi/�† D 0 2 H1.N†/.

But now, since the homology group H1.N†/D �1.N†/D Z�† is torsion-free, we
therefore deduce that QN .Œ†; @†�;x/D

Pn
iD1 ".pi/D 0, establishing that † is null-

homologous.
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It follows easily that a closed Z–surface † � X is also null-homologous in H2.X /.
For the next lemma, recall that orientable 2–plane bundles over compact, orientable
surfaces are classified up to isomorphism by their (relative) Euler number.

Lemma 5.2 Every Z–surface has trivial normal bundle. In the case of nonempty
boundary this holds , moreover , relative to the Seifert framing on the boundary.

Proof In the case that the boundary is nonempty, the surface is oriented and therefore
the normal bundle is trivial. However, we need to show that this holds relative to the
Seifert framing, and we need to show that the normal bundle is likewise trivial in the
closed case. Continuing with the nonempty boundary case, cap off the Z–surface †
with a Seifert surface F in S3. Form a push-off by pushing F off itself in S3 and
extending this to a normal push-off in N along a generic section that agrees with the
push-off of F along @F D @†.

Now the argument is the same in the closed case and in the nonempty boundary case
(in the closed case take a push-off of † using a generic section of the normal bundle).
Now in both cases, by the proof of Lemma 5.1, the push-off intersects † algebraically
trivially. Therefore the normal bundle of † has vanishing Euler number, relative to the
Seifert framing in the case of nonempty boundary. Thus the normal bundle of † is
trivial, again relative to the Seifert framing in the case of nonempty boundary.

The boundary of the exterior of N† is homeomorphic to MK ;g WDEK [@ .†g;1�S1/,
where †g;1 is the orientable genus g surface with one boundary component and
EK WD S3 n �.K/. We give more details on this identification as we will then make it
implicitly throughout the remainder of the paper.

Remark 5.3 If † � X is a closed oriented surface with �1.X†/ D Z, then the
homotopy class of the meridian of †� X is the unique nontrivial primitive class in
�1.@X†/ that bounds a disc in †�D2 and maps to 1 2Z. Fix a framing of the normal
bundle of †, ie an identification �†Š†�R2 compatible with the orientation, with
the property that for each simple closed curve 
k �†, we have that 
k �fe1g �X n†

is null-homologous in H1.X n �†/ Š Z. Use a choice of an identification † Š †g

and this condition to fix an identification of the boundary of the exterior with †g �S1.
Any two choices now differ by an element of the mapping class group of †g. Similarly,
if † � N is a properly embedded, oriented surface, then we can identify @N† with
EK [@ .†g;1 �S1/.
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Lemma 5.4 The exterior of a Z–surface † has ribbon boundary.

Proof Since N is simply connected, we have

f1g D �1.N†/��1.†�S1/ �1.†�D2/;

which implies that �1.†�S1/! �1.N†/ is onto. In fact, by the parametrisation of
†�S1 described in Remark 5.3, we have that �1.†/ maps trivially to �1.N†/, so the
fundamental group of N† is generated by a meridian of †. The closed case follows,
since the exterior of a closed surface in X can be thought of as the exterior of a surface
in N DX n VD4.

Lemma 5.5 The boundary of the exterior of a Z–surface † has ƒ–torsion Alexander
module. More precisely, the following hold.

(1) If †�X is closed , then

H1.@X†Iƒ/DH1.†g �S1
Iƒ/D .ƒ=.t � 1//˚2g :

(2) If †�N has boundary a knot K, then the inclusion induces an isomorphism

H1.EK Iƒ/˚H1.†g;1 �S1
Iƒ/ŠH1.@N†Iƒ/:

In particular , if K has Alexander polynomial one , then

H1.@N†Iƒ/D .ƒ=.t � 1//˚2g:

Proof Using infinite cyclic covers, the assertion in the closed case is immediate:

H1.@X†Iƒ/DH1.†g �S1
Iƒ/DH1.

C†g �S1IZ/DH1.†g �R/

D Z2g
D .ƒ=.t � 1//˚2g:

We prove the second assertion. Consider the Mayer–Vietoris sequence for the decom-
position MK ;g DEK [@ .†g;1 �S1/ with ƒ coefficients,

� � � !H1.S
1
�S1
Iƒ/!H1.EK Iƒ/˚H1.†g;1 �S1

Iƒ/!H1.MK ;gIƒ/! 0:

We have
H1.S

1
�S1
Iƒ/D H1.S

1
�R/ D Z;

H1.†g;1 �S1
Iƒ/DH1.†g;1 �R/D Z2g:

The map H1.S
1 �S1Iƒ/! H1.EK Iƒ/ is the zero map: it sends the generator to

the lift of the longitude of EK ; this is null-homologous in the infinite cyclic cover
E1

K
of EK . Next, the homomorphism H1.S

1 �S1Iƒ/!H1.†g;1 �S1Iƒ/ is also
the zero map: it coincides with the map H1.S

1/!H1.†g;1/ sending the generator
to Œ@†g;1�, which vanishes in H1.†g;1/. This establishes the second assertion.
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5.2 Isometries of the Blanchfield pairing

Given an orientable genus g surface †g;1 with one boundary component, we determine
the isometries of the Blanchfield pairing on †g;1 � S1 and show that they can be
realised by orientation-preserving homeomorphisms. We then describe the Blanchfield
pairing of

MK ;g WDEK [ .†g;1 �S1/;

where EK WD S3 n �.K/ is the knot exterior.

To describe the Blanchfield pairing Bl†g;1�S1 , we fix some notation on the symplectic
group:

Jg WD

�
0 1

�1 0

�̊ g

; Sp2g.Z/ WD fA 2M2g�2g.Z/ jA
T JgAD Jgg:

Given a genus g surface †g;1 with one boundary component, we call a basis of
H1.†g;1/ symplectic if the intersection form on †g;1 with respect to this basis is
represented by Jg. We also consider the map ' W �1.†g;1 �S1/� Z induced by the
projection on the second coordinate and recall that

HomeoC' .†g;1 �S1/D ff 2 HomeoC.†g;1 �S1/ j f� ı' D 'g:

The next proposition identifies the isometries of Bl†g;1�S1 with Sp2g.Z/ and uses this
fact to show that the orbit set Aut.Bl†g;1�S1/=HomeoC' .†g;1 �S1/ is trivial.

Proposition 5.6 A choice of a symplectic basis for H1.†g;1/ yields an identification

Aut.Bl†g;1�S1/D Sp2g.Z/:

Every element of the group Aut.Bl†g;1�S1/ can be realised by a homeomorphism in
HomeoC' .†g;1 �S1/:

Aut.Bl†g;1�S1/=HomeoC' .†g;1 �S1/D fIdg:

Any such homeomorphism can be assumed to be of the form j � IdS1 for some
j 2 HomeoC.†g;1/ that fixes the boundary of †g;1 pointwise.

Proof Let h be an isometry of the Blanchfield pairing Bl†g;1�S1 . Since we saw in
Lemma 5.5 that H1.†g;1�S1Iƒ/DH1.†g;1/, the isometry h can be thought of as a
Z–linear map. We assert that it preserves the intersection form on the surface †g;1.
Pick a symplectic basis for H1.†g;1/ so that its intersection form is represented by Jg.
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By [18, Corollary 1.2], the Blanchfield form on the fibred manifold †g;1 � S1 is
given by

.v; w/ 7! vT .t�1
� 1/�1Jgw 2ƒS=ƒ:

Here, ƒS DZŒt˙1; .t �1/�1� denotes the ring obtained from ƒDZŒt˙1� by inverting
.t � 1/. Since h can be thought of as a Z–linear map, we represent it by a matrix H

with coefficients in Z. As h is an isometry, we have the following equalities of matrices
with coefficients in ƒS=ƒ:

.t�1
� 1/�1H T JgH D Jg.t

�1
� 1/�1:

Since H and Jg take values in Z, the coefficients of the matrix H T JgH�Jg take values
in .t�1/ƒ. On the other hand, H T JgH�Jg has coefficients in Z, so H T JgH�JgD0,
and we deduce that H T JgH DJg. This shows that H is a symplectomorphism, proving
the first assertion.

We prove the second assertion. We may realise any h 2 Sp2g.Z/ as the map on
H1.†g;1/ induced by an orientation-preserving homeomorphism j W†g;1!†g;1 that
fixes the boundary pointwise [13, Section 2.1 and the discussion following Theorem 6.4].
Cross j with the identity on S1 to obtain an orientation-preserving homeomorphism
j � Id W†g;1 �S1!†g;1 �S1 that belongs to HomeoC' .†g;1 �S1/.

The next proposition describes the Blanchfield pairing of MK ;g DEK [ .†g;1 �S1/

and its automorphism group; here recall that EK D S3 n �.K/ is the knot exterior.

Proposition 5.7 For a knot K�S3 there is an isometry BlMK;g
ŠBlEK

˚Bl†g;1�S1 ,
and

Aut.BlMK;g
/Š Aut.BlEK

/˚Aut.Bl†g;1�S1/:

Proof We proved in Lemma 5.5 that the inclusion induces a ƒ–isomorphism

H1.EK Iƒ/˚H1.†g;1 �S1
Iƒ/ŠH1.MK ;gIƒ/:

The isometry BlMK;g
Š BlEK

˚Bl†g;1�S1 now follows from [16, Theorem 1.1].

We must now show that Aut.BlEK
˚Bl†g;1�S1/ D Aut.BlEK

/ ˚ Aut.Bl†g;1�S1/.
The order of H1.MK Iƒ/ is the Alexander polynomial �K (which is not divisible
by .t � 1/) and the order of H1.†g;1 � S1Iƒ/ is .t � 1/2g. An automorphism h in
Aut.BlEK

/˚Aut.Bl†g;1�S1/ can be written as

hD

�
h11 h12

h21 h22

�
:

Since the orders of H1.MK Iƒ/ and H1.†g;1 �S1Iƒ/ are coprime, we deduce that
h12 D h21 D 0.
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5.3 Surfaces in manifolds with boundary

The aim of this subsection is to prove Theorem 1.3 from the introduction. Given a
knot K � S3, thanks to Proposition 5.7, we can write automorphisms of BlMK;g

as
hD hK ˚ h† with hK 2 Aut.BlEK

/ and h† 2 Aut.Bl†g;1�S1/.

Let us recall the construction of an isotopy, as introduced in Section 1.3. Suppose that
fK WEK!EK is an orientation-preserving homeomorphism that is the identity on @EK .
Extend fK via the identity on �K to an orientation-preserving self-homeomorphism zfK

of S3. The mapping class group of S3 is trivial, so there is an isotopy‚.fK /t WS
3!S3

between the extension and the identity, such that ‚.fK /0D Id and ‚.fK /1D zfK . We
can now prove Theorem 1.3.

Theorem 5.8 Let †0; †1 � N be two Z–surfaces of genus g with boundary K.
Suppose there is an isometry F W �N†0

Š �N†1
, and write @F D hK ˚ h†.

� If hK is induced by an orientation-preserving homeomorphism fK WEK !EK

that is the identity on @EK , then fK extends to an orientation-preserving homeo-
morphism of pairs

.N; †0/
Š�! .N; †1/

inducing the given isometry F WH2.N†0
Iƒ/ŠH2.N†1

Iƒ/.

� If , in addition , N D D4, then for any choice of isotopy ‚.fK /, the surfaces
†0 and †1 are topologically ambiently isotopic via an ambient isotopy of D4

extending ‚.fK /.

Proof By assumption, the boundary of the isometry F is @F D hK ˚ h† for some
hK 2Aut.BlEK

/ and some h†2Aut.Bl†g;1�S1/. By Proposition 5.6, we can realise h†

by an orientation-preserving homeomorphism of the form j�IdS1 , with j W†g;1!†g;1

an orientation-preserving homeomorphism that fixes the boundary pointwise. Moreover,
hK is realised by an orientation-preserving homeomorphism fK W EK ! EK that
fixes the boundary @EK . Gluing these two homeomorphisms together, we obtain a
homeomorphism

f WD fK [ .j � IdS1/ WMK ;g!MK ;g:

Since f is the identity on @EK �MK ;g, we deduce that f 2 HomeoC' .MK ;g/. It
follows that .f;F / is a compatible pair. The N†i

are 4–manifolds whose boundaries
are ribbon (recall Lemma 5.4) and have torsion Alexander modules for i D 0; 1 (by
Lemma 5.5). Since †i �D2 is a smooth manifold, ks.†i �D2/D 0. Thus for i D 0; 1,
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by additivity of ks under gluing we have ks.N†i
/D ks.N†i

/Cks.†i �D2/D ks.N /.
In particular, ks.N†0

/D ks.N†1
/. We may therefore apply Theorem 4.1 to extend f

to an orientation-preserving homeomorphism ˆ W N†0
! N†1

that induces F . As a
consequence, we obtain the required homeomorphism of pairs:

ˆ0 WDˆ[ .j � IdD2/ W .N; †0/! .N; †1/:

This establishes the first assertion.

For the second assertion, let N DD4 and let ‚.fK /t W S
3! S3 be an isotopy of self-

homeomorphisms of S3, with‚.fK /0D IdS3 and‚.fK /1 equal to the extension zfK of
fK by the identity to all of S3. Cone‚.fK / to obtain an isotopy C.‚.fK /t / WD

4!D4

with C.‚.fK /0/D IdD4 and C.‚.fK /1/ equal to the cone C. zfK / of zfK .

Next, note that C. zfK / andˆ0 WD4!D4 are two homeomorphisms of D4 that restrict to
the same homeomorphism of S3 on the boundary. Therefore C. zfK /

�1 ıˆ0 WD4!D4

is a homeomorphism restricting to IdS3 on the boundary. By the Alexander trick,
C. zfK /

�1 ıˆ0 is isotopic rel boundary to the identity, via an isotopy Gt WD
4!D4

with G0 D IdD4 and G1 D C. zfK /
�1 ıˆ0. Note that Gt jS3 D IdS3 for all t 2 Œ0; 1�.

Then let
Ht WD C.‚.fK /t / ıGt WD

4
!D4:

This is an isotopy with

H0 D IdD4 ı IdD4 D IdD4 and H1 D C. zfK / ıC. zfK /
�1
ıˆ0 Dˆ0:

In addition, for every t 2 Œ0; 1� we have that Ht jS3 D‚.fK /t ıGt jS3 D‚.fK /t . Since
IdD4.†0/D †0 and ˆ0.†0/D †1, the isotopy Ht is a topological ambient isotopy
between †0 and †1, and it extends ‚.fK /, as required.

We also note the following corollary, in which we give a slightly relaxed criterion,
but without precise control on the isotopy of K. It is sometimes easier to construct
homeomorphisms of EK that do not fix the boundary @EK , but rather only fix the
basepoint, so this could be a useful variation.

Corollary 5.9 Let K � S3 be a knot and fix a basepoint in @EK . Suppose that
f W S3! S3 is an orientation-preserving , basepoint-preserving homeomorphism with
f .K/DK as oriented knots , so also f .EK /DEK . Then f induces an isomorphism
h WH1.EK Iƒ/!H1.EK Iƒ/. Let †0; †1 be two Z–surfaces in N D X n VD4 with
boundary K � S3 D @N , and let F W �N†0

Š �N†1
be an isometry with @F D h. Then

†0 and †1 are related by a homeomorphism of pairs , and if N DD4, then they are
ambiently isotopic.
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Proof Since f is orientation-preserving as a map from S3 to S3, and as a map
K! f .K/, it restricts to an orientation-preserving map on @EK that preserves the
homotopy class of the zero-framed longitude and therefore preserves the orientation
of the meridian. Thus f commutes with the map �1.EK / ! Z inducing the ƒ–
coefficients, and therefore induces a map h WH1.EK Iƒ/!H1.EK Iƒ/ as claimed;
recall Proposition 3.7. Let �t W S

3! S3 be an isotopy from the identity of S3 to f .
Let S3 � Œ0; 1� ,!N be a collar on the boundary of N with S3 � f0g mapping to @N .
Let ‚t WN !N be the isotopy that is the identity outside S3 � Œ0; 1� and defined by
‚t .x; s/D �t.1�s/.x/. This performs �t on the boundary, and tapers it in the collar. Let
†0

0
WD‚1.†0/, and note that †0

0
is ambiently isotopic (not necessarily rel boundary)

to †0. In addition, @.‚1/� D @F D h as isomorphisms of H1.EK Iƒ/. Therefore
G WD F ı .‚1/

�1
� W �N†0

0

Š�! �N†1
is an isometry with @G D Id. By Theorem 1.3,

†0
0

and †1 are related by a homeomorphism of pairs restricting to the identity on the
boundary, and if N DD4 then they are ambiently isotopic rel boundary. The corollary
now follows immediately.

5.4 Surfaces in closed manifolds

Now we recover the statements in the closed setting, proving Theorem 1.4 from the
introduction. As discussed in the introduction, for a closed, simply connected 4–
manifold X there is a classification of self-homeomorphisms of X in terms of their
action on H2.X /. The hypothesis of Theorem 1.4 is in terms of an isometry between the
ƒ–intersection forms of the surface exteriors X†0

and X†1
. In order to carefully state

Theorem 1.4, first we need to understand the relationship between such an isometry
and isomorphisms of the second homology H2.X / of the ambient 4–manifold.

Lemma 5.10 Let †0; †1 �X be closed Z–surfaces of the same genus.

(i) An isometry F W�X†0

Š�!�X†1
induces an isomorphism FZ WH2.X /

Š�!H2.X /.

(ii) If the isometry F is induced by a homeomorphism ˆ0 W .X; †0/! .X; †1/ of
pairs , then FZDˆ

0
�; in particular , FZ is an isometry of the standard intersection

form QX .

Proof We claim that H2.X†i
Iƒ/ ˝ƒ Z Š H2.X†i

/. To prove this, we use the
universal coefficient spectral sequence with second page E2

p;qDTorƒp .Hq.X†i
Iƒ/;Z/

and which converges to H�.X†i
/. The claim now follows promptly from the fact that

H1.X†i
Iƒ/D 0 and

Torƒ2 .H0.X†i
Iƒ/;Z/D TorZŒZ�

2
.Z;Z/DH2.ZIZ/DH2.S

1/D 0:
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The claim implies that the intersection form on H2.X†i
/ is obtained from the inter-

section form on H2.X†i
Iƒ/ by tensoring down. Therefore F induces an isometry

F˝ƒ IdZ WH2.X†0
/!H2.X†1

/. A Mayer–Vietoris argument yields the commutative
diagram

(16)

0 // Z2g //

.F˝ƒIdZ/j
��

H2.X†0
/

p0
//

F˝ƒIdZ

��

H2.X / //

FZ

��

0

0 // Z2g // H2.X†1
/

p1
// H2.X / // 0

where the dotted map labelled FZ is defined as the unique homomorphism that makes
the right-hand square commute (both existence and uniqueness follow from a short
diagram chase).

The second assertion is now immediate: the homeomorphism ˆ0 induces an isometry
of .H2.X /;QX / that satisfies ˆ0� ı p0 D p1 ı .F ˝ƒ IdZ/, so FZ D ˆ

0
� is also an

isometry.

We move on to the proof of Theorem 1.4, whose statement we recall here for the benefit
of the reader.

Theorem 5.11 Let †0; †1 �X be two closed Z–surfaces of the same genus.

(i) If the intersection forms �X†0
and �X†1

are isometric via an isometry F , then
there is an orientation-preserving homeomorphism of pairs

ˆ W .X; †0/
Š�! .X; †1/

inducing the given isometry ˆ� D F WH2.X†0
Iƒ/ Š�!H2.X†1

Iƒ/.

(ii) The isometry F induces an isometry FZ W H2.X / ! H2.X / of the standard
intersection form QX of X by Lemma 5.10. The surfaces †0 and †1 are
topologically ambiently isotopic if and only if FZ D Id.

Proof After an ambient isotopy, assume that †0 and †1 coincide on a disc D2 �

†0\†1. Assume that the normal bundles also coincide over this D2. Consider the
preimage VD2 �R2 � �†i . This is homeomorphic to an open 4–ball VD4. Remove this
. VD4; VD2/ from .X; †i/ to obtain .N; z†i/, with @z†i D†i \ @N the unknot K in S3.
Then the exterior of †i in X equals the exterior of z†i in N .

Since X†i
DNz†i

, the ƒ–intersection forms are unchanged and the isometry F also
induces an isometry F W �Nz†0

Š�! �Nz†1
. Write @F D hK ˚ h† as in Theorem 5.8.
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The unknot K � S3 has trivial Alexander module, so hK D Id and so hK is realised
by the homeomorphism fK D Id WEK !EK . Theorem 5.8 provides a rel boundary
homeomorphism of pairs ˆ0 W .N; z†0/ ! .N; z†1/ that induces the isometry F on
the ƒ–homology of the surface exteriors. We recover the required homeomorphism
of pairs ˆ W .X; †0/ ! .X; †1/ by gluing ˆ0 with the identity homeomorphism
.D4;D2/! .D4;D2/.

Lemma 5.10 implies that the isometry F induces an isometry FZ of the standard
intersection form QX . In particular, Lemma 5.10(ii) specifies that FZ is induced by
the homeomorphism ˆ. If FZ D Id, then ˆ is a self-homeomorphism of X inducing
the identity on H2.X /, so by [45, Theorem 1.1] and [15, Theorem 10.1], ˆ is isotopic
to the identity. It follows that †0 and †1 are topologically ambiently isotopic.

On the other hand, if †0 and †1 are topologically ambiently isotopic, then the induced
homeomorphism between their exteriors extends to a homeomorphism from X to itself
that is isotopic to the identity, and so certainly induces the identity map on H2.X /.

6 Equivariant intersection forms of surface exteriors

The goal of this section is to collect some results about the intersection forms of Z–
surface exteriors. The main result of Section 6.1 shows that up to direct summands
with the Hermitian form

H2 WD

�
ƒ2;

�
0 t � 1

t�1� 1 0

��
;

the equivariant intersection forms of any two Z–surface exteriors are isometric; this
will be Proposition 6.3. Section 6.2 will then focus on the case of Z–surfaces † �
N D X n VD4 with boundary an Alexander polynomial one knot K � S3. The main
result is Corollary 6.6 which shows that �N† becomes isometric to QX ˚H˚g

2
after

adding sufficiently many copies of H2, where QX is the Z–valued intersection form
of X (note that QX DQN ).

6.1 Equivariant intersection forms of Z–surface exteriors

The goal of this section is to study the ƒ–intersection form of Z–surface exteriors up
to stabilisations by H2.

We start by describing the ƒ–intersection form of unknotted surfaces in S4.
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0 0 0 0 0 0 0 0

Figure 1: Two handle diagrams for the exterior of a standardly embedded
genus g surface F �D4 with boundary the unknot in S3.

Lemma 6.1 If † � S4 is an unknotted oriented closed genus g surface , then the
ƒ–intersection form of S4

†
is isometric to H˚g

2
.

Proof We carry out the computation for the standardly embedded genus g surface
† � S4. Use U � S3 to denote the unknot. Slice .S4; †/ along an equatorial
.S3;U / to obtain a decomposition .S4; †/D .D4; V†/[ .D4;D/, with D�D4 a disc
bounding U and V†�D4 a punctured unknotted surface in D4.

Note that S4
†

and D4
†ı
WDD4 n � V† are homeomorphic, since we can assume that the

removed VD4 lies in the regular neighbourhood �† removed from S4 to form S4
†

. It
follows that H2.S

4
†
Iƒ/DH2.D

4
†ı
Iƒ/ and that the ƒ–intersection forms agree.

Thus it remains to compute the ƒ–intersection form of the exterior D4
F

of a properly
embedded unknotted surface F � D4. A handle diagram with a single one-handle
and 2g two-handles for D4

F
appears in the left-hand side of Figure 1, produced using

the formalism of [19, Section 6.2]. It can then be isotoped as in the right-hand side
of Figure 1, leading to a handle diagram for the infinite cyclic cover of D4

F
depicted

in Figure 2. From this diagram, by taking the union of the cores of the 2–handles
with null-homotopies of their attaching curves in the 4–ball, we obtain generators
of �2.D

4
F
/ D H2.D

4
F
Iƒ/ D ƒ2g. The ƒ–intersection form can be computed via

(equivariant) linking numbers, yielding the required result.

0 0 0 0

0 0 0 0

Figure 2: A handle diagram for the infinite cyclic cover of D4
F

, where F�D4

is an unknotted punctured surface.
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We recall the concept of a 1–handle stabilisation for a surface in a 4–manifold. The
following definition was motivated by [25]. Let †� V be a locally flat (connected)
surface embedded in a 4–manifold V . Let B be an embedding of D4 into V such
that @B intersects † transversely in a 2–component unlink L, and B intersects †
transversely in two discs D0 and D1, which can be simultaneously isotoped within
B to lie in @B. Suppose that, for i D 0; 1, a 3–dimensional 1–handle D2 � Œ0; 1�

is embedded in the interior of B such that D2 � fig D Di . The resulting 1–handle
stabilisation of † is defined as

†0 D .†\ .S4
nB//[L .S

1
� Œ0; 1�/:

If there exists a path 
 in † between .1; 0/ and .1; 1/ in S1 � Œ0; 1� such that 
 [
.f1g � Œ0; 1�/ is a null-homotopic loop in V , via a null-homotopy h W D2 ! V with
h. VD2/� V n†, then we call the stabilisation trivial.

A detailed discussion of this construction in the locally flat setting can be found in
[17, Proposition 9.1]. The next result describes the effect of trivial 1–handle stabilisa-
tion on the ƒ–intersection form of surface exteriors.

Lemma 6.2 If † � N is a Z–surface and †0 � N is obtained from † by a trivial
1–handle stabilisation , then

�N†0
Š �N† ˚H2:

Proof Since the 1–handle stabilisation is trivial, one can write

.N; †0/D .N; †/ # .S4;T 2/;

where T 2 � S4 denotes a standardly embedded torus, and # denotes the interior
connect sum. It follows that N†0 D N† [S4

T 2 , where the identification takes place
along thickened meridians: �†�D2 is identified with �T 2�D2. One thus deduces the
isomorphism �1.N†0/Š�1.N†/DZ. As the coefficient system maps these meridians
to 1 2 Z, a straightforward Mayer–Vietoris argument shows that

H2.N†0 Iƒ/DH2.N†Iƒ/˚H2.S
4
T 2 Iƒ/;

noting that H1.�†Iƒ/D 0. It then follows that �N†0
D �N† ˚ �S4

T 2
. The result is

now a consequence of Lemma 6.1.

The next proposition shows that the ƒ–intersection forms of any two Z–surfaces
exteriors become isometric after adding sufficiently many H2 summands.
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Proposition 6.3 For Z–surfaces †0; †1 � N of the same genus with boundary K,
there exists an integer n� 0 and an isometry

�N†0
˚H˚n

2
Š �N†1

˚H˚n
2
:

Proof Any two null-homologous surfaces in a 4–manifold can be made isotopic by
enough 1–handles stabilisations to each surface [2, Theorem 5]. While Baykur and
Sunukjian prove this result in the smooth category for surfaces in closed manifolds, it
also applies in the topological category for properly embedded surfaces in 4–manifolds
with boundary; see Theorem A.1 for a detailed proof in the case at hand.

We apply this to †0; †1. This is possible because Z–surfaces are null-homologous by
Lemma 5.1. Since �1.@.�†i//!�1.N†i

/DZ is surjective, all 1–handle stabilisations
can be taken to be trivial [2, Lemma 3]. We deduce that after sufficiently many (say n)
trivial 1–handle stabilisations, †0 becomes isotopic to †1, also stabilised n times.
Using Lemma 6.2, each such stabilisation adds an H2–summand to the ƒ–intersection
form of the corresponding surface exterior, from which the result follows.

6.2 Z–surfaces for Alexander polynomial one knots

We now restrict our attention to Z–surfaces with boundary Alexander polynomial
one knots. An Alexander polynomial one knot K � S3 bounds a disc D �D4 with
�1.D

4 nD/ D Z; see [15]. We call this disc a Z–slice disc of K. When S3 D @N

with N D X n VD4, we arrange that this disc D belong to a collar neighbourhood
S3 � Œ0; 1� � N of S3 D @N . We use this disc to build a genus g surface with
boundary K.

Definition 6.4 A genus g target surface †t
g for an Alexander polynomial one knot

K is an embedded surface obtained from a Z–disc D of K by g trivial 1–handle
stabilisations.

Although we do not need this fact in the sequel, an Alexander polynomial one knot
K � S3 bounds a unique Z–disc: this follows either from [10, Theorem 1.2] or from
Theorem 5.8 above, because H2.D

4
D
Iƒ/D 0. This is why we do not keep track of the

Z–disc D in the notation for target surfaces.

The next lemma describes the ƒ–intersection form of a target surface exterior.
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Lemma 6.5 If D � S3 � Œ0; 1��N is a Z–disc , then �ND
DQX . If †t

g is a target
surface , then �N†t

g
ŠQX ˚H˚g

2
.

Proof Since D is properly embedded in a collar neighbourhood of @N , ND is homeo-
morphic to the interior connected sum ND ŠD4

D
# X . The exterior D4

D
of a Z–slice

disc is aspherical, and therefore we have Hi.D
4
D
Iƒ/D 0 for i > 0 [10, Lemma 2.1].

The first assertion now follows from a straightforward Mayer–Vietoris argument. Since
a target surface is obtained from a Z–slice disc by g handle additions, the second
assertion follows from the first and Lemma 6.2.

Finally, we describe the ƒ–intersection form of a Z–surface exterior for an Alexander
polynomial one knot K.

Corollary 6.6 If †�N DX n VD4 is a genus g Z–surface for an Alexander polynomial
one knot K, then �N† ˚H˚n

2
ŠQX ˚H˚.nCg/

2
for some integer n� 0.

Proof Since K has Alexander polynomial one, it bounds a genus g target surface †t
g.

Proposition 6.3 ensures that �N† ˚H˚n
2

is isometric to �N†t
g
˚H˚n

2
for some n� 0.

The result now follows from Lemma 6.5, thanks to which �N†t
g
DQX ˚H˚g

2
.

7 Knotted surfaces in S 4 and D4

As we outlined in Section 1.4, our results about surfaces in D4 and S4 can be deduced
from Theorem 5.8 once we prove that the surface exteriors have isometric equivariant
intersection forms. In Section 7.1, we show that if †�D4 is a genus g � 3 Z–surface,
with boundary an Alexander polynomial one knot K, then �D4

†
ŠH˚g

2
. In Section 7.2

we then combine this result with Theorem 5.8 to deduce our results about surfaces in
D4 and S4, in particular proving Theorems 1.1 and 1.2. In Section 7.3, we apply these
results to study Seifert surfaces pushed into D4.

7.1 Intersection forms in D4

The aim of this subsection is to show that if † �D4 is a Z–surface of genus g � 3

with �@†
:
D 1, then �D4

†
ŠH˚g

2
.

Before we continue, we need to recall some general theory on "–Hermitian forms,
and on their "–quadratic counterparts; further details can be found in [47, Section 1.1]
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and [12, Section 2], where the terminology “"–symmetric” is used, as is customary
in L–theory. Let R be a ring with involution and let " 2 R be a central unit with
"x"D 1. Let M be a finitely generated free left R–module. Let Sesq.M / denote the
abelian group of R–sesquilinear forms on M , meaning that b.rx; sy/D rb.x;y/xs for
b 2 Sesq.M /, x;y 2M , and r; s 2R. Define an involution

T" W Sesq.M /! Sesq.M /; .T"b/.y;x/D "b.x;y/:

A quick check shows that .T 2
" b/.x;y/ D "b.x;y/x" D "x"b.x;y/ D b.x;y/, so the

conditions that " is central and that "x" D 1 are crucial for T" to be an involution.
This enables us to define the symmetric Q–group Q".M / of M and the quadratic
Q–group Q".M / of M via the exact sequence

0!Q".M /! Sesq.M /
1�T"
���! Sesq.M /!Q".M /! 0:

In other words,

Q".M / WD ker.1�T"/ and Q".M / WD coker.1�T"/:

A sesquilinear form b WM �M !R is called "–Hermitian if it belongs to Q".M /, that
is if b.y;x/D "b.x;y/ for every x;y 2M . A .C1/–Hermitian form is a Hermitian
form in the usual sense, while a .�1/–Hermitian form is a skew-Hermitian form in the
usual sense. A "–Hermitian form is called hyperbolic if it is isometric to

H ".R/˚g
D

�
R2g;

�
0 1

" 0

�̊ g�
for some g � 0:

The reason for introducing this terminology is that we will shortly be concerned with
.�t/–Hermitian forms over ƒ, and their quadratic analogues.

An element  2 Q".M / is called an "–quadratic form. To an "–quadratic form
in Q".M / is associated its symmetrisation ' WD .1 C T"/. / 2 Q".M /. Given
' 2Q".M /, a quadratic form  with .1CT"/. /D ' is called a quadratic refinement
of '. The symmetrisation is well-defined on equivalence classes in Q".M / because
.1C T"/.1 � T"/ D 1 � T 2

" D 0. Note that quadratic forms are considered up to
addition of forms in the image of 1�T". A quadratic form over R is hyperbolic if it
is isometric to H".R/

˚g D
�
R2g;

�
0
0

1
0

��˚g� for some g � 0. Let us emphasise that
subscripts denote quadratic forms, while superscripts denote "–Hermitian forms.

Here is the key relationship between .�t/–Hermitian and .�t/–quadratic forms that
we shall exploit in the proof of Theorem 7.4 below.
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Lemma 7.1 Let M be a finitely generated free ƒ–module. Then the map

.1CT�t / WQ�t .M /!Q�t .M /

is injective.

Proof To prove the lemma we will show the following facts:

(i) For ' 2Q�t .M /, the assignment ' 7! .t�1� 1/' determines a map

� WQ�t .M /! QC1.M /:

(ii) For  2 Sesq.M /, the assignment  7! .t�1�1/ determines an injective map

„ WQ�t .M /!QC1.M /:

(iii) The map .1CTC1/ WQC1.M /!QC1.M / is injective.

(iv) The diagram
Q�t .M /

„
//

1CT�t

��

QC1.M /

1CTC1

��

Q�t .M /
�
// QC1.M /

commutes.

Then, since the right–down composition is injective, it follows that the left vertical map
is injective, as desired. So it suffices to prove these four assertions.

For (i), suppose that ' 2Q�t .M /D ker.1�T�t /, that is ' D�t x'T . Then

.t�1� 1/'T
D .t � 1/x'T

D .t�1
� 1/.�t/x'T

D .t�1
� 1/':

Therefore �.'/D .t�1� 1/' 2 ker.1�TC1/DQC1.M /, as desired.

To prove (ii), first we show that „ WQ�t .M /!QC1.M / is well-defined. We need
to see that for every sesquilinear form � 2 Sesq.M /, the element .1 � T�t /.�/ D

� � .�t/x�T D � C t x�T maps to the trivial element in QC1.M /. This is indeed the
case since

.t�1
� 1/.� C t x�T /D .t�1

� 1/� � .t � 1/x�T
D .1�TC1/..t

�1
� 1/�/

is trivial in coker.1�TC1/DQC1.M /. Therefore „ is well-defined.

Now we prove that „ WQ�t .M /!QC1.M / is injective. Let B and C be two .�t/–
quadratic forms in Q�t .M /, and suppose that Z WD .t�1�1/.B�C /D 02QC1.M /.
That is, Z 2 im.1�TC1/, so, choosing a basis for M Šƒn, there exists a matrix X

over ƒ such that
.t�1
� 1/.B �C /DZ DX �X T :

Geometry & Topology, Volume 27 (2023)



796 Anthony Conway and Mark Powell

We assert that there exists a matrix Y over ƒ such that

Z D .t�1
� 1/Y � .t � 1/Y T :

Write the entries of the matrix Z DX �X T as zij . Since X �X T is skew-Hermitian,
we have xzij D�zji . Also, zij is divisible by t�1� 1 for every i; j . For i < j , define
the entries yij of Y by the formula yij WD zij=.t

�1 � 1/. For i > j define yij WD 0.
This way .t�1� 1/yij � .t � 1/xyji D zij for i ¤ j . It remains to define the diagonal
entries of Y . For each i , since the Laurent polynomial zii satisfies zii D�xzii , we have
zii.�1/ D �zii.�1/, and so zii.�1/ D 0. Therefore zii is divisible by t C 1. Since
t�1 � 1 and .t C 1/ are coprime, we deduce that zii D .t C 1/.t�1 � 1/q for some
polynomial q that satisfies q D xq. Now set yii WD q. We compute

.t�1
�1/yii�.t�1/xyii D .t

�1
�1�.t�1//qD .t�1

� t/qD .tC1/.t�1
�1/qD zii :

This concludes the proof of the assertion that Z D .t�1� 1/Y � .t � 1/Y T for some
matrix Y . Using this assertion, as well as the definitions of X and Y , we obtain

Z D .t�1
�1/.B�C /DX �X T

D .t�1
�1/Y � .t �1/Y T

D .t�1
�1/.Y C tY T /:

This implies that B � C D Y C tY T D Y � .�t/Y T , which is zero in Q�t .M /.
Therefore the map „ WQ�t .M /!QC1.M / is injective, as desired. This completes
the proof of (ii).

Next we prove (iii), that 1CTC1 WQC1.M /!QC1.M / is injective. For an arbitrary
finitely generated free module M , the map 1CT" fits into the exact sequence

0! yQ�".M /!Q".M /
1CT"
���!Q".M /:

The group yQ�".M / WD ker.1C T"/ is a hyperquadratic Q–group; its purpose is to
measure the difference between Hermitian and quadratic forms [47]. We have

(17) yQ�".M /D ker
�
1CT" WQ".M /!Q".M /

�
D

ker.1CT"/

im.1�T"/
D

ker.1�T�"/

im.1CT�"/
:

We shall use the penultimate description, but include the last equation to show why
the �" appears in the notation for the group yQ�".M /. Writing M D ƒn, there is
an isomorphism yQ�".M /D yQ�".ƒn/Š yQ�".ƒ/n [12, Remark 3.4]. By (17) with
"DC1 and M D ƒ, we have yQ�1.ƒ/D ker.1CTC1/= im.1�TC1/. For p.t/ 2ƒ,
if p.t/Cp.t�1/ D 0, then p.t/ must be of the form p.t/ D r.t/� r.t�1/ for some
r.t/2ƒ. It follows that yQ�1.ƒ/D 0. Thus ker.1CTC1 WQC1.M /!QC1.M //D 0

and so 1CTC1 is indeed injective. This concludes the proof of the third item of the
lemma.
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For (iv), let  2Q�t .M /. Then

.1CTC1/ ı„. /D .1CTC1/.t
�1
� 1/ D .t�1

� 1/ C .t � 1/ x T

D .t�1
� 1/. � t x T /D� ı .1CT�t /. /;

so the diagram commutes, which proves (iv) and completes the proof that the map
.1CT�t / WQ�t .M /!Q�t .M / is injective.

Next we state the algebraic cancellation result that we will use. The idea behind the
proof of Theorem 7.4 below will be to engineer a situation in which we can apply
cancellation.

Definition 7.2 The Witt index ind.H; �/ of an "–quadratic form is the largest integer k

such that a subform of .H; �/ is isometric to H".R/
˚k .

Proposition 7.3 Let " 2ƒ be a central unit with "x"D 1, and let .H; �/ and .H 0; � 0/
be "–quadratic forms over ƒ. Assume that for some n� 0 there is an isometry

(18) .H; �/˚H".ƒ/
˚n
Š .H 0; � 0/˚H".ƒ/

˚n:

If ind.H 0; � 0/� 3, then there is an isometry

(19) .H; �/Š .H 0; � 0/:

Proof We apply a result due to Bass [1, Corollary IV.3.6]. Given a ring R with
involution, we write R0 D

˚P
i xi xxi j xi 2R

	
for the norm subring of R, as well as

maxspec.R0/ for the set of all maximal ideals of R0 under the Zariski topology, and
dR WD dim maxspec.R0/. Detailed definitions of these notions are irrelevant: we need
only know that dƒ D 2; see eg [29, Proposition 2.2] or [21, page 439]. Let .H; �/ and
.H 0; � 0/ be quadratic forms over R. If there is an isometry

.H; �/˚H".R/
˚n
Š .H 0; � 0/˚H".R/

˚n;

and if ind..H 0; � 0/˚H".R// � dR C 2, then there is an isometry .H; �/Š .H 0; � 0/
[1, Corollary IV.3.6]. In particular, this cancellation result holds if ind.H 0; � 0/�dRC1.
As mentioned above, for RDƒ, we have dƒ D 2. Since

ind..H 0; � 0/˚H".ƒ//� 3C 1D dƒC 2;

the result of Bass says that (18) implies (19).

The next theorem is the main result of this subsection.
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Theorem 7.4 If † � D4 is a Z–surface of genus g � 3 whose boundary is an
Alexander polynomial one knot K � S3, then

�D4
†
ŠH˚g

2
:

Proof We outline the strategy of the proof. Since the knot K has Alexander polynomial
one and QD4 D 0, by Corollary 6.6, there exists an integer n� 0 and an isometry

(20) �D4
†
˚H˚n

2
ŠH˚gCn

2
:

We cannot apply the cancellation result of Proposition 7.3 directly, since H˚n
2

is not
hyperbolic over ƒ. However, by switching the basis elements H2 is isometric to a
multiple of the .�t/–hyperbolic form:�

0 t�1� 1

t � 1 0

�
D .t�1

� 1/ �

�
0 1

�t 0

�
D .t�1

� 1/H�t .ƒ/:

If we could remove the .t�1� 1/ factor, we could apply Proposition 7.3. The idea for
this is to use the relative intersection pairing

�@D4
†
WH2.D

4
†Iƒ/�H2.D

4
†; @D

4
†Iƒ/!ƒ

instead of the “absolute” intersection pairing �D4
†

. We will see, using (20) and appro-
priate bases, that the pairing �@D4

†
is represented by a .�t/–Hermitian matrix over ƒ.

We will then apply the cancellation result of Proposition 7.3 with "D�t to these forms,
before deducing the desired conclusion on the original absolute pairings. Note that the
adjoints of the relative and absolute pairings fit into the commutative diagram

(21)

H2.D
4
†
Iƒ/

y�
//

q
''

Homƒ.H2.D
4
†
Iƒ/;ƒ/

H2.D
4
†
; @D4

†
Iƒ/

y�@

55

For the first step of the proof we will choose bases for H2.D
4
†
Iƒ/ and H2.D

4
†
; @D4

†
Iƒ/

and describe the map q with respect to these bases. First, a short rank computation:

Claim 4 H2.D
4
†
Iƒ/Šƒ2g.

Proof Since H2.D
4
†
Iƒ/ is free (by Lemma 3.2), we need only show that its rank is

b1.†/D 2g. Using H1.D
4
†
/D Z, a Mayer–Vietoris argument shows that b2.D

4
†
/D

b1.†/ as well as b3.D
4
†
/ D 0. Since we also have b4.D

4
†
/ D 0 and b0.D

4
†
/D 1,
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we get �.D4
†
/D b1.†/. The Euler characteristic can also be computed with QDQ.t/

coefficients. By Lemma 3.2, we have b
Q
i .D

4
†
/D 0 for i ¤ 2, and therefore

rkƒH2.D
4
†Iƒ/D �

Q.D4
†/D b1.†/;

as asserted.

Claim 5 There is a choice of bases with respect to which the homomorphism

q WH2.D
4
†Iƒ/!H2.D

4
†; @D

4
†Iƒ/

is represented by the matrix .t � 1/ Id.

Proof We first base H2.D
4
†
; @D4

†
Iƒ/ using the fact that the Alexander polynomial

of K is one. We have an exact sequence as part of the long exact sequence of the pair
.D4

†
; @D4

†
/:

H2.D
4
†Iƒ/

q
!H2.D

4
†; @D

4
†Iƒ/

ı
!H1.@D

4
†Iƒ/! 0:

Here H1.D
4
†
Iƒ/ D 0 because �1.D

4
†
/ Š Z. In particular, the map q presents the

ƒ–module H1.@D
4
†
Iƒ/. Use Lemmas 3.2 and 5.5, Claim 4 and the fact that �K

:
D 1

to deduce that

H2.D
4
†Iƒ/Šƒ

2g
ŠH2.D

4
†; @D

4
†Iƒ/ and H1.@D

4
†Iƒ/Š

2gM
iD1

ƒ=.t � 1/:

Choose a set of generators f
kg �H1.@D
4
†
Iƒ/, represented in the form

gk � fptg �†� fptg �†�S1
� @D4

†;

where fgkg is a symplectic basis of curves on †. Then choose a basis fxig for
H2.D

4
†
; @D4

†
Iƒ/ such that ı.xi/ D 
i for 1 � i � 2g. The homology classes xk

can be represented by embedded surfaces Si � D4
†

with @Si D 
i for 1 � i � 2g

[17, Section 10.3].

Next, we base H2.D
4
†
Iƒ/. For each i D 1; : : : ; 2g, define a closed surface representing

a class yi 2 H2.D
4
†
Iƒ/, as follows. Consider the torus gi � S1 D @.x�†jgi

/, and
surger it along 
i using the surface Si . That is, remove an annular neighbourhood
gi�.p;p

0/�gi�S1 of 
iDgi�fptg, leaving B WDgi�.S
1n.p;p0//. Then glue�Si

to gi � fpg, and a push-off S 0i of Si to gi � fp
0g. Call the resulting surface Ti , and set

yi WD ŒTi � 2H2.D
4
†
Iƒ/ for 1� i � 2g. Then, for i D 1; : : : ; 2g, in H2.D

4
†
; @D4

†
Iƒ/

we have

(22) q.yi/D q.ŒTi �/D Œ�Si �C ŒB [S 0i �D�xi C txi D .t � 1/xi :
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†gi

Si

†
gi

�Si

�Si S 0i

S 0i

†


i

B

gi � fpg gi � fp
0g

B
B

B

Figure 3: Representing yi 2H2.D
4
†
Iƒ/ by an immersed surface Ti in D4

†

obtained by surgering the torus gi �S1, using a surface Si representing the
relative homology class xi . The top left picture shows a neighbourhood of
a portion of gi , intersected with a carefully chosen 3–dimensional subspace
that contains the intersections of † and Si with this neighbourhood. Bottom,
a 4–dimensional picture of Ti , consisting of three 3–dimensional slices at
certain special values of the fourth coordinate (time), in which†, �Si , S 0i and
most of B appear. The annulus B joins �Si and S 0i together; in intermediate
time values only a line of B appears, including in the middle slice. The top
right picture shows a cross section of Ti , looking along gi .

Here the t arises because the annulus B wraps around a meridian of †. This process is
illustrated in Figure 3.

Consider the diagram of short exact sequences

0 // ƒ˚2g .t�1/ Id
//

y

��

ƒ˚2g
proj

//

x
��

.ƒ=.t � 1//˚2g //




��

0

0 // H2.D
4
†
Iƒ/

q
// H2.D

4
†
; @D4

†
Iƒ/ // H1.@D

4
†
Iƒ/ // 0

where the maps y and x send the canonical basis feig
2g
iD1

ofƒ2g to fyig
2g
iD1

and fxig
2g
iD1

,
respectively, and 
 maps the Œei � to the 
i . This diagram commutes thanks to (22). By
construction x and 
 are isomorphisms, and therefore so is y by the five lemma. Thus
fyig

2g
iD1

forms a basis of H2.D
4
†
Iƒ/ and q is represented by .t�1/ Id. This completes

the proof of Claim 5.
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Recall from (20) that there is an isometry ˛ W �D4
†
˚H˚n

2
Š H˚.gCn/

2
. Denote the

matrices of �D4
†

and �@D4
†

with respect to the previously described bases by L and L@,
respectively. Also represent the isometry ˛ by a matrix A with respect to these bases.
Therefore we have a congruence

(23) AT

�
L˚

�
0 t � 1

t�1� 1 0

�̊ n �
AD

�
0 t � 1

t�1� 1 0

�̊ .gCn/

:

Our aim is now to factor out a .t�1 � 1/ from both sides of this equation. Recall
from (21) that the adjoints of the pairings �D4

†
and �@D4

†
are related by y�@D4

†
ıqDy�D4

†
.

With respect to our bases (and recalling (22)), for every x;y 2H2.D
4
†
Iƒ/ we therefore

obtain

xT L@.t�1
� 1/xy D xT L@.t � 1/y D �@D4

†
.x; q.y//D y�@.q.y//.x/

D y�.y/.x/D �.x;y/

D xT Lxy:

It follows that L@.t�1� 1/DL. Combine this with

H2 D

�
0 t � 1

t�1� 1 0

�
D

�
0 �t

1 0

�
.t�1
� 1/

to rewrite (23) as

AT

�
L@.t�1

� 1/˚

�
0 �t

1 0

�
.t�1
� 1/

�
AD

�
0 �t

1 0

�̊ gCn

.t�1
� 1/:

As .t�1� 1/ � Id is diagonal with constant diagonal coefficients, it is central and thus
we obtain

.t�1
� 1/ �AT

�
L@˚

�
0 �t

1 0

�̊ n �
AD .t�1

� 1/

�
0 �t

1 0

�̊ .gCn/

:

As .t�1� 1/ � Id is nondegenerate over ƒ, it follows that

(24) AT

�
L@˚

�
0 �t

1 0

�̊ n �
AD

�
0 �t

1 0

�̊ .gCn/

:

In particular L@ stabilises, via .�t/–Hermitian matrices, to a .�t/–Hermitian form, so
it follows that L@ is itself .�t/–Hermitian.

In order to apply cancellation, we refine (24) to a statement about quadratic forms. Set

‰ WD

�
0 0

1 0

�
:
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Then .1C T�t /‰ D
�

0 �t
1 0

�
, so ‰ is a quadratic refinement for

�
0 �t
1 0

�
. Therefore

‰˚.gCn/ is a quadratic refinement for
�

0 �t
1 0

�˚.gCn/, which is the right-hand side
of (24). Thus ‰˚.gCn/ is a quadratic refinement for

AT

�
L@˚

�
0 �t

1 0

�̊ n �
A:

Rearranging, we deduce that A�T‰˚.gCn/A�1 is a quadratic refinement for the .�t/–
Hermitian matrix L@˚

�
0 �t
1 0

�˚n. Now, corresponding to this decomposition, write

A�T‰˚.gCn/A�1
D

�
‰@ U

V ‰ind

�
;

where this defines the block entries on the right-hand side. Since this is a quadratic
refinement of the block diagonal .�t/–Hermitian matrix

L@˚

�
0 �t

1 0

�̊ n

;

we deduce that V � t xU T D 0 and therefore

(25) A�T‰˚.gCn/A�1
D

�
‰@ 0

0 ‰ind

�
C

�
0 U

t xU T 0

�
D‰@˚‰ind2Q�t .ƒ

˚2.gCn//:

This procedure therefore endows both the .�t/–Hermitian matrices L@ and
�

0 �t
1 0

�˚n

with quadratic refinements, which we denoted by‰@ and‰ind respectively. Rearranging
(25) we obtain the following isometry of quadratic forms:

(26) AT .‰@˚‰ind/AD‰
˚.gCn/

2Q�t .ƒ
˚2.gCn//:

In order to apply cancellation, we need‰ind to agree with the quadratic refinement‰˚n

of
�

0 �t
1 0

�˚n in the Q–group Q�t .ƒ
2n/. The fact that both are quadratic refinements

of the form
�

0 �t
1 0

�̊ n in Q�t .ƒ2n/ can be restated as

.1CT�t /.‰ind/D .1CT�t /.‰
˚n/ 2Q�t .ƒ2n/:

By Lemma 7.1, .1CT�t / is injective, and so ‰ind D‰
˚n in Q�t .ƒ

2n/, as desired.

We deduce from (26) that

(27) AT .‰@˚‰˚n/AD‰˚.gCn/
2Q�t .ƒ

2.gCn//:

Since �
0 1

1 0

��
0 0

1 0

��
0 1

1 0

�
D

�
0 1

0 0

�
;
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we see that
�

0 0
1 0

�
is congruent to the hyperbolic .�t/–quadratic form H�t .ƒ/. We

have established the following isometry of .�t/–quadratic forms:

(28) ‰@˚H�t .ƒ/
˚n
ŠH�t .ƒ/

˚g
˚H�t .ƒ/

˚n
2Q�t .ƒ

2.gCn//:

Since g � 3, we now apply the cancellation result of Proposition 7.3 to (28) and
symmetrise the result to deduce that L@ is congruent to H�t .ƒ/˚g, and therefore
to
�

0 �t
1 0

�˚g. Multiplying both sides of this congruence by t�1 � 1 shows that L is
congruent to H˚g

2
. This concludes the proof of Theorem 7.4.

7.2 Surfaces in S 4 and D4

We collect and prove our results concerning (rel boundary) ambient isotopy of surfaces
in D4 and S4. Since the proofs of these results were already outlined in the introduction
or elsewhere, we proceed swiftly.

Theorem 7.5 Let †0; †1 �D4 be Z–surfaces of genus g with boundary K.

(i) Suppose there is an isometry F 2 Iso.�D4
†0
; �D4

†1
/ and write @F D hK ˚ h†. If

hK is represented by an orientation-preserving homeomorphism that is the iden-
tity on @EK , then †0 and †1 are topologically ambiently isotopic rel boundary.

(ii) If �K D 1, g D 1; 2 and �D4
†0
Š �D4

†1

, then †0 and †1 are topologically
ambiently isotopic rel boundary.

(iii) If �K D 1 and g ¤ 1; 2, then †0 and †1 are topologically ambiently isotopic
rel boundary.

Proof The first assertion is the second item of Theorem 5.8. When �K D 1, we have
H1.EK Iƒ/D 0, so hK D Id is automatic, and the second assertion follows from the
first. For the third assertion, additionally use that �D4

†0
Š �D4

†1
when g ¤ 1; 2 by

Theorem 7.4.

Theorem 7.6 Let †0; †1 � S4 be closed Z–surfaces of genus g.

(i) For gD1; 2, if �†0
Š�†1

, then †0 and †1 are topologically ambiently isotopic.

(ii) For g ¤ 1; 2, the surfaces †0 and †1 are topologically ambiently isotopic.

Proof Both assertions follow from Theorem 7.5 by removing a .D4;D2/–pair from
.S4; †i/.
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7.3 Pushed-in Seifert surfaces for Alexander polynomial one knots

We prove Theorem 1.9 from the introduction, which states that any two pushed-in
Seifert surfaces of the same genus for an Alexander polynomial one knot are topo-
logically ambiently isotopic in D4. Recall that a sublagrangian for a nonsingular
"–Hermitian form .H; �/ is a direct summand M � H such that �.M �M / D 0,
ie M �M?. A sublagrangian is a Lagrangian if M DM?. For a nonsingular "–
quadratic form .H; �; �/, the definitions are identical, with the additional requirement
that �.M /D 0. The following lemma is known to those familiar with L–theory. For
instance, given a sublagrangian i WM ,!H , the result follows quite promptly from
[46, Proposition 2.2], provided one assumes that i�y� WH !M � is surjective. Since
our argument is elementary (Ranicki’s proof is more involved because his statement is
more general) and since most of our work goes into establishing that i�y� is surjective,
we include a proof for the readers’ convenience.

Lemma 7.7 Let .H; �/ be a nonsingular "–Hermitian form on a free ƒ–module H . If
M �H is a half-rank sublagrangian , then M is a Lagrangian.

Proof We know that M �M? and must show that M DM?. Equivalently, we must
show that M=M? D 0. We will show that M=M? is both torsion and torsion-free.

Claim 6 The inclusion M? ,!H is split and M? �H is a half-rank summand.

Proof Consider the exact sequence 0!M?!H
��y�
�!M �. It now suffices to show

that ��y� is surjective: since M � is free and rkƒ.M �/ D rkƒ.M / D 1
2

rkƒ.H /, the
result would then follow. Since � is nonsingular, y� is surjective and so it suffices
to prove that �� is injective. This occurs if and only if Ext1ƒ.H=M; ƒ/ D 0. But
since M is a summand, it follows that H ŠM ˚H=M . Since H is free, H=M is
projective over ƒ and therefore free over ƒ [38, Chapter V, Corollary 4.12]. Thus
Ext1ƒ.H=M; ƒ/D 0, so ��y� is surjective and thus M? ,! H is a split injection, as
claimed.

The fact that M=M? is torsion follows from the claim because M? � M and
rkƒ.M?/D rkƒ.M /. We now show that M=M? is torsion-free. Since submodules
of torsion-free modules are torsion-free, it suffices to show that H=M? �M=M?

is torsion-free. But now by the claim, we know that H=M? is (isomorphic to) a
submodule of the free module H ŠM?˚H=M? and so it is indeed torsion-free.
This concludes the proof of the lemma.
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Given a Seifert matrix A for a genus g Seifert surface S , we write .H;A/ WD .Z2g;A/.
Use F �D4 to denote the result of pushing S into D4. After some choice of bases,
the equivariant intersection form .H2.D

4
F
Iƒ/; �D4

F
/ is isometric to

.H ˝Zƒ; .1� t/AT
C .1� t�1/A/:

See [35, Section 3], also [8, proof of Lemma 5.4].

Remark 7.8 .H ˝Zƒ;A� tAT ;A/ defines a .�t/–quadratic form. Furthermore, if
A is a Seifert matrix for an Alexander polynomial one knot K, then this quadratic form
is nonsingular since det.A� tAT /

:
D�K .t/

:
D 1.

Recall that a metaboliser for a Seifert matrix .Z2g;A/ is a half-rank direct summand
L�Z2g such that xT Ay D 0 for all x;y 2L. Since Alexander polynomial one knots
are (in particular) algebraically slice, their Seifert matrices admit metabolisers.

Proposition 7.9 Let .H;A/ WD .Z2g;A/ be a Seifert matrix for an Alexander polyno-
mial one knot K. If L�H is a metaboliser for .H;A/, then L˝Zƒ is a Lagrangian
for .H ˝Zƒ;A� tAT ;A/, and so this latter .�t/–quadratic form is hyperbolic.

Proof We verify the three points in the definition of a Lagrangian. Since A vanishes
on L, the extended form (also denoted by A) vanishes on M WDL˝Zƒ. It follows that
the .�t/–Hermitian form A� tAT vanishes on M �M . Since L�H is a summand,
so is M � H ˝Z ƒ. Thus M � .H ˝Z ƒ;A� tAT / is a sublagrangian of a .�t/–
Hermitian form, with H ˝Zƒ a free module. We showed in Lemma 7.7 that since M

is half-rank, this forces M? DM .

The last sentence of the proposition follows because it is known that if a nonsingular
"–quadratic form .H; �; �/ admits a Lagrangian, then it is isometric to the standard
hyperbolic form [46, Proposition 2.2].

Proposition 7.10 If A is a Seifert matrix for an Alexander polynomial one knot K,
then

.H ˝Zƒ; .1� t/AT
C .1� t�1/A/ŠH˚g

2
:

Proof Using Proposition 7.9, we deduce the following sequence of isometries:

.H ˝Zƒ;A� tAT ;A/ŠH�t .ƒ/
˚g
D

�
ƒ2g;

�
0 1

�t 0

�̊ g

;

�
0 1

0 0

�̊ g �
Š

�
ƒ2g;

�
0 �t

1 0

�̊ g

;

�
0 0

1 0

�̊ g �
:

Multiplying both sides by .1� t�1/ then gives the assertion.
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We are now ready to prove Theorem 1.9 from the introduction.

Theorem 7.11 If F0;F1�D4 are genus g pushed-in Seifert surfaces for an Alexander
polynomial one knot K, then they are topologically ambiently isotopic rel boundary.

Proof Let A0 and A1 be Seifert matrices for F0 and F1. As mentioned above, the
equivariant intersection form .H2.D

4
Fi
Iƒ/; �D4

Fi
/ is isometric to

.H ˝Zƒ; .1� t/AT
i C .1� t�1/Ai/:

By Proposition 7.10, both forms are isometric to H˚g
2

. Since K is an Alexander
polynomial one knot, the result now follows from Theorem 7.5.

8 Rim surgery on surfaces with knot group Z

We prove Theorems 1.7 and 1.8, which concern rim surgery on surfaces in 4–manifolds
whose knot group is Z. In Section 8.1, we review the definition of rim surgery; in
Sections 8.2 and 8.3 we prove the main results.

8.1 Knot surgery and twist rim surgery

We review some facts about knot surgery and rim surgery. For references see for
instance [14; 30; 32; 2].

Let Z be a compact, oriented 4–manifold containing a locally flat embedded torus T

with trivial normal bundle, and let J � S3 be a knot. Use �T to denote the meridian
of T �Z, and �J and �J respectively for the meridian and 0–framed longitude of J .
Let ' W @�.T / ! S1 � @EJ be any diffeomorphism such that '�.�T / D �J . The
4–manifold obtained by knot surgery along J and ' is defined as

ZJ .'/D .Z n �.T //[' .S
1
�EJ /:

Given a compact 4–manifold W and a locally flat embedded orientable surface †�W ,
we assume either that W and † are closed or that †�W is a properly embedded. As
we now describe, rim surgery arises from a particular type of knot surgery on the surface
exterior W† WDW n �.†/. Choose a simple closed curve ˛ � † and a trivialisation
of the normal bundles over ˛ and † so that .�.†/; �.˛// D .†�D2; ˛ � I �D2/;
in other words, the normal bundle of ˛ inside † is ˛ � I . This way, it is understood
that �† D fptg � @D2, and the rim torus T is @.�.†/j˛/D ˛ ��†. The rim torus is
framed: if we write �.†/j˛�I D ˛ � I �D2, then a framing of �T is given by the
I–direction and the radial direction in the polar coordinates of D2.
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In order to perform a knot surgery on W† along J using the rim torus T , for integers
m and n we consider the homeomorphism 'm

n W @x�.T /! S1 � @EJ determined by

'm
n .˛/Dm�J C n�J CS1; 'm

n .�†/D �J ; 'm
n .�T /D �J :

Gluing †�D2 back into the result of this knot surgery produces a manifold WJ .'
m
n /

that is homeomorphic to W , and in fact if W is smooth then WJ .'
m
n / is diffeomorphic

to W ; see [30, Lemma 2.4], in which a specific diffeomorphism is constructed. Thus,
we obtain a new embedding †m

n .˛;J /� W .

Definition 8.1 Let ˛ �† be a simple closed curve, let J be a knot, and let m; n 2 Z

be integers. The n–roll m–twist rim surgery of a locally flat, properly embedded,
orientable surface † � W is the image †m

n .˛;J / of † under the homeomorphism
W ŠWJ .'

m
n / mentioned above. If W is smooth and † is smoothly embedded, then

since W ŠWJ .'
m
n / is a diffeomorphism, †m

n .˛;J / is smoothly embedded.

The exterior W†m
n .˛;J / of the rim surgery †m

n .˛;J / is the knot surgery on W†

along the homeomorphism 'm
n . The proof of the following lemma can be found

in [30, Proposition 3.3].

Lemma 8.2 For a compact 4–manifold W and a locally flat , embedded , orientable
surface †� W , we assume either that W and † are closed or that †�W is properly
embedded. Let ˛ �† be a simple closed curve , let J be a knot , and let m; n 2 Z. If
�1.W†/D Zd with d D˙1 mod m, then

�1.W†/D �1.W†m
n .˛;J //D Zd :

In our case, the knot group is infinite cyclic, so we take d D 0 and restrict to n–roll
1–twist surgeries. We write †n.˛;J / WD†

1
n.˛;J / and 'n WD '

1
n .

Remark 8.3 If J D U is the unknot then †n.˛;U /D†, by [32, Lemma 2.2].

8.2 The ƒ–intersection form

Now we focus on the case where the ambient manifold N has a boundary, and show
that the ƒ–intersection form of N†n.˛;J / agrees with that of N†.

We start with an observation concerning the rim torus.
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Lemma 8.4 Let † � N D X n VD4 be a Z–surface. The exterior of a rim torus T

satisfies
H1.N† n �.T //D Zh�†i˚ hZ�T i:

Proof Consider the Mayer–Vietoris sequence of N† D .N† n �.T //[x�.T /:

(29) � � �!H2.N†/
@
!H1.T �S1/

�
!H1.x�.T //˚H1.N†n�.T //!H1.N†/! 0:

We show that @D 0. Note that

H1.T �S1/ŠH1.T /˚H1.S
1/

�
!H1.x�.T //ŠH1.T /

is projection onto the first factor, so for x ¤ 0 in H1.T /, �.x; n/ ¤ 0. Therefore in
the image of @, the first coordinate vanishes. Now for a closed surface S � N , the
definition of the connecting homomorphism implies that

@.ŒS �/D .0;QN .ŒT �; ŒS �// 2H1.T �S1/ŠH1.T /˚H1.S
1/:

Since T is isotopic to a torus in †�S1 � @N†, we deduce that QN .ŒT �; ŒS �/D 0. It
follows that @D 0 as asserted. The Mayer–Vietoris sequence in (29) then reduces to

0! Zh�T i !H1.N† n �.T //!H1.N†/! 0:

Since H1.N†/D Zh�†i is free, this sequence splits, establishing the lemma.

Next, we extend the coefficient system on �1.N†/ over �1.N†n.˛;J //.

Remark 8.5 The map �1.N†/!Z restricts to a map �1.N† n�.T //!Z that sends
�† to 1 and �T to 0; recall from Lemma 8.4 that H1.N† n�.T //ŠZh�†i˚Zh�T i.
Consider the map �1.S

1 � EJ / ! Z that sends the class of the S1–factor to �1

and that is the abelianisation on �1.EJ /. We verify that these maps extend to a
map �1.N†n.˛;J //! Z. We are identifying the 3–torus @x�.T /� @N† n �.T / with
S1�@EJ via the homeomorphism 'n. We have the identifications Œ˛�� ŒS1�Œ�J �Œ�J �

n,
Œ�†�� Œ�J � and Œ�T �� Œ�J �. The loop ˛ �† is mapped to zero under �1.N†/!Z;
the same is true for ŒS1�Œ�J �Œ�J �

n under the map �1.S
1 �EJ /! Z. Similarly, both

�† and �J (resp �T and �J ) are sent to 1 (resp. 0) under the respective maps to Z.

Arguing as in [32, Proof of Lemma 2.3], we construct a degree one map

‰ WN†n.˛;J /! N†:
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Using obstruction theory, one can construct a degree one map EJ ! EU , where
U � S3 is the unknot, that takes meridian to meridian and longitude to longitude.
Cross it with the identity to obtain a degree one map S1�EJ !S1�EU . This can be
glued to the identity map IdN†n�.T / to obtain a degree one map N†n.˛;J /!N†n.˛;U /.
By [32, Lemma 2.2], there is a homeomorphism N†n.˛;U /ŠN† and we have therefore
obtained a degree one map

‰ WN†n.˛;J /!N†n.˛;U / ŠN†:

By construction, ‰ is the identity on @N†. Furthermore, since the fundamental groups
of both N†n.˛;J / and N† are generated by the meridians of the surface, ‰ induces
an isomorphism on fundamental groups: indeed by construction ‰ takes meridian to
meridian. In particular ‰ induces homomorphisms on the ƒ–homology groups.

In order to prove that ‰ in fact induces an isometry of the equivariant intersection
forms, we compute the ƒ–homology of S1 �EJ .

Lemma 8.6 Let J � S3 be a knot. With respect to the coefficient system on S1�EJ

introduced in Remark 8.5, we have H2.S
1 �EJ Iƒ/D 0 and H1.S

1 �EJ Iƒ/D Z.
Additionally, the degree one map ‰ induces an isometry

‰� W .H2.N†n.˛;J /Iƒ/; �N†n.˛;J/
/ Š�! .H2.N†Iƒ/; �N† /:

Proof We use the Künneth spectral sequence with

E2
p;q D

M
q1Cq2Dq

Torp.Hq1
.S1
Iƒ/;Hq2

.EJ Iƒ//;

which converges to H�.S
1�EJ Iƒ˝ƒƒ/ŠH�.S

1�EJ Iƒ/, whereƒ˝ƒƒ is a right
ZŒ�1.EK /��1.S

1/�–module via the diagonal action induced by p˝q �.e; s/Dpe˝qs

for p; q 2 ƒ and .e; s/ 2 �1.EK /� �1.S
1/. Write " W ƒ! Z;p.t/ 7! p.1/ for the

augmentation map and Z" for the resulting ƒ–module structure on Z. By definition
of the coefficient system in Remark 8.5, we have H1.S

1Iƒ/D 0 and H0.S
1Iƒ/D

ƒ=.t � 1/D Z". We also have H0.EJ Iƒ/D Z and Hi.EJ Iƒ/D 0 for i � 2. This
implies that E2

0;2
D 0. In fact, we also deduce that E2

1;0
D Z and E2

2;0
D 0 because

E2
i;0 D TorZŒZ�

i .Z;Z/DHi.ZIZ/DHi.S
1/:

We claim that Torƒi .Z";H1.EJ Iƒ//D0 for iD0; 1. These Tor groups are computed as
the homology of the complex obtained tensoring the resolution 0!ƒ

t�1
�!ƒ!Z"!0

with the Alexander module H1.EJ Iƒ/. Since multiplication by t � 1 induces an
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isomorphism on the Alexander module [39, Proposition 1.2], these Tor groups vanish
and the claim is proved.

Using the claim, we deduce that E2
0;1
D 0 and E2

1;1
D 0. It follows that d2;0 D 0 and

now the first assertion is a consequence of a standard spectral sequence computation.

We now assert that‰ induces an isomorphism on H2.�Iƒ/. Recall the decompositions

N†n.˛;J / D .N† n �.T //['n
.S1
�EJ /;

N† ŠN†n.˛;U / D .N† n �.T //['n
.S1
�EU /:

By construction, ‰ restricts to the identity on N† n �.T / and @x�.T / and therefore
induces the identity on theƒ–homology of these spaces. Next,‰� WH1.S

1�EJ Iƒ/!

H1.S
1 �EU Iƒ/ is also an isomorphism: indeed, the first assertion shows that both

modules are isomorphic to ZDƒ=.t�1/, and this term comes from H0.EJ Iƒ/DZ",
on which‰ does indeed induce an isomorphism. We showed that H2.S

1�EJ Iƒ/D 0,
so the assertion now follows from the five lemma applied to the following commutative
diagram, where ƒ–coefficients are understood:

H2.@x�.T // //

‰�

H2.N†n�.T // //

‰�

H2.N†n.˛;J //
//

‰�

��

H1.@x�.T // //

‰�

H1.N†n�.T //
˚

Z
//

‰� Š
��

0

H2.@x�.T // // H2.N†n�.T // // H2.N†/ // H1.@x�.T // //
H1.N†n�.T //

˚

Z
// 0

Since ‰ induces a ƒ–isomorphism on H2.�Iƒ/, it induces one on H2.�Iƒ/
�, and

therefore on H 2.�Iƒ/ (recall the UCSS argument from Lemma 3.2) and thus on the
second relative ƒ–homology groups (because deg.‰/D 1). We conclude that ‰� in
fact induces an isometry of the ƒ–intersection forms.

8.3 Topological triviality of rim surgery on surfaces with knot group Z

Next we prove Theorem 1.8 from the introduction.

Theorem 8.7 Let † � N D X n VD4 be a Z–surface , let ˛ � † be a simple closed
curve , let J be a knot , and let n 2 Z be an integer. There is a rel boundary orientation-
preserving homeomorphism of pairs

ˆ W .N; †n.˛;J //
Š�! .N; †/
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that induces the same isometry as the degree one map ‰ on the equivariant intersection
forms of the surface exteriors. If N DD4, then the surfaces are topologically isotopic
rel boundary.

Proof By Lemma 8.2 both surfaces have knot group Z. Lemma 8.6 states that the
degree one map ‰ WN†n.˛;J /!N† induces an isometry ‰� W �N†n.˛;J/

Š �N† . As
‰ is the identity on @N†, we see that @‰ induces the identity isometry between the
boundary Blanchfield forms. The result now follows from Theorem 5.8.

The remaining result we owe a proof of is Theorem 1.7 from the introduction. To prove
this result, which involves obtaining an isotopy between closed surfaces, we need to
control the map FZ discussed in Lemma 5.10. This will rely on the following result.

Lemma 8.8 Let † � N be a Z–surface , let ˛ � † be a simple closed curve with
associated rim torus T , and let J be a knot. The following sequences of inclusion
induced maps are exact :

0! Zh˛��T i !H2.N† n �.T /Iƒ/!H2.N†n.˛;J /Iƒ/! 0;

0! Zh˛��T i !H2.N† n �.T /Iƒ/!H2.N†Iƒ/! 0:

Proof As we noted in Lemma 8.2 that �1.N†n.˛;J // D Z and since N†n.˛;J / has
ribbon boundary, we know that H1.N†n.˛;J /Iƒ/D 0 as well as H3.N†n.˛;J /Iƒ/D 0,
again by Lemma 3.2. Consequently, the Mayer–Vietoris sequence for N†n.˛;J / D

N† n �.T /['n
.S1 �EJ / with ƒ coefficients gives

0!H2.@x�.T /Iƒ/!H2.N† n �.T /Iƒ/˚H2.S
1
�EJ Iƒ/!H2.N†n.˛;J /Iƒ/

!H1.@x�.T /Iƒ/!H1.N† n �.T /Iƒ/˚H1.S
1
�EJ Iƒ/! 0:

Since there is a homotopy equivalence x�.T /' ˛��†, the discussion of coefficient
systems from Remark 8.5 implies that

Hi.@x�.T /Iƒ/DHi.˛��† ��T Iƒ/DHi.˛��T / for i D 1; 2:

We saw in Lemma 8.6 that H2.EJ � S1Iƒ/ D 0 and H1.EJ � S1Iƒ/ D Z. The
previous sequence therefore reduces to

(30) 0!Zh˛��T i!H2.N† n�.T /Iƒ/!H2.N†n.˛;J /Iƒ/!Zh˛i˚Zh�T i

!H1.N† n �.T /Iƒ/˚Z! 0:

When J D U is the unknot, H1.S
1�EJ Iƒ/DH1.˛/DZh˛i, and therefore Zh�T i

surjects onto H1.N† n�.T /Iƒ/. In particular, as an abelian group, H1.N† n�.T /Iƒ/

is cyclic.
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Claim 7 The map Zh�T i
��H1.N† n �.T /Iƒ/ is an isomorphism.

Proof We already noted that, as an abelian group, H1.N† n �.T /Iƒ/ is cyclic, so it
suffices to show that H1.N† n �.T /Iƒ/˝Z Q¤ 0. Equivalently, we must establish
that

H WDH1.N† n �.T /IQŒt
˙1�/¤ 0:

By way of contradiction, assume that H D 0. Let " W ƒ! Z again denote the aug-
mentation map and write Z" and Q" for the resulting ƒ–module structures. Since
Torƒ2 .Z";Q"/D 0, the universal coefficient spectral sequence applied to

H1.N† n �.T /IQ/DH1.N† n �.T /IQŒt
˙1�˝ƒQ"/

produces the short exact sequence

0!H ˝ƒQ"!H1.N† n �.T /IQ/! Torƒ1 .Z";Q"/! 0:

We assumed that H D 0, so H˝ƒQ"D 0, and thus H1.N† n�.T /IQ/ŠTorƒ1 .Z;Q/.
Using Lemma 8.4, H1.N† n �.T /IQ/ D Q2. On the other hand, Torƒ1 .Z";Q"/ D

H1.S
1IQ/D Q. This is a contradiction and the claim is established.

Using Claim 7, the penultimate map in (30) is a surjection Z2! Z2 and therefore
an isomorphism. The first short exact sequence in the statement of the lemma now
follows from the one displayed in (30). The exactness of the second sequence follows
from exactness of the first by taking J D U and recalling that †n.˛;U / D † by
Remark 8.3.

Theorem 8.9 Let †�X be a closed Z–surface , let ˛ �† be a simple closed curve ,
let J be a knot , and let n2Z. The surfaces† and†n.˛;J / are topologically ambiently
isotopic.

Proof After an ambient isotopy, we may assume that the surfaces †0 WD †n.˛;J /

and †1 WD † coincide on a disc D2 � †\†n.˛;J / that does not intersect ˛ � †.
Assume that the normal bundles also coincide over this D2. Consider the preimage
VD2 �R2 � �†i . This is homeomorphic to an open 4–ball VD4. Remove this . VD4; VD2/

from .X; †/ and .X; †n.˛;J // to obtain properly embedded surfaces z† � N and
z†n.˛;J / � N with the unknot as a common boundary. By construction, z†n.˛;J /

is obtained by rim surgery on z†. Apply Theorem 8.7 to obtain a rel boundary home-
omorphism of pairs ˆ W .N; z†n.˛;J //! .N; z†/. Recall that on H2.�Iƒ/, we have
ˆ� D ‰�, where ‰ is the degree one map described above Lemma 8.6. Construct
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a homeomorphism of pairs .X; †n.˛;J //! .X; †/ by gluing ˆ with the identity
homeomorphism .D4;D2/! .D4;D2/.

We refine this argument to obtain the required ambient isotopy. Use F to denote the
isometry induced by these homeomorphisms on H2.�Iƒ/ of the surface exteriors.
In Lemma 8.6, we argued that this isometry fits into the following commutative dia-
gram with exact rows (here we also used Lemma 8.8 to simplify the Mayer–Vietoris
sequences):

(31)

0 // Zh˛��T i
//

Id

H2.Nz† n �.T /Iƒ/
//

Id

H2.Nz†n.˛;J /
Iƒ/

FD‰�

��

// 0

0 // Zh˛��T i
// H2.Nz† n �.T /Iƒ/

// H2.Nz†Iƒ/
// 0

Recall that †0 WD †n.˛;J / and †1 WD †, so X†0
Š Nz†n.˛;J /

and X†1
Š Nz†. In

Lemma 5.10, FZ was defined by the following commutative diagram with exact rows:

(32)

0 // Z2g //

.F˝ƒIdZ/j
��

H2.X†0
/

p0

//

F˝ƒIdZ

��

H2.X / //

FZ

��

0

0 // Z2g // H2.X†1
/

p1
// H2.X / // 0

By (32), every element x of H2.X / can be represented by a class in H2.X†0
/, and

by (31) every class here can be represented by a surface S in Nz†n.˛;J / n �.T / �

Nz†n.˛;J / ŠX†0
. Since F is induced by the degree one map ‰, mapping our surface

to the same surface S in Nz† n�.T /�Nz† ŠX†1
yields .F˝ƒ IdZ/.ŒS �/ 2H2.X†1

/.
The inclusion induced map p1 W H2.X†1

/ ! H2.X / then sends .F ˝ƒ IdZ/.ŒS �/

to x. Therefore FZ W H2.X /! H2.X / is indeed the identity, so the second item of
Theorem 5.11 implies that †0 and †1 are topologically ambiently isotopic.

Appendix Stable isotopy for surfaces in a topological
4–manifold with boundary

The next result is an extension of [2, Theorem 5] to the topological case, and allowing
nonempty boundary, but restricting the ambient 4–manifolds somewhat. Since we need
the given extension, we provide details of the proof. The main ideas are due to [2]. We
fill in some details in their argument for constructing a map to S1 in the course of the
proof. The case with nonempty boundary was also stated as [25, Proposition 2.13] in
the smooth category.
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Theorem A.1 Let N be an oriented , connected , simply connected , compact topologi-
cal 4–manifold with boundary S3. Let † be a compact , connected , orientable surface
with one boundary component. Let †0; †1 �N be two properly embedded , locally
flat , oriented surfaces homeomorphic to †, and suppose that @†0 D @†1. Assume
that for each i , �1.N n†i/Š Z is infinite cyclic generated by an oriented meridian
to †i . Then some finite number of trivial one-handle stabilisations results in ambiently
isotopic surfaces †0

0
and †0

1
, with @†i D @†

0
i for i D 0; 1.

We begin with a lemma on framings, some of which is a recollection from Section 5.
Note that any locally flat embedded surface in a 4–manifold admits a normal bundle
with linear structure group [15, Theorem 9.3].

Lemma A.2 For i D 0; 1 the normal bundle of †i is trivial and for any choice of
framing there is a well-defined induced .homotopy class of/ framing on the normal
bundle of @†i . The surface †i is null-homologous in H2.N; @N /, and the induced
framing on @†i equals the Seifert framing.

Proof Since the surface †i has nonempty boundary and is oriented, its normal bundle
is trivial. Two choices of framings on †i differ by a map †i! SO.2/. The difference
between the two framings on the boundary @†i is governed by the homotopy class of
the composite

S1 Š�! @†i!†i! SO.2/Š S1:

Since the boundary determines a commutator in �1.†i/, the displayed map is null-
homotopic. It follows that the two framings induced on @†i agree up to homotopy.
This proves that the induced framing is well-defined. The second sentence was already
shown in Lemmas 5.1 and 5.2.

Proof of Theorem A.1 Push the boundary of †1 off the boundary of †0, using the
Seifert framing, to arrange that @†0 and @†1 in @N Š S3 are parallel circles. We
may assume that there is a collar @N � I with @N � f0g D @N , and an embedding
g W S1 � I � I ,! @N � I corresponding to the Seifert framing push-off, with

g.S1
� I � fig/D†i \ .@N � I/ for i D 0; 1;

g.S1
� ftg � I/� @N � ftg for all t 2 I:

Let A� @N Š S3 be the annulus

A WD g.S1
� f0g � I/
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@†0 @†1

†0 †1

†0\ .@N � I/ †1\ .@N � I/

@N

g.S1 � I � I/

A

Figure 4: A schematic diagram indicating the relation of g.S1 � I � I/ �

@N � I to @†0, @†1, and the annulus A� S3 that joins them.

connecting @†0 and @†1, arising from the trace of the push. Note that A induces the
Seifert framing on @†i for i D 0; 1, and that by Lemma A.2 this equals the framing
induced by some choice of framing of the normal bundle of †i .

By an isotopy, arrange further that †0 and †1 intersect transversely in their interiors
[15, Theorem 9.5], and since † is compact we may also assume there are finitely many
intersection points.

Cap off each @†i with a Seifert surface, and by a small isotopy of the capped-off †1,
arrange that the capped-off surfaces are disjoint in @N � I . By Lemma A.2 (and since
H2.@N / D H2.S

3/ D 0), the capped-off surfaces are null-homologous in H2.N /,
and so intersect algebraically zero times. By tubing †0 to itself, that is by 1–handle
stabilisations, arrange that †0 and †1 are disjoint. To achieve this, pair up points with
opposite signs in †0 t†1 and for each pair fp; qg choose a path 
 in †1 connecting
the two intersection points and away from the other intersection points. We can choose
these paths to be mutually disjoint, but this is not obligatory. For each pair of points
fp; qg, remove two open discs from †0, one for each pair of points, and add a tube,
coming from the normal circle bundle of †1 restricted to 
 , as shown in Figure 5. In
case different paths on †1 intersect, vary the radii of the tubes to keep them disjoint.
This stabilises †0 to a surface disjoint from †1.

Perform the same number of trivial 1–handle stabilisations to †1, so that the surfaces
are still abstractly homeomorphic. We will abuse notation and still refer to the resulting
surfaces as †0 and †1. Let

N†0;†1
WDN n .�†0[ �†1/:

We will construct an oriented 3–dimensional relative Seifert manifold Y �N†0;†1
, that

is a rel boundary cobordism between †0 and †1, embedded in N and with @Y D S ,
where

S WD†0[A[�†1:

Geometry & Topology, Volume 27 (2023)



816 Anthony Conway and Mark Powell

†0
†1

†0
0

†1

Figure 5: Stabilising †0 to †0
0 by adding a 1–handle in a neighbourhood of

an arc 
 in †1.

Claim There is a locally flat , embedded , compact , orientable 3–manifold Y with
@Y D S and corners at †i \A, as described in the preceding paragraph.

Proof The strategy to construct Y is as follows: define a suitable map @N†0;†1
!S1,

extend it to a map N†0;†1
! S1 while controlling the restriction to @N†0;†1

, and then
take Y to be the inverse image of a transverse regular point in S1.

The first step is to construct a map ˛ WN†0;†1
! S1. Recall that N†i

WDN n�†i . We
can express N DN†0

[N†1
, with N†0;†1

DN†0
\N†1

. A portion of the resulting
Mayer–Vietoris sequence (with Z coefficients) is

H2.N /
ı
!H1.N†0;†1

/!H1.N†0
/˚H1.N†1

/!H1.N /:

By hypothesis H1.N /D 0 and H1.N†i
/ŠZ, so that we obtain a short exact sequence

0! im ı!H1.N†0;†1
/! Z˚Z! 0:

Since Z˚Z is free abelian, this splits and we have that

H1.N†0;†1
/Š Z˚Z˚ im ı:

By the hypotheses of Theorem A.1, the first two summands are generated by meridians
�†0

and �†1
to the surfaces †0 and †1, respectively. Consider the dual element

˛ WD ��†0
���†1

2 Hom.H1.N†0;†1
/;Z/ŠH 1.N†0;†1

/Š ŒN†0;†1
;S1�;

sending the im ı summand identically to 0. We will also write ˛ WN†0;†1
! S1 for a

corresponding representing map. We use that since N†0;†1
is a topological 4–manifold,

it is homotopy equivalent to a CW–complex [17, Theorem 4.5], and therefore we may
identify H 1.N†0;†1

/Š ŒN†0;†1
;S1�.

Now we consider the restriction to @N†0;†1
under the inclusion-induced map

�� WH 1.N†0;†1
/!H 1.@N†0;†1

/Š Œ@N†0;†1
;S1�;
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where � W @N†0;†1
!N†0;†1

is the inclusion map. We have a decomposition

@N†0;†1
D†0 �S1

[ @0N†0;†1
[†1 �S1:

An elementary Mayer–Vietoris argument yields that

H 1.@N†0;†1
/Š Z˚Z˚Z2g

˚Z2g:

The first two summands are generated by duals to the meridians, ��
†0

and ��
†1

. By our
work with framings above, for i D 0; 1 there is a framing of the normal bundle of †i ,
determining an identification of the tubular neighbourhood x�†i with †i �D2, that
agrees on @†i with a corresponding identification induced from the Seifert framing
on @†i . This determines an identification

@x�†i n �@†i Š†i �S1:

The two Z2g summands of H 1.@N†0;†1
/ are generated by dual classes to curves of

the form 
k � f�1g, where 
k is a simple closed curve forming part of a symplectic
basis for H1.†i/, for some i . Here we use the chosen framing of the normal bundle
of †i to fix representatives for the Z2g summands.

The restriction ��˛ 2 H 1.@N†0;†1
/ is .1;�1;x;y/, for some x;y 2 Z2g. But by

changing the choice of framing of �†i along the curves 
k , we can arrange that
x D y D 0. By changing the framing of the normal bundle of †i by some number of
full twists along some basis curve 
k in H1.†i/, we change the meaning of 
k �f�1g

in the previous paragraph.

Let us explain the operation of “changing the framing” in more detail. Such a change is
occasioned by the action of

�S
k 
k ;SO.2/

�
on the set of framings of the normal bundle,

to alter the given framing on the union of the curves f
kg by some number of full twists
for each curve. Any such alteration automatically extends over the 2–skeleton since the
attaching map of the 2–cell of†i is a commutator in the 
k times @†i . Any two choices
of extension over the 2–cells are homotopic, since �2.SO.2//D 0. Therefore we have a
well-defined notion of altering the framing along the curves 
k . This changes the entry
of .x;y/ corresponding to 
k , since the map ˛ WN†0;†1

! S1 now sends 
k � f�1g

to a curve representing a different element of H1.S
1/. By Lemma A.2, changing the

choice of framing on a basis element for H1.†i/ does not change the induced framing
on the boundary.

Now we define a map f W@N†0;†1
!S1. On†i�S1� @N†0;†1

, define the map to S1

by the projection f j†i�S1 W†i �S1! S1 onto the second factor. On the remainder
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of @N†0;†1
, namely

@0N†0;†1
WD @N n .�†0[ �†1/;

or in other words the link exterior S3 n .�@†0 [ �@†1/, define a Pontryagin–Thom-
style collapse map f j@0N†0;†1

W @0N†0;†1
!S1 by choosing a tubular neighbourhood

A�Œ�1; 1�� @0N†0;†1
and sending .a;x/ 7! e�ix 2S1 for a2A and x 2 Œ�1; 1�, then

sending @0N†0;†1
n.A� Œ�1; 1�/ to �12S1. Then f j�1

@0N†0;†1

.f1g/DA\@0N†0;†1
.

Note that we may assume that our maps to S1 agree on the torus overlaps @†i �S1,
since the framings on @†i all agree up to homotopy. This completes the construction
of a map f W @N†0;†1

! S1. Note that f W @N†0;†1
! S1 corresponds to the element

.1;�1; 0; 0/ 2 Z˚Z˚Z2g
˚Z2g:

Therefore the cohomology classes ��˛ and f agree in H 1.@N†0;†1
/Š Œ@N†0;†1

;S1�,
and so by a homotopy of ˛ supported in a collar of @N†0;†1

we obtain a map
F WN†0;†1

! S1 with F j@N†0;†1
D f W @N†0;†1

! S1.

The inverse image under F of a transverse regular point in S1 yields a 3–dimensional
relative Seifert manifold, locally flatly embedded in N†0;†1

DN n .�†0[ �†1/. See
[17, Section 10.2] for information on map transversality in the topological category.
Add collars †0�I and †1�I in �†0 and �†1, respectively, to obtain the 3–manifold
Y that we seek. This completes the proof of the claim.

Morse theory on Y gives rise to a Heegaard decomposition relative to the annulus A.
The Heegaard surface can be obtained from both †0 and †1 by 1–handle stabilisations
and ambient isotopy.

Since by our assumptions �1.N†i
/ is generated by a meridian to †i , Boyle’s [6]

proof shows that every 1–handle stabilisation is a trivial stabilisation. He applied
[23, Theorem 4] of Hudson for the statement that D1 cores of handle additions that are
homotopic rel endpoints are in fact smoothly ambiently isotopic fixing the endpoints.
To apply Boyle’s work to topologically embedded surfaces in a compact 4–manifold N ,
remove a point from N and smooth N nfptg in such a way that† is smoothly embedded.
Then Boyle’s application of Hudson’s result yields a smooth ambient isotopy, which
gives rise to a topological ambient isotopy once the point is added back to N . We note
that Boyle works in S4, but his proof applies to any oriented ambient 4–manifold.

We therefore have that after finitely many trivial stabilisations,†0 and†1 are ambiently
isotopic in N relative to the constant isotopy on the boundary, as desired.
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