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Abstract
This article presents a hpr-adaptive crack propagation method for highly accu-
rate 2D crack propagation paths which requires no a priori knowledge of the
tip solution. The propagation method is designed to be simple to implement,
only hr-adaptivity is required, with the propagation step size independent of
the initial mesh allowing users to obtain high fidelity crack path predictions for
domains containing multiple cracks propagating at different rates. The proposed
method also includes a crack path derefinement scheme, where elements away
from the crack tip are derefined whilst elements close to the crack tip are small so
capture the fidelity of the crack path. The result is that the propagation of cracks
over an increasingly larger distances has negligible increased computational
effort and effect on the propagation path prediction. The linear elastic problem
is solved using the hp discontinuous Galerkin symmetric interior penalty finite
element method, which is post-processed to obtain the configurational force
at each tip to a user defined accuracy. Several numerical examples are used to
demonstrate the accuracy, efficiency, and capability of the method. Due to the
method’s high accuracy crack path solutions of benchmark problems that are
prolifically used in the literature are challenged.
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1 INTRODUCTION

Many methods are presented in the literature to determine when and in what direction a crack should propagate. In
this context, the notion of configurational (material) forces, (CF) presented by Eshelby,1,2 for a measure of the forces
induced by an elliptical inclusion or discontinuity within a homogeneous domain, and Rice3 for the classical J-integral
and its subsequent variations, are fundamental to these methods. CFs have seen widespread use in computational frac-
ture mechanics, with Gurtin4,5 and Maugin6,7 being notable authors in the subject of CF based fracture, as well as general
CF theory, and with local variational formulations, either for the use of explicit or implicit CF crack propagation, pre-
sented by Kienzler and Herrmann,8 Gurtin and Podio-Guidugli,5 and Steinmann and Maugin.9 Within the context of
non-enriched finite element methods the use of CFs to describe a moving fracture front was initially attempted by Mueller
and Maugin10 and later with the eXtended finite element method (XFEM) by Larsson and Fagerström.11,12 Later a robust
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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r-adaptive* technique was defined by Miehe and co workers13-15 for propagating cracks which was examined in Reference
16. Furthermore, the CF framework has recently been applied to materials with non-linear behavior, see for example
the works of Runesson et al.17 and Tillberg and Larsson18 on elasto-plasticity and Näser et al.19,20 on time-dependent
materials, and the review by Özenç et al.21

An alternative to CF-driven crack propagation is the use of the path independent J-integral3 to determine a crack’s
mode I and mode II stress intensity factors (SIFs).22 Ishikawa et al.23 demonstrated that the J-integral is a weighted sum of
its mode I and mode II SIFs which can be separately determined by decomposing the stress and displacement field about
the crack tip,24 when these respective fields are known a priori. One of the main advantages of directly evaluating the CF
is that no knowledge of the stress and displacement field is required a priori. The scalar value obtained by the J-integral
has the same value as the component of the CF acting parallel to the crack face and, if the equation is known, the SIFs can
be used to determine the CF vector. More commonly the SIFs are used with other methods, such as: the maximal prin-
cipal stress criterion,25 the maximum strain energy release rate criterion (MSERRC),26 maximum circumferential stress
criterion (MCSC)25 (extended to anisotropic materials by Saomua et al.27), or the minimum strain energy density crite-
rion (MSEDC).28 With these methods working in conjunction with the “G𝜃 method,”29 to determine the crack growth
direction. An alternative method for linear elastic materials to determine the SIFs for pure and mixed mode crack prob-
lems, that does not use the J-integral, is the virtual crack extension method introduced independently by deLorenzi,30

and by Parks et al.31 and subsequent extensions. Within the context of XFEM,32 presented a fixed-length crack extension
algorithm to model stable, unstable and partially stable fracture fronts.

The majority of the papers outlined above adopt the conventional continuous Galerkin (CG) FEM as their underly-
ing numerical tool. However, there are several advantages to adopting discontinuous Galerkin (DG) FEMs in terms of
accuracy and ease of mesh adaptivity due to the weak inter-element connectivity, created by the broken Hilbert space.33

Hansbo and Hansbo34,35 present a crack propagation method, for linear and non-linear elasticity, using DG methods
with35 using the weak element interaction to track internal weak and strong discontinuities. However, similar to Heintz,36

neither the weak interaction of element face communication element nor adaptivity was exploited for crack propaga-
tion, only later in Bird et al.,37 with a geometry driven rp-adaptive crack CF propagation method, were these features
exploited. More recently an hr-adaptive method was used with asynchronous spacetime DG methods for the introduction
of discrete fractures from damage.38 Bird et al.39 produced a highly accurate domain independent method to determine
the CF which combined the advantages of no knowledge a priori being required to compute the CF and, ease of error
driven hp-adaptivity, using the DG FEM, to obtain highly accurate solutions of stress fields without the need for enrich-
ment. Since no a priori knowledge was required to produce highly accurate results, the method can be applied directly
to anisotropic materials, as shown in Reference 40, and has the potential to be also applied directly to heterogeneous
materials. The XFEM has also been extended to DG methods by Shen et al.,41 where optimal convergence results for the
error in displacement and stress were presented. An alternative method to discrete fracture propagation is the hybrid DG
method. The hybrid DG method exploits element interfaces and element specific degrees of freedom (DOF) to propagate
a crack using a cohesive zone, initial works include.42,43 This method has the advantage that it naturally allows the initia-
tion of fractures however, it is strongly mesh dependent as the failure criterion is defined across element interfaces rather
than nodes at the crack tip. Cracks can therefore only exist at the initialized boundaries of elements of the original mesh,
unlike the r-adaptive method provided by Miehe et al.13 where the element interfaces adapt and align with the predicted
crack direction. Accurate solutions for crack propagation paths using the hybrid DG method can only be obtained with
very refined meshes.44 Hybrid DG methods have also been explored by Nguyen,45 Radovitzky et al.,44 Wu,46 and Prech-
tel et al.,47 amongst others. Within the context of cohesive law fracture, h- and hp-adaptive schemes have been produced
for space-time DG methods.48,49 A review of the cohesive laws which drive the traction-separation is provided by Park
and Paulino.50 There have also been recent developments using mesh adaptivity for crack propagation, for instance see
Hussein et al.51 where a virtual element technique is used to capture the crack path, and Reference 52 for a local mesh
refinement and contraction technique. However, both these methods refine the mesh over the entirety of the crack path,
the latter also uses a damage model to model the crack hence does not accurately capture the stress field at the crack tip.

The method proposed here is a hpr-adaptive method, including a refinement-derefinement scheme for the efficient
propagation of multiple cracks through aligning the elements edges with the crack path. The adaptive strategy is two fold.
First, the mesh is hr-adapted so that element edges align with the crack path with two regions of crack path resolution;
high resolution near the crack tip and lower resolution elsewhere. Both the size of the high resolution region and the level
of the resolutions are user defined and mesh independent. Second, error driven hp-adaptivity is performed to automat-
ically resolve the CF to a user-defined accuracy. The method is efficient in that the added DOF required to capture the
crack path are negligible. Other mesh refinement-derefinement adaptivity methods to capture crack paths also exist, as
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shown by Gilbert et al.,53 however there are several key differences. First Gilbert et al.’s method is applied to XFEM where
the mesh is h-adapted so that the Heaviside function can capture the crack path rather than aligning element edges with
the crack path. Second, this methods have no parameters to determine the desired resolution of the crack path. Third no
error estimates are used to automatically resolve the mesh to achieve a desired accuracy, only predefined mesh fidelity
around the crack tip is defined.

When reviewing the literature outlined above it is clear that, to date, researchers have failed to combine the following
advantages of DG FEMs: straightforward hp-adaptivity to provide high fidelity solutions for modest computational effort
achieving the accuracy of enriched methods, and the advantage of CF based fracture propagation, where no knowledge
a priori is required of the local crack tip stress field. The lack of an enriched space does come at a cost of increased
refinement, however when an appropriate error driven hp-adaptivity scheme is used, as by Bird et al.,39 the same order
of accuracy for the CF, or SIFs, to that achieved by XFEM solutions is possible for single and multiple crack problems
for isotropic and the generally anisotropic materials.39,40 In this article, these two advantages are combined to construct
a highly accurate method for propagating cracks to drive fracture propagation in brittle materials providing a highly
accurate yet computationally tractable fracture simulation framework without the use of enriched approaches.† This
allows the developed framework to be applied to general material behavior without modifying the underlying algorithms.
However, in this article we restrict the analysis to linear elastic materials undergoing small strains and focus on the
development of the DG FEM hpr-adaptive fracture modeling framework.

2 CONFIGURATIONAL FORCE FRACTURE PROPAGATION

This section provides the key equations for the small strain description of the CF approach for brittle fracture based on
the work of Miehe et al.,13 within which a full and thorough derivation can be found. The CF equations in the continuous
spatial domain are presented here and subsequently extended to the discrete spatial FEM form in Section 4.1. The deriva-
tion of the CF starts with a statement of the global power dissipation postulate which is consistent with the second law of
thermodynamics (see Reference 13). It concludes with the statement that the continuous form for the power dissipated
by a propagating crack is

𝒟 = 𝜕V ⋅ g, (1)

where 𝜕V is the crack tip material velocity with the crack tip CF, g, defined as

g = lim|C|→0 ∫C
𝚺 ⋅ nds. (2)

𝚺 is the Eshelby stress matrix defined as 𝚺 = 𝜹𝜓(𝜺) − ∇u⊤𝝈 with 𝜓(𝜺) as the strain energy density function, 𝝈 is Cauchy
stress, 𝜺 is small strain, u is displacement and 𝜹 is the identity matrix. Armed with an equation for the CF at a crack
tip, the next step is to determine how the crack will propagate. In this article a quasi-static crack propagation framework
is employed as presented in References 13,14, a load release quasi-static algorithm. First it is necessary to integrate the
discrete dissipation power at the crack, (1), over the time period [tn, tn+1]

Δ𝒟 = ∫
tn+1

tn
𝒟dt ≈ Δo ⋅ g, (3)

where Δ𝒟 is the energy dissipated over a discrete propagation step. Equation (3) includes an incremental increase in the
crack surface length, over the time period [tn, tn+1], which is defined by the vector Δo. This crack propagation vector for
brittle fracture is expressed as

Δo = Δa
g|g| where Δa =

{
ho for |g| ≥ gc

0 otherwise
, (4)

where gc is a Griffith material failure criteria, ho is the step increase in crack length and for brittle crack propagation and
Δa is subject to the Karush–Kuhn–Tucker conditions

Δa ⩾ 0, (|g| − gc) ⩽ 0 and Δa(|g| − gc) = 0. (5)
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It should be highlighted that the motion of nodes is permitted in the material configuration, with the exception of motion
that would change the shape of the boundary. It is recognized that is possible to dissipate power by moving nodes in the
material configuration other than those at the crack tip,54,55 and thus achieve a minimal energy solution to the problem.
However this is a highly non-linear and computationally expensive problem. Therefore in this article we do not attempt
to include this form of r-adaptivity to reduce the spurious CFs away from the crack tip. This is consistent with the works
of References 13-15,34,35,56,57 and many others, but we do recognize that this form of r-adaptivity could potentially
improve the solutions, albeit at considerable additional computational expense. Here, only power dissipation in the form
of surface generation, or crack propagation, is included.

The key equations for modeling brittle fracture propagation based on CF have now been outlined. The crack tip CF
value, for all crack tips, is calculated in a post-processing procedure once the displacement and stress field has been
determined throughout the problem under consideration. It should also be stated that it is possible to simultaneously solve
for the CF and material velocity as in Reference 16, based on the works of Reference 58. However, this makes the problem
non-linear and inherently more difficult and expensive to solve and therefore we follow post-processing CF evaluation
once the elasticity problem has been solved.

3 DISCRETISATION: LINEAR ELASTICITY

In order to solve complex problems the evaluation of the continuous spatial domain description of CF at crack tips needs
to be cast into a discrete framework. Here the DG symmetric interior penalty finite element method (SIPM) is used and
described in Section 3.1, including the discretized form of the governing linear elastic equations. The corresponding error
estimator and hp-adaptivity method are respectively provided in Sections 3.2 and 3.3.

3.1 Symmetric interior penalty method (SIPM)

Let ℬΓ be a bounded polygonal domain in R2 where the union of the Dirichlet 𝜕ℬD and Neumann 𝜕ℬN boundaries form
the set of all boundaries 𝜕ℬΓ = 𝜕ℬD ∪ 𝜕ℬN , with corresponding outward normal n, where 𝜕ℬD ∩ 𝜕ℬN = ∅. The strong
form statement of equilibrium and the boundary conditions are defined as:

−𝛁 ⋅ 𝝈(u) = 0 in ℬΓ,

u = uD on 𝜕ℬD, and
𝝈(u) ⋅ n = 𝝈N on 𝜕ℬN .

(6)

u = (u, v) is displacement and 𝝈(u) is the Cauchy stress matrix. 𝝈(u) = D ∶ 𝜺(u), where D ∈ R2×2×2×2 is the material
stiffness matrix and the small strain matrix 𝜺 is,

𝜺(u) =
⎡⎢⎢⎣

𝜕u
𝜕x

1
2

(
𝜕v
𝜕x

+ 𝜕u
𝜕y

)
1
2

(
𝜕v
𝜕x

+ 𝜕u
𝜕y

)
𝜕v
𝜕y

⎤⎥⎥⎦ , (7)

where (x, y) is the Cartesian coordinate system describing ℬΓ. uD is the applied displacements on 𝜕ℬD and uN is the
applied traction on 𝜕ℬN .

The domain ℬΓ is subdivided by the mesh  consisting of elements K;  is in general irregular. K ∈  is the image
of the reference triangle under an affine elemental mapping IK ∶ K̂ → K.  (K) is the set of the elemental edges of an
element K. If the intersection F = 𝜕K ∩ 𝜕K′ of two elements K,K′ ∈  is a segment, F is an interior edge of  with the
set of all interior edges denoted by I( ). Analogously, if the intersection F = 𝜕K ∩ 𝜕ℬΓ of an element K ∈  and 𝜕ℬΓ is
a segment, we call F a boundary edge of  . The set of all boundary edges of  is denoted by B( ) and it is the union of
N( ) and D( ) of edges on the two boundaries 𝜕ℬN and 𝜕ℬD. The set of all boundaries is denoted  = B ∪ I . For an
intersection F, the two connected elements are denoted arbitrarily K+ and K− with their corresponding variables given
the same + or − superscript. Given this notation, jumps and averages across element boundaries are defined as:

[[w]] = n+
Kw+ − n+

Kw− and {𝝈(w)} = 1
2
(
𝝈(w)+ + 𝝈(w)−

)
, (8)
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and on the boundary domain as,

[[w]] = n+
Kw+ and {𝝈(w)} = 𝝈(w)+. (9)

For each element K ∈  , we define pK to be the order of the element. We also define the vector p = {pK ∶ K ∈ }
for elements in  . For any mesh  of ℬΓ with the degree vector p, we then define the hp-version DG finite element
space by

Wp( ) = {w ∈ [L2(ℬΓ)]2 ∶ w|K ∈ [pK (K)]2, K ∈ },

which is achieved by using a hierarchical basis, of order pK , over the reference triangle K̂ defined by Solin.59

The SIPM method in the bilinear form is introduced for the approximation of the model problem (6). Find uh ∈ Wp( ),
such that,

a(uh,w) = l(w), ∀w ∈ Wp( ), (10)

where the bilinear forms are,

a(u,w) ∶=
∑
K∈ ∫K

𝝈(u) ∶ 𝜺(w) dx

−
∑

F∈I ( )∪D( )
∫F

{𝝈(u)} ⋅ [[w]] + {𝝈(w)} ⋅ [[u]] ds (11)

+
∑

F∈I ( )∪D( )

𝛽p2
F

hF ∫F
[[u]] ⋅ [[w]] ds,

l(w) ∶= −
∑

F∈D( )
∫F

gD ⋅ n ⋅ {𝝈(w)} ds +
∑

F∈D( )

𝛽p2
F

hF ∫F
uD ⋅ w ds −

∑
F∈N ( )

∫F
𝝈N ⋅ w ds. (12)

𝛽 is the SIPM penalty constant, which, from the authors experience and from discussions in the literature on the penalty
value,60 has been chosen to have a value of 10 to ensure coercivity, and, the edge polynomial is described as,

pF =

{
max (pK , pK′ ) , if on the internal edges, F = 𝜕K ∩ 𝜕K′ ∈ I( ),
pK , if on the external edges, F = 𝜕K ∩ 𝜕ℬΓ ∈  ( ) ⧵ I( ),

(13)

and hF is the length of the edge F, where for an internal edge, hF is the length of the coincident element edge that is
shared between K and K′.

In SIPM the DOF are element specific and instead of sharing DOF at nodes, as in continuous Galerkin methods, the
elements interact through three edge integral terms in Equation (11). The first edge term averages the tractions acting
between elements so the same traction acts on the elements sharing an interface. The second term symmetrizes the global
stiffness matrix which ensures optimal convergence for the given polynomial order of the elements in the mesh. The last
term penalizes displacements between elements to stabilize the method. Since elements interact through edge integrals,
implementing adjacent elements with relative differences in polynomial order and edge length, such that the mesh is
non-conforming, is straightforward and does not require any special treatment. This feature of DG methods is useful for
hp-adaptive methods where element size and polynomial order will vary between adjacent elements. However, before
hp-adaptivity can be applied, an error estimate is required to determine the relative error in each element through the
physical problem being analyzed.

3.2 Error estimate

The derivation of an hp a posteriori residual based error estimate for SIPM is complex and is not the main focus of this
article. The derivation is therefore not included and only a description of the role of each term is provided here; a complete
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derivation and proof can be found in Reference 61. The error estimate 𝜂, is both reliable and efficient for the error in the
DG energy norm, that is

c𝜂𝜂 ≤ |||u − uh||| ≤ C𝜂𝜂, (14)

where C𝜂 and c𝜂 are two positive constants independent of the element size, element polynomial order, and magnitude
of the loading applied on the boundary and, u is the true displacement solution. For reliability and efficiency to hold for
a problem during hp-adaptivity, the following conditions must be met;

1. the jump in polynomial order between a neighboring pair of elements pK and pK′ must be bound by arbitrary constant,
we choose |pK − pK′ | ≤ 1; and

2. the number of hanging nodes per element face has to be bound, in this implementation we only allow one hanging
node per element edge.

The limit on the number of hanging nodes on an element edge has been set to one, however it could be set to an
arbitrarily high number at a cost of increasing data structure complexity. When the initial mesh is contiguous and only
homogeneous h-refinement is performed during a hp-adaptive step, there is little-to-no advantage in allowing more hang-
ing nodes per element edge when the non-regular part of the solution is a singularity at a point, such as a crack tip. This
is because the elements at the singularity are the most likely to be chosen for h-adaptivity. Therefore, the elements con-
nected to the singularity are unlikely to be associated with any hanging nodes. At the next hp-refinement step the new
crack tip elements are chosen for h-refinement and since they are not associated with any hanging nodes, h-refining these
elements will only create edges with a maximum of 1 hanging node. The newly elements that exist at the crack tip will
again not be associate with any hanging nodes. The result is the element size at the singularity will decrease exponentially
with the number of degrees of freedom (NDOF) and the h-refinement will be localized only to the singularity; where it
is necessary. This results in exponential convergence of the error with DOF for problems containing non-regular parts in
the solution.61,62

The DG norm for linear elasticity is

|||u||| ∶=
(∑

K∈
||𝛁u||20,K +

∑
F∈ int( )

𝛾p2
F

hF
||[[u]]||20,F +

∑
F∈D( )

𝛾p2
F

hF
||u||20,F )1∕2

, (15)

When 𝜂 is combined with a suitable hp-adaptive scheme, described in Section 3.3, exponential convergence of the error
estimated value and the true error can be achieved; since 𝜂 is both reliable and efficient for the error in the DG norm (14).
The global error estimate 𝜂 is defined as,

𝜂 =
√∑

K∈

(
𝜂2

R,K + 𝜂2
J,K + 𝜂2

F,K

)
, (16)

and where the single element error estimate is 𝜂2
K = 𝜂2

R,K + 𝜂2
J,K + 𝜂2

F,K . The first component is an area integral defined as

𝜂2
R,K =

h2
K

p2
K
||𝛁 ⋅ 𝝈(uh)||20,K , (17)

where hK is the inner diameter of element K. This term measures how well the strong form equilibrium equation (the
first term in Equation (6)) has been satisfied by the weak finite element formulation.

As DG methods do not satisfy 0 across elements, jumps in displacement exist between elements on the segment
F ∈ I( ). As the Dirichlet boundary conditions are also imposed weakly jumps in the displacement boundary condition
will also always exist between the displacement solution on the element boundary and the boundary condition imposed
on them. Since the true solution for displacement should be continuous across these boundaries, the error in the jump in
displacement on the edge F ∈ I( ) and the Dirichlet boundary F ∈ D( ) are measured as

𝜂2
J,K = 1

2
∑

F∈I

𝛾2p3
F

hF
||[[uh]]||20,F +

∑
F∈D

𝛾2p3
F

hF
||uh − gD||20,F . (18)
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Like most FEMs, SIPM does not satisfy 1 across the interior edges F ∈ I( ) and the Neumann boundary F ∈ N( ).
These error measures are as

𝜂2
F,K = 1

2
∑

F∈I

hF

pF
||[[𝝈(uh)]]||20,F +

∑
F∈N

hF

pF
||𝝈(uh) ⋅ n − gN ||20,F . (19)

The above terms allow the computation of an estimate of the error on each element in the finite element mesh. These
errors can then be used to drive h and p adaptivity, as described in Section 3.3.

3.3 hp-adaptivity

The steps involved in the hp-adaptive process are given in Algorithm 1 and is based on the adaptivity algorithm presented
in Reference 63. This strategy has been shown to be proficient for finite elements in Reference 62 and achieved exponential
convergence for both smooth and non-smooth problems linear elastic problem modeled using SIPM in Reference 61. The
adaptive process is controlled by two parameters 𝛿2 and 𝛿1, where 𝛿2 ≥ 𝛿1 and 𝛿2, 𝛿1 ∈ [0, 1].

Elements that have an error such that 𝜂2
K > 𝛿2𝜂

2
max, where 𝜂2

max is the maximum error in any element, are refined in h
as it is assumed that the regions of high error are associated with non-smooth regions of the solution. This assumption is
particularly appropriate for problems involving fractures where the largest errors occur in regions close of crack tips. Ele-
ments with errors that fall in the range 𝛿2𝜂

2
max > 𝜂

2
K > 𝛿1𝜂

2
max are assumed to be modeling a smooth portion of the problem,

but the polynomial order is not sufficiently high, so these elements are refined in p. The values of 𝛿2 and 𝛿1 are problem
dependent and typical values for problems involving fractures and detailed as part of the numerical examples. This adap-
tivity scheme was shown in Bird et al.39 to be effective for problems containing multiple cracks; h-adaptivity always
occurred at all crack tips. Additionally p-adaptivity is generally observed away from the crack tip, but some p-adaptivity
will occur at the crack tip. This is consistent with observations on the performance of hp-adaptivity schemes for elliptic
problems containing point singularities.61,62

When a triangular element is refined in h it is refined homogeneously, as in Figure 1. The parent element is split into
four new child triangle elements, all of which are similar to their parent and inherit the material properties and polynomial
order of their parent. Refining a triangle in p simply amounts to increasing pK by one for K ∈ p−ref and updating the
vector p. These steps are followed by a smoothing algorithm that enforces a maximum of one hanging node per element
edge and a maximum jump in polynomial of 1 between elements. If the jump in element order between adjacent elements
is found to be greater than 1, the polynomial order of the lower order element is increased by 1.

During an hp-adaptive step only h- and p-refinement occurs, there is no mesh derefinement. The strategy of only
refining the mesh is shown to achieve exponential convergence for the error for multi-crack static problems by Bird et al.39

It could be possible to increase the convergence rate with a suitable derefinement scheme but it not considered during a
hp-adaptive step. Mesh derefinement is however entirely necessary when the domain boundaries or boundary conditions
evolve with quasi-static time, such as a crack propagation. The mesh derefinement used in this work is described in
Section 5.1 during the hr-adaptive step.

Algorithm 1. hp-refinement strategy: For parameters 𝛿1, 𝛿2 with 1 ≥ 𝛿2 ≥ 𝛿1 ≥ 0.

1: Compute the maximum error 𝜂2
max = maxK∈ 𝜂2

K
2: Identify the set of elements to refine in p: p−ref = {K ∈  |𝛿2𝜂

2
max ≥ 𝜂2

K > 𝛿1𝜂
2
max}

3: Increase pK by one for K ∈ p−ref
4: Identify the set of elements to refine in h: h−ref = {K ∈  |𝜂2

K > 𝛿2𝜂
2
max}

5: Identify any elements K ∈  ′, where  ′ is the refined mesh, that will have more than one hanging node on a face
and add to href

6: h refine all elements K ∈ h−ref to create the new mesh  ′

7: Ensure for every pair of neighbors K,K′ ∈  ′ that only there only exists a maximum of a polynomial order difference
of 1, otherwise add K′, where pK′ < pK , to the set  ′

p−ref
8: Increase pK by one for K ∈  ′

p−ref
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F I G U R E 1 Homogeneous h-refinement

4 CONFIGURATIONAL FORCE CALCULATION AND ERROR ESTIMATION

As outlined in the Introduction, the works of Eshelby,1,2 Rice,3 and Irwin,22,64 are fundamental to derivations that calculate
the CF at crack tips. Within the framework of finite elements, Miehe et al.13,14 present a derivation, for a continuous
problem, for the energy released by a crack and the associated CF value at the crack tip. The result of the continuous
derivation was then linked to a discrete FE formulation to show that reasonable crack propagation paths can be predicted
when only using the CF value at the crack tip.‡ An alternative approach is presented by Denzer et al.,65 named a domain
formulation, where the nodal values of CF are summed in a domain around the crack tip and this combined value of
CF is used to determine the energy released by a crack. However, the formulations presented by Denzer et al.,65 Miehe
et al.,13 and Miehe and Gurses14 do not consider the jump in energy across the crack faces. This means that the methods
are flawed from problems where this term is non zero—basically any problem that is non-symmetric in terms of energy
either side of the crack faces. The result of this oversight is that these methods: (i) do not converge with mesh refinement
and/or (ii) the mixed mode component of the CF is highly domain size dependent, as shown in Reference 39. The works
of References 23,56,66,67 do include the jump in energy term across the crack faces directly, or indirectly, in the CF
computation. However, they all have one the following shortcomings: (i) consider mixed mode notched cracks and as
such the true stress solution on the crack edges at the crack tip is in the finite element solution space;56 (ii) use a priori
knowledge of the stress solution at the crack tip combined with a partial integration of the crack faces to determine the
mixed mode component of the CF;67 or (iii) compute the CF component that acts perpendicular to the crack tip using
an algorithm that combines the computed CF component that acts parallel to the crack faces with a priori knowledge of
the stress solution at the crack tip.23,66 This limits the applicability of the methods and therefore in this work we follow a
different approach.

4.1 Configurational force

As given in Equation (2), and repeated here for readability, the continuous form of the CF acting at the crack tip and the
corresponding dissipated power is

g = lim|C|→0 ∫C
𝚺 ⋅ nds and 𝒟 = 𝜕V ⋅ g. (20)

The equation for the CF in Equation (20) is not in a practical form for discrete analysis due to lim|C|→0. The derivations
presented by Li et al.,68 Raju and Shivakumar,66 and Heintz et al.56 overcome this issue by reformulating the infinitesimal
integral in (20) into a finite domain integral with a surface term that can be used in conjunction with a FEM. In this article
we adopt the discrete formulation defined in Reference 39 for the dissipation associated with a growing fracture

𝒟h = lVG = l
∑
K∈A ∫K

𝛁V𝚺hdx + l
∑

𝜕K∈(Γ+∪Γ−)⧵R
∫𝜕K

V𝜓h(𝜺)nds, (21)

where the limits of the summations and integrals are shown in Figure 2. The domain A is bound by the two crack faces
Γ+ ∪ Γ− and the outer edge away from the crack faces is O. V is a smooth scalar function which has a value of 1 at the
crack tip and 0 at the domain boundary O, (as shown in Figure 2), and l is the velocity vector of the crack tip. The Eshelby
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F I G U R E 2 The integral domain around a crack tip

stress 𝚺h and the strain energy 𝜓h are computed using the finite element displacement solution. The region R is a subset
of the crack face R ⊆ Γ+ ∪ Γ− at the crack tip and is equally shared across the two faces such that |R|∕2 exists on Γ+ and|R|∕2 exists on Γ−. It is important to highlight here that Γ+ and Γ− refer to the entire crack faces within the integral region
A. The region R is excluded from the integral due to the spurious oscillations that are induced in the energy term, 𝜓h(𝜺),
along the crack faces near the crack tip.39 To obtain highly accurate solutions the formulation (21) is computed using an
hp-adaptive algorithm that considers small values of R that reduce with h refinement at the crack tip. The algorithm is
governed by three error estimates, an error measure for the area component defined in Reference 39, an error measure for
the surface integral and a error measure for not including the integral region R. The two latter error measure are derived
and explained in the following section.

4.2 Reliability of an error estimator for the configurational force calculation

The global error estimate a posteriori 𝜂, (16), was shown, up to an arbitrary constant C𝜂 , in Reference 61 to bound the true
error of the solution in the DG norm (14). A proof, and numerical demonstration, was later provided in Reference 39 that
for the subdomain A ⊂  , 𝜂 bound the error in the area integral component of the CF calculation (21) up to an up to an
arbitrary constant CA,

||𝛁V ⋅ 𝚺h − 𝛁V ⋅ 𝚺||0,K∈A ≤ ||𝛁V ||0,K∈A||𝚺h − 𝚺||0,K∈A ≤ CA||𝛁V ||0, 𝜂2
A = ||𝛁V ||0, CA𝛽A. (22)

The line integral component of (21), not including the region R, can also be bound by the error estimate 𝜂 by considering
a trace inequality. First an inequality is defined for an element edge integral component of (21), which separates V from
the other terms in the integral

∫𝜕K
V ⋅ 𝜓h(𝜺) ⋅ nds ≤ ∫𝜕K

Vds∫𝜕K
𝜓h(𝜺) ⋅ nds, (23)

where𝜓h(𝜺) > 0 and V > 0 are always true. The function V is known as it is defined by the user, and is unchanging during
mesh refinement, it therefore can be computed directly once. Hence, only an error estimate for the integral over the
energy component of the integral is required. In order to bound the error in energy component the divergence theorem
is used to state the following

∫𝜕Ω 𝜓
2 ⋅ x ⋅ n = ∫Ω

𝛁 ⋅ (𝜓2 ⋅ x), (24)

for when the strain energy density is 𝜓 ∈ H1
n and n ≥ 0, Ω is a star shaped domain with boundary 𝜕Ω, and x ∈ Ω is a

coordinate. By the definition of Ω being a star shaped domain, such as a triangle, the following statement is true

𝜁 |x| ≤ x ⋅ n. (25)

where 𝜁 > 0 and n is the outward normal to 𝜕Ω. By substituting (25) into (24), the following inequality can be defined,

∫𝜕Ω 𝜓
2 ⋅ x ⋅ n ≥ 𝜁 inf

x∈𝜕Ω
|x|∫𝜕Ω 𝜓2 = 𝜁 inf

x∈𝜕Ω
|x| ⋅ ||𝜓||0,𝜕Ω, (26)
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The left hand side of Equation (26) can be expanded so that the inequality becomes more useful for computing error terms,

𝜁 inf
x∈𝜕Ω

|x| ⋅ ||𝜓||0,𝜕Ω ≤ ∫Ω
𝛁 ⋅ (𝜓2 ⋅ x)

= ∫Ω
𝜓2 ⋅ 𝛁x + ∫Ω

𝛁𝜓2 ⋅ x

= 2||𝜓||20,Ω + ∫Ω
𝛁𝜓2 ⋅ x

≤ 2||𝜓||20,Ω + sup
x∈Ω

|x| ⋅ ∫Ω
𝛁𝜓2 (27)

= 2||𝜓||20,Ω + 2sup
x∈Ω

|x| ⋅ ∫Ω
𝜓 ⋅ 𝛁𝜓

≤ 2||𝜓||20,Ω + 2sup
x∈Ω

|x| ⋅ ∫Ω
|𝜓| ⋅ |𝛁𝜓|

≤ 2||𝜓||20,Ω + 2sup
x∈Ω

|x|||𝜓||0,Ω ⋅ ∫Ω
|𝛁𝜓|.

Using the definition of the gradient of the strain energy density function

|𝛁𝜓| = ||||𝜕𝜓𝜕u
⋅
𝜕u
𝜕x

|||| ≤ ||||𝜕𝜓𝜕u
|||| ⋅ ||||𝜕u

𝜕x
|||| ≤ |𝛁𝝈| ⋅ ||||𝜕u

𝜕x
| ≤ C ⋅ |𝛁 ⋅ 𝝈| ⋅ |𝜀|. (28)

The inequality (27) can be further expressed as

𝜁 inf
x∈𝜕Ω

|x| ⋅ ||𝜓||0,𝜕Ω ≤ 2||𝜓||20,Ω + 2sup
x∈Ω

|x| ⋅ ||𝜓||0,Ω ⋅ ∫Ω
|𝛁𝜓|

≤ 2||𝜓||20,Ω + 2Csup
x∈Ω

|x| ⋅ ||𝜓||0,Ω ⋅ ∫Ω
|𝛁 ⋅ 𝝈| ⋅ |𝜺| (29)

≤ 2||𝜓||20,Ω + 2Csup
x∈Ω

|x| ⋅ ||𝜓||0,Ω ⋅ ||𝛁 ⋅ 𝝈||0,Ω ⋅ ||𝜺||0,Ω.
Currently the domain provided by Ω is a general star-shaped however, in the meshes used here only triangles exist, and
so the last inequality statement in (29) can be made more specific to triangles through the statements

sup
x∈K

|x| ≤ hK

inf
x∈𝜕K

|x| ≥ 𝜌K ≥ hK∕rK
, (30)

where 𝜌K is a radius of the circle that encompasses the triangle, rK is a measure of the triangle’s shape regularity, and the
origin of coordinates x corresponds to the center of the triangle.69 Substituting (301) and (302) into (29) and, assuming that
the triangles in the mesh are sufficiently regular such that rK ≤ D ∀K and 𝜁 ≤ E ∀K, where D are E are positive constants,
(29) becomes

||𝜓||20,𝜕K ≤ C
hK

⋅
(||𝜓||20,K + hK ⋅ ||𝜓||0,K ⋅ ||𝛁 ⋅ 𝝈||0,K ⋅ ||𝜺||0,K) , (31)

where C is a positive constant. Inspecting the line integral term of the CF calculation (21), the corresponding error can
be written as

||V ⋅ 𝜓 ⋅ n − V ⋅ 𝜓h ⋅ n||0,𝜕K ≤ ||V ⋅ 𝜓 − V ⋅ 𝜓h||0,𝜕K ≤ ||V ||0,𝜕K ⋅ ||𝜓 − 𝜓h||0,𝜕K . (32)

This gives the result that the error in the calculation of the last term can be found by inspection of (31) to give

||𝜓 − 𝜓h||20,𝜕K ≤ C
hK

⋅
(||𝜓 − 𝜓h||20,K + hK ⋅ ||𝜓 − 𝜓h||0,K ⋅ ||𝛁 ⋅ 𝝈 − 𝛁 ⋅ 𝝈h||0,K ⋅ ||𝜺 − 𝜺

h||0,K) , (33)
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which using the definitions

||𝛁 ⋅ 𝝈 − 𝛁 ⋅ 𝝈h||0,K = ||𝛁 ⋅ 𝝈h||0,K||𝜺 − 𝜺
h||0,K ≤ 1|D| ⋅ 𝜂K

||𝜓 − 𝜓h||0,K ≤ C|D| ⋅ 𝜂2
K

, (34)

becomes,

||𝜓 − 𝜓h||20,𝜕K ≤ C
hK

(
1|D|2 ⋅ 𝜂4

K + hK|D|2 ⋅ 𝜂3
K ⋅ ||𝛁 ⋅ 𝝈h||0,K) . (35)

The above equation bounds the error in the energy norm squared for a single element edge 𝜕K. It is used to estimate the
error in edge contribution to the CF calculation in (21) by considering all element edges 𝜕K ∈ (Γ+ ∪ Γ−). The total error
estimate for the edge energy calculation from these element edges is therefore

||𝜓 − 𝜓h||𝜏 < C𝜏 ⋅

√∑
𝜕K∈𝜏

(
1

hK

[
⋅

1|D|2 ⋅ 𝜂4
K + hK|D|2 ⋅ 𝜂3

K ⋅ ||𝛁j ⋅ 𝝈h||0,K])
= C𝜏 ⋅ 𝜒𝜏

, (36)

where 𝜏 = (Γ+ ∪ Γ−) ⧵ R and C𝜏 is an arbitrary constant for the length 𝜏. The error in the CF calculation, Equation (20),
can now be bound by two error measures. The area integral component is bound by the error estimate 𝛽A (22) and the
edge integral component is bound by 𝜒𝜏 (36), this can be summarized as

∑
K∈A ∫K

𝛁V ⋅ (𝚺h − 𝚺)dx ≲ 𝛽A and
∑
𝜕K∈𝜏

∫𝜕K
V ⋅ (𝜓h − 𝜓) ⋅ nds ≲ 𝜒𝜏. (37)

The values 𝛽A and 𝜒𝜏 are used in the later sections as stopping criteria to determine when the computation of the
configuration force has reached a sufficient accuracy.

4.3 Configurational force calculation and stopping criteria

It was shown in Reference 39 that Equation (21) can achieve highly accurate predictions for the CF by forcing R → 0 with
hp-adaptivity. Since the CF method used here does not use any crack tip enrichment functions, there will be significant
refinement in element size and polynomial order around the crack tip.39 The method is different to the domain integral
M-integral method proposed by Yau et al.70 which uses an auxiliary stress function which requires a priori knowledge of
the stress field around the crack tip which is material dependent. The advantage of the method proposed in this article is
that since no a priori knowledge of the stress field around the crack tip is required it can be applied directly to any material
type and achieve highly accurate results when compared to enriched and/or the interaction integral.39,40 However, since
(21) is being used to propagate a crack, a stopping criterion is required to:

1. determine when to stop reducing |R| to 0; and
2. determine when the calculation of the CF, for a fixed R, is sufficiently accurate such that hp-refinement can be stopped

and the crack can be propagated.

Therefore an alternative algorithm is required here, compared to the case of static cracks which was the focus of
Reference 39. The stopping criteria is governed by three error estimates for the CF calculation:

1. estimated error 𝛽A for the area integral component, (37);
2. estimated error 𝜒𝜏 for the edge integral component, (37); and
3. the error associated with excluding the region R in the edge integral.
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These three error measures are combined with a user specified parameterΘ ∈ (0, 1)which together define the stopping
criterion: Stop hp-adaptivity if, for all cracks, the statements

Θ >
𝛽m

A

𝛽1
A
, Θ >

𝜒m
𝜏

𝜒
mR
𝜏

and Θ >
|R||Γ+ ∪ Γ−| , (38)

are true. Here, m is the current hp-refinement step number and mR is the first step number when |R| < Θ|Γ+ ∪ Γ−| is true.
Unlike the method presented in Reference 39, where |R| → 0 with hp-adaptivity, only a specified accuracy is required
with Θ and once the relation |R| < Θ|Γ+ ∪ Γ−| is true the reduction of |R| with hp-adaptivity is stopped. The criteria in
Equation (38) are based on error estimates normalized at a step m to a previous step to remove the unknown constant
associated with (37). The second criterion is normalized with respect to mR since at this step R, and the domain size of
the CF line integral component, are no longer changing and thus the constant associated with the inequality for 𝜒𝜏 in
(37) is the same for all subsequent refinement steps. The error estimate 𝛽A for the area integral is normalized with respect
to step 1 since the domain size, and therefore inequality constant, in (37) does not change. The definition of the first two
criterion is based on the assumption that when the first estimated error calculations are performed the error estimates
correspond to actual errors of less than 100%. The result is that the ratios 𝛽m

A ∕𝛽1
A and 𝜒m

𝜏 ∕𝜒
mR
𝜏 for the hp-adaptive step m

estimate an error greater than the actual error.
The third criterion is based on the argument that the closer the edge integral gets to the crack tip, the smaller its

contribution to the CF calculation. This is because near the crack tip the energy along each crack face approaches infinity
however conversely, the energy difference across the crack faces is finite, otherwise the configuration force will have an
infinite value, which is impossible. Therefore, the smaller Θ becomes the more the integral of the energy difference along
the ignored region |R| tends to zero. If Θ is sufficiently small, it is an upper bound to the true error, the smaller the value
of Θ the more accurate the edge integral and the more certainty Θ is an upper bound to the actual error in excluding the
region R in the edge integral.

The method for reducing |R| → 0 with hp-adaptivity is described fully in Algorithm 2. Initially, and until R < Θ|Γ+ ∪
Γ−|, R is taken to be the portion of the crack edges which correspond to the two element edges, respectively on Γ+ and Γ−,
that lie on the crack tip, as shown in Figure 3A. During hp-adaptivity the elements at the crack tip are h-refined and these
edges are reduce in length, which also reduces |R|. When R is reduced sufficiently that |R| < Θ|Γ+ ∪ Γ−|, as in Figure 3B,|R| is no longer reduced, the length 𝜏 = |R ⧵ (Γ+ ∪ Γ−)| is calculated and the hp-adaptive step when this condition met is
stored mR = m. The significance of this is that the length of the crack edges for the CF calculation is now defined with 𝜏
and as 𝜏 is no longer changing, the edge contribution to the CF and the corresponding error can be computed. In other
words, since |R| < Θ|Γ+ ∪ Γ−| is true, the edge estimated error for the step mR, 𝜒mR

𝜏 , and steps m > mR, 𝜒m
𝜏 , can now

occur.
The algorithm for computing the CF for a single crack, with the stopping criteria, is provided in Algorithm 2. For the

sake of readability the error parameters 𝛽, 𝜒 , mR, the regions, 𝜏, Γ, and R, and, an edge flag, are not defined for a specific
crack although, each crack will have individual values of these quantities.

5 NUMERICAL INGREDIENTS FOR ADAPTIVE FRACTURE
PROPAGATION

This section describes the numerical tools that are required for hpr-adaptive fracture propagation. The hp-adaptive com-
ponent was described in Section 4.3 and is used for the accurate computation of the CF at the crack tip. The hr-adaptive
component is described in Section 5.1 and describes and how element faces are aligned and adapted (hr-adaptivity)
to facilitate fracture propagation. The propagation method described in Section 5.1 relies upon the availability of
homogeneous h-refinement, as described in Section 3.3. The overall crack propagation algorithm is split three main
processes:

1. hp-adapt the mesh using the error estimate defined in Section 3.2 until the stopping criteria (38) is met;
2. in a post processing calculation determine the CF at all crack tips and subsequently predict the crack propagation

direction and increment (as described in Section 4.3); and
3. use the CF values calculated in the previous step to propagate the cracks in the mesh. An hr-adaptive method is used

to capture the crack path and crack tip within the initial mesh stencil via face alignment and splitting coupled with
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Algorithm 2. Static CF calculation for a all cracks in the mesh

1: m → m + 1
2: Determine the displacement uh and the corresponding estimated error 𝜂2

K , for all elements K in the mesh 
3: while Stopping criteria is not met do
4: m → m + 1
5: Determine the displacement uh and the corresponding estimated error 𝜂2

K , for all elements K in the mesh 
6: for all cracks do
7: if m == 1 then
8: Calculate 𝛽1

A
9: else

10: Calculate 𝛽m
A

11: end if
12: if edge flag== 0 then
13: Compute |R| as the element edges at the crack tip, Figure 3A
14: end if
15: if |R| < Θ|Γ+ ∪ Γ−| then
16: if edge flag== 0 then
17: mR = m
18: Define the length the proportion of the crack faces 𝜏 = (Γ+ ∪ Γ−) ⧵ R
19: Compute 𝜒mR

𝜏

20: Set the edge flag= 1 for the current crack
21: else
22: Compute 𝜒m

𝜏

23: end if
24: end if
25: end for
26: if For all cracks Θ > 𝛽m

A ∕𝛽1
A, Θ > 𝜒m

𝜏 ∕𝜒
mR
𝜏 and Θ > |R|∕|Γ+ ∪ Γ−| then

27: Stopping criteria is met
28: Compute the configuration force using Equation (21) for all cracks.
29: else
30: hp-adapt the mesh
31: end if
32: end while

h-adaptivity, which may be required based on the position of the crack tip within the mesh and/or when r-adaptivity
creates poor quality elements.

The first two steps were described in Section 4.3. The last step for adapting the mesh to capture the crack path, the
hr-adaptivity component, is described in Section 5.1 with a detailed description of the algorithm implementation provided
in Appendix A.

5.1 hr-adaptive crack propagation

The hr-adaptive crack propagation method presented in this section is designed so that a generic mesh  , either with or
without hanging nodes, can be considered. Two tools are required for this propagation method, the ability to h-refine and
r-adapt the mesh. The method is based on two principles:

1. The first principle is, it is only necessary to have an accurate representation of the crack path at the crack tip to predict
the crack path direction and advancement rate accurately. This premise manifests itself in the mesh as having a high
number of elements along the crack path close to the crack tip; this accurately captures the curvature of the crack
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path. Whereas, for the remainder of the crack path away from the crack tip, elements with longer edges can be used
to approximate the path. The result is, as the crack propagates through the mesh, the mesh is adapted such that small
elements along the crack path are only located at the moving tip. This achieves having both an accurate prediction
of the crack path and, not having elements with small edges far from the crack tip which contribute a significant
computational cost but with only a small increase in accuracy.

2. The second principle is a direct consequence of the first principle and stems from an implementation/data manage-
ment point of view. It is difficult to refine and, particularly, derefined along a crack path such that: the elements
capture the crack path to a desired resolution, are of an acceptable shape and is efficient such that, small elements
do not appear in derefined areas. In addition to this, there could be potentially a high number of derefinement and
refinement strategies that have to be hard coded to capture particular circumstances that could arise. The second
principle is that it is therefore much easier, especially for a crack path that is undergoing continuous derefine-
ment and refinement, to completely recompute the element distribution along the crack path using the original
data structure, with relatively small extra computational cost, rather than attempt to adapt an existing mesh. This
simultaneously avoids the reloading and assignment of a new data structure if a mesher is used, gives the user
greater control over the algorithmic-arguments which govern where new elements are introduced (avoiding unnec-
essary elements), and avoids the difficult task of implementing a refinement/derefinement algorithm to capture the
crack path.

These two principals are used to construct the hr-adaptive crack propagation algorithm, the general overview of which
is provided in Algorithm 3.

(A) (B)

F I G U R E 3 Schematics showing the elements at the crack tip for the their total edge length is greater the Θ(|Γ+ ∪ Γ−|) (A), and when
their total edge length is less than Θ(|Γ+ ∪ Γ−|) (B)

Algorithm 3. Crack propagation method

1: for All crack propagation steps n ∈ [1,N] do
2: Perform hr-adaptivity, Algorithm 4, to determine the mesh  n using the crack paths determined in step n − 1 and

the stencil mesh  0

3: Solve the linear elastic problem and determine the position on the new crack tip for all cracks
4: For all cracks, add the new current crack tip location to the end of the crack path list
5: If any crack path intersects the boundary or another crack path, the algorithm terminates
6: end for



BIRD et al. 15

As shown in Algorithm 3, there are two main data structures that required to determine the mesh  n:

1. The initial stencil mesh  0, and the corresponding data structure that corresponds to the time t = 0; and
2. the current crack path for all cracks in the mesh at the time n − 1.

The stencil mesh,  0, never changes and is always the mesh that contains the crack paths at time 0, that is, the
mesh describing the initial problem. The current crack path is a list that contains all computed crack tip locations which
is updated on line 4 of Algorithm 3 and, the crack tip location at time 0. The hr-adaptive step, occurring on line 2 of
Algorithm 3, determines the mesh for the current crack path and is described in Appendix A.

Generally, the hr-adaptive algorithm works by finding the element faces which intersect the crack path and, mov-
ing the nearest node of each of these edges onto point where the edge intersects the crack path; the r-adaptive step. If a
r-adaptive move causes either, edges along the crack path to be longer than the value specified by the user, an inverted
element, or no nodes are available for r-adaptivity, h-refinement step occurs to create new nodes in the mesh and the
r-adaptive step is re-attempted. Once the hr-adaptive algorithm has captured all the crack paths, any unreasonably dis-
torted elements, such that their minimum angle is less than a user-defined value, are selected. A simple edge flipping
algorithm is then applied to this element list to try and improve the quality, see the works of Reference 71 for a study on
smoothing and flipping techniques. However, any poor quality elements that still remain and have high error associated
with them will be captured by the hp-adaptivity procedure, these elements will be refined and the associated error will
decrease. The edge flipping is considered to a computational cheap way to improve the initial error which may reduce
refinement and computational cost. The remainder of this section describes the flagging mechanism for h-refinement
during the hr-adaptive algorithm. h-adaptivity is used as a mechanism to ensure that the crack path is captured to a
sufficient detail and to resolve any issues associated with moving nodes r-adaptivity.

5.1.1 Refinement flags and constraints

The hr-adaptive method adapts the mesh so that elements far away from the crack tip approximate the crack path with
longer edges, whilst near the crack tip short edges are used. The maximum length of element edges on the crack path far
from the crack tip is Ll, and the maximum length of elements close to the crack tip is Ls, highlighted in Figure 4.

The region close to the crack tip that contains the short element edges is defined by Lt, the remainder of the crack
path with the longer edges is Lp, as shown in Figure 4. The values of Ll, Ls, and Lt are all user defined whilst the course
path length, Lp, corresponds to the remainder of the crack path that is not refined. The rate at which the crack grows can
either be user-defined or calculated. All of these lengths are independent of the initial mesh element size.

The hr-algorithm has three stages which occur in the following order:

1. hr-adaptivity corresponding to the crack path portion Lp and element edge length Ll.
2. hr-adaptivity corresponding to the crack path portion Lt and element edge length Ls

F I G U R E 4 An example of a crack propagating from initial tip to the current tip in the domain Ω, where Ll, Ls, and Lt are user-defined
lengths controlling the crack path discretization. The length of Lp corresponds to the remainder of the crack path that is not refined
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3. Crack tip positioning, prescribed edges for this stage have edges with
L < min{Ls, (2∕3) × length of last propagation step}.

For Stages 1 and 2 the r-adaptive process only has to move a node onto the crack path, that is the nodes do not have to
coincide with the points that define the crack path. For Stage 3 the r-adaptive step moves a node onto the last point of the
crack path, this node is the crack tip node. As the lengths are user defined and independent of the element size, moving
nodes in the mesh onto the crack path invariably leads to either, element lengths that are too long for the prescribed
stage, or inverted elements. Both of these issues are resolved with h-adaptivity. It should be noted that nodes that exist
on the boundary or are associated with any element that describes a crack path, cannot be chosen for r-adaptivity. The
exception is for Stage 3, where the final node moved onto the crack path can already be associated with the current crack
path.

All stages that require nodes to be moved onto the crack path use an r-adaptive procedure and the process is summa-
rized using Figure 5A,B. The most recent r-adaptive node is defined as the “current crack tip node” and is highlighted in
white. This node has been undergone r-adaptivity and is associated with the crack path. Next the intersection point of the
crack path with one of the element edges is found, marked by the grey circle. The nearest node, marked by the grey box,
is then moved to the intersection point. Once the nearest node has been moved, it is associated with the crack path and
becomes the new current crack tip node and a new intersection point is found. The process is repeated until the nearest
node is moved onto the crack path’s crack tip. However sometimes it is not possible to perform an r-adaptive step, this is
resolved with h-adaptivity as described in the following paragraph.

The marking for the h-adaptive step can be described with the aid of Figure 5A,B. Figure 5A shows the situation where
the node marked to be moved (shown by the grey square) is a hanging node. Moving a hanging node will result in holes or
overlaps in the mesh. In this case the element that contains the current crack tip node (the most recent node moved to the
crack path in the hr-adaptive algorithm) and the edge F that contains the intersection point, are refined. All other cases
are described with Figure 5B. In these cases moving the node, marked in grey, to the intersection point either: creates an
element edge along that crack path that is too long for the current stage; or, inverts an element. In this case the element
which contains the current crack tip node and the edge F with the intersection point is refined.

Stage 3 of the hr-algorithm is to ensure that the element edge that has a node at the crack tip is aligned with the final
segment of the crack path. This is achieved by enforcing any element that has a node on the last propagation length to
have edge lengths of size L < (2∕3) × (length of last propagation step). This is shown in Figure 6, on the left of the figure is
a poorly resolved crack tip where the length of L is greater than the last propagation step size, the result is that the element
edge of the last element is not aligned with the final crack path direction. On the right of Figure 6 is the same crack path
but resolved accurately, here L is less than (2∕3) × (length of last propagation step) and hence the element edge is aligned
with the last segment of the propagation path. This has the effect that the direction of the last element edge captures the
direction of the crack path at the crack tip.

This section has detailed the numerical ingredients that are required for the proposed fracture modeling framework.
The following section will demonstrate the capabilities of the framework. Detail on the implementation of the three stages
of hr-adaptive method are described in detail in Appendix A, the details have been excluded here for the sake of brevity.

Crack path

Current crack tip node

Intersection point

(A)

Crack path

Current crack tip node

Intersection point

(B)

F I G U R E 5 Flagging elements for h-refinement when the node to undergo r-adaptivity, marked in grey, is either (A) when a hanging
node or (B) creates an edge along the crack path that is too long or creates an inverted element
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F I G U R E 6 A diagram showing element edges poorly (left) and accurately (right) resolving the crack path at the crack tip

6 NUMERICAL VALIDATIONS AND EXPERIMENTS

The purpose of the four numerical examples are to test/demonstrate specific aspects of the developed formulation,
namely:

1. Westergaard embedded static crack: validation of the error estimate for the CF and the appropriateness of the stopping
criteria for a problem with a closed form analytical solution;

2. Single shear crack: to demonstrate that the hpr-adaptive method is highly accurate in terms of computing the crack
propagation path; and

3. Y-shaped crack: to demonstrate the importance of derefinement in terms of the overall numbers of DOF of the finite
element problem, investigate and show that it is only necessary to have small elements near the crack tips in terms of
the accuracy of the predicted crack propagation path and to show that the method is further show that the method is
highly accurate; and

4. Tree crack: to demonstrate the ability of the hr-adaptive method to deal with problems with a large number of cracks
propagating at different rates.

For each problem in the following sections a number of parameters are used and are provided. However to improve
the readability all the parameters are also provided here in Table 1.

6.1 Westergaard embedded static crack

In Reference 39 the error estimate for the CF area integral, (21), was shown to reliable and efficient in that it bounded the
true error from above and below. Here the error estimate 𝜒𝜏 (36) for the line integral component of the CF has already
been shown to be reliable, see Section 4.2, and in this section will be shown to also efficient using the Westergaard stress
solution.72 The Westergaard problem considers a double ended crack, of length 2a, in an infinite plate when the origin of
the coordinates (x, y) = (0, 0) is at the crack center. The closed form stress solution for the mixed mode case is found by
summing the stress solution for the pure mode I and II case provided by:72

𝜎xx = Re(Zmixed) − y ⋅ Im(Zmixed)
𝜎yy = Re(Zmixed) + y ⋅ Im(Z′

mixed)
𝜎xy = −y ⋅ Re(Z′

mixed)
, where Zmixed = (𝜎0 + 𝜏0)z√

z2 − a2
and z = x + iy. (39)

In Equation (39), a is half crack length, z is the complex coordinates, Zmixed is a complex number (with complex conjugate
Z′

mixed) and the stress terms 𝜎xx, 𝜎yy, and 𝜎xy are real numbers. The normal and shear stress at the infinite boundary are
respectively 𝜎0 and 𝜏, for this example both are set to 1 Pa.
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Since the geometry of the problem is symmetric, and the stress solution is anti-symmetric, it is only necessary to model
half the problem, the geometry of which is provided in Figure 7A with W = 1 m, H = 0.5 m, and a = 0.5 m, where the
crack tip labeled with 𝜕Γ. The plate acts in plane stress with a Young’s modulus of 1 Pa and Poisson’s ratio of 0.3. The
mixed mode Westergaard stress solution is applied to the boundary of the domain as a Neumann boundary condition gN

i
however, since no Dirichlet boundaries exist an average boundary condition is also applied to prevent rigid body motion.§
The initial mesh of the problem is shown in Figure 7B, comprising of 172 elements with a uniform polynomial order of
pK = 2.

T A B L E 1 Parameters used for the numerical validations and experiments in Section 6

Westergaard Single shear Y-shape Tree

hp static parameters 𝛿2 0.7 0.7 0.7 0.7

𝛿1 0.07 0.07 0.07 0.07

hr propagation parameters Lt - 0.1 m 1.25 m 0.25 m

Ll - 0.5 m 1 m 0.5m

Ls or Δamax - 0.01 m 0.1 m 0.05 m

Θ 0.1, 0.01, 0.001, 0.0001 0.005, 0.8 0.01 0.01

Steps - 45 150 60

Material constants E 1 Pa - 1 Pa 1 Pa

𝜈 0.3 0.3 0.3 0.3

G - 8 GPa - -

Crack material constants gc - 103 N/m - -

C - - - 1

m - - - 2

(A) (B)

F I G U R E 7 Westergaard embedded crack: (A) Problem geometry and (B) initial mesh with the crack faces highlighted in grey and
crack tip with the white circle
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To show that 𝜒𝜏 is efficient for the true error of the line integral component of the CF (21), four different values for
Θ are considered, 0.1, 0.01, 0.001, and 0.0001. The value of Θ corresponds to the proportion of the crack face of Γ+ and
Γ− that is excluded from the line integral of the CF; |R| = Θ|Γ+| = Θ|Γ−|; see (21) and Figure 2 for the equation and
diagrammatic description respectively. The problem is then modeled with the initial mesh shown in Figure 7B, which
is hp-adapted over 25 steps using the refinement parameters 𝛿2 = 0.7 and 𝛿1 = 0.07. Since the crack is considered static
there is no need to define the propagation parameters Lt, Ll, and Ls and, the number of propagation steps. Finally, the
definition of the domain for the CF integral, which is unchanged throughout this numerical experiment, is defined as the
elements that exist at the crack tip shown in Figure 7B.

The ratio between the estimated error and the true error¶ with hp-adaptivity is shown in Figure 8A. The convergence
of the estimated error 𝜒 with the square root of the number degrees of freedom (NDOF) is shown in Figure 8B, with a
linear abscissa and a logarithmic ordinate.

Two conclusions can be made from the Westergaard problem:

1. Independent of the choice of Θ, the error estimator for the line integral terms, 𝜒𝜏 , is shown numerical to bound the
true error for the CF line integral from above and below, up to a positive constant.

2. The estimated error, and therefore also the true error provided the above conclusion, convergences exponentially with
hp-adaptivity for any choice of Θ.

The first conclusion is shown through the results presented in Figure 8A. In Section 4.2 it was shown the error esti-
mator 𝜒𝜏 bounds the line integral of the CF from above and Figure 8A demonstrates numerically through the random
oscillations of the estimated error over the true error that 𝜒 bounds the true error from below. This result demonstrates
that it is reasonable to extend (36) to include an additional inequality

c𝜏𝜒𝜏 < ||𝜓 − 𝜓h||𝜏 < C𝜏𝜒𝜏 , (40)

where c is an positive constant. Hence the error estimate 𝜒 is never too far away from the true error and the convergence
of the true error is at worst as good as 𝜒 , or better. Further through the consideration of multiple values of Θ, Figure 8A
demonstrates that, irregardless of the length of the crack edges over which the error is being estimated, (40) holds.

(A) effectivity index (B) convergence

F I G U R E 8 Westergaard embedded crack: (A) Variation of the effectivity index (ratio of the estimated/true error) with refinement steps
and (B) estimated error evolution with increasing NDOF for Θ = 0.1, 0.01, 0.001, and 0.0001
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The second conclusion is shown with Figure 8B. For all values of Θ exponential convergence of 𝜒𝜏 is observed with
hp-adaptivity. This is shown in the plot as the convergence is rough straight line on a log-linear scale, see References 62,73.
Additionally the figure shows how changing the value of Θ, and hence also the magnitude of |R|, changes the value of
the error estimate. When Θ is decreased so is the region R near the crack tips which is not included in the line integral.
The result is that the domain of the CF line integral increases to include more of the region close to the crack tip singular-
ity, which is where the underlying finite element basis functions are unable# to represent the true stress field variation.
This leads to an increase in the computed CF error. Further, it is important to note that for lower values of Θ, more
hp-adaptive steps are required before the computation of the line integral error can occur. This is a direct results of
Algorithm 1, if the element at the crack tip is not small enough to be contained completely within R, where R is defined
by Θ, then the line integral component of the CF cannot occur and thus there is no corresponding error.

The final observation from Figure 8B is that for the initial hp-adaptive steps, the estimated errors have initially simi-
lar values which subsequently diverge with increasing adaptive steps. This feature occurs more strongly with low values
of Θ. In these cases the CF line integral includes more of the crack edges near the crack tip. As Θ is decreased the
estimated error considers a length of the crack faces that becomes asymptotically close to the full crack edge length,
hence convergence towards a value is observed. Last, the estimate error diverges with increasing hp-adaptive step, this is
because a lower Θ value includes more of the crack tip solution, which is non-smooth and hence, a slower convergence
is observed compared to a larger Θ that could potentially only include a smooth region of the solution and thus converges
faster.

6.2 Single shear crack

The shear crack problem, shown in Figure 9A, is used to demonstrate the accuracy of the CF, evaluated using Algorithm
3. The shear crack domain, Figure 9A, has dimensions H = W = 1 m, crack length a = 0.5 m, shear modulus 𝜇 = 8.0 GPa
and Poisson’s ratio of 0.3, the crack has a critical energy release rate of 103 N/m, and the problem acts in plane stress.
The bottom edge of the domain is fixed and an inhomogeneous Dirichlet boundary condition is applied to the top with
gD

i = [u 0], where u is the displacement required to cause fracture growth. The initial mesh for this problem is shown in
Figure 9B, comprising of 172 elements with a homogeneous polynomial order pk = 2. The mesh is hp-adapted using the
refinement parameters 𝛿2 = 0.7 and 𝛿1 = 0.07. For both problems 45 propagation steps were performed, each propagation
step was set to Ls = 0.01 m, the element edge length away from the crack tip was set to Ll = 0.5 m and the length of the
crack path near the crack tip with refined elements was set as Lt = 0.1 m.

(A) (B)

F I G U R E 9 Single shear crack: (A) Problem geometry and (B) initial mesh with the crack faces highlighted in grey and crack tip with
the white circle
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The shear crack problem is a particularly interesting problem due to its high sensitivity to any heterogeneity, numeri-
cal or material. The result is that there are three distinct crack paths that could arise, either downwards, straight across or
upwards depending on the nature of the heterogeneity. This benchmark crack path problem is based on the experimen-
tal work by Erdogan et al.25 where the crack is observed to propagate downwards. Many authors in the literature have
examined this problem using a range of: numerical methods (mesh-based and meshless), crack propagation analysis tech-
niques (discrete or smeared)74 and criteria for the crack propagation direction, see the non-exhaustive list of References
13,51,74-77. They all show that the crack propagation path is downwards and that the angle of the initial crack propaga-
tion path is the same, or similar, to that observed in the experiment. However, the authors here postulate that the crack
path solution predicted in the simulations is simply the result of spurious numerical heterogeneity. In the experiment the
heterogeneity is due to the boundary conditions not exactly being a pure displacement shear, the domain geometry not
being exactly symmetric and the material properties not being homogeneous and precisely isotropic.

Inspection of the continuous form of the CF calculation (2) shows that if the plane Eshelby stress component Σyy is
symmetric and the shear stress component Σyx is antisymmetric about the crack tip, only the CF component that acts
parallel to the crack faces will be non-zero (this has been confirmed numerically). The consequence being that the direc-
tion of propagation that maximizes the dissipation of energy is a pure mode II fracture path, hence any smeared crack
modeling that predicts crack growth on a maximization of energy dissipation should also predict a horizontal crack prop-
agation path. Further, for this homogeneous isotropic problem, only the mode II SIF, KII , will be non-zero and as such
the MSERRC, MCSC, and MSEDC methods, will all also predict a horizontal crack propagation path. However, if due to
numerical inaccuracies the crack deviates slightly from the centerline, the problem becomes non-symmetric and mixed
mode propagation occurs with the new mixed mode direction of propagation corresponding to the maximum energy dis-
sipation. Normally such distinct crack propagation paths would not exist however, since the crack tip lies on a trifurcation
point any heterogeneity in the simulation has the result of distinctly different paths and failures. Through the consider-
ation of a non-symmetric mesh, the analysis of the shear crack with the hpr-propagation method|| will demonstrate that
this method is robust to any initial numerical heterogeneity. This will show that the algorithm provides an ideal platform
for the analysis of spatial and material heterogeneity, and anisotropy, for highly sensitive problems safe in the knowledge
that numerical artefacts have been removed.

To investigate how mesh heterogeneity affects the crack propagation path for this problem, two values of Θ (the error
threshold for the CF calculation) for the determination of the CF, Algorithm 1, are considered, 0.005 and 0.8. In total
45 propagation steps occurred with each propagation step having a length of Ls = 0.01 m, the element edge length away
from the crack tip was set to Ll = 0.1 m and the length of the crack path near the crack tip with refined elements was set
as Lt = 0.1 m. The final meshes, and crack propagation path, are shown respectively in Figures 10A and 11A. Figure 10A
show two of the three crack propagation paths that can occur—straight across and downwards.

When Θ is set to a low value Algorithm 1 computes the CF to a high accuracy. This is achieved with hp-adaptivity
which minimizing any effects the mesh has on the stress solution, thus removing mesh induced stress non-symmetries
induced by the initial non-symmetric mesh. When Θ = 0.005 sufficient hp-adaptivity occurs for a mode II crack path to
be predicted, see Figure 10A. However for Θ = 0.8, significant mesh heterogeneity still exists resulting in a mixed mode

(A) (B)

F I G U R E 10 Single shear crack: Deformed mesh at end of the analysis for (A) Θ = 0.005 and (B) Θ = 0.8
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downward propagation path, Figure 10B. Initially, for Θ = 0.8, the mesh heterogeneity is not significant enough to cause
an initial sudden downward propagation path but does cause a slight deviation of the crack tip from the centerline, mak-
ing the geometry non-symmetric. The combined effect of the geometric and the mesh non-symmetric causes a positive
feedback loop, the stress solution about the crack tip becomes increasing non-symmetric which in turn causes the next
propagation step to be further from the centerline, Figure 11A. The result is the crack tip deviates from the crack center-
line at a rate which increases with propagation step. This highlights the difficulty of analyzing this problem, quickly after
the crack tip deviates from the centerline the propagation path becomes strongly mixed mode with no possible recovery
to the centerline. This feature demonstrates the accuracy achieved with the hpr-adaptive method when a low value of Θ
is set.

The total load applied to the top boundary, and corresponding energy, to cause brittle crack propagation for each
propagation step is recorded respectively in Figure 11B,C. Since the energy dissipated by a brittle crack per unit length
is constant and the propagation step size is constant, every propagation step dissipates the same quantity of energy from
the system. Hence, in Figure 11C the lower the applied energy on the boundary the higher the proportion of the strain
energy that is dissipated by a crack propagating. Inspection of Figure 11B,C shows that forΘ = 0.005 there is a continuous
decrease in the load, and the energy, required to propagate the crack. Whereas, for Θ = 0.8 there appears to three stages of
propagation: (i) from 0 → 0.03 m a similar load and energy is required as for Θ = 0.005; (ii) A sudden decrease in the load
and energy from 0.04 → 0.08 m; and (iii) a continuous decrease in the load and energy for the remained of the propagation.
Inspecting load and crack path deviation values for stages (i) to (ii) demonstrates the for the two simulations how quickly
the crack paths become different. Until 0.03 m the two propagation paths are similar, with a respective deviation for
Θ = 0.005 and Θ = 0.8 from the centerline of −1 × 10−4 and −2 × 10−4 m, Figure 11A, however at 0.04 m the derivation
becomes−2 × 10−3 and−4 × 10−4 m. At 0.04 m, the loads are also similar, 4759 N and 4846 N, but rapidly become different;
at 0.08 m the loads are 2866 N and 4563 N respectively. The results highlight the sensitivity of this problem, the crack
path needs only to deviate −2 × 10−3 m, corresponding to an angle of 2.9◦ at a total length of 0.04 m, for unrecoverable
symmetry is lost and for the crack to propagate downwards. The plot of the applied energy in Figure 11C shows how, if the
initial symmetry is lost, how much for favorable the initial deviation of the crack path from the centerline is compared to
continued pure mode II propagation. Between 0.04 → 0.08 m, the required into energy to propagate a crack downwards
roughly halves, when compared to the pure mode II case (Θ = 0.005), meaning that the proportion of energy dissipated
from the system by crack propagation for Θ = 0.8 is roughly double that of Θ = 0.005. After 0.08 m all symmetries of the
stress field are lost and the crack continues to propagate downwards. In total the crack path only deviates by 6 × 10−4 m,
or an angle of 0.036◦, from the centerline for Θ = 0.005.

As discussed above, any slight geometric non-symmetry caused by crack propagation produces a positive feedback
loop of increased loss in geometric and stress symmetry resulting in a increasingly downwards crack propagation path.

(A) (B) (C)

F I G U R E 11 Single shear crack: (A) Single shear crack: crack propagation paths for Θ = 0.005 and Θ = 0.8, where the discrete points
show the individual propagation step crack tip positions, (B) reaction force versus displacement for the two crack paths, and (C) the energy
applied to the boundary
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F I G U R E 12 Single shear crack: Spatial variation of the Eshelby stress components prior to crack propagation for Θ = 0.005 (left) and
Θ = 0.8 (center) along with the variation from anti-symmetry of the stress components (right) for Θ = 0.005 (y > 0) and Θ = 0.8 (y < 0)
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However, for the crack to initially propagate downwards the CF direction, which dictates the direction of crack growth
must also point away from the centerline of the problem. Therefore in order for this to happen the CF must be a function
of a non-symmetric and non-anti-symmetric Eshelby stress field, even in the case when the geometry is symmetric. By
considering the initial problem domain, Figure 9A, Figure 12 shows how the symmetry and anti-symmetry of the Eshelby
stress terms varies with a refinement. The figure is split into four rows corresponding to Σxx, Σyy, Σxy, and Σyx. The first
two columns show the Eshelby stress distribution for when the Θ = 0.005 and Θ = 0.8, the isolines are the logarithm of
the absolute values of each Eshelby stress term and, the light and dark grey colors correspond to respectively to negative
and positive areas of Eshelby stress. The last column provides a color plot of either the symmetric or anti-symmetric
difference in the Eshelby stress terms for both the refined and course mesh. For an Eshelby term, the top half of the color
plot corresponds to the refined mesh, the bottom the coarse mesh, with the absolute position of the y-coordinate starting
at the centerline of the plot and increasing both down and upwards. Inspecting the first two columns of the figure clearly
shows that when the geometry is symmetric and a high number of hp-refinement steps occur, the plane Eshelby stress
terms are symmetric whilst the shear terms are anti-symmetric. However, in the case when only a few hp-refinement steps,
non-symmetries are present in the Eshelby stress. The third column shows the value of the non-symmetry is significantly
higher for the coarse problem, at approximately six orders of magnitude larger than that of the refined problem for the
plane Eshelby terms and approximately three orders of magnitude for the shear Eshelby terms, see Table 2.** Table 2
highlights specifically that the difficulties in modeling this problem are more strongly associated with the shear Eshelby
stress terms, both in terms of their absolute values but also in terms of their convergence with hp-adaptivity. The table
there shows that the second component of the CF, the mixed mode component that acts perpendicular to the crack faces,
has its main contribution from the Σyx as for both refinements, this anti-symmetric difference is larger when compared
to the symmetric difference of the plane stress Eshelby components.

The conclusions to this analysis are:

1. This is a pure mode II crack propagation problem however, the result lies on a highly sensitive bifurcation point where
the problem can become mixed mode due to numerical inaccuracy.

2. The analysis shows that as soon as a small deviation of the crack path exists from the problem’s centerline, (2 mm of a
1 m square domain) the domain is sufficiently non-symmetric that a positive feedback loop is generated; the problem
becomes more non-symmetric and the crack propagates downwards at an increasing rate.

3. The example highlights the accuracy of the hpr-propagation method. Only a method that can accurately compute the
crack path direction, such that it is insensitive to any mesh heterogeneity, and is capable of capturing the true crack
path.

4. Any deviation from a horizontal crack path for this quasi-static, symmetric, and isotropic problem is a numerical
artefact associated with poor stress and displacement field approximation, as confirmed by analyzing the Eshelby
stresses distribution.

6.3 Y-shaped crack

This problem contains three crack tips, two of which are mixed mode and propagate symmetrically whilst the third is
mode I. There are four reasons for exploring this numerical example:

i to demonstrate that CF driven cracks can model kinked fractures;
ii that a very high precision for the crack path can be achieved through inspection of the symmetric crack growth;

T A B L E 2 Single shear crack: Mode Eshelby stress differences about y = 0

log10(symmetric difference) log10(anti-symmetric difference)

𝚺xx 𝚺yy 𝚺xy 𝚺yx

Refined mode −5.4 −5.4 −1.6 −2.3

Coarse mode 0.34 0.34 0.9 1.15
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iii capturing the crack path accurately only at the crack tip requires significantly fewer DOF compared to the case of
capturing accurately the entirety of the crack path; and

iv only accurately capturing the crack path at the crack tip is necessary for accurate crack propagation, with the results
indistinguishable when compared to the case with no derefinement along the crack path.

The domain for the Y-shaped crack is shown in Figure 13A, it acts in plane strain and has a Young’s modulus of 1
Pa and a Poisson’s ratio of 0.3. The values of the domain parameters of the Y-crack are W = 20 m, H = 16 m, a = 1 m,
b = 1∕

√
2 and 𝜃 = 45◦. On its top and bottom boundary a uniform normal outwards pressure of 1 Pa is applied so that

the plate experiences a uniaxial tensile load. As only Neumann boundary conditions are applied to the boundary of the
problem, average boundary conditions are applied, as in Reference 39, to prevent rigid body motion. The initial mesh is
shown in Figure 13B, it contains 409 elements and has an initial uniform polynomial order of pK = 2 and is subject to the
hp-adaptive parameters 𝛿2 = 0.7 and 𝛿1 = 0.07.

In this example the hr-adaptive propagation algorithm, Algorithm 4, propagates the crack with a total of 150 propaga-
tion steps. The case when the crack path is only accurately captured near the crack tip is referred to the derefinement case.
When derefinement is present the hr-parameters for crack growth are: Lt = 1.25 m, Ll = 1 m, Ls = 0.1 m, and Θ = 0.01.
When there is no derefinement: Lt = crack length, Ls = 0.1 m and Θ = 0.01.

Since the problem is symmetric about y = 0 m, the absolute relative position of the crack paths for crack tips B and C
(see Figure 13A) should be identical. The crack paths are shown in Figure 14A, where it is clear that crack A propagates
in a horizontal direction and cracks B and C follow the same absolute relative crack path. The crack paths for B and C also
demonstrate kinked propagation, this is observed in the initial propagation steps where the cracks propagate immediately
horizontally across the domain compared to the initial inclined angle of the crack faces.

A more precise investigating into the error in the symmetric precision is achieved through the measures,

crack A propagation error = |xA|
LA

and cracks B &C propagation error = |xB − xC|
1
2
(LB + LC)

,

where xA, xB, and xC are the relative positions of the crack tips A, B, and C relative to their initial position marked with
the black squares in Figure 13A. LA, LB, and LC are the total created crack propagation lengths at each propagation step.
These error measures were recorded for the 150 propagation steps and plotted in Figure 14B.

The results in Figure 14B show that a high symmetric precision is obtained for all cracks. For crack A the maximum
symmetric precision error was ≈ 3 × 10−5, and after 100 propagation steps plateaued to ≈ 2 × 10−5. The error in precision

(A) (B)

F I G U R E 13 Y-crack: (A) Problem geometry, where the Y-crack has been enlarged for clarity, and (B) initial mesh, showing the true
initial crack geometry, and exploded view of the mesh around the Y-crack
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(A) (B)

F I G U R E 14 Y-crack: (A) Absolute crack paths and (B) normalized non-symmetry of the crack paths over 150 propagation steps

for cracks B and C is consistently slightly higher, with a maximum of 10−4 which decreases to ≈ 2 × 10−5 at the 150th
propagation step. The error values for cracks B and C demonstrate the accuracy in hpr-adaptive method. When the mesh
is hr-adapted, elements are refined and nodes are moved to align with the crack path. The result is for a propagation
step, the CF calculation (21) for cracks B and C will have different area integral domain shapes and sizes as well as
different crack edge lengths of Γ+ and Γ−. Further, the length of R, the ignored region at the crack tip, is different at each
propagation step for cracks B and C. The high precision obtained shows the accuracy of Algorithm 1 and demonstrates
that provided Θ is sufficiently small, the calculation is robust to different values of |R|. This is particularly notable since
the high precision in the crack path is consistently maintained with propagation, despite the causality, and resultant
cumulative error, associated with subsequent propagation steps.

The crack propagation paths for the derefinement and no-derefinement case, shown in Figure 14A, are indistinguish-
able. This demonstrates that it is only necessary to maintain a high accuracy description of the crack path at the crack tip
in order to obtain precise crack propagation paths. As the crack propagates through the mesh, the mesh evolves to capture
the crack path. Whether derefinement is present or not, the number of nodes describing the fracture path will increase
as shown in Figure 15A. However, to capture the crack path using the hr-adaptive method, the rate increase in the num-
ber of nodes required the crack path is significantly smaller when derefinement is present compared to no-refinement.
Figure 15B shows the cumulative NDOF required to calculate the CF using hp-adaptivity whenΘ = 0.01 for both the dere-
finement, the no-derefinement case and, as a control the cumulative DOF required to compute the first hp-adaptive step
150 times. The first observation is that the computation of the no-derefinement case always requires more DOF than the
derefinement case, this is observed through the steeper gradient of the former. The second observation is that on average
the derefinement case requires the same NDOF as the control (initial mesh multiplied by the propagation step), this is
shown by these two lines having the same gradient. This demonstrates that the added DOF required to capture the crack
path accurately about the crack tip using hr-adaptivity, Algorithm 4, has no impact on the total NDOF to compute the CF
at each propagation step using hp-adaptivity, Algorithm 1. However, when no-derefinement is present the DOF required
to capture the crack path, shown in Figure 15A, increases the NDOF to required to accurate compute the CF at the crack
tip Figure 15B. It is concluded that the derefinement strategy has only an indistinguishable effect on the predicted crack
path whilst also maintaining computational efficiency adding no noticeable cost to the accurate computation of the CF.

The last aspect of the Y-crack problem to consider is the mesh quality when derefinement occurs. Here the mini-
mum angle observed for all elements in the mesh for the 150 propagation steps is shown in Figure 16. The angle plotted
corresponds to the initial mesh generated by hr-adaptivity and during hp-adaptivity remains unchanged due to the
homogeneous h-refinement.
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(A) (B)

F I G U R E 15 Y-crack: (A) Number of degrees of freedom (NDOF) required to describe the crack path for the derefinement and
no-derefinement propagation schemes and (B) the final NDOF for each propagation step for the derefinement scheme

F I G U R E 16 Y-crack: Element quality for the derefinement analysis
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The maximum, average and minimum angle observed in the mesh is 22.2◦, 16.7◦, and 9.3◦ respectively. Occa-
sionally the minimum angle falls to a value below 12◦ in a single propagation step. However in all occasions the
minimum angle recovers to a value greater than 16◦ in either the next, or next couple, or propagation steps. There are
two observations here. First, the hr-adaptive propagation algorithm is able to recover with propagation step when a
poor element exists. The second observation is that the hp-adaptive algorithm for the CF computation is sufficiently
robust that the poor quality elements do not affect the results; this is observed through the crack path precision plot,
Figure 14B.

6.4 Tree crack

The final numerical example is the tearing of a cantilever beam containing a tree crack with 8 crack tips, which is used
to demonstrate that the proposed algorithm is able to deal with numerous fractures propagating at different rates. This
problem is similar to that analyzed by Bird et al.,39 Ai and Augarde,78 and Ai76 but there are some key differences in terms
of the applied boundary conditions. The geometry of the problem is shown in Figure 17A, where L = 20 m, H = 4 m,
a = 1 m, b = 0.5 m, and 𝜃 = 𝜋∕4 (note that the crack has been enlarged within the beam for clarity). The end of the beam
is subject to a tearing traction (as seen in Figure 17A) at its free end which insures that all of the cracks open when loaded,
specifically traction loads of 𝜎N

i = [1 1]T × 10−4 Pa and 𝜎N
i = [1 − 1]T × 10−4 Pa were applied above and below the mid

depth of the beam, respectively. The opposite end of the beam is fully fixed. The material of the beam acts in plane stress
with a Young’s modulus of 1 Pa and a Poisson’s ratio of 0.3. The initial mesh used to analyses the problem is shown in
Figure 17B, where the true geometry of the tree crack is shown by the thick red lines and the crack tips highlighted by
white circles. All elements in the initial mesh have pK = 2, has the hp-adaptive parameters 𝛿2 = 0.7 and 𝛿1 = 0.07 and
the CF tolerance for propagation is set as 𝜃 = 0.01. It is worth highlighting that other researchers have analyzed the same
crack geometry but with spurious results as their applied loading causes some cracks to close and overlap as they do not
enforce contact conditions on the crack faces.76,78

In order to analyses this problem it is necessary to include Paris’ law79 so that the various cracks propagate at a rate
consistent with the stress intensity at each of the crack tips. The Paris law crack growth rate is defined as

da
dN

= C(ΔKequ)m, (41)

(A)

(B)

F I G U R E 17 Tree-crack: (A) Schematic problem geometry and (B) initial mesh and true crack geometry (thick red lines) with the crack
tips shown by white-filled circles
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where a is the crack length, N is the number of load/stress cycles, and C and m are the Paris law material constants set to
1 and 2 respectively. Last Kequ is the equivalent SIF which can be obtained from the CF as

ΔKequ =
√|gmax|∕E −

√|gmin|∕E, (42)

where gmax and gmin are the maximum and minimum CF values at the crack tip through the load cycle. E is the Young’s
modulus of the material. Since the load cycles between a maximum of |𝝈N | = [1 1]T × 10−4 and minimum of |𝝈N | =
[0 0]T × 10−4, gmin has a value of zero. In to order to propagate the cracks in steps, the discrete form of (41) is required,
and found through integration,80

Δa
C(ΔKequ)m = ΔN. (43)

To propagate multiple cracks in the mesh, the crack propagation step Δa for the crack tip associated with the largest
configuration force value is kept constant and defined Δamax. The propagation step of the remain cracks is found through
the ratio of the discrete propagation step of the crack with the maximum CF and the current crack i,

Δai = ΔKm
equ,i

Δamax

Km
equ,max

, (44)

where propagation occurs at the same ΔN for all cracks. If Δai is predicted to be less than 0.01 × Δamax then the crack is
not propagated. For this problem Lt = 0.25 m and Ll = 0.5 m and Lt for the crack tip with the maximum configuration
force is set equal to Δamax = 0.05 m. Last, 60 propagation steps occur.

The final mesh after 60 propagation steps is shown in Figure 18A. The figure shows that the hr-adaptive propagation
method is able to propagate a large number of cracks all at different rates, as shown in Figure 18B. The precise propagation
paths are provided in Figure 19A,B (note that the axes for the figures are of different scales). The first feature to observe
is that the cracks that are inclined and furthest away from the cantilever, cracks iv and vi, experience the greatest CF
value and thus propagate the furthest. However, as shown in Figure 18B, towards the second half of the simulation crack
iv dominates in terms of crack growth rate. This is due to crack iix having a stress shielding effect on vi. Cracks i and
vii propagate the least number of steps, respectively 0 and 2 steps. Crack i is closest to the loading of the beam and thus
experiences the least moment, whilst crack vii is shadowed by crack iix from the load. Last, cracks ii, iii, iix, and v all
propagate a non-negligible distance, however the solution is dominated by cracks iv and vi since they initially travel the

(A) (B)

F I G U R E 18 Tree-crack: (A) Deformed finite element mesh after 60 propagation steps (2 times displacement magnification) with
corresponding crack step size at each propagation step (B)
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(A) (B)

F I G U R E 19 Tree-crack: Crack propagation paths relative to their initial position: (A) Cracks i–iii, v, vii, and iix where the inset figure
shows a zoomed in view at the crack tips; and (B) cracks iv and vi

fastest and towards the boundary which has a positive feedback effect of increases their stress intensity at increasing rates,
compared to the other crack tips.

7 CONCLUSION

This article has presented a CF hpr-adaptive propagation method which achieved highly accurate predictions of the crack
paths of multiple cracks propagating at different rates. The hpr-adaptive approach is formed from two algorithms: the first
is a hp-adaptive method which can achieve highly accurate predictions of the CF at the crack tip; and second a hr-adaptive
method, which is a computationally efficient propagation algorithm where the propagation step size is independent of
the mesh.

The hp-adaptive procedure is driven by a residual based a posteriori error estimator and was used to obtain highly
accurate values of the CF at the crack tips. The error in the crack CF is bound by two error estimators, the area integral
component was shown to be reliable in Reference 39, whilst the error estimator for the edge integral component was
shown to reliable in this article. Both error estimators have also been shown be efficient using numerical examples. In
addition to this, the edge integral component of the CF was shown analytical to be reliable. The error estimators were then
used to define a stopping criterion for the CF calculation which has two uses: (i) from a static point of view, it means that
the CF can be computed up to a user desired accuracy; and (ii) for quasi-static crack propagation the CF can be computed
up to a desired accuracy for each propagation step.

The developed hr-adaptive method is independent of the finite element scheme and criteria used to determine and
how and when cracks propagate. It is designed to be simple to implement, for example since the crack propagation paths
at each time step are determined from the same initial stencil no special case derefinement and/or refinement strategies
are required. As well as being simple to implement, the hr-adaptive method is efficient, and was shown to be through
numerical examples. DOF are efficiently used as only the crack path near the crack tip is captured to a high fidelity with
small element edges whilst away from the crack tip the crack path is captured coarsely with larger elements. It was shown
through numerical examples that negligible accuracy is lost in the propagation path prediction when only the crack path
at the crack tip is modeled accurately whilst, there is a substantial gain in performance.

Finally, this article has included a range of numerical results which explored: (i) the accuracy of the hpr-adaptive
method; (ii) the importance, efficacy, and accuracy of employing a derefinement scheme; and (iii) demonstrate the abil-
ity of the hr-adaptive method to deal with problems with a large number of cracks propagating at different rates. The
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highly accurate nature of the method has allowed the re-examination of widely used benchmark solutions, such as
the shear crack problem. It was shown that this is a highly sensitive problem in which any slight numerical hetero-
geneity causes a mixed mode propagation path. Inspection of the predicted crack path and the Eshelby stress tensor
terms has shown that the shear crack problem is a pure mode II case and not, as prolific in the literature, a mixed
mode problem and a horizontal crack propagation path is the only correct solution once spurious artefacts have been
eliminated.
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ENDNOTES
∗r-adaptivity refers to the movement of nodes of the finite element mesh to improve the solution and/or adapt to changes in geometry, such
as fracture propagation.

†We avoid enriched approaches as they can limit the applicability of the numerical method in terms of the materials that can be analyzed (due
to assumptions about material behavior in the additional basis functions) and the size of the analysis/number of fractures due to linear system
stability issues.

‡It should be mentioned here that the presence of a discontinuity in a finite element mesh will induce non-zero CFs at nodes that are in the
vicinity, but not at, the crack tip. These CFs are caused by the inability of the finite element basis functions to represent the displacement (and
stress) field around the discontinuity.

§The average boundary condition approach, as detailed in Reference 39, is a Lagrange multiplier method that introduces three additional
global unknowns linked to constraining rigid body translation in the x and y directions and rigid body rotation within the x-y plane. Many
researchers instead choose to fix a single point in the problem to restrain rigid body motion but this introduces a spurious singularity that is
not present in the true physical, or in this case analytical, problem which will destroy convergence towards the true solution, especially in
terms of the level of accuracy achieved in Reference 39 and in this article.

¶This ratio is known as the effectivity index.
#As shown in Reference 39, the solution space of the stress on the crack faces at the crack tip is outside the finite element solution space.||The hp-adaptive component for determining the CF and the hr-adaptive method for propagating the crack through the mesh.

∗∗The mode was found by splitting the continuous data into 100 equally spaced bins and then, through inspection of the corresponding
histogram, ensuring that there was one distinct peak.
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APPENDIX A. THE HR-ADAPTIVE ALGORITHM

This appended section is an algorithmic description of the hr-adaptivity method for capturing the crack path. It leads
directly on from Section 5 which describes the three stages of hr-adaptive algorithm. The hr-adaptive process is described
by Algorithm 4. The algorithm is governed by two loops: a for loop over all crack paths and a while loop over the crack
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path which continues until the whole crack path has been approximated by the mesh. Each crack path is defined as Xc =
{x0, x1, ..., xn−1, xn}, where c is the crack number, n is the number of crack propagation steps and the point xn corresponds
to the crack tip.

The algorithm starts by selecting the crack c in the outer for loop and subsequently setting up the variables for the
first search of the intersection of the crack path with the element edges in the mesh: the points xR and xP and the line that
spans between them, the initial crack tip node nc (which has coordinates x0), and the reference point Rp that is initiated
as having the coordinates of the node nc.

The point xR is set the value x0 ∈ Xc, with its position corresponding to the initial crack tip node nc. Next, the pair
point P is set to 1, where P corresponds to a crack path position number in the set Xc, xP = x1 ∈ Xc. The straight length
between the points xR and xP forms the first search edge.

The while loop then operates to find suitable nodes and moving them to the crack path. This starts by checking
whether the line between the points xR and xP intersects the mesh. If no intersection is found the points are updated and
a new search line is defined. This occurs on lines 29 and 30 of Algorithm 4, where P is increased by 1 and the first point
of the edge is redefined as xR = xP−1. The algorithm then goes back to the start of the while loop and the new search
line is checked to see whether it intersects the mesh. If the search edge intersects the mesh, the edge with the nearest
intersection point to xR is defined F and, the nearest node on F to the intersection point is moved to the intersection point.
If the newly aligned edge is of an allowable edge length, no element is inverted and the node selected is a vertex node, the
mesh is r-adapted as in Figure A1:

Step 1: Algorithm 4 lines 29–30: The search edge between the points xP and xR is defined as the dashed line and multiple
element edge intersections are found.

Step 2: Algorithm 4 lines 7 and 10: In this case two (this is just illustrative—it could be one or more that two) intersections
points are found between the search line that spans the points xP and xR and, element edges in the mesh, marked
in grey. The nearest intersection point to the crack tip node is then selected and the nearest node n2 along the
element intersection edge F is defined nI .

Step 3: Algorithm 4 lines 17–19: The element edge that exists between the node nI and nc is defined as cracked edge.
nI is then moved to the intersection point marked in grey and the point xR is assigned the new coordinates of
nI . Last, the reference point Rp is updated to P and the new crack tip node is defined nc = nI . The algorithm has
successfully assigned an element edge to the crack path and a can begin.

However, it is sometimes the case that a r-adaptive move either selects a hanging node, creates an inverted element
or, aligns an element edge with the crack path that is too long, as shown in Section 5.1.1. This makes the method to
move a node onto the crack path more complex than that described in Figure A1. An example of Algorithm 4 man-
aging the constraint of an element edge along the crack path being too long is shown in Figure A2, requiring four
steps:

Step 1: Algorithm 4 lines 7, 29, and 30: The search edge, defined between the points xR and xP finds no intersection. P
is increased by one and then the point xR is set equal xP−1.

Step 2: Algorithm 4 lines 7 and 15: The new search line that spans the point xR and xP intersects the mesh. However
when checked if this node move can occur, on line 15, the length of the line L that connects the crack tip node
and the intersection point is too long.

Step 3: Algorithm 4 lines 24–26 and 7: Since L is too long, the element that contains the current crack tip node and the
edge on which the intersection point resides is refined producing nodes n5, n6, and n7. The intersection search
is then restarted by setting P = Rp, and defining the xR as equal to the point of the current crack node nc (which
is n1 in this case). With this new search edge and element mesh, the intersection point, marked in grey, can be
determined.

Step 4: Algorithm 4 lines 10, 17–19: The nearest node along the intersection edge F (n5) to the intersection point is
defined nI . Since the move of nI to the intersection point does not break any constraints, the element edge that
exists between nc and nI is defined a cracked edge. The reference point number is updated Rp = P. nI is then
moved to the intersection point marked in grey and the point xR is assigned the new coordinates of nI . Last, the
reference point Rp is updated to P and the new crack tip node is defined nc = nI . The algorithm has successfully
assigned an element edge to the crack path and a can begin.
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Algorithm 4. hr-adaptivity

1: for Loop over all crack paths do
2: Define the first point for the edge intersect to xR = x0

3: Set the current crack tip node, nc, to the node that resides on x0

4: Set the nodal pair search point P = 1
5: Reference point number Rp = 1
6: while exit flag = 0 do
7: Determine if there is an intersection between the points xR and xP

8: if Intersection is found OR the xP is the crack tip then
9: if Intersection found then

10: Find the nearest node nI on the edge F that the intersection point lies on.
11: else
12: Find the nearest node nI to the point xN .
13: end if
14: Set the maximum element edge Lmax

15: Check if the move can occur with the constrains defined in Section 5.1.1
16: if Node move can occur then
17: Define the element edge that spans the node nI and nc as a cracked edge
18: Move the node nI to the intersection point and define as the crack tip node nc

19: Set Rp = P and xR to the coordinates of the new crack tip node nc

20: if The last node move is the last point then exit flag = 1
21: end if
22: else
23: Refine the elements that prevent the node move
24: Set P = Rp.
25: Set xR to the position of the crack tip node nc

26: end if
27: else
28: Set P = P + 1
29: Set xR = xP−1

30: end if
31: end while
32: Make a vector min of all K where the minimum angle criterion is false
33: for All K ∈ min do
34: Define F, the element edge that is opposite to the corner of the K with the maximum angle
35: Find the two elements K+ and K− on F
36: if F is conforming, not on any boundary, and has not been previously flipped then
37: Flip the edge F so it now spans the two alternative internal corners of K+ and K−.
38: if Edge flip does not improve the quality of both K+ and K−. then
39: Undo edge flip
40: end if
41: end if
42: end for
43: end for
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F I G U R E A1 An example of an r-adaptive move, using Algorithm 4, where a node move does not break the constraints defined in
Section 5.1.1

F I G U R E A2 An example of an r-adaptive move, using Algorithm 4, where a node move does break the constraints defined in
Section 5.1.1 and h-refinement has to occur

The only difference in the way the hr-adaptive algorithm functions to overcome different constraints is through the
choice of elements that are h-refined, as in Step 3, as explained in Section 5.1.1.

The final part of the algorithm is moving a node in the mesh to the crack tip, this corresponds to Stage 3 in Section 5.1.1.
This part of the algorithm is instigated when the search line has the point xP equal to last point in the crack path, that
is, P = n. When P = n, a node move is attempted even if there is no intersection between the points of the search line
and the element edges in the mesh. If xP = xn and there is an intersection, a node is moved to the point of intersection.
However, if there is no intersection, the nearest node of the element that the point xn resides in is moved to the point xn,
the nearest node could also include the node nc. One of the requirements highlighted in Stage 3 in Section 5.1.1, is that
for there is always at least one crack node between the penultimate and last crack path points. This is achieved on line 14
of Algorithm 4, by setting the maximum edge length allowed when P = n to

Lmax = min{Ls, (2∕3) × |xn−1 − xn|},
which enforces at least node residing between the penultimate and last crack point. A case when this occurs is shown in
Figure A3 and comprises of seven steps:
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Step 1: Algorithm 4 lines 7, 10, 14, 15, 24–26: The last point in the crack path is being considered but, there is an inter-
section between the search line and the mesh. However as L > Lmax, no move occurs and the element is refined.
The counter P is reset to Rp and the first point of the search line, xR, is set to the position of the current tip node,
nc (which in this case is node number n1).

Step 2: Algorithm 4 lines 7, 10, 14, and 15: The last point in the crack path is no longer being considered and there is
an intersection between the search line and the mesh, marked in grey. The node n5 is the nearest node on the
intersected edge F to the intersection point, the intersection node is defined nI = n5. Moving the node nI to the
intersection point does not break any constraints.

Step 3: Algorithm 4 lines 17–19, 7, and 29–30: The new crack edge can be defined between nc and nI , the crack node and
R can be updated, nc = nI and R = P respectively, and the first point of the search line, xR, is set to coordinates of
nc. The new search line finds no intersection, and so P is increased by 1 and xR = xP−1.

Step 4: Algorithm 4 lines 7, 10, 14, 15, 17–19: The last point in the crack path is being considered (P = n), there is an
intersection between the search but unlike Step 1, L < Lmax, and so a node move can occur. The node n6 is the
nearest node on the intersected face F to the intersection point and as such the intersection node is defined
nI = n6. Since moving nI does not break any constraints outline in Section 5.1.1, the mesh can be updated using
lines 17–19.

Step 5: Algorithm 4 lines 7, 8, 12, 15, 24–26: There is no intersection but since the last point in the crack path is being
considered, P = n, the if statement on line 8 is true. The nearest node to the point xn is identified as n4 however,
moving it to the point xn results in an inverted element. Therefore, the element in which xn resides in is refined,
and the search edge variables are reset, P = Rp and xR.

Step 6: Algorithm 4 lines 7, 8, 12, 17–19: There is no intersection but since the last point in the crack path is being
considered, P = n, the if statement on line 8 is true. The nearest node to the point xn is identified as n8 and set
to nI . The node nI is moved to the last point in the crack path xn; this move is allowed since no constraints are
broken. The edge that spans nodes nc and nI is made into a cracked edge

Step 7: Algorithm 4 line 21: Since the crack node nc now coincides with the last point in the crack path xn the exit flag
is set to 1, and the while loop for this crack exits.

This appended section has detailed the hr-adaptive algorithm, Algorithm 4, for aligning element edges with crack faces
from multiple propagating crack tips. This algorithm has implemented and used to provide the numerical validations and
results in Section 6 for both brittle and fatigue driven fracture.

F I G U R E A3 An example of resolving the mesh about the crack tip using hr-adaptivity


