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A hybrid ensemble learning-based prediction model to minimize air 

cargo transport risk using bagging and stacking   

Manufacturing productivity is inextricably linked to air freight handling for the 

global delivery of finished and semi-finished goods. In this article, our focus is to 

capture the transport risk associated with air freight which is the difference 

between the actual and the planned time of arrival of a shipment. To mitigate the 

time-related uncertainties, it is essential to predict the delays with adequate 

precision. Initially data from a case study in the transportation and logistics sector 

were pre-processed and divided into categories based on the duration of the delays 

in various legs. Existing datasets are transformed into a series of features, followed 

by extracting important features using a decision tree-based algorithm. To predict 

the delay with maximum accuracy, we used an improved hybrid ensemble 

learning-based prediction model with bagging and stacking enabled by 

characteristics like time, flight schedule, and transport legs. We also calculated the 

dependency of accuracy on the point in time during business process execution is 

examined while predicting. Our results show all predictive methods consistently 

have a precision of at least 70 percent, provided a lead-time of half the duration of 

the process. Consistently, the proposed model provides strategic and sustainable 

insights to decision-makers for cargo handling. 

Keywords: air cargo handling, predictive analysis, feature selection, Ensemble 

learning, machine learning  

1. Introduction 

The publishers of International Journal of Production Research (IJPR), one of the most 

important and cited journals in the production research sector, have taken the initiative to 

publish some of the best articles in cutting-edge areas related to production management, 

manufacturing, and logistics to address some of the industry's most pressing issues on the 

occasion of 60th volume anniversary of the journal. IJPR has published some promising 

contributions related to logistics, cargo handling, and freight transport through various 

modes of transportation such as air, sea, and land over the last few decades. Precisely, 

there is a plethora of literature available covering various aspects of air freight handling. 



However, cargo risk management in terms of handling delays in shipping goods across 

several legs is less explored, leaving a considerable gap that presents an opportunity to 

investigate the delay scenario in air cargo and solving it using innovative approaches. In 

this paper, we present a novel method of predicting delays in cargo handling by air using 

a hybrid ensemble learning approach.  

The air cargo industry has become an indispensable part of the global economy, 

holding an important niche in transporting high-valued commodities. Continuously 

increasing demand from the industries and the end-users have encapsulated rapid 

development in the cargo industry over the past decades. Thus, the worldwide cargo 

market is considered to be an essential entity to boost the global economy. Freights which 

are perishable, time-sensitive, or used in just-in-time supply networks are mostly 

delivered by air cargo to the consignees worldwide at competitive prices (Wen et al., 

2019). The timely delivery of shipments to their intended destination makes transit time 

one of the most important variables in logistics. The entire time it takes for items to be 

picked up and delivered has a big influence on industrial and manufacturing productivity 

(Du et al., 2018)). To maintain a synonymous economic cycle, manufacturing companies 

typically rely on air cargo to get the inventory with minimum lead time, and production 

going as fast as possible to satisfy the rebounding demand for goods. Shipment delivery 

time is also important for buyers who need to use the product being delivered to satisfy 

various needs at the end user and it also affects the transportation cost incurred by the 

buyer. Therefore, longer times in delivering the shipments are directly proportional with 

high logistic expenses. Both suppliers and customers rely on collaborative order 

management to avoid typical last-mile delivery problems (Zhang et al., 2021). Just like 

production and warehousing delays, transportation mayhem is inevitable sometimes. 

There exist certain uncontrollable reasons responsible for delay like weather, traffic, and 



disruptions are sometimes brought on by poor communication, time management, and 

decision making. Understanding possible delays ahead of time may lead to significant 

savings and avoid having to pay extra for air freight in an emergency, which is a frequent 

(and expensive) alternative for car and electronics providers, as well as time-sensitive 

loads like pharmaceutical industries (Chih et al., 2021). Instead of being compelled to 

choose the fastest option regardless of cost, providers may employ digital technology to 

identify the most financially sensible method to satisfy customer needs. Flight delays 

have a significant impact on the global economy as it impacts the industries and 

manufacturing sectors that have strong ties to the aviation industry. As reported by the 

International air transport Association (IATA), the annual worth of goods transported via 

air cargo is over $6.4 trillion (IATA, 2017a). Research reveals that improved strategic 

management enabling cutting-edge technologies in air cargo might enhance the market 

compatibility and customer demand (Dolgui et al., 2018) and (Zheng et al., 2020). 

In the past decade, globalization of the world economy has positively impacted 

the risk of supply chain disruptions. The whole chain is becoming longer, more 

complicated as more partners are involved (Yoon et al., 2020), (Hendricks & Singhal, 

2005) and (Tang, 2006). In cargo logistics, transport risk is one of the key performance 

indicators, quantified as the time difference between the actual and planned arrival time 

of shipment. The two most essential characteristics addressed, as earliness and tardiness, 

are very much undesirable by customers and freight forwarders (Wen et al., 2019). 

Earliness is a measure of finishing operations before due time, and tardiness is a measure 

of a delay in executing certain operations. Tardiness is considered the primary cause 

behind delays in production and delivery to all downstream customers, and earliness 

induces additional storage and handling costs (Metzger, Leitner, Ivanovi, et al., 2015) and 

(Zoutendijk, 2021). Disruption risk in transportation is often considered the extreme risk, 



which is more than 48-hour delays or more than 24 hours earliness, severely impacting 

the customers' operations and the freight forwarders. Distinguishing disruption risks from 

the routine deviations within a day is referred to as recurrent risks (Shang et al., 2017). In 

air transportation, a leg is the segment of the trip between consecutive flight stops within 

the boarding point to a destination point. Freight forwarder plays a vital role in global 

trade which directly impacts the supply chain. Therefore forwarders must adopt risk 

management strategies for making operations smoother and agile. 

Flight delays are unavoidable, and they contribute significantly to airline profits 

and losses. One of the most important performance metrics for any transportation system 

is delay (Du et al., 2018). Specifically, commercial aviation stakeholders in freight 

carriers define delay as the time it takes for a flight to be delayed or rescheduled. As a 

result, a delay may be defined as the difference between the scheduled and actual 

departure or arrival timings of a plane. Several factors can cause an initial flight delay, 

including air carrier difficulties, harsh weather, air traffic control, and so on. However, 

because of interconnected resources, a propagated delay develops. Therefore delay in air 

freight can be divided into two groups: controllable delay and uncontrollable delay. 

Aircraft is the most typical re-source. Because the same aircraft flies many flight legs, a 

delay in one trip might have an impact on subsequent flights by the same aircraft. 

Researchers across the globe have recently been actively emphasizing the different 

problems of successful cargo handling. In recent studies, (Metzger, Leitner, Ivanovic, et 

al., 2015) and (Shang et al., 2017) concentrated on mitigating air cargo risk by applying 

empirical evaluation techniques and predictive modeling techniques. While addressing 

the transport risk directly related to delay in shipment, previous studies show no scientific 

evidence of the critical features responsible for the delay. Predicting and analyzing the 

delays and their causes have long been active subjects of research because of their vital 



importance in air traffic control, airline decision making and ground delay program (B. 

Yu et al., 2019). The authorities involved in cargo handling have a multitude of indicators 

related to tolerance thresholds for flight delays. Inflight delay is inevitable and it plays an 

important role in both profits and loss of the airlines (Thiagarajan et al., 2017). Prediction 

of such delays is crucial during the decision-making process for all players of commercial 

aviation. Moreover, the development of accurate prediction models for flight delays 

became cumbersome due to the complexity of the air transportation system, the number 

of prediction methods, and the deluge of flight data. to analyze event logs in order to 

predict process delay using a number of process risk indicators such as execution time, 

waiting time, and resource involvement . A methodological breach remains in adopting 

advanced techniques to compare and justify the applicability and usefulness of the 

prediction methods adopted in previous studies.  

To address the foregoing gaps, we initially perform data pre-processing to 

understand the pattern and to remove stale data to avoid faults in making real-time 

decisions. We analyze the important features responsible for delaying a shipment in each 

transport leg using a feature selection algorithm. Our evidence suggests that the generated 

important features are responsible for delaying transporting the shipment in maximum 

cases.  Further, we perform an empirical comparison of results obtained using a few 

machine learning and deep learning classifiers followed by the ensembling technique to 

achieve better than state-of-the-art results. While most of the researchers emphasize risk 

mitigation strategies using random yield distribution, disruption probabilities, and 

predictive monitoring techniques (Wen et al., 2019) and (Shang et al., 2017), we 

compared and evaluated the effects of classifiers in terms of prediction accuracy and 

applicability in a real-world industrial case study in the field of transport and logistics. 

The purpose of this article is to demonstrate, from the air freight forwarder's point of 



view, an effective risk management strategy aimed at reducing the risk arising from 

competitive market conditions. This study provides an in-depth description of the 

evaluation method to assess the benefits with real data sets. The case study adopted in 

this research is based on a large international forwarding company involving actual 

transport and logistics services that covers a global supply chain network. The dataset 

consists of 3942 business process instances within five months and incorporates 56,802 

business activity completion instances. 

The successive contribution of our study reveals that the prediction techniques 

based on machine learning classifiers can predict the time delay violation in an air cargo 

shipment process. The most critical stages responsible for the delay identified using the 

feature selection technique, which further enhances classification algorithms' 

performance. Then, the results obtained through prediction algorithms are compared and 

ensembled to improve the prediction capability. Our prediction mechanism aims to 

understand whether the actual delivery duration exceeds the planned duration throughout 

a complete shipment process execution, which will help assess and forecast the transport 

risks. The outcome of our study reveals that the adopted models can provide adequate 

prediction accuracy with feasible lead times; e.g., all predictive models consistently 

maintain the accuracy of at least 70% provided a lead time of half the process duration. 

The remainder of the article is organized as follows. Section 2 illustrates the 

problematic facets of the air freight logistics business and the summary of how our study 

advances state-of-the-art in terms of prediction. In Section 3, we explain the overview of 

the dataset used for this study, followed by a detailed explanation of the methodology 

adopted in Section 4. Section 5 presents our findings by analyzing the results and further 

representing a detailed discussion. Section 6 concludes the paper with managerial 

implications and future research directions.  



2. Related Literature 

The air cargo sector dominates a significant part of the logistics industry due to the fastest 

shipping and fewer physical barriers, despite being an expensive mode of transportation. 

Due to the involvement of multiple factors, the risk associated with this sector is immense, 

which has been studied by many researchers worldwide to overcome the significant 

challenges (Rodríguez-Sanz et al., 2019). While ensuring transport risk is the foremost 

challenge facing the air cargo sector, different researchers (Han et al., 2007; Ross et al., 

2010) (Han et al., 2007),(Ross et al., 2010),(Zúñiga et al., 2011),(Chan et al., 

2014),(Pathak et al., 2019) and (Tsolakis et al., 2021) closely examine the shipping 

process to reduce risk factors. Flight delays caused by system congestion and other 

reasons have been a constant source of business losses and monetary deprivation in the 

aviation industry in the past few years (Archetti & Peirano, 2019). The concept of various 

risks in air transport operations has been investigated by, (Choi et al., 2019), and (Neal & 

Koo, 2020), focusing on the commercial and safety risks. Flight departure delay has been 

estimated by (Tu et al., 2008) to solve the disparity between the expected time of 

departure and the real-time of departure. (Metzger, Leitner, Ivanovi, et al., 2015) 

demonstrated the potential of predictive monitoring in the air cargo industry, and as a 

solution to increase business profitability and sustainability, a new cloud and services-

based collaboration and convergence model have been proposed. The authors also studied 

risk management in the air cargo sector and evaluated the strategies that will benefit the 

shippers and the forwarders. A study on perishable air cargo has been conducted by 

(Azadian et al., 2012), and a  framework is proposed to account for the real-time 

information inaccuracy. (Shang et al., 2017) and (Wen et al., 2019) also focused on air 

transport risk considering the delay in shipment as a significant factor and solved their 

models using different solution approaches.  



Many researchers and practitioners have introduced data-driven predictive 

methods to obtain maximum efficiency with better accuracy to address the air cargo 

sector's significant challenges. (Elbert et al., 2012) evaluated possible risk management 

tools for air freight forwarders using a balanced approach to pricing and financial 

hedging. Using real-time details, (Azadian et al., 2012) studied dynamic routing of 

perishable air cargo, formulating a novel Markov decision model. Experimental findings 

have shown that the approach suggested could improve delivery reliability and reduce 

expected costs. A potential predictive monitoring practice was proposed by (Metzger, 

Leitner, Ivanovi, et al., 2015) in the air cargo logistics sector to mitigate the service-

oriented issues, and it was an event-driven architectural approach. Further, the authors 

extended this study that aims to forecast possible issues in an air cargo shipment during 

process execution by contrasting three major classes of predictive control strategies 

focused on machine learning, aggregation, and constraint satisfaction of Quality-of-

Service (QoS). The outcome of this study shows that evidence shows that for particular 

accuracy metrics, certain combinations of techniques can outperform individual 

techniques. (Shang et al., 2017) developed a model-based method to mitigate the transport 

risk in air cargo considering a data-driven approach. Use data from international logistics 

for air freight, and the authors investigated directions of predicting transport threats using 

the Bayesian non-parametric model and compared the result with a linear model and a 

flexible mixture model. The effect of the scheduled block time assigned for a flight, a 

factor managed by airlines, on-time arrival efficiency has been analyzed by (Ambra et al., 

2019) using a structural estimation approach from econometrics. In summary, although 

previous research efforts have concentrated on the development of data-driven predictive 

modeling for air freight logistics, the active involvement of powerful computational 

algorithms such as machine learning techniques are less explored.  



We proposed a data-driven predictive modeling approach using machine learning-

enabled by time, flight plan, and transport legs to forecast the shipping delays to resolve 

the research gap. Summarizing the related work and addressing the derived literature 

gaps, this article makes substantial contributions to literature and practice. Firstly, using 

the existing case study, we deliver an in-depth data analysis and classified the delays into 

different subgroups according to the duration of earliness and tardiness. Enhancing the 

model's efficiency in terms of accuracy and reducing the training time, we implemented 

a feature selection procedure to generate a shipment's critical stages that favourably affect 

the delay parameter. Different machine learning classifiers have been exploited and 

compared to obtain maximum accuracy in terms of  F-score, precision, recall, and error 

metrics. Finally, we present ensemble learning methods where different classifiers are 

strategically combined to solve a particular computational intelligence problem. We also 

provide evidence that shows that integrating the predictions of several different classifiers 

into a single robust prediction can boost classification efficiency. 

3. Data set overview    

Being one of the essential pillars of the global transport chain, the air cargo sector receives 

significantly less attention due to confidential operating procedures. It is essential to 

highlight the unique features of the dataset presented in the case study to understand our 

approach better. Figure 1. shows the transportation and logistics framework covered by 

the case study where up to three identical shipments from the consignors are consolidated 

and shipped collectively to the consignees to get some monetary gain with more cargo 

transport protection.  



 

Figure 1. The transportation and logistics framework covered by the case study  

 

The business process includes three incoming legs and one outgoing leg and each 

transport leg includes the following physical transport services labeled as activities as 

presented in Figure 1 (citation). One transport leg may contain one or more segments 

where shipments are shifted to other convenient flights at stopover airports. In such a 

scenario, RCS refers to shipment checks in at departure airline by producing a receipt; 

DEP is the departure of aircraft with confirmed goods on board, RCF indicates acceptance 

of freight at the arrival airport, DLV shows delivery of freight at the destination after 

receipt of shipment is signed and handed over to the consignee. This data involves the 

monitoring and tracing activities from a forwarding firm over five months. Cargo 2000 is 

an IATA project that works on innovative quality control services for the air transport 

market that maintains remarkable accountability in the supply chain (IATA, 2017b). 

The data was reconstructed from the case study with execution traces of 3,942 real 

business process instances, consisting of 7,932 transport legs and 56,082 invocations of 

operation within a time span of 5 months. Out of total service invocations, all the 

segments RCS, DEP, RCF, and DLV have 11874, 16167, 16167, and 11874 instances 

respectively. For any of the business process services, each execution trace contains 

scheduled and successful durations (in min) as well as airport codes for the departure and 

arrival services. The emphasis is on the transfer of tangible items, and the handling in the 



business process of transport information differs depending on whether the documents 

are paper-based or electronic, as the data set did not allow anyone to differentiate between 

the different types of documents. Multiple flight segments may be included in a transport 

leg (e.g., in case the freight is moved to other flights or airlines at stopover airports). RCF 

loops back to DEP in our case. The number of segments per leg in this case study varies 

from one to four. 

4. Methodology 

This section introduces the background information of all the methods that have been 

adopted by our study. We have performed an extensive data analysis in Section 4.1 by 

classifying the data into different groups in the first stage and generated an extended data 

set from the existing data that has been discussed in Section 3. We also have elaborated 

the feature engineering and feature selection technique in Section 4.2 to reduce the 

dimensionality of the dataset and to identify important features by generating a score for 

each feature.  
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Fig. 2. Predictive Modelling Framework  

 

We also have elaborated the feature engineering and feature selection technique 

in Section 4.2 to reduce the dimensionality of the dataset and to identify important 

features by generating a score for each feature. The description of all the machine learning 

classifiers and ensembling techniques are further discussed in Section 4.3 to provide a 

basic knowledge of the applicability in the context of our research. Figure 2. exhibits the 

predictive modeling framework of our study in an elucidate manner.  

4.1. Data Pre-processing 

Data Pre-processing plays a vital role in constructing models for machine learning. The 

pooled raw data of our model contains some outliers, out-of-range values, few missing 

values, and error values. While training the model, ambiguity increases due to redundant 

and irrelevant information that leads to incorrect results, as data quality has a direct effect 

on model output. The above issues raise the need for data pre-processing before the 

model's training. In our analysis, activities such as cleaning and transforming the data, 

selecting the case, removing the appropriate attributes, and normalizing the data if it is 

not within the acceptable range were used in the pre-processing data system. Firstly, all 

missing values are filled by the mean imputation technique; random values are identified 

and resolved where inconsistent data is present through outlier mining. Further, while 

performing data transformation, we normalize the attributes and aggregate the logically 

dependent and similar attributes. In data cleaning, the duplicate entities are deleted as the 

volume of the data is huge. Using the actual and planned shipment duration, the delay has 

been calculated across all incoming and outgoing legs. In our scenario, the generated 



sample with no delays is identified and removed. The original dataset contains 104 

attributes divided into four main groups: incoming transport leg 1, incoming transport leg 

2, incoming transport leg 3, and outgoing transport leg. The information related to 

planned duration and actual duration of shipment delivery is recorded for each transport 

leg. The data contains information of unique id for the process throughout the incoming 

and outgoing legs. The delay is classified based on earliness and tardiness. Further, data 

were sectioned into two groups: positive delay and negative delay based on time. 

Table 1 

Positive and Negative delays obtained from the dataset. 

 Time (in hrs)  Time (in hrs) 

 

Positive Delay 

0-24  

Negative delay 

0-24 

24-48 24-48 

48-72 48-72 

>72 >72 

Classifying the delays into different groups having similar characteristics 

simplifies the learning process. The empirical distribution of all shipments is examined 

from the data (almost 56000 transport services), and the classification is done 

accordingly. Positive delay mostly referred to those deviations where the shipments reach 

the concerned receiver before the planned arrival time, whereas negative delay depicts 

the delivery falls beyond the planned arrival time. We divided the delays into two groups 

as positive and negative delays to better the prediction technique. It is essential to keep 

track of delays to understand the pattern to accurately forecast the deviation in the freight 

transport process's execution. The non-symmetric distribution of transport risk with 

several bumps at positive delays and negative delays can be visualized in Figure 3 across 

all the transport legs. 



  

  

  

Fig. 3. Distribution of delay across Incoming and outgoing Transport leg  

Box plots are a standardized way for showing the distribution of the data by 

showing the min-max median value and representations of outliers in a dataset and Figure 

4. illustrates the box plot of the dataset to get an idea of the ranges of delays. It is an 

approach of summarizing a set of data measured on an interval scale, which is useful 

when comparing distributions between many groups or datasets. The delays after 29256 

min i.e. 20.31 days and before -26050 min i.e. 18.09 days are considered an outlier. The 

maximum deviation can be seen from the graphs as a total delay of 5000 min is ranged 

as >72 hours delay. It is evident that delays of shipments with incoming leg one and leg 

two have similar delay distribution. Delays are generally having local mean around 

different days. Delay of shipments with three incoming legs has much more variance that 

is more prone to delay, and the curve is getting rough evenly. 



  

Figure 4. BOX Plot of the dataset to get the idea of the ranges of delays 

4.2. Feature Engineering and Feature Selection 

The method of converting raw data into features that improve the performance of the 

predictive model is termed feature engineering. It is used to prepare the correct input 

dataset, consistent with the machine learning algorithm. To improve the accuracy with 

reduced time and performance of the model, researchers adopt the feature selection 

method.  Feature selection is a crucial stage of data analysis when dealing with datasets 

having huge variables. It is applied to select a much smaller set of essential features that 

are relevant for classification (Bejani & Ghatee, 2018). These features are used to boost 

the efficiency of machine learning algorithms. In this research, we have identified delays 

in each leg of a shipment as the critical feature used to improve the prediction algorithm's 

performance. New attributes have been generated using the existing attributes from the 

dataset on which the prediction analysis is done. It is an essential preprocessing step in 

machine learning that has been widely used in many domains ranging from text 

classification to complex networks. This study considers feature selection using the 

Random Forest technique to further enhance the algorithm's accuracy and efficiency. On 

doing feature importance of the dataset using Random Forest, we found the importance 

of individual features responsible for transportation risk. The proposed method Random 

forest is based on embedded feature selection type, which is highly accurate, generalized 

better, and interpretable. 



4.2.1. Feature selection using Random Forest (RF) 

RF provides an internal measure of feature importance after computation, which is useful 

to select important features (Lin et al., 2017). RF is a set of decision trees that comprises 

internal nodes and leaves (L. Breiman, 2001). The important feature can be calculated as 

the decrease in node impurity weighted by the probability of reaching that node. The node 

probability is evaluated by dividing the number of samples that reach the node by the 

total number of samples. The higher the value, the more important the feature. The pre-

processed data was first converted into a series of features in the feature extraction and 

selection process based on having zero and non-zero delay values. The importance of a 

variable ai for predicting a response variable Y is evaluated by averaging the sum of the 

weighted reduction in the residual sum of the square (RSS) for all nodes t where ia
 is 

used over the number of regression trees. The variable importance is denoted by  

( ) ( )
: ( )

1
( ) ,

t i

i t

T t T v S aT

VarIMP a D t k S t
N  =

=    
(1) 

where, 

( )( ) ,tD t k S t
 

: Weighted reduction in the RSS by dividing the 

internal node t into two child nodes 

( ) /tD t N N=
 

: The proportion of samples of the data at node t 

N : Total number of samples drawn to create the 

regression tree 

tN
 

: Total number of trees of regression in a random 

forest 

T : Regression tree structure 

tS
 

: Split at node t 

( )tv S  : 
The splitting variable for the split tS

 



( ) ( ) ( )1 1 2 2, ( )tk S t k t D k t D k t = − −
 
: RSS at node t,

1t  and 
2t denote the two child nodes. 

4.3. Overview of classification algorithm 

This section briefly introduces the prediction mechanism of all the techniques that are 

experimentally compared in this study. Machine learning is a study of algorithms that 

automatically allows systems to learn and develop from practice. We have purposely 

adopted a mixture of the different classes of well-known most relevant techniques such 

as Random Forest (RF), boosting algorithms, artificial neural network (ANN), and 

ensemble learning models for the sake of generalizability of our outcomes. Out of the 

entire dataset, 20% are considered testing data, while the remaining are considered the 

training data set. Essentially there are specific steps followed while training the machine 

learning algorithms. Firstly, the prediction algorithm is trained using an existing set of 

training datasets having historical instances. In this step, the most important features are 

taken into consideration to generate a more accurate solution. We use a normalized scale 

to visualize the impact of prediction lead-time on prediction accuracy, which compensates 

for the fact that the number of service executions varies between individual instances of 

the process ranging from 20% to 100% provided in Table 6.  

4.3.1.Random Forest (RF): Breiman (2001) proposed the RF algorithm concept, a 

classification approach that builds the predictive model consisting of multiple decision 

trees. RF has a wide range of applications because of its better stability and generalization 

(Mursalin et al., 2017). For any model starting from a few hundred to several thousand 

trees, the number of decision trees varies. This study has developed 100 decision trees 

using individual samples where each sample is the root node of individual decision trees. 

One decision tree can be constructed by splitting one node into two child nodes by 

randomly selecting the variables. One variable (often called a splitting variable) is 



selected from all other variables to determine the optimal split. The split variable's value 

is referred to as the cut point. When there are no more instances to split, the splitting 

process is continued until the stopping criterion is met. RF technique is widely used by 

many researchers for feature selection and classification problems and the details can be 

referred from (Pavlov, 2019), (Nair et al., 2019), and (Ribeiro & dos Santos Coelho, 

2020)4.3.2. CatBoost (Gradient boosting with categorical features support) is an 

improved variant of the algorithm for gradient boosting decision trees explicitly 

developed to accommodate categorical features. It uses binary decision trees as base 

predictors. While training this bosting algorithm, the data is randomly shuffled and 

reshuffled multiple times to calculate the mean for every object only on its historical data. 

CatBoost uses oblivious decision trees, which use the same splitting criteria over the 

entire tree level. Let us consider the dataset
1,.., .{( , )}i i i nD X Y == , a differentiable loss 

function ( , ( ))L y F x , and the number of iterations to be N. the boosting technique aims to 

search for an approximation to a function that minimizes the loss function. The mapping 

function is termed as 
0 ( )F x  is to minimize the loss function with a constant value is as 

follows: 

0

1

( ) arg min ( , ( ))
n

f i

F x L y F x
=

=   
(2) 

The pseudo-residuals (
imr ) are computed from iteration 1 to n to solve the optimization 

problem, as shown in Equation 3. 

1( )( )

( , ( ))
1,..., .

( )
m x

i i
im

i F x F

L y F x
r for i n

F x
−=

 
= − = 

 
 

(3) 

Further, the base learner ( )m x  is fitted to 
imr  using the training set 

1
( , )

n

i im i
x r

=
. The 

multiplier m  is computed in the next step by solving the following one-dimensional 

optimization problem as shown in Equation 4.     



1

1

arg min ( , ( ) ( ))
n

m i m i m i
f i

L y F x x −

=

= +  
(4) 

Thus the model can be updated using the following equation, 5, to generate the output. 

1( ) ( ) ( )m m m mF x F x x −= +  (5) 

Equation (3)-(5) demonstrates the categorical gradient boosting method's significant steps 

where the parameterized function includes splitting variables, cut points, and nodes of 

individual trees. 

4.3.3. XGBoost (Extreme gradient boosting) is originated from the idea of gradient 

boosting. This algorithm has received the utmost attention from researchers and 

practitioners due to its excellent performance in predicting and preventing overfitting 

issues reducing the computational time. This can be achieved by simplifying the objective 

functions and combining prediction and regularization while retaining maximum 

computational efficiency (Hughes et al., 2019). The objective function is defined as: 

1 1

( , ( )) ( )
n t

i i k

i k

O L y F x R f C
= =

= + +   
(6) 

Here, ( )kR f  represents the regularization term at the k time iteration, and C is a constant 

term, which can be selectively omitted. It is denoted as: 

2

1

1
( )

2

H

k j

j

R f H  
=

= +   
(7) 

Here,  defines the complexity of leaves, H represents the number of leaves,   is the 

penalty parameter, j  is the output result of each leafy node. In conclusion, the 

optimization of the objective function is turned into the minimal quadratic function being 

calculated. In comparison, XGBoost has a more substantial potential to avoid overfitting 

due to the addition of regularization. 

4.3.4. ANN (Artificial Neural Network)  



ANN is considered the most popular method of deep learning based on a computational 

model made of a series of artificial neurons. Every artificial neuron represents a particular 

output function called the activation function, while the memory of an ANN model 

represents the weight of each relationship between two neurons(Schmitz et al., 1999). 

The output of ANN can be expressed as, 

1

n

j ji i j

i

y w x
=

 
= + 

 
  

(8) 

Where, 
j : External threshold, offset or bias,

jiw  : Synaptic weights,
ix : Input,

jy : 

Output. An ANN model's performance depends on on-link nodes, weights, and activation 

features. 

4.3.5. Ensemble Learning 

In machine learning, ensemble algorithms have achieved success by merging several 

weak learners to form one strong learner. Ensemble learning can boost the classification's 

efficiency by integrating several different classifiers' predictions into a single robust 

prediction (Porwik et al., 2019). The main objective of ensemble learning is to reduce the 

probability of selecting a single poorly performing learning algorithm and boost one 

algorithm's outcome using an intelligent ensemble of many individual algorithms (Zhu et 

al., 2019) and (J. J. Q. Yu, 2020). In several applications, the usefulness of ensemble 

learning has been extensively demonstrated. 

Table 2  

Comparison of different Ensemble Models 

Ensemble Method Objective Type Aggregation Method 

Bagging Decrease Variance Parallel Averaging 

Stacking Reduce Bias, Decrease 

Variance 

Hybrid Regression 

 



Bagging (ELB)  is an ensemble approach intended to stabilize the base classifier's 

accuracy (Leo Breiman, 1996). It claims to decrease variation and help to prevent 

overfitting. It often considers homogeneous weak learners, learns them independently 

from each other, and integrates them in a deterministic averaging process (Agarwal & 

Chowdary, 2020). Bagging adopts the most common methods of aggregating simple 

learners' outputs, i.e., averaging regression and voting for classification problems. The 

prediction combines multiple base classifiers  1 2, ,..., TE E E E= where the number of 

base learners is T. The classifiers are trained on the data set D = {(x1, y2),(x2, y2),...,(xm, 

ym)} where x is the input vector and y is the class label associated with it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sFig. 5. The proposed fusion framework of Ensemble learning using bagging ad 

stacking 

Stacking (ELS) often considers heterogeneous weak learners, learns them in parallel, and 

combines them to generate a new prediction based on the predictions of the various weak 

models by training a meta-model  (Wolpert, 1992) and (Ribeiro & dos Santos Coelho, 

2020). The output of the first-level learners serves as input for the meta-learner. The first-
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Output 
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level learners are often made up of different and diverse learning algorithms, although it 

is possible to create stacked ensembles from the same learning algorithms (Bai et al., 

2021). Experiments have shown that a stacked ensemble works quite well and, on average 

better than a single best classifier.  

Above mentioned algorithms are implemented in our model to predict the accuracy of the 

delay that occurred. To the best of our knowledge, this analysis is the first attempt to 

apply the methodology of feature selection and the combination of machine learning 

algorithms to improve accuracy in forecasting the delay. 

Table 3 

Pseudocode of ensemble learning algorithm using Bagging 

Ensemble Using Bagging 

Input D = {(x1, y2),(x2, y2),...,(xm, ym)};  

Base learning algorithm E ;  

Number of base learners T. 

Output 
Ensemble Classifier : ( ) ( )

1

T

t

t

H x h x y
=

= =  

Process 1. for t = 1,...,T : 

2.       bsD  = (D, bsD )  % bsD  is the bootstrap distribution  

3.       th  = E( bsD ) 

4. end 

  

Table 4 

Pseudocode of ensemble learning algorithm using Stacking 

Ensemble using stacking 

Input 
1 1 2 2{( , ),( , ),..., ( , )}m mD x y x y x y= ; 

First-level learning algorithms 1,..., TL L ;  

Second-level learning algorithm L. 

Output Ensemble Classifier :
*

1( ) ( ( ),..., ( ))TH x h h x h x=   

Process 1. for t = 1,...,T ;          % Train the first-level learner 

2. ( )t th L D= ;              % first-level learning algorithm tL   

3. end  

4. 
*D = ;                    % Generate a new data set 



5. for  1,...,i m= ; 

6.      for 1,...,t T= ; 

7.          ( )it t iz h x= ; 

8.     end 

9. 
* *

1(( ,..., ), )i iT iD D z z y=  ; 

10. end  

11.
* *( )h L D= ;          % Train the second-level learner h*   

                                   % the second-level learning algorithm L  

                                   % new data set D*. 

  

 

5. Experimental Analysis 

This section followed the approaches mentioned above to analyze and compare the 

prediction accuracy using an industry dataset. We first determined and selected important 

features from our data set, and then the empirical results are presented for all the 

prediction techniques with a general discussion.  

5.1. Feature selection 

The process of feature selection plays an essential role in optimizing machine learning 

algorithms' performance and accuracy by choosing a small segment of more features in 

the dataset (Barbour et al., 2018). In our work, the invalid data and null values are 

removed from the extended data set. They were then limited to a regular range with a 

mean value of 0 and a standard deviation of 1. We implement Random Forest to select 

features based on feature score in which each feature is having a score based on the weight 

associated with it. The weight of the feature refers to the number of times it appears in 

the tree. Feature defines the structure of the tree; therefore, selecting the correct features 

will provide a better tree structure. After our experiment, out of 37, we got 27 non-zero 

important features, out of which the three most important features responsible for 

transportation delay of a shipment across all the legs are o_dlv_delay, i2_dlv_delay, and 

i1_dlv_delay with scores 0.365961, 0.117987, 0.114570 respectively. Appendix A 



contains all the features' specifics and is the most dominant characteristic of all the 

functions. It is inferred from the result that when the planned duration time deviates from 

the actual duration of freight delivery at the outgoing transport leg, the process gets highly 

impacted, which leads to maximum delay.  

 

Figure 6.Scores of each feature to generate the importance 

5.2. Prediction accuracy and computational efficiency 

For evaluating the prediction methodology based on machine learning, we have 

implemented Random Forest, XGBoost, CatBoost, ANN, and in the Ensemble model, we 

are using Bagging, Stacking methods. For each algorithm, we loaded the test dataset in  

Python 3.7.4 and performed it on a computer with Intel (R) Core(TM) i5-8300H CPU  

with memory equipped with 16 GB RAM. We identify the delays and calculate them as 

it can be useful to quantify delays for complicated decision-making. After classification, 

we applied an ensemble machine learning model to forecast the estimated delay 

accurately. To the best of our knowledge, first classification, feature selection, and then 

forecasting delays were not explored in previous studies. Various performance measures 

such as F-score, precision, recall, specificity, error value, and accuracy are used to assess 

the proposed method's performance (El-dahshan et al., 2010). Confusion matrix, one of 
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the common approaches to measuring the performance of the model. The two classes are 

known as the positive class and the negative class in a confusion matrix.  

To quantify four metrics, each predicted class is compared to its actual class, for instance: 

True Positives (TP) implies the number of delay instances accurately classified as positive 

classes, False Positives (FP) states the number of delay instances wrongly classified as 

positive classes, True Negative (TN) implies the number of delay instances that are 

appropriately classified as negative classes, the number of delay instances that are 

wrongly classified as negative classes are termed as false negative (FN). Furthermore, we 

used F-score, precision, sensitivity, specificity, accuracy, and errors to assess prediction 

quality. Those performance measures can be extracted following the equations in table 6, 

based on the confusion matrix. 



Table 6 

Confusion matrix table obtained after implementing the algorithms with accuracy values 
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20 70 193 16 58 0.780 65 192 22 58 0.762 68 193 16 60 0.774 69 195 19 54 0.783 64 195 17 61 0.768 75 198 14 50 0.810 

40 71 194 15 57 0.786 67 195 19 56 0.777 69 195 19 54 0.783 71 194 15 57 0.786 65 192 22 58 0.762 73 198 14 52 0.804 

60 71 193 15 58 0.783 71 194 15 57 0.786 70 193 16 58 0.780 75 197 11 54 0.807 77 200 10 50 0.821 81 204 11 41 0.845 

80 73 198 14 52 0.804 73 198 14 52 0.804 77 200 10 50 0.821 78 199 9 51 0.821 82 205 9 41 0.851 88 204 9 36 0.866 

100 101 214 7 15 0.934 107 214 9 7 0.952 107 215 6 9 0.955 103 214 13 7 0.940 106 218 3 10 0.961 108 217 5 7 0.964 

 



 

The number of positive class predictions that currently belong to the positive class is 

quantified by precision. Precision is the percentage of positive observations predicted 

accurately to the total positive observations predicted. Sensitivity is the ratio of the 

number of samples truly classified to the overall number of actual samples. F- Metric is 

calculated as the weighted average of Precision and Recall. Specificity can be expressed 

as the proportion of actual negative cases that are correctly identified. The accuracy 

matrix can be stated as the ratio between correct predictions to the total number of 

predictions made. We demonstrated the comparison of four classification methods, 

namely RF, XGBoost, CatBoost, ANN, along with the Ensemble technique using 

Bagging and stacking to equitably compare the output of different methods, using the 

same standard parameters to demonstrate the benefit of our methods. The accuracy of the 

predicted values is given in Table 6. 

Table 7 

Comparison of accuracy indicators 

Model 

 

Accuracy  Precision Recall F-

score 

Specificity Error Type-I Type-

II 

Training 

Time 

(In 

Secs) 

RF 93.47 93.51 87.06 90.16 96.83 0.065 0.1293 0.0316 0.822 

XGBoost 95.25 93.85 92.24 93.03 96.83 0.047 0.077 0.0316 0.498 

CatBoost 95.54 94.69 92.24 93.44 97.28 0.044 0.077 0.0271 0.888 

ANN 94.07 93.64 88.79 91.15 96.83 0.064 0.1121 0.0317 0.915 

ELB 96.14 97.24 91.37 94.21 93.96 0.038 0.086 0.0135 0.147 

ELS 96.44 95.58 93.91 94.74 97.75 0.0356 0.0608 0.0225 0.181 

 

 

 



  

 

 

 

 

  

 

 

Figure 7. Accuracy indicators graph for (a) Random Forest (b) XGBoost (c) CatBoost  

(d) ANN (e) Ensemble bagging (f) Ensemble stacking 

 

5.3. Discussion 

Implementing the data from the case study, we explored various ways to forecast the 

accuracy in delay occurrence to avoid transport risk. Tables 6 and Table 7 show the 

experimental outcomes of all the algorithms in our datasets, where the best result is 

highlighted in bold, the second-best is italicized, and the least is underlined in Table 7 as 

per the accuracy values. All the classification algorithms are implemented to generate F-

score, precision, recall, specificity, error, and accuracy value to validate the algorithms' 

significant aspect. Our empirical results show that one important determinant of cargo 

(a)                      (b)                      

(c)                      (d)                      

(e)                      (f)                      



transport risk is the different delay-related features that drive the entire risk analysis 

process. The focal findings of the study reveal that selecting the important feature using 

the Random Forest (RF) algorithm unlocks the primary factors responsible for the delay.  

To the best of our knowledge, such analysis has not been done before in this particular 

environment related to risk analysis in the air cargo sector. It is observed that the 

maximum impact occurs on a transport process when the shipment gets delayed at the 

outgoing transport leg than the initial incoming legs. The feature selection technique 

affects the overall phenomenon by reducing the number of input variables when 

developing a predictive model with better performance. The prediction accuracy and 

computational efficiency, as mentioned below, reveals the methodological findings 

generated from the experimental analysis carried out in this study. 

Empirical findings obtained from the case study discussed in Section 3 indicate that all 

predictive methods consistently have an accuracy of at least 70 percent given a lead time 

of half the duration of the process execution. However, the comparison of our predictive 

models showed considerable variation in the rate of true/false and positive/negative 

predictions they provide. Based on these results, predictive monitoring strategies were 

combined via meta-regressor in such a way that the risk of taking unnecessary steps in 

the case of false positive predictions or the risk of not taking the required precautions in 

the case of false-negative predictions was minimized. Results also show that ensemble 

techniques indeed outperform individual techniques in terms of all the performance 

indicators. Specifically ensembling the predictions obtained through individual 

techniques using bagging and stacking improves overall accuracy with the minimum error 

value. To evaluate the effect of several algorithms, a comparative study was conducted 

by training our predictive model using RF, XGBoost, CatBoost, and ANN. Further 

ensembling techniques are used to generate more accurate solutions by combining the 



predictions of many base estimators to produce one adequate predictive model. As shown 

in Table 7, accuracy, F-score, and precision values obtained using RF compared with 

other competitor algorithms fails to exhibit sufficient superiority in our case, although it 

simplifies transformation and performs well in classification problems. Besides, we found 

RF requires much computational power and time to build up numerous trees to generate 

the output with comparatively more error value. In our study, both CatBoost and 

XGBoost algorithm presents excellent classification performance on extended datasets. 

The observations are best represented by the performance evaluation metrics used to 

assess the contingency results. Here, CatBoost outperforms existing boosting algorithms 

like XGBoost with a minimal margin but the limitation observed while running the 

CatBoost algorithm is its comparably high computational time as the dataset has many 

numerical features. In our case, the training time of CatBoost was a little higher than the 

XGBoost algorithms. In contrast with all other algorithms tested, ANN shows better 

accuracy, precision, recall, and F-score than other machine learnings algorithms, but this 

does not provide the best result in our case due to the comparatively maximum error 

value. The computational time taken by ANN is more compared to other algorithms in 

our case. All classification algorithms exhibited a comparatively higher computational 

burden and proneness to overfitting. Our proposed hybrid ensemble technique results 

better than individual classification algorithms in terms of performance. We observed that 

ensemble bagging and stacking algorithms generally have a more stable performance 

during the training and validating process than others. The further threshold changes are 

observed to have a substantial negative effect on the precision of identification of majority 

groups, which further impacts prediction accuracy. Among all the techniques ensemble-

based stacking methods are the most computationally powerful in predicting accuracy 

with minimum training time. The classification performance of our proposed algorithms 



is constrained by several factors, including the size of feature space and the number of 

base classifiers. To make a more in-depth analysis of the outcomes, Figure 7. visualize 

prediction accuracy concerning contingency table metrics. We will note from these plots 

that there is a very limited number of points affecting the prediction accuracy in the 

execution of the process. At first, accuracy improves significantly after the 

synchronization point (60 percent mark) and then after the last RCF service of the 

outgoing transport leg.  Initially, accuracy is very low but improves towards the end of 

the process execution. 

The experimental findings help in guiding the development of the optimal classification 

model, which will be beneficial for the experiments with real-life datasets. The prediction 

model provided in this article offers an explicit interpretation of delay correlations 

between time, flight schedule, and previous delay. As delays are directly related to costs, 

businesses need accurate cargo transport predictions. The model stands to offer strategic 

and sustainable insights for freight transport planning and other related applications to 

decision-makers and provides forwarders a roadmap to wisely focus on selecting flights 

and routes with less transport risk to transfer precious goods.  By using Machine Learning 

efficiently, the decision-makers can easily predict potential delays in a few clicks with 

minimum stipulated time and adapt their assignment and planning of resources 

accordingly while simultaneously providing the best customer experience. The 

techniques used in our study may help understand the air cargo transport industry, lacking 

a proper platform for data analysis and forecasting. This model has vital application in 

decision-making from freight forwarders' perspectives. While transporting consolidated 

shipments through the air with multiple legs, this model will help choose the suitable 

airlines and routes by which the shipment can be transported. This model is also beneficial 

in terms of the customer's perspective in choosing the right path.  



6. Conclusion 

Airfreight forwarders and shippers face threats resulting from competitive market 

environments, so it is necessary to use risk management strategies to address market 

shifts. This paper attempted to address the techniques to analyze and predict transport 

risks using the data from international air cargo logistics. The proposed solution 

contributes in many ways. Firstly, Cargo 2000 data have been critically analyzed to 

understand the cause of actual delay that occurs at each transport leg by implementing 

data engineering. Secondly, electing the most important feature that is responsible for 

causing delay throughout the shipment process by generating a score of each feature, 

which further helped in amplifying the performance of classifiers. Thirdly, different 

classification algorithms are adopted to find out multiple performance indicators such as 

accuracy, F-score, precision, recall, error values; and lastly a hybrid ensemble integration 

strategy which includes Bagging and Stacking, is proposed to obtain the final output. The 

empirical findings indicate that many conventional methods are outperformed by our 

suggested techniques and achieve more balanced and stable classification outcomes. Our 

study provides a roadmap to solve practical, real-world problems in air cargo shipment 

industries by predicting the delay, which will impose a significant advantage on freight 

forwarders in a competitive environment. The study's key drawback is that it focuses on 

one network of actors participating in a single air freight handling method. The 

geographical location, local facilities, and air freight volumes involved in the transaction 

may also affect the outcomes. This may have consequences for how reflective the 

situation could be in achieving the study's purpose and objectives. For future research, 

multiple dimensions such as more transport leg, complex network, and multi-haul flights 

can be considered. An improved version of machine learning algorithms can be deployed 

for better results. By implementing advanced algorithms to deal with this problem, our 



future work will also consider expanding classification approaches and exploring some 

effective solutions with several other coding strategies. 

Appendix  

Table A.1 

 Description of the Features extracted from raw dataset (F= [F1, F2,. . ., F37] ) 

Feature Description Feature Description Feature Description Feature Description 

F1 o_dlv_delay F11 i1_dep_2_delay F21 i2_hops F31 i2_rcf_3_delay 

F2 i2_dlv_delay F12 o_dep_2_delay F22 o_dep_1_delay F32 i3_dep_2_delay 

F3 i1_dlv_delay F13 i2_rcf_2_delay F23 i1_rcs_delay F33 legs 

F4 i3_dlv_delay F14 i2_rcs_delay F24 i1_hops F34 i3_dep_3_delay 

F5 o_rcf_2_delay F15 i1_rcf_2_delay F25 i1_dep_1_delay F35 i3_rcf_3_delay 

F6 i3_rcf_1_delay F16 i2_dep_1_delay F26 i3_dep_1_delay F36 o_dep_3_delay 

F7 i3_rcf_2_delay F17 o_rcs_delay F27 i2_dep_2_delay F37 i2_dep_3_delay 

F8 o_rcf_1_delay F18 o_hops F28 i1_rcf_3_delay  

F9 i3_hops F19 i2_rcf_1_delay F29 i1_dep_3_delay 

F10 i1_rcf_1_delay F20 i3_rcs_delay F30 o_rcf_3_delay 
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