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ABSTRACT
We investigate the large-scale clustering of the final spectroscopic sample of quasars from the recently completed extended
Baryon Oscillation Spectroscopic Survey (eBOSS). The sample contains 343 708 objects in the redshift range 0.8 < z < 2.2
and 72 667 objects with redshifts 2.2 < z < 3.5, covering an effective area of 4699 deg2. We develop a neural network-based
approach to mitigate spurious fluctuations in the density field caused by spatial variations in the quality of the imaging data
used to select targets for follow-up spectroscopy. Simulations are used with the same angular and radial distributions as the
real data to estimate covariance matrices, perform error analyses, and assess residual systematic uncertainties. We measure the
mean density contrast and cross-correlations of the eBOSS quasars against maps of potential sources of imaging systematics to
address algorithm effectiveness, finding that the neural network-based approach outperforms standard linear regression. Stellar
density is one of the most important sources of spurious fluctuations, and a new template constructed using data from the Gaia
spacecraft provides the best match to the observed quasar clustering. The end-product from this work is a new value-added
quasar catalogue with the improved weights to correct for non-linear imaging systematic effects, which will be made public.
Our quasar catalogue is used to measure the local-type primordial non-Gaussianity in a companion paper.

Key words: inflation – large-scale structure of the Universe.

1 IN T RO D U C T I O N

The statistical properties of the initial conditions of the Universe
are an open problem in modern cosmology. Single-field inflationary
models predict that primordial fluctuations are almost Gaussian
and any deviation towards non-Gaussianity is small (Guth & Pi
1982; Hawking 1982; Starobinsky 1982; Bardeen, Steinhardt &
Turner 1983; Acquaviva et al. 2003; Maldacena 2003a; Creminelli &
Zaldarriaga 2004; Scoccimarro, Sefusatti & Zaldarriaga 2004; Zal-
darriaga 2004). However, some alternative inflationary models,
which include more fields, generate non-Gaussian perturbations
(Allen, Grinstein & Wise 1987; Kofman & Pogosyan 1988; Salopek,
Bond & Bardeen 1989; Linde & Mukhanov 1997; Bernardeau &
Uzan 2002; Lyth, Ungarelli & Wands 2003; Maldacena 2003b;
Chen et al. 2007; see e.g. Desjacques & Seljak 2010 for a review).
The local-type primordial non-Gaussianity is often parametrized as
(Matarrese, Verde & Jimenez 2000; Verde et al. 2000; Komatsu &
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Spergel 2001):

� = φ + fNL(φ2− < φ2 >), (1)

where � is the primordial gravitational field, φ is a Gaussian field,
and fNL is called the non-linear coupling constant. For a single field
inflationary model, we have fNL = 5(1 − ns)/12 ∼ 0.01, where ns is
the scalar spectral index of primordial power spectrum. Therefore, a
non-zero detection of primordial non-Gaussianity, fNL � 1, will rule
out single-field models of inflation and refine our understanding of
the early Universe (Mukhanov & Chibisov (Mukhanov & Chibisov
1981; Guth & Pi 1982; Hawking 1982; Starobinsky 1982; Allen et al.
1987; Falk, Rangarajan & Srednicki 1992; Gangui et al. 1993; see
e.g. Alvarez et al. 2014 for a review).

The current state-of-the-art constraint is fNL = −0.9 ± 5.1 at
68 per cent confidence level from measurements of the bispectrum
of cosmic microwave background anisotropies as measured by the
Planck satellite (Akrami et al. 2020). However, limited by cosmic
variance, CMB measurements cannot reach the necessary precision
to differentiate between various inflationary models (e.g. Baumann
et al. 2009; Abazajian et al. 2016). As an alternative route to constrain
fNL is to measure the scale-dependent effect, it has on the large-scale
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clustering of biased tracers at lower redshift (Scoccimarro et al. 2004;
Dalal et al. 2008; Grossi et al. 2008; Matarrese & Verde 2008; Slosar
et al. 2008; Taruya, Koyama & Matsubara 2008),

�b ∝ fNL(b − p)
1

k2T (k)
, (2)

where T(k) is the transfer function normalized to unity for small
wavenumber k, b is the halo bias, and p is a correction factor
accounting for the response of the tracer to the halo gravitational
field, e.g. 1.6 for recent mergers (Slosar et al. 2008; Reid et al. 2010).
Due to the k−2 dependence, the biasing effect is most apparent for
fluctuations with large wavelengths (see e.g. Alvarez et al. 2014,
for a review). Therefore, constraining primordial non-Gaussianity
demands galaxy redshift experiments that survey a huge cosmic
volume.

Quasars are bright quasi-stellar objects that are detectable from
high redshifts thanks to the brightness of their active nuclei, and are
consequently the ideal candidate for studying the distribution of mat-
ter on high redshifts, and constraining primordial non-Gaussianities
with large-scale structure data (Agarwal, Ho & Shandera 2014;
Giannantonio et al. 2014; Karagiannis, Shanks & Ross 2014;
Leistedt, Peiris & Roth 2014). Using the scale-depend bias effect on
galaxy power spectrum measurements, Slosar et al. (2008) obtained
fNL = 8+26

−37 at 68 per cent confidence level from the Sloan Digital Sky
Survey (SDSS; Blanton et al. 2017) Data Release 5 (DR5) quasar
sample (Adelman-McCarthy et al. 2007). Recently, Castorina et al.
(2019) used 148 659 quasars with 0.8 < z < 2.2 from the SDSS
DR14 (Abolfathi et al. 2018) to obtain −51 < fNL < 21 at 95 per cent
confidence level.

Quasar clustering measurements at large scales are sensitive to
spurious density fluctuations caused by imaging properties (Ross
et al. 2012; Leistedt et al. 2013; Pullen & Hirata 2013; Ross
et al. 2013; Leistedt & Peiris 2014; Ho et al. 2015; Laurent et al.
2017; Kalus et al. 2019), and are the primary source of systematic
error that impede a robust analysis of primordial non-Gaussianity.
The reasons for data having systematic errors include, but are not
limited to, Galactic foregrounds (such as Galactic extinction and
stellar contaminations), seeing, and survey depth variations. These
properties fluctuate across the survey footprint and introduce spurious
variations in the observed density field of quasars. Because many of
these effects have large-scale variations, they result in an excess
clustering signal at large scales. For instance, Pullen & Hirata (2013)
analysed the SDSS DR6 quasar sample (Richards et al. 2008) to
find that systematic error in the sample does not allow a robust
inference on fNL. They found the 2 per cent rms fluctuations in the
quasar density, while they argued that the fluctuations under 1 per cent
(0.6 per cent) is required to measure fNLless than 100 (10).

Conventional techniques for improving quasar clustering measure-
ments rely on a regression analysis of observed quasar density against
a set of mappable properties that describe imaging conditions during
observing (see e.g. Ross et al. 2011, 2012, 2017; Delubac et al. 2017;
Prakash et al. 2016; Laurent et al. 2017; Bautista et al. 2018). This
approach has been further enhanced to account for intercorrelations
among imaging variables, validated with simulations, and applied
to other photometric surveys, such as the Dark Energy Survey
(e.g. Elvin-Poole et al. 2018; Wagoner et al. 2021). The regression
analysis fits for spurious fluctuations in target quasar density and
then is employed as a selection function to assign an appropriate
weight to each target to eliminate such variations. The method of
mode-projection removes the modes that strongly correlate with
imaging templates in covariance based estimators (e.g. Tegmark
1997; Leistedt et al. 2013; Leistedt & Peiris 2014; Kalus et al.

2019). Regression and mode-projection turn out to be mathematically
equivalent (Kalus et al. 2016). An alternative technique uses cross-
correlations of multiple tracers, or same tracer at different redshift
bins, with the assumption that each sample responds differently to
imaging systematics and thus cross-correlations are not affected (e.g.
Rhodes et al. 2013). For a benchmark analysis of various cleaning
methods, see e.g. Weaverdyck & Huterer (2021).

The extended Baryon Oscillation Spectroscopic Survey (eBOSS;
Dawson et al. 2016) is part of the fourth phase of SDSS. The eBOSS
programme is the final large-galaxy redshift survey proposed within
SDSS aiming to measure the expansion history and energy contents
of the Universe, using large-scale structure (LSS) (Ahumada et al.
2020). With a series of galaxy redshift surveys, SDSS has probed
the distribution of matter traced by galaxies and quasars using the
dedicated 2.5m Sloan Foundation Telescope (Gunn et al. 2006) at the
Apache Point Observatory from 1998 to 2019. During four distinct
phases, SDSS collected images and spectra of thousands to millions
of astronomical objects and created the largest three-dimensional
map of the cosmic web to date. The first phase of SDSS led to the
detection of Baryon Acoustic Oscillations (BAO) in the large-scale
clustering of galaxies (Eisenstein et al. 2005), at the same time as the
2-degree Field Galaxy Redshift Survey (Cole et al. 2005). Calibrated
by CMB measurements, the BAO scale has been widely utilized as
a standard ruler leading to robust distance-redshift measurements
and constraints on the nature of Dark Energy with LSS surveys. The
observations of the BAO signal in LSS have improved since the early
detections, passing the 5σ detection threshold and now cover a wide
range in redshift using only SDSS data (e.g. Percival et al. 2010;
Anderson et al. 2014; Alam et al. 2017).

In the fourth phase of SDSS, eBOSS adopted the same 1000-fibre
spectrograph (Smee et al. 2013) from its predecessor, BOSS (Dawson
et al. 2012), and utilized improved pipelines for redshift estimation,
background subtraction, and flux calibration (Bolton et al. 2012;
Hutchinson et al. 2016; Jensen et al. 2016; Bautista et al. 2017).
eBOSS introduced a new class of targets for actively star-forming
galaxies with strong [O II] emission lines, known as Emission-Line
Galaxies (ELGs; Raichoor et al. 2017). ELGs extend over the redshift
range of 0.6 < z < 1.1 (Raichoor et al. 2020) and fill the redshift
gap between Luminous Red Galaxies (LRGs; Prakash et al. 2016)
and Quasi-Stellar Objects (QSOs; Myers et al. 2015), referred to as
quasars in this manuscript.

We present a careful assessment and treatment of imaging system-
atic effects in the final sample of quasars (Lyke et al. 2020; Ross et al.
2020) from the eBOSS Data Release 16 (Ahumada et al. 2020), the
largest sample of quasars available to date. We improve upon a neural
network-based cleaning approach, which was originally developed,
validated, and applied to eBOSS-like emission-line galaxies in
Rezaie et al. (2020). Compared to emission-line galaxies, quasars
represent a class of sparser targets for galaxy surveys, particularly
for spectroscopic surveys. This paper enhances the method to deal
with the sparsity of the eBOSS DR16 quasars by modelling quasar
counts per pixel with the Poisson distribution. We improve neural
network training to be less prone to local minima by utilizing
a cyclic learning rate. We perform a comprehensive benchmark
of linear and non-linear treatments, and investigate each method
effectiveness in reducing spurious fluctuations. Residual systematic
errors are quantified using mean quasar density contrasts and cross-
power spectra against imaging templates. For the significance of
residual spurious fluctuations, we construct covariance matrices from
realistic simulations. Our primary objective is to examine, quantify,
and mitigate the potential sources of observational systematic error
and enhance quasar power spectrum measurements for constraining
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primordial non-Gaussianity. This work presents a new set of value-
added catalogues with the enhanced systematic weights to account
for imaging systematic effects more exquisitely compared to the
standard linear regression which is used in the eBOSS pipeline. The
new quasar catalogue is utilized in two accompanying papers for
constraining the local-type primordial non-Gaussianity (Mueller et
al. in preparation) and for exploring the impact of imaging systematic
error on Baryon Acoustic Oscillations (Merz et al. in preparation).

This paper is structured as follows. Section 2 describes the eBOSS
quasar sample and simulated data sets used in this work. Section 3
outlines the power spectrum estimator and our strategies for the
treatment and characterization of imaging systematics. In Section 4,
we present our statistical tests for quantifying residual systematic
errors, assess the performance of different cleaning methods, and
illustrate the impact of imaging properties on the measured power
spectrum of the DR16 sample and that of the simulated catalogues.
Finally, we conclude with a summary of our results and their
significance for constraining primordial non-Gaussianity with quasar
clustering in Section 5.

2 DATA

This section describes the final sample of quasars from the completed
eBOSS DR16 data set (Ross et al. 2020; Lyke et al. 2020) and the
simulated EZmock catalogues (Zhao et al. 2021) used in our analysis.

2.1 eBOSS DR16 quasars

The DR16 quasar sample is the final release of large-scale structure
data from SDSS-IV eBOSS and provides twice the number of quasars
and sky coverage over the previous Data Release DR14. The target
selection of quasars for eBOSS is presented in Myers et al. (2015),
and only the main details are briefly summarized here. It uses
optical and infrared imaging, respectively, from SDSS and Wide-
Field Infrared Survey Explorer (WISE; Wright et al. 2010). The
photometric data are taken in five bands (u, g, r, i, z; Fukugita et al.
1996) and calibrated to account for the Galactic dust effect using
correction factors presented in Schlafly et al. (2012). The ability to
obtain a quasar with redshift z > 0.9 is improved by 20 per cent
using the XDQSOZ algorithm (Bovy et al. 2012). The magnitude
selection applies the extinction-corrected flux cuts in the g and r
bands, namely g < 22 and r < 22, to choose the CORE eBOSS
quasars. The targeting strategy enables the observation of the Ly-α
high-z quasars by relaxing the maximum redshift cut and reduces
stellar contaminations in the sample by incorporating a mid-infrared
cut. The redshifts are estimated using the REDVSBLUE1 principal
component analysis algorithm described in Lyke et al. (2020), with
95 per cent completeness and 2 per cent false-positive rate. The main
quasar sample spans the redshift range of 0.8 < z < 2.2 and is used
for various cosmological analyses of the BAO and RSD features (du
Mas des Bourboux et al. 2020; Neveux et al. 2020; Smith et al. 2020;
Hou et al. 2021). Additionally, the high-z quasars with 2.2 < z <

3.5 are employed for measuring the BAO signal in the Ly α forest
(Blomqvist et al. 2019; Chabanier et al. 2019; de Sainte Agathe et al.
2019).

The preparation of the large-scale clustering catalogue of quasars
is outlined in Ross et al. (2020). As well as associating attributes and
weights per object, the process includes generating a set of unclus-
tered synthetic objects (often referred to as the random catalogue

1https://github.com/londumas/redvsblue

or randoms), matching the expected weighted density of quasars
and accounting for the radial and angular survey geometry. Standard
procedures account for the veto masking, completeness cuts, fibre
collision correction by nearest neighbour upweighting, redshift
failure correction through weighting, and imaging systematics by
linear regression against templates. The products are the tabulated
coordinates of the quasars and randoms along with appropriate
columns for per-object weights, separately for the North Galactic
Cap (NGC) and South Galactic Cap (SGC) regions. Each weight
column is intended to address a particular systematic effect in the
observed data, which is discussed briefly in the following.

The physical size of a fibre limits the ability to observe a pair of
quasars within 62 arcsec of separation. This fibre collision effect is
not random and affects quasar clustering. Up-weighting the nearest
neighbour corrects for much of the large-scale effect, although small-
scales remain affected and require a more complicated procedure to
achieve unbiased removal (Bianchi & Percival 2017; Hahn et al.
2017; Mohammad et al. 2020). In our analysis, we use the simple
nearest neighbour upweighting scheme as we are only interested in
large scales (as used, for example, by Neveux et al. 2020).

The completeness of redshift estimation varies among the fibres
across the spectrographs, with fibres near the edge having a higher
rate of redshift measurement failures. The weight wnoz is determined
to mitigate this systematic error by weighting by the reciprocal of
the probability that each fibre accurately measures a redshift. The
impact of redshift completeness on quasar clustering is investigated
in Hou et al. (2021).

The remaining source of systematic uncertainty is associated
with the properties of the imaging data from which targets were
selected including, but not limited to, stellar contamination, Galactic
extinction, and inaccurate photometric calibrations. The standard
method uses a multivariate linear model to find the intercorrelation
between target density and imaging templates, and provides a per-
object weight wsystot to reduce this systematic effect (Ross et al. 2012;
Bautista et al. 2018). We explain the standard treatment and how the
systematic weight wsystot is obtained in Section 3.1. Collectively, to
account for all of these observational effects, each quasar and random
object must be weighted by,

w = wsystot × wnoz × wFKP × wcp, (3)

where wFKP = [1 + n(z)P0]−1 is the FKP weight (Feldman, Kaiser &
Peacock 1994) with P0 = 6000 Mpc3h−3 based on the expected
power2 on scales around 0.01−0.3 h Mpc−1, and n(z) is the number
density at redshift z. We require completeness >0.5 (for both
parameters COMB BOSS and SECTOR SSR3) as well as 0.8 < z < 3.5
to avoid low-quality samples. The quasar catalogue contains 343708
objects in the redshift range 0.8 < z < 2.2 and 72 667 in the redshift
interval 2.2 < z < 3.5, covering an effective area of 4699 square
degrees. Hereafter, we refer to the sample with 0.8 < z < 2.2 as
main, and the one with 2.2 < z < 3.5 is referred to as high-z.

Fig. 1 shows the mean number density of quasars from the DR16
catalogue as a function of redshift for the NGC (solid blue) and SGC
(dashed orange) regions. The main and high-z samples are separated
by vertical dotted lines. Targeting efficiency varies slightly between

2This is the default value for the BAO and RSD studies with eBOSS (see
e.g. Neveux et al. 2020; Hou et al. 2021). The impact of the FKP weight
on fNLconstraints is investigated in our companion paper (Mueller et al. in
preparation).
3These parameters describes the survey completeness and the probability of
detecting an object with a good redshift in spite of other instrumental factors.
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Figure 1. Mean density of the DR16 quasars as a function of redshift for the
NGC (solid blue) and SGC (dashed orange) regions. The vertical dotted lines
represent the redshift cuts for selecting the main and high-z samples.

Figure 2. Top: Mollweide projection of the DR16 sample in the redshift
interval of 0.8 < z < 3.5 and the effective area of 4700 deg2 with the standard
treatment for imaging data systematics. The solid red curve represents
the Galactic plane. Bottom: The difference in corrected quasar density
between applying the standard or neural network treatments for imaging
data systematics.

the two caps that causes small differences in n(z). Fig. 2 shows the
sky coverage of the DR16 quasars in equatorial coordinates. The
top panel is the Mollweide projection4 of the quasar density field in
deg−2 after the standard treatment. The solid red curve represents the
Milky Way plane. The effective area of the NGC and SGC regions
are 2860 and 1839 deg2, respectively (see table 3 in Ross et al. 2020).

4The density map is in HEALPIX (Gorski et al. 2005) with NSIDE = 128, which
corresponds to a pixel area of 0.21 deg2.

The quasar density in each pixel is corrected for pixel completeness,
using the number of random objects. The bottom panel describes the
residual quasar density between the standard and new neural network
treatments. These methods are thoroughly described in Section 3.1.
Interestingly, the residual map indicates that the size of the correction
depends on angular direction, with the non-linear approach leading
to more correction in particular regions.

2.2 Synthetic catalogues

We use synthetic catalogues (Zhao et al. 2021), generated using
the extended Zeldovich approximation (Zel’Dovich 1970; Chuang
et al. 2015), to construct covariance matrices of our statistics and
perform robustness tests, characterizing the significance of residual
systematic uncertainties. Throughout this manuscript, we refer to
these mocks as the EZmocks. The EZmocks are tuned to reproduce
accurate two-point clustering statistics, e.g. within 1 per cent of
an N-body simulation on k < 0.55 h Mpc−1 and r > 10 Mpc h−1

(Chuang et al. 2015), and thus are suitable for studying the large-
scale clustering of galaxies and quasars. These simulations are
sufficient for this work since the impact of imaging systematics
on quasar power spectrum measurements appears primarily on long-
wavelength modes, e.g. k < 0.01 h Mpc−1. A detailed description
for the creation of the eBOSS EZmocks is presented in Zhao et al.
(2021).

An EZmock realization is created by adopting the Zeldovich
approximation to generate a density field. Then, stochastic and para-
metric techniques are applied to simulate the scale-dependent non-
linear biasing effects. A flat �CDM universe defined by cosmological
parameters h = 0.678, 	M = 0.307, 	� = 0.693, 	b = 0.0482,
σ 8 = 0.822, and ns = 0.961 is considered as the input cosmology
for the EZmocks. The mock realizations do not contain primordial
non-Gaussianity, i.e. fNL = 0. Each mock catalogue is constructed
by combining seven periodic boxes with the comoving side length
L = 5 Gpc/h to mimic a light-cone geometry that accounts for the
redshift evolution of quasars. Then, the mock catalogue is sub-
sampled along the line of sight to simulate the redshift distributions
of the DR16 quasar sample.

We use two sets of simulations in this paper. Each set contains
roughly 1000 independent realizations per Galactic cap. We have
the mocks only for the redshift interval 0.8 < z < 2.2. One set
of the mocks is manipulated to reflect the effects of observational
systematics, including fibre collision, stellar contamination, redshift
failures, and angular imaging systematics. While the other set lacks
any observational systematics, except the survey geometry effect.
Throughout this manuscript, we refer to these two sets as the
contaminated or null mocks, indicating whether or not observational
systematic effects are added to the simulations. In particular impor-
tance to our work, angular imaging systematics are simulated based
on a linear multivariate fit to the DR16 quasar density against two
imaging templates5 for the SDSS stellar density and depth-g with
HEALPIX resolution of NSIDE=512 (see 2.3). Similar to the DR16
sample, eBOSS pipelines are applied to the EZmock realizations to
calculate and assign the appropriate attributes, which are intended
to mitigate the simulated systematic effects and recover the ground
truth clustering.

5This is a conservative approach for simulating imaging systematics in the
mock catalogues since the treatment of the real sample has shown that more
than two templates are required to achieve a desirable cleaning.
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2.3 Imaging templates

In total, we have 17 templates of photometric variables, which are
involved in the SDSS imaging and targeting, as potential sources of
systematic uncertainties. These templates comprise three maps track-
ing the structure of the Milky Way: Galactic extinction (Schlegel,
Finkbeiner & Davis 1998), neutral hydrogen column density (HI4PI
Collaboration et al. 2016), and stellar density from either the SDSS
program (as used in Bautista et al. 2018) or the Gaia spacecraft (Gaia
Collaboration et al. 2018). The survey-specific templates are seeing,
sky brightness, and survey depth in four bands (griz). The remaining
two maps are run and airmass.

We produce these imaging templates in HEALPIX by using a cata-
logue of uniformly distributed random objects painted with imaging
features. For each pixel, the average of each imaging property is
computed over the random objects in the pixel. The maps are created
in the ring ordering format and two resolutions, NSIDE = 256 and
512, respectively corresponding to 0.23 and 0.11 deg. Although the
standard treatment uses templates with NSIDE = 512 for cleaning
the eBOSS DR16 quasars, the preparation of templates in a different
resolution, e.g. 256, will enable us to investigate how changing pixel
size might influence the mitigation process and quasar clustering
measurements.

A caveat of all template-based cleaning methods is that the
available templates are not perfect, and this limitation might affect
the performance of such treatments; for instance, the default stellar
density map is an incomplete sample of stars, which is constructed as
the number of type PSF objects with i < 19.9 from SDSS. Therefore,
our proxy of stellar artefacts may be an incomplete representation of
existing stellar contaminations in the DR16 sample. Indeed, as we
discuss later in Section 4, we find a noticeable reduction in residual
systematic error by swapping the SDSS map for a different stellar
map from the Gaia DR2 with 12 < g < 17 (Gaia Collaboration
et al. 2018). The other caveat is that using all imaging maps for
training might add the input noise to the neural network, increase
chance cross-correlation between cosmological signal and imaging
fluctuations, and reduce the effective number of modes. Therefore,
we decide to follow a conservative approach to use a minimum
number of templates in regression analysis. Later in Section 4, our
results show that spurious fluctuations against imaging properties
are alleviated by using only fives maps including sky-i, seeing-i,
extinction, depth-g, and Gaia stellar density. Based on the χ2 of
the mean density residuals, the first four maps are identified as
the primary sources of systematic error in the standard cleaning
procedure (Ross et al. 2020), and hereafter we refer to this set as the
known templates.

3 A NA LY SIS TECHNIQUES

This section presents the techniques and statistics employed in this
work for the characterization and mitigation of residual spurious
fluctuations, and outlines the estimator for measuring the large-scale
clustering of the DR16 sample and that of the EZmock realizations.

3.1 Template-based mitigation

3.1.1 Linear multivariate regression

The default systematic weights in the DR16 catalogue (Ross et al.
2020) are obtained based on a linear multivariate regression using
the four known maps, i.e. sky-i, seeing-i, extinction, and depth-g, as
the primary sources of systematic fluctuations. Linear regression is
the most commonly used approach to reduce the effects of imaging

systematics in previous SDSS catalogues (e.g. Ross et al. 2011; Ross
et al. 2012; Myers et al. 2015; Prakash et al. 2016; Ross et al. 2017).
Despite some minor differences among the various implementations,
a common assumption is that the observed number density of quasars
in pixel i is a linear combination of imaging quantities in the pixel
(Bautista et al. 2018, equation 6),

yi = n̄ +
∑
j=1

pjxj,i , (4)

where n̄ is the mean density of quasars, xj, i is the j’th imaging
variable in pixel i, and pj is the corresponding linear coefficient.
These methods mostly differ either on their cost function6 or on
the number of templates used in the model. For instance, the least-
squares error is evaluated over either the binned or pixelated mean
density of quasars. Sometimes, the regression routine fits against all
templates simultaneously or one template at a time in each iteration.

Specifically, the method presented in Bautista et al. (2018)
implements a simultaneous fit using the four known maps as the
independent variables in the model and chooses the least-squares
error on the binned quasar density as the cost function. A subtle
aspect of the cost function is that the residual fluctuations are summed
over not only the four known maps but also the SDSS stellar density
and airmass. This design will train the model parameters to explain
the trends against the six templates while providing only the four
known maps as input. Given the four known maps as the input
variable x, the systematic weight of quasars in pixel i is defined as,
wsystot, i = 1/(c + ∑

jpjxj, i), where c is the intercept. The optimal
coefficients and intercept c are then derived by minimizing the
least-squares error7 on the binned quasar density after applying the
systematic weight wsystot to each quasar object. The binned density is
accounted for other observational and pixel completeness effects by
weighting the quasars and randoms,respectively, by wtot, g and wtot, r

(see equation 9).

3.1.2 Non-linear approximation using neural networks

The DR16 quasar sample is very sparse, with a surface density of
73 deg−2 in the redshift range 0.8 < z < 2.2 (main) and 15 deg−2 in
2.2 < z < 3.5 (high-z). The high sparsity poses a major challenge for
regression-based treatments by making it difficult to disentangle the
effect of systematics and the cosmological signal. This paper expands
the neural network-based methodology described in Rezaie et al.
(2020) to obtain non-linear systematic weights. In what follows, we
first describe the specifics of the neural network architecture, and then
elaborate on how we further improve the methodology specifically
with the implementation of the Poisson statistics in the cost function
to properly deal with the high sparsity eBOSS QSO data and a cyclic
learning rate to enhance training against local minima.

Feed forwards neural networks: Neural networks are universal
approximators that can model a wide variety of non-linear mappings
from a set of independent variables to a target variable. Neural
networks can account for non-linear spurious fluctuations caused
by imaging and the cross-correlation among imaging properties. We
use yi and xi to, respectively, denote the observed quasar count and

6Cost function is used to find the best parameters of a model.
7It is worth noting that unlike the neural network method, this approach uses
all data for training and does not apply any form of training, validation, and
testing. We believe linear regression is not in a limit prone to over-fitting, i.e.
the degree of freedom is much smaller than the number of data points.
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imaging features8 in pixel i. We implement a fully connected feed-
forward neural network to model the observed quasar count yi from
imaging templates as input features xi. At its standard configuration,
a fully connected feed-forward neural network is a system of neurons
organized in a series of interconnected layers, where each neuron is
connected to all neurons in the previous layer and the following
layer.9 For instance, the output value of neuron μ in layer l + 1, al+1

μ ,
is obtained from the linear combination of the output values from
the previous layer neurons, al

ν , after applying a non-linear activation
function f,

al+1
μ = ψ

(
bl

μ +
∑

ν

wl
μνa

l
ν

)
, (5)

where wl
μν and bl

μ are, respectively, the associated weights and
bias connecting to neuron μ. The non-linear function ψ determines
how much of the signal travels from layer l to l + 1. In this
notation, the first layer input values are imaging properties xi and
the last layer output is then compared to yi. The network architecture
comprises three fully connected hidden layers10 with twenty neurons
with the rectified linear activation function, ψ(u) = max (0, u), on
each hidden layer and a single neuron with the softplus activation
function, Softplus(u) = log [1 + exp (u)], on the output layer. The
softplus activation in the last layer will ensure the network output
is always positive. We also add a batch normalization layer after
each layer, except the output layer. Batch normalization stabilizes
and expedites training by scaling the inputs to each layer to have
a mean of zero and a standard deviation of one (e.g. Ioffe &
Szegedy 2015).

Poisson statistics in the cost function: For the DR16 quasars, we
decide to use the negative Poisson log-likelihood as the default cost
function and the Mean Squared Error for benchmarking. Assuming
the quasar counts per pixel are independent and identically distributed
variables, we can write the joint probability for N pixels as

L = f (y1, ..., yN |θ ) =
N∏

i=1

f (yi |θ, xi), (6)

which is a reasonable assumption provided that the input features
xi do not include any spatial information, and we do not intend
to provide any feature that contains cosmological clustering in
our modelling. Otherwise, the mitigation procedure will learn the
clustering signal and remove it as well. The objective is then to
find the best set of parameters θ that maximizes the likelihood L,
or minimizes its negative logarithm −log L. Assuming yi follows a
Poisson distribution, we have

f (yi |θ, xi) = λ(θ, xi)yi exp−λ(θ,xi )

yi!
, (7)

where λ is the expected number of quasars, λ > 0 by definition, and
a function of imaging features. We use λi ≡ λ(θ , xi) for brevity and

8We use the z-score normalization scheme to standardize our imaging
templates, i.e. z = (x − μ)/σ where μ and σ are the mean and standard
deviation of imaging feature x determined from the training set.
9Bias neurons are an exception and connect only to the subsequent layer.
10We follow a grid search approach to experiment with a various number
of hidden layers ranging from two up to five hidden layers; however, we do
not observe any significant change in validation loss. Therefore, we fix the
architecture at three hidden layers with 20 units on each hidden layer.

obtain the negative log-likelihood11 as the cost function J,

J ≡ − log(L) =
N∑

i=1

[λi − yi log(λi)]. (8)

In this notation, the quasar number count yi is assumed to be an integer
value. This assumption breaks down in practice since each object in
the DR16 catalogue needs to be weighted for other observational
systematics and pixel completeness beforehand, and that turns yi

into a non-integer value. To circumvent this issue and still account
for the pixel completeness and other observational effects, we decide
to use the raw number count of quasars for yi, and instead weight
the model prediction in pixel i, i.e. λi, by the ratio of the weighted
number of randoms to that of quasars in that pixel. To this end, the
quasar and random objects are, respectively, weighted by wtot, g and
wtot, r,

wtot,g = wnoz × wcp × wFKP,

wtot,r = wFKP × compBOSS, (9)

where compBOSS is the survey completeness that describes the
likelihood of obtaining a good redshift, regardless of any other
instrumental deficiencies.

Cyclic learning rate: The weights wl
μν and biases bl

μ of the
neural network are trained using the Decoupled Weight Decay
Regularization optimizer (AdamW; Loshchilov & Hutter 2017),
which is an iterative gradient descent approach for optimization.
Specifically, the parameters are updated in the opposite direction of
the gradient of the cost function with respect to the parameters,

mt+1 = β1mt + (1 − β1)∇J (θt ), (10)

vt+1 = β2vt + (1 − β2)[∇J (θt )]
2, (11)

θt+1 = θt − ηt

mt+1√
vt+1 + ε

, (12)

where ε = 10−8 and the learning rate ηt controls the magnitude of
each parameter update per iteration t. The first and second moments
of the gradients, i.e. mt and vt, are initialized as zero. The parameters
β1 and β2 determine the average history of the first and second
moments of the gradients, and are fixed at 0.9 and 0.999, respectively
(see e.g. Ruder 2016, for a review of gradient descent methods).

We incorporate a cyclic learning rate to prevent the optimizer from
being trapped in a local minimum. Specifically, the learning rate η

at epoch t is scheduled to vary following the method presented in
(Loshchilov & Hutter 2016),

ηt = ηmin + 1

2
(ηmax − ηmin)

[
cos

(
Tcur

Ti

π

)
+ 1

]
, (13)

where ηmax is the initial (maximum) learning rate, ηmin is the
minimum learning rate, Tcur is the number of epochs since the last
restart, and Ti is the number of epochs between two subsequent
restarts. The neural network training begins with Ti = 0 = 10, but
then we increase Ti by a factor of 2 after each restart (i.e. Ti changes
like 10, 20, 40, ...). We follow the procedure presented in Smith
(2015) to search an exponential grid12 for the optimal values of
ηmin and ηmax. The optimal values are chosen such that the variation
of loss per training epoch is maximized. We separately perform
the learning rate finding procedure for each Galactic cap, redshift

11We omit the term log (yi!) from our objective function since it does not
depend on θ .
12github.com/davidtvs/pytorch-lr-finder; github.com/fastai/fastai
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Figure 3. The Pearson correlation coefficient between the averaged predicted
quasar counts from neural networks for various ensemble size in the
NGC (black) and SGC (red) regions, and the main and high-z samples.
The correlation increases beyond 90 per cent after averaging over three
networks.

selection, template resolution since the balance between systematics
and noise changes.

Cross-validation: We apply fivefold cross-validation to perform
training, validation, and testing the network on the entire footprint,
while ensuring no overlap among any of the training, validation, or
testing sets. Specifically, we randomly split the entire footprint into
60 per cent training, 20 per cent validation, and 20 per cent testing
sets. The training set is used to compute the gradients and update the
parameters. In each epoch, the model is applied to the validation set
to assess the prediction error when the model is applied on unseen
data. We let the networks to train for 150 epochs, and finally we
apply the model with the lowest validation error on the test set.
By changing the arrangement of the training and validation sets,
the neural network will be tested on the entire footprint. Similar
to Ross et al. (2020), we perform training, validation, and testing
for the main and high-z samples in the NGC and SGC regions
separately and finally aggregate the results. This approach assumes
that the effects of imaging systematics along the line-of-sight do
not vary much. We relax this assumption later by further splitting
the main sample into 0.8 < z < 1.5 and 1.5 < z < 2.2, and
analysing each subsample separately. As shown later in Section 4,
we find no significant difference. Therefore, we leave an extensive
3D regression of target density and imaging properties for future
work.

Unlike linear regression, the objective function of a neural network
is non-convex, and thus there is no unique set of best-fitting
parameters. This results in an intrinsic scatter on the predicted quasar
density from a single neural network. We create an ensemble of
20 networks, through random initializations of the parameters, to
mitigate the issue of model uncertainty, reduce the dispersion of the
predicted quasar counts, and increase the stability of the selection
function. We then take the mean predicted number of quasars across
all networks in the ensemble as the final selection function. Fig. 3
illustrates the Pearson correlation coefficient (PCC13) between the
predicted quasar counts of two independent ensemble subsets as a
function of the ensemble size for the main and high-z samples in
the NGC (black) and SGC (red) regions. The Pearson coefficient

13PCC(X, Y ) = cov(X, Y )/
√

cov(X,X)cov(Y , Y ), where cov(X, Y) is the
covariance between variable X and variable Y.

illustrates that the mean predicted densities between two ensembles,
each contains only four or more networks, correlate more than
90 per cent. Then, the systematic weight for quasars in pixel i is
defined by wsystot ∝ 1/λ(θ , xi), where wsystot is normalized such
that the total weighted number of quasars stays the same as before
treatment.14 The figure shows that with our default ensemble size of
20, we are introducing very little intrinsic scatter in the process of
the neural network.

3.2 Residual systematics tests

3.2.1 Mean density contrast

This test is sensitive to the uniformity of the DR16 sample by
clustering pixels with similar imaging properties. We compute the
mean density contrast of quasars against each imaging variable to
quantify the deviations and fluctuations in the sample before and
after cleaning. For a given imaging quantity xj, the mean density
contrast δ is,

δ(xj ) =
∑

i ng,i

α
∑

i nr,i

− 1, (14)

where ng, i and nr, i are the weighted number of quasars and randoms
in pixel i; α is the factor to normalize the number of randoms to
that of quasars; and the summation

∑
i is computed over pixels with

xj, i ∈ [xj, xj + �xj]. We adopt an equal frequency binning scheme
in which pixels are initially sorted from the minimum to maximum
imaging value, and then the width �xj is varied such that each bin
contains the same area, i.e. the same number of randoms. By design,
this statistic is not sensitive to the underlying true power spectrum,
since the mean of density contrast is computed over a large number
of pixels in the imaging phase space. Therefore, the cosmological
component in δ cancels out.

The quasar and random objects are weighted differently before
and after mitigation; initially, the quasars are weighted by wtot, g and
the randoms are weighted by wtot, r, equation (9). After mitigation,
we use equation (3) to weight both the quasars and randoms. Finally,
we compute the mean density contrast against all 17 templates, δ =
[δ(x1), δ(x2), ..., δ(x17)], and quantify the total mean density residuals
with χ2 statistics,

χ2
tot = δ†C−1δ, (15)

where the covariance matrix C is estimated from the null EZmock
mean density contrasts, C = <δ†δ >, where the angle brackets
represent ensemble average over the EZmock realizations. The
estimated covariance matrix is then unbiased by the Hartlap factor
(Hartlap, Simon & Schneider 2007),

C = Nmocks − 1

Nmocks − Nbins − 2
Cbiased, (16)

where Nmocks is the number of mock realizations, e.g. 1000 for the
NGC and 999 for the SGC, and Nbins is the number of imaging bins,
i.e. 136. Fig. 4 shows the estimated covariance matrix of the mean
density contrast from the 1000 null EZmock realizations for the NGC.
This matrix shows the complex correlation among the attributes. This

14We also limit the systematic weights to 0.5 < wsystot < 2.0 to avoid extreme
corrections. For pixels where we do not have imaging information, we use
the mean value over nearest neighbours to estimate the systematic weight.
We do not observe a significant impact on quasar clustering.
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Figure 4. Covariance matrix of the mean density contrast for the NGC region
estimated from the null EZmock realizations.

covariance matrix will be used to assign the error-bars presented in
Fig. 8 and obtain the χ2 values presented in Fig. 9

3.2.2 Angular cross-correlation

The anisotropies in target quasar density of a pure cosmological
signal should not correlate with Galactic foregrounds and survey-
related properties. To test this assumption, we measure the cross-
power spectrum between quasar density and imaging templates. Due
to imaging systematics, the cross-power spectrum measurements are
not zero, and we use this tool to quantify spurious fluctuations. The
cross-spectrum is squared and then normalized by the autopower
spectrum of the imaging map,

C̃
q,x

� = (Cq,x

� )2/C
x,x
� , (17)

to convert it to the estimated contribution of systematics up to the first
order to the autopower spectrum of the quasar density. The autopower
or cross-power spectrum is computed over the coefficients a�m from
spherical harmonic decomposition (e.g. Hobson 1931),

C
p,q

� = 1

2� + 1

�∑
m=−�

a
p

�ma
q

�m, (18)

with p = q for autocorrelation and p 	= q for cross-correlation. We
bin the cross-correlation and autocorrelation, and use only the four
lowest � bins centered at � = 1.6, 3.7, 8.3, and 18.8, as we are only
interested in large-scale modes15 around k < 0.01 h Mpc−1. Similar
to the mean density contrast diagnostic, the covariance matrix C is
constructed from the null EZmock cross-power spectra, and then
unbiased by the Hartlap factor. Finally, we quantify the significance
of the residual cross-power against the 17 imaging maps by

χ2
tot = C̃

†
� C−1C̃�, (19)

where

C̃� = [
C̃

q,x1
� , C̃

q,x2
� , ..., C̃

q,x17
�

]
. (20)

15We use the approximation � + 1/2 ∼ kDA with DA being the angular size
distance.

3.3 Power-spectrum multipoles

We use the estimator presented in Hand et al. (2017) and implemented
in NBODYKIT16 (Hand et al. 2018) to measure the power spectrum
of the DR16 sample for the NGC and SGC regions, separately. We
provide a summary of the algorithm below.

We assume a flat �CDM cosmology with 	M = 0.31, h = 0.676,
	bh2 = 0.022, σ 8 = 0.8, and ns = 0.97 (Alam et al. 2017) to
convert each redshift to distance. After transforming the coordinates,
we first begin with digitizing the quasar and random catalogues
over a 3D cubic box with a side length of 6600 Mpc h−1 and 5123

voxels. Then, we construct the Feldman–Kaiser–Peacock field (FKP;
Feldman et al. 1994) and interpolate it using the Triangular Shaped
Cloud (TSC) scheme,

F (r) = ng(r) − αnr (r), (21)

where α = ∑
ng(r)/

∑
nr(r). The terms ng and nr represent the

observed density of the quasar sample and random objects weighted
by equation (3), respectively. The power spectrum multipoles are
then computed from the FKP field as (Yamamoto et al. 2006)

P�(k) = 2� + 1

4πA

•
d	dr1dr2F (r1)F (r2)e−ik · (r2−r1)L�( ˆk · rh),

(22)

where rh = (r1 + r2)/2 is the line-of-sight distance to the middle
point of a given pair, L is the Legendre polynomial of order �, and
A = ∫

drn̄2(r) is the normalization for the field F, which can be
approximated by a discrete sum over the synthetic objects weighted
by wr (see equation 3)

A = α
∑

i

wr (r i)nr (r i). (23)

Equation (22) can be simplified even further. Under the small angle
approximation, k̂ · r̂h ∼ k̂ · r̂2, the two integrals on r1 and r2 are
separable. Using the decomposition of the Legendre function into
spherical harmonics,

L�(k̂ · r̂) = 4π

2� + 1

�∑
m=−�

Y�m(k̂)Y ∗
�m(r̂), (24)

we obtain,

P�(k) = 2� + 1

A

∫
d	

4π
F0(k)F�(−k), (25)

where

F�(k) =
∫

drF (r)eik · rL�(k̂.r̂) (26)

= 4π

2� + 1

�∑
m=−�

Y�m(k̂)
∫

drF (r)eik · rY ∗
�m(r̂). (27)

We measure the power spectrum using equation (25) in k bands of
width �k = 0.0019 hMpc−1. This method requires less number of
Fourier’s transforms compared to other estimators in Bianchi et al.
(2015) and Scoccimarro (2015). When computing the transforms,
the NBDOYKIT software mitigates aliasing with the interlace grid
technique presented in Sefusatti et al. (2016) and accounts for any
effects caused by the TSC gridding using the factor presented in
Jing (2005). Finally, we estimate the shotnoise by summing over the

16https://nbodykit.readthedocs.io
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quasar and random catalogue objects,

Pshotnoise = 1

A

⎡
⎣∑

i

w2
g(r i) + α2

∑
j

w2
r (rj )

⎤
⎦ , (28)

and subtract it only from the monopole power spectrum (� = 0).

4 R ESULTS

This section presents the analyses for the characterization of sys-
tematic error and the treatment of spurious fluctuations with various
cleaning approaches. We compare the measured power spectra before
and after accounting for imaging systematic effects with various
linear and non-linear cleaning methods. In the end, we present the
clustering analysis of the EZmock realizations in order to assess the
impact of systematic treatments on the measured power spectrum
and how one can account for such effect in theoretical modelling.

4.1 Method benchmarks

4.1.1 Linear versus non-linear treatment

Our series of tests begin with applying various linear and nonlinear
cleaning methods to the main sample of quasars in the NGC region.
To conduct a fair comparison, the same set of the four known maps
are employed as the input templates. We use the mean-squared error
and the Poisson negative log-likelihood as two alternatives for the
cost function. When using PNLL as the cost function, Softplus is
applied to the output to satisfy the boundary condition λ > 0. We
also experiment with a non-linear model without the learning rate
annealing to test the sensitivity of training to local minima.

Fig. 5 shows the mean density contrast as a function of Galactic
extinction in the top panel and the measured power spectrum in the
bottom panel, after applying different cleaning methods. The 1σ

uncertainty is shown via the grey shades and is constructed from
the null EZmock realizations. Linear-MSE here is equivalent to
the standard treatment except that the cost function of the former
is based on the pixelated density, while the latter is based on
the binned density. This figure illustrates that our implementations
of linear-MSE and linear-PNLL yield similar residual fluctuations
to that of the standard treatment. This result implies that with
linear regression, adopting the Poisson statistics does not help.
Interestingly, the residual fluctuations are reduced substantially after
accounting for non-linearities by the hidden layers in the NN-MSE
and NN-PNLL architectures. We also find that turning off the learning
rate cycling does not hugely impact the neural network performance
(NN-PNLL-lr) with marginal effect on the power spectrum, which
proves the robustness of the pipeline against local minima and saddle
points. This test shows that the most substantial improvement in the
measured power spectrum is enabled by accounting for nonlinear
systematic effects using the neural network-based methods and then
by adopting PNLL in the cost function. Interestingly, our linear
cleaning method yields a lower clustering power than the standard
linear approach. This test demonstrates that cost function needs to
be defined accurately for different levels of model complexity; the
choice of PNLL over MSE makes more substantial difference for the
NN approach compared with the linear model.

4.1.2 Stellar density from Gaia DR2

The quality of the selection function derived from a template-based
cleaning method relies on the available input templates. We may

Figure 5. Top: Mean density contrast of the NGC main sample against
Galactic extinction after applying various mitigation techniques, including
linear with MSE, linear with PNLL, NN with MSE, NN with PNLL, and NN
with PNLL but without learning rate annealing (NN-PNLL-lr). All methods
use the known set of imaging maps. Bottom: Monopole of the NGC main
sample after applying the same techniques. The shades represent 1σ statistical
uncertainty constructed from the null EZmock realizations.

fail to properly eliminate spurious fluctuations if a primary imaging
map is missed or our available imaging maps are not completely
representing the underlying systematic effects. In this test, we
experiment with the available SDSS and non-SDSS imaging maps to
find the optimal number of crucial imaging maps, which one would
need to explain the residual trends in the mean density contrast. As
mentioned before, the standard cleaning approach uses only four
maps, i.e. Galactic extinction, depth in g-band, sky brightness in i
band, and seeing in i band.

Fig. 6 top panel shows the mean density contrast against the Gaia
stellar density from Gaia Collaboration et al. (2018) after training
a neural network with various combinations of the imaging maps
using PNLL as the cost function. We also plot the measured density
contrast after the standard treatment (standard) as our reference for
comparison. The measured monopole power spectrum is shown in the
bottom panel. This exercise illustrates that the four known maps are
not sufficient to eliminate the systematic trend in the mean density
against the Gaia stellar map. We also show that incorporating the
SDSS stellar map (NN known + sdss) and even all of the SDSS maps
(NN all sdss) are not adequate to obtain satisfactory cleaning. On the
other hand, we note that NN all sdss performs as well as Lin Gaia,
implying that the nonlinear nature of NN can mitigate the effect of
the missing input to some extent. Interestingly, adding the SDSS
stellar map to the four known maps impacts the result adversely,
especially on the low density end of the Gaia DR2 stars. This result
might mean that the SDSS stellar density map is not a proper proxy
of the stellar contamination effect in the regions with a lower stellar
density. This test indicates that the Gaia DR2 stellar map is proved
pivotal to perform a robust cleaning of data, that is consistent with
the statistical tests of the mocks. For comparison, we apply the linear
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Figure 6. Top: Mean density contrast of the NGC main sample against
the Gaia stellar density after accounting for systematics, using different
combinations of imaging templates. Bottom: Monopole power spectrum of
the NGC main sample for the same techniques. The shades represent 1σ

statistical uncertainty constructed from the null EZmock realizations.

model with MSE and the additional Gaia map (LIN known + gaia),
and obtain a total chi-squared value of χ2 = 196.9 which is still
significant (see Table 1). This test demonstrates that capabilities of
linear treatment is limited even after including the Gaia map, and the
nonlinear treatment is crucial, not only when we know the proper set
of the input templates a priori but also when we do not know.

4.1.3 Redshift slicing and pixel resolution

The effects of imaging systematics on target density might vary
along the line of sight, and alter the slope of the redshift distribution
of quasars as well as its overall magnitude. This effect can be
ideally investigated by slicing the sample into smaller redshift bins to
construct a 3D selection function of imaging systematics. However,
further splitting the sample increases the sparsity and makes it

Figure 7. Top: Mean density contrast of the NGC main sample against depth
in the g-band after training the neural network methods with two redshift
slices with NSIDE = 512 (NN-512-2z), one redshift slice with NSIDE = 256
(NN-256-1z), and one redshift slice with NSIDE = 512 (NN-512-1z). Bottom:
Monopole power spectrum after the same techniques. The shades represent
1σ statistical uncertainty constructed from the null EZmock realizations.

difficult to separate the effects of imaging systematics and noise.
Thus, we begin with splitting the main sample in the NGC with
NSIDE = 512 into 0.8 < z < 1.5 and 1.5 < z < 2.2 and then we
perform regression on each slice separately. We use PNLL as the
cost function with the four known maps and the Gaia stellar map
as input. Fig. 7 compares the mean density contrast as a function of
depth in g band (top) and the measured monopole power spectrum
(bottom) after this treatment (NN 512-2z) with that of the standard
method and the neural network, trained on 0.8 < z < 2.2 with
NSIDE = 512 (NN 512-1z). This plot demonstrates that there is no
evidence for redshift-dependent systematic effects due to imaging.

We also train the neural network with coarser imaging templates in
NSIDE = 256 on 0.8 <z< 2.2 (NN 256-1z). The mean density contrast
and measured power spectrum after this treatment are shown in Fig. 7

Table 1. Total χ2 of the mean density residuals of the main sample in the NGC after various mitigation
configurations. The chi-squared value before accounting for imaging systematics is 1344.9, which is much
larger than the 95th quantile observed in the null EZmocks, i.e. 178.

Templates
NSIDE-Split known Known + SDSS All SDSS Known + Gaia

512-1z standard 218.1 – – –
linear-mse 213.5 – – 196.9
linear-pnll 210.2 – – –
nn-mse 194.6 – – –
nn-pnll-lr 168.99 – – –
nn-pnll 163.97 184.6 153.9 151.7

512-2z nn-pnll – – – 165.5

256-1z nn-pnll – – – 217.6
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Figure 8. Density contrast of the main sample as a function of the primary imaging properties in the NGC (top) and SGC (bottom) before and after accounting
for systematic effects using the standard method or neural network. The error-bars are estimated from the null EZmocks and used to calculate the χ2 of the
mean density residuals against each imaging property.

in the top and bottom panels, respectively. The mean density contrast
histogram is computed against the depth template in NSIDE = 512
and indicates noticeable residual variations from zero in the regions
at low and high depth-g. This test demonstrates that the systematic
weights obtained in the lower resolution cannot properly reduce
the trends in the higher resolution. As a caveat, if the top panel
was drawn against the depth template in NSIDE = 256, we would
have gotten a reasonable performance of NN-256. The bottom figure
shows the resulting power spectrum accounting for the effects in all
17 imaging maps. We find a reasonable stability against the varied
pixel resolutions and choose NN-512 as our default.

The total χ2 of the mean density residuals for various systematic
treatment methods are summarized in Table 1. The χ2 value is
1344.9 before correcting for systematic effects. After using the linear
cleaning techniques, the χ2 value drops below 220. The non-linear
approach lowers the error below 200, and changing the cost function
from MSE to PNLL improves the performance even further by
returning a value around 170, which is less than what is observed in
the null EZmock realizations. As a comparison, purely cosmological
signal without systematics, estimated from the null EZmocks, returns
the χ2 value of 178.

4.2 Significance of residual fluctuations

For testing the significance of residual systematics, and as our default
NN approach, we focus on the neural network method trained with
PNLL and cyclic learning rate on the DR16 sample covering 0.8
< z < 2.2 with the five imaging maps as input features. From the
previous analyses, see Table 1, we identify this configuration as the
optimal approach.

Fig. 8 illustrates the observed density contrast of the DR16 quasars
as a function of imaging properties for the NGC (top) and SGC
(bottom). Respectively from left to right, the imaging quantities are
the Gaia DR2 stellar density, Galactic extinction, sky brightness in i
band, depth in g band, and seeing in i band. Each panel is annotated
with the residual squared errors that are calculated against a zero
model as the ground truth.17 The error-bars are obtained from the

17We assume that the density contrast must be zero when averaged over many
pixels in the absence of imaging systematics.

EZmock catalogues. We observe the biggest variation is against the
extinction for about 8 per cent with χ2/dof = 374.95/8 in the NGC
and 15 per cent against depth-g with χ2/dof = 828.74/8 in the SGC.
Interestingly, the neural network treatment is capable of modelling
and removing the non-linear effects in the sample. On the other hand,
the standard treatment leaves a significant chi-squared value against
the extinction with χ2/dof = 37.25/8 in the NGC.

We compute the total χ2 of the mean density residuals against
all of the 17 imaging maps to determine the significance of spurious
fluctuations in the observed mean density of quasars. Fig. 9 shows the
distributions of χ2

tot, which are constructed from the null (Null) and
contaminated EZmocks (Cont), before and after applying imaging
systematics mitigation for the NGC (left) and SGC (right). The values
observed in the DR16 sample before and after cleaning are repre-
sented with vertical lines. We use the distribution of the null mocks
(Null Truth) to compute p-value. In the NGC, the standard treatment
yields χ2 = 218.1 with p-value = 0.2 per cent, while the neural
network treatment cleans the sample substantially and returns a
smaller χ2 and higher p-value, respectively, 151.7 and 27.1 per cent.
In the SGC, we observe that the standard method returns 132.5 with
p-value = 65.0 per cent. This residual is somewhat expected since
the trends against imaging maps in the SGC are mostly linear, and
thus a linear model is sufficient for cleaning (see Fig. 8). In the
SGC, both methods return statistics that are in agreement with the
χ2 distribution of the null mocks. No remaining systematic error is
observed within the statistical uncertainty of the mocks. The total
χ2 of the mean density residuals for the main and high-z samples
are reported in Table 2. The 95th percentile for the main sample is
estimated from the mocks and reported in the last column. Note that
for the NGC region, the standard approach yields a χ2 value that is
larger than the 95th quantile of the mocks.

Similarly, we cross-correlate the quasar density map with all of
the 17 imaging templates. The cross-correlations are then binned to
decrease statistical fluctuations, and normalized by the auto power
spectrum of the imaging maps. The first four bins are then used to
compute the residual squared error against zero. Fig. 10 demonstrates
the distribution of χ2

tot constructed from the null and contaminated
mocks before and after applying imaging systematics mitigation
for the NGC (left) and SGC (right). The values observed in the
DR16 sample are represented with vertical lines. In the NGC, the
standard treatment returns χ2 = 338.5 with p-value = 1.1 per cent,
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Figure 9. Total χ2 of the mean density residuals for the EZMocks with systematics (Cont) and without systematics (Null) for the NGC (left) and SGC (right).
The same statistics observed in the eBOSS DR16 quasar sample (before and after treatment) are shown via vertical lines with the associated p-values, which
are derived by comparing with the mocks without systematics, Null (Truth). There is substantial remaining systematics in the NGC with the standard linear
treatment. Also, the contaminated simulations do not reflect the same level of systematic effects as the DR16 sample.

Table 2. Total χ2 of the mean density residuals for the main and high-z
samples, before and after mitigation, and the 95th percentile of null EZmocks.
The null EZmock covariance matrix is used to calculate these statistics.

Noweight Standard NN
95th per-
centile

NGC 0.8 < z < 2.2 1344.9 218.1 151.7 178.0
2.2 < z < 3.5 1752.0 121.6 104.2 –

SGC 0.8 < z < 2.2 1943.0 132.5 116.3 179.2
2.2 < z < 3.5 2553.7 146.0 130.1 –

while the neural network treatment provides a cleaner sample with
χ2 = 49.8 and p-value = 57.9, respectively. In the SGC, we observe
that the standard method is incapable of removing the systematics
by returning χ2 = 404.3 with p-value = 0.7 per cent. On the other
hand, the neural network approach enables rigorous cleaning with
χ2 = 53.2 and p-value = 52.4 per cent. This test motivates further
investigations of linear systematic treatment methods in future galaxy

surveys since the 1D diagnostic based on the mean density contrast
is not sufficiently sensitive to unveil these issues with the standard
treatment in the SGC (see Fig. 9). Interestingly, these histograms
show that the magnitude of simulated systematic effects for the
contaminated mocks are stronger in the SGC (cf. the left-hand and
right-hand panels of Figs 9 and 10). Similarly, the DR16 sample
shows a stronger spurious fluctuation around 15 per cent against
depth in the SGC region, compared with 8 per cent in the NGC.

In summary, we find that the nonlinear aspect of our cleaning
approach is the primary reason for efficiently reducing spurious
fluctuations and systematic error. The neural network-based ap-
proach can model the non-linear feedback of observed quasar density
to imaging templates, which results in a cleaner sample with a
significantly lower χ2 value. Although the standard treatment passes
the null test based on mean density contrasts, however, the test based
on cross-power shows that the catalogue with the standard systematic
weights is not properly cleaned. We find no improvement in the
mean density residual after including all SDSS maps for training;
however, our analysis shows that the Gaia stellar density is required

Figure 10. Similar to Fig. 9 for the angular cross-power spectrum between the projected quasar density and imaging maps. Compared with the simulations
without systematics (Null), there is a substantial remaining systematics both in the NGC and SGC with the standard linear treatment, while the 1D diagnostic
(Fig. 9) shows no obvious issues with the SGC sample cleaned with the linear approach.
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Figure 11. Monopole of the main sample in the NGC (left) and SGC (right) after treatment with the standard method and neural network. Various fNL models
are plotted to show the sensitivity of the signal on large scales. The shades represent 1σ statistical uncertainty estimated from the EZmocks. The x-axes are
logarithmic for k < 0.02 hMpc−1 and linear otherwise.

to satisfy the null tests for residual systematic errors. We also find
that computing the mean quasar density per pixel does not change
our conclusion based on the mean quasar density per imaging bin,
although the former quantity is subject to more fluctuations. Finally,
we do not observe a significant change by splitting the main sample
into redshift subsamples or using coarser imaging templates. In the
following, our neural network-based treatment is applied on the
entire 0.8 < z < 2.2 and uses the Poisson cost function (nn-pnll),
cyclic learning rate, and five imaging templates in NSIDE = 512
(Known + Gaia) as input features (see Table 1).

4.3 Power spectrum

4.3.1 Measurement

We now proceed to measure the power spectrum of the DR16 sample
and EZmock simulations for each Galactic cap separately since each
cap is subject to different targeting properties. Fig. 11 shows the
measured monopole power spectrum P0 of the main sample in the
NGC (left) and SGC (right). We use the square root of the diagonal
terms of the covariance matrices, constructed from the null EZmocks,
as the error-bars on P0. The open and filled circles represent the
measured spectrum after cleaning the sample with the standard and
neural network treatments, respectively. In both regions, the non-
linear cleaning approach returns a lower power at small k. On the
other hand, the effect on the small-scale clustering is very small. We
also show various models with fNL = −10, 0, or 90 to illustrate the
sensitivity of the signal on the low-k measurements.

We apply the systematics treatment methods on both the null
and contaminated EZmock catalogues to characterize the impact of
the mitigation procedure on the measured clustering statistics. The
measured power spectrum of the null mocks without any systematic
treatment is considered as the ground truth clustering. Fig. 12 shows
the mean and the standard deviation of the measured spectra from
the EZmock realizations in the NGC (left) and SGC (right) regions.
The top row illustrates the difference between the mean P0 of the
EZmocks after mitigation, including the null (Truth after NN) and
contaminated catalogues using the neural network (Cont after NN and
the standard approach Cont after Standard), and the truth clustering
(Truth). The light and dark shades show the standard deviation of
the null EZmock spectra and the 1σ uncertainties on the mean of the
mock spectra, respectively. In the second row, we show the relative
difference in the mean power spectrum. In the third row, we present

Figure 12. Measured power spectrum of the EZmock realizations before and
after systematic treatment for the NGC (left) and SGC (right) regions. From
top to bottom, we show the difference between the mean mitigated spectrum
and the mean truth spectrum, the relative difference, the dispersion in the
mock spectra, and the relative dispersion.

the standard deviation of the mock spectra. Finally, we show the
relative dispersion in the bottom row. The measured spectra for the
contaminated mocks before treatment is an order of magnitude larger
than the truth clustering and thus is not visualized for clarity. We note
that the magnitude of the excess power observed in the mocks is one
order of magnitude smaller than what is observed in the real sample
(cf. Fig. 11), primarily because a linear model was used to generate
systematics. This implies that the actual systematics of the real
sample is substantially more severe and complex than in these mocks.

Due to allowing the correction to account for more freedom, the
neural-network treatment removes more of the modes, known as the
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Figure 13. Difference between the measured spectra of the contaminated
EZmock catalogues after cleaning and the spectra of the null catalogues as
a function of the latter. The medians are used to obtain the best linear fit in
each k bin, and are shown only for k = 0.001 h/Mpc with open squares.

over-fitting problem, when it is applied to the mocks. On the other
hand, the standard treatment indicates less of this over-fitting issue.
This is expected as the same linear model is used to produce the
systematic effects in the mock realizations. The standard deviation
of the mock spectra shows that the imaging treatments do not increase
the fractional variance of the measured power spectrum down to k =
0.003 h/Mpc. Interestingly, we observe that the dispersion of the null
mocks decreases after applying the NN treatment, which is due to
the over-correction of the power itself .18

4.3.2 Mitigation Bias

Using the mocks, we attempt to estimate any residual or over-
correction that might have been introduced in the measured eBOSS
QSO power spectrum in the process of the imaging systematics
treatment. This assessment is crucial for obtaining an unbiased
clustering measurement, which will lead to an accurate inference
of cosmological parameters.

We compare the spectra of the contaminated mocks after mitiga-
tion to that of the null mocks before treatment as the true power.
Fig. 12 shows that the NN-based mitigation tends to introduce
overcorrection for k < 0.003, especially if it is applied on the density
field with no systematics (i.e. Truth with NN19). With this caveat, we
focus on the overcorrection observed in the contaminated mocks and
inspect its nature. The differences between the measured power of
the 1000 contaminated mocks after cleaning and the true power for
all mocks are shown in Fig. 13 as a function of the true power for the
first few k bins. We find that the mitigation bias (or overcorrection)
is almost linearly proportional to the true power. While this exercise
shows that if the data has no systematics or is subject to simple,
linear systematics, the neural network based method, we developed
will potentially introduce a small degree of overcorrection and we can
attempt to correct for such mitigation bias. However, from Figs 9 and
10, it is apparent that the DR16 sample is subject to much more severe
and non-linear systematic effects compared to the mocks and the stan-
dard linear method is not sufficiently effective. Therefore, we believe
that the overcorrection is less likely a problem for the real eBOSS data
and an attempt to mitigate it might further bias the data. We present

18The error on the power spectrum is expected to be proportional to the power
itself under a Gaussian limit.
19The standard method performs better by construction, as it assumes we
know exactly the source of systematics.

the discussion of our mitigation bias on primordial non-Gaussianity
constraints in a companion paper (Mueller et al. in preparation).

5 C O N C L U SIO N

We have performed a thorough study of imaging systematic effects
and various template-based mitigation techniques in the final sample
of quasars (Lyke et al. 2020; Ross et al. 2020) from the eBOSS
DR16 (Ahumada et al. 2020). We present a nonlinear cleaning
approach, based on artificial neural networks, and compare the
treatment effectiveness with the standard method, based on linear
regression. The methods are applied to model the observed density
of quasars given a set of templates for imaging properties, related
to SDSS properties and Galactic foregrounds, which include stellar
density, Galactic extinction, neutral hydrogen column density, depth,
seeing, sky brightness, airmass, and run. As summarized in Table 1,

(i) We find that the neural network-based approach outperforms
standard linear regression by allowing more freedom for correcting
non-linear and complex variations in the quasar density caused by
imaging properties, see Figs 5 and 8. The approach is also further
improved by using the Poisson statistics to account for the sparsity
of the DR16 sample.

(ii) Stellar density is one of the most important sources of spurious
fluctuations, and a new template constructed using the Gaia DR2
(Gaia Collaboration et al. 2018) yields the best agreement to the
observed chi-squared values in the simulations (see Fig. 6 and
Table 1). We also show that linear treatment, with the Gaia map
included, is still not able to properly remove systematics.

(iii) We find no evidence for redshift-dependent imaging system-
atics and no substantial difference after changing the pixel resolution
of imaging templates, see Fig. 7. Therefore, we choose NN trained
with PNLL, cyclic learning, and imaging templates in NSIDE = 512
as our default approach.
We utilize the EZmocks, both in the presence and absence of imaging
systematics, to construct covariance matrices, quantify residual
systematic error, and assess the quality of the DR16 sample for
cosmological studies. We find

(iv) The mean density null test shows some remaining systematic
error in the catalogue with the standard weights in the NGC region,
specifically χ2 = 218.1 with p-value = 0.2 per cent. Although this
test does not reveal any issues with the standard catalogue in the SGC
region, χ2 = 132.5 with p-value = 65.0 per cent (see Table 2), our
second null test based on cross-power spectra unveils a significant
systematic error in the SGC, χ2 = 404.3 with p-value = 0.7 per cent.

(v) This work motivates further investigations of linear systematic
treatment methods in future galaxy surveys since the 1D diagnostic
based on the mean density contrast does not indicate any issues with
the standard treatment in the SGC (see Fig. 9).

(vi) The catalogue with the neural network-based systematic
weights passes both null tests by providing substantially lower χ2

values (see Figs 9 and 10).

Collectively, these tests demonstrate that the DR16 quasar cat-
alogue with the standard systematic weights suffer from residual
imaging systematics in both Galactic caps, and should not be used
for measuring quasar clustering on large scales, i.e. k < 0.01 h Mpc−1,
as shown in Fig. 11. Nevertheless, it is expected that the impact of
imaging systematics to be insignificant on the BAO measurements
(e.g. analyses presented in Hou et al. 2021; Neveux et al. 2020), and
a thorough investigation is conducted in a companion paper (Merz et
al. in preparation).

We then apply our methods on the EZmocks to quantify the
impact of systematics treatment on quasar clustering measurements
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(see Fig. 12). The neural-network treatment removes some of the
cosmological power due to allowing for more freedom in removing
systematic effects. We find that the impacts of overfitting on the
mean of the mock power spectra and its error are marginal for k >

0.004 h/Mpc. We employ linear regression to model the impact of
mitigation on recovering the ground truth clustering (see Fig. 13). We
emphasize that the utility of the mitigation bias treatment is not clear,
since the parameters are derived from the mocks without realistic
imaging systematics (see Figs 9 and 10). However, we investigate
the effect on primordial non-Gaussianity constraints in a companion
paper (Mueller et al. in preparation).

The end-product from this work is a new value-added quasar
catalogue with the enhanced weights to correct for nonlinear imaging
systematic effects. The new weights are necessary to make a robust
measurement of quasar clustering on large scales (k < 0.01 h Mpc−1).
This catalogue is used in a companion paper constraining the local-
type primordial non-Gaussianity (Mueller et al. in preparation).
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