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ABSTRACT
We investigate a recent claim that observed galaxy clusters produce an order of magnitude more galaxy–galaxy strong lensing
(GGSL) than simulated clusters in a � cold dark matter (CDM) cosmology. We take galaxy clusters from the C-EAGLE

hydrodynamical simulations and calculate the expected amount of GGSL for sources placed behind the clusters at different
redshifts. The probability of a source lensed by one of the most massive C-EAGLE clusters being multiply imaged by an individual
cluster member is in good agreement with that inferred for observed clusters. We show that numerically converged results for the
GGSL probability require higher resolution simulations than had been used previously. On top of this, different galaxy formation
models predict cluster substructures with different central densities, such that the GGSL probabilities in �CDM cannot yet be
robustly predicted. Overall, we find that GGSL within clusters is not currently in tension with the �CDM cosmological model.
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1 IN T RO D U C T I O N

Structure within a � cold dark matter (CDM) universe builds
up hierarchically, with massive clusters of galaxies formed from
mergers of lower-mass clusters and groups, as well as individual
galaxies. This merging process is incomplete, such that galaxy
clusters contain a large amount of self-bound substructure, known as
subhaloes. The number of these subhaloes can be probed using strong
gravitational lensing that can then be compared with predictions for
a given cosmological model (e.g. Natarajan et al. 2017). Additional
information can be extracted from looking at the internal structure of
subhaloes that in a CDM-only universe can be robustly predicted
using N-body simulations (e.g. Gao et al. 2012). However, the
inclusion of baryons into simulations modifies these predictions.

Meneghetti et al. (2020, hereafter M20) compared the subhalo
properties of observed galaxy clusters (inferred from strong gravita-
tional lensing) with those of a mass-matched sample of clusters from
cosmological hydrodynamical simulations (Planelles et al. 2014).
They found that subhaloes within observed clusters appeared to be
more centrally concentrated than those in simulated clusters. This
was summarized as a factor of approximately 10 discrepancies in the
expected amount of galaxy–galaxy strong lensing (GGSL) within
clusters, where GGSL refers to background sources being multiply
imaged due to gravitational lensing, with the image splitting being
done by an individual galaxy within the cluster as opposed to by
the cluster as whole. M20 concluded that either dark matter was
something other than CDM, or that there are systematic issues with
the way cosmological simulations are currently performed.

In this paper we use a different set of hydrodynamical simulations
from the simulations used in M20 to further assess the compatibility
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of �CDM with observed clusters. In Section 2 we discuss the
hydrodynamical simulations and the method we employ to measure
their strong lensing properties. We then compare the simulated
clusters with observed clusters in Section 3, before concluding in
Section 4. Our simulations and lensing analysis all assume the
cosmology from Planck Collaboration (2014).

2 G R AV I TAT I O NA L LE N S I N G F RO M
SI MULATED GALAXY CLUSTERS

The C-EAGLE project (Bahé et al. 2017; Barnes et al. 2017b) uses
a zoom simulation technique to resimulate (at higher resolution)
galaxy cluster haloes found in a parent simulation with a side length
of 3.2 Gpc (Barnes et al. 2017a). The high-resolution region around
each cluster is selected so that no lower resolution particles are
present within a radius of 5 r200 from the cluster centre at z = 0,
with a subset of the C-EAGLE haloes having high-resolution regions
that extend out to 10 r200 (this subset is known as ‘Hydrangea’; Bahé
et al. 2017). The high-resolution region around each cluster matches
the resolution of the EAGLE 100 Mpc simulation (Ref-L100N1504;
Schaye et al. 2015), with dark matter (DM) particle mass mDM =
9.7 × 106 M� and initial gas particle mass mgas = 1.8 × 106 M�.
They use the EAGLE galaxy formation model (Crain et al. 2015;
Schaye et al. 2015) that includes radiative cooling, star formation,
stellar evolution, feedback due to stellar winds and supernovae, and
the seeding, growth and feedback from black holes. The specific
calibration of EAGLE that was used is labelled as ‘AGNdT9’ in Schaye
et al. (2015).

We analyse the full sample of 30 C-EAGLE clusters, which at z =
0 have a uniform distribution of log10(M200/ M�) spanning from 14
to 15.4. We use the z = 0 snapshots because these are available for
all of the C-EAGLE clusters, but place the clusters at a lens redshift of
zl = 0.4 as this was the median redshift of the observed clusters in
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M20. We found that using the z = 0 snapshots does not substantially
bias our results compared with using clusters extracted at the true
lens redshift, which we tested using the 16 clusters that had a z =
0.411 snapshot.1

The observed sample with which we will later compare (‘Ref.’
from M20) is comprised of three clusters at redshifts of 0.44, 0.40,
and 0.35, with weak-lensing inferred halo masses of M200 = 1.6,
1.0, and 2.0 × 1015 M�, respectively (Umetsu et al. 2014). For
comparison, there are seven C-EAGLE clusters with M200 > 1015 M�,
with the most massive halo being 2.4 × 1015 M�. This means that
the most massive C-EAGLE clusters are comparable (at least in terms
of their halo masses) with the observed sample. A fair comparison
between observations and simulations would require mimicking the
(presumably complicated) selection process that is responsible for
the sample of observed clusters in M20 on a set of simulated haloes,
and then analysing those ‘selected’ haloes. This is beyond the scope
of this work, where we wish to show that the simulated clusters
used in M20 predict substantially lower amounts of GGSL than is
predicted by similarly massive C-EAGLE clusters, and that C-EAGLE

clusters are – at least qualitatively – in good agreement with the
observations.

2.1 Calculating deflection angles

In order to calculate the GGSL cross-sections of our simulated galaxy
clusters we need to first calculate their deflection angle fields. To
begin, we calculate projected density maps of each particle type
(DM, gas, stars, and black holes) independently. We take all particles
identified as part of the main friends-of-friends group within the
zoom-in region and calculate a 4 × 4 Mpc2 projected density field
using PYSPHVIEWER (Benitez-Llambay 2015), projecting along the
simulation z-axis. The maps have 4096 pixels on a side, correspond-
ing to a pixel scale of roughly 1 kpc. PYSPHVIEWER smooths the mass
of each particle using a smoothing kernel, with the kernel size for
each particle set as the distance to the nngbth nearest neighbour (of
the same particle type). Following M20 we use nngb = 50, but we
also impose a maximum smoothing length of 100 kpc to speed up
the calculation in low density regions (which are unimportant for the
GGSL cross-section). The projected density maps for each particle
type are summed up to produce the total projected density map for
each cluster, �.

The redshifts of the lens and of a background source define the
critical surface density for lensing,

�crit = c2

4πG

Ds

DlDls
, (1)

where Ds, Dl, and Dls are the angular diameter distances between
the observer and source, observer and lens, and lens and source,
respectively. It is useful for lensing to define the dimensionless
convergence, κ = �/�crit. An example convergence map is shown
in Fig. 1. Both κ and the deflection angle field, α, depend on spatial
derivatives of the projected gravitational potential. This means that
the relationship between the Fourier transforms of κ and α is a simple
one, and we calculate α from κ using discrete Fourier transforms (this
is described in more detail in Robertson et al. 2019). To mitigate
the effects of periodicity that are inherent to using discrete Fourier

1Specifically, the zsnap = 0.411 GGSL cross-sections divided by those
with zsnap = 0 have an approximately lognormal distribution, with

〈log10 σz=0.411
GGSL /σ z=0.0

GGSL 〉 = −0.01 and 〈
(

log10 σz=0.411
GGSL /σ z=0.0

GGSL

)2〉 = 0.21,

corresponding to little bias and a scatter of about 0.4 dex.

transforms we zero-pad the κ field by a factor of four in each direction
(i.e. out to 16 Mpc on a side).

Having calculated α on the same square grid as we originally
calculated the projected density, we now increase the resolution
and decrease the field of view of the deflection angle map. We
do this using bicubic interpolation,2 making an 8192 × 8192 grid
of deflection angles covering the central 200 × 200 arcsec2 region
that is the field of view used by M20. 200 arcsec corresponds to
approximately 1.1 Mpc at our adopted lens redshift.

2.2 Critical curves and caustics

Labelling the x and y components of α as αx and αy, respectively, the
two components of the gravitational shear are

γ1 = 1

2

(
∂αx

∂x
− ∂αy

∂y

)
, γ2 = ∂αx

∂y
= ∂αy

∂x
, (2)

with the magnitude of the shear γ =
√

γ 2
1 + γ 2

2 . The magnification
is given by

μ = 1

(1 − κ)2 − γ 2
= 1

(1 − κ − γ )(1 − κ + γ )
. (3)

Critical curves are regions of the image plane in which the magnifi-
cation is infinite. From equation (3) it can be seen that this happens
when λt ≡ 1 − κ − γ = 0 or λr ≡ 1 − κ + γ = 0. The first of these
two cases produces tangential critical curves, with images formed
close to tangential critical curves strongly distorted tangentially to
the critical curve. Following M20, it is the tangential critical curves
that we are interested in for the GGSL cross-section, so we find the
tangential critical curves using the marching squares algorithm3 on
a map of λt. In Fig. 1 these are plotted as white lines.

For the purposes of GGSL within clusters, we need to distinguish
between cluster-scale critical curves and secondary critical curves.
For each cluster we define the critical curve enclosing the largest
area, as well as any critical curves with an effective Einstein radius4

θE,eff > 5 arcsec, as primary critical curves associated with cluster-
scale lensing. All others critical curves are deemed to be secondary
critical curves associated with GGSL.

Critical curves when mapped into the source plane by the lens
equation are known as caustics. Primary caustics correspond to
cluster-scale critical curves mapped into the source plane, and are
plotted as grey lines in Fig. 1 (in this example there is only one).
The secondary caustics are the result of mapping all other tangential
critical curves into the source plane, they are plotted as red and pink
lines.

2.3 The GGSL cross-section and probability

The GGSL cross-section is defined as the area within the source plane
in which a galaxy would be multiply imaged by an individual cluster
member. Approximating source galaxies as point sources, this can
be calculated from the area enclosed within the secondary caustics,
as done in M20. Following M20 we exclude caustics corresponding
to secondary critical curves with θE,eff < 0.5 arcsec from the GGSL
cross-section, because these produce GGSL events that would be
hard to identify observationally.

2We used scipy.interpolate.RectBivariateSpline.
3We use find contours in scikit-image (van der Walt et al. 2014).
4θE, eff is the radius of a circle enclosing the same area as that enclosed by
the critical curve (Meneghetti et al. 2013).
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GGSL of simulated clusters L9

Figure 1. The background image shows the convergence of one of our simulated clusters (CE-28), assuming lens and source redshifts of 0.4 and 7, respectively.
The field of view that is plotted is 220 arcsec, with the solid orange box corresponding to the 200 arcsec square region in which we calculate strong lensing
quantities. Tangential critical curves are shown as solid white lines. Cluster-scale caustics are plotted as grey lines, and secondary caustics with θE,eff < 0.5 arcsec
are plotted in pink. The secondary caustics that contribute to the GGSL cross-section are plotted in red. The dashed orange line corresponds to the solid orange
line when mapped into the source plane, and it is within this source-plane region that we calculate the GGSL probability. The left-hand panel is for the
full-resolution simulation of CE-28, while the right-hand panel corresponds to a simulation with 128 times worse mass resolution [similar to the Planelles et al.
(2014) simulations used by M20], created from subsampling particles from the full simulation. Small density peaks that lead to GGSL in the left-hand panel are
often smoothed over in the right-hand panel, showing the importance of high-resolution simulations for calculating the expected GGSL cross-section.

Figure 2. The GGSL probability as a function of source redshift. The dashed
lines and associated shaded regions are from M20, while the solid lines are
for the C-EAGLE clusters, with the colour indicating the halo mass (see the
colour bar at the top).

The GGSL probability is calculated by dividing the GGSL cross-
section by some nominal total source plane area. In M20 this total

area was the area of a 200 × 200 arcsec2 square in the image plane,
mapped into the source plane, and we use the same definition here.

2.4 Changing the simulation resolution

In order to investigate how the GGSL cross-section and probability
are impacted by simulation resolution, we used a subsampling
technique to generate lower-resolution versions of the C-EAGLE

clusters. With a subsample factor, S, we select only one in every
S particles from the original simulation, and multiply the selected
particles’ masses by a factor of S. This produces a realization of the
cluster with a mass resolution that is worse than the original by a
factor of S.

Starting with this subsampling procedure, we can then generate
lensing maps and calculate the corresponding GGSL cross-sections
following the same procedures as for the full resolution simulation.
An example is shown in the right-hand panel of Fig. 1, where we
show the same cluster as in the left-hand panel, but subsampled with
S = 128. It is clear that as we reduce the mass resolution, the mass
maps and critical curves become smoother, because they are made
by smoothing particles with a kernel size equal to the distance to the
50th nearest neighbour. With fewer particles, the distances between
particles increase, and so the smoothing lengths increase.

Note that a property converging with respect to varying S is
necessary but not sufficient to show that the property is converged
with respect to the original resolution of the simulations. This
is because varying S only checks for convergence of the lensing
calculations with changing resolution, whereas the simulated mass
distributions themselves could systematically change with resolution
(beyond just changes to the amount of particle noise).
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Figure 3. The number of secondary caustics with θE,eff > 0.5 arcsec (left-hand panel) and the area enclosed within those secondary caustics (the ‘GGSL
cross-section’, right-hand panel) as a function of the effective resolution of our simulations. The lens and source redshifts are zl = 0.4 and zs = 7, respectively.
The results for all 30 C-EAGLE clusters are plotted, with darker colours corresponding to more massive haloes (using the colour scheme from Fig. 2). The bottom
panels show the values relative to the highest-resolution (S = 1) value for each cluster. At the top of the plot the resolution is expressed in terms of the DM
particle mass. M20’s fiducial simulations used a DM particle mass of 1.2 × 109 M�, denoted by the dashed orange lines. Note that the odd behaviour of the
GGSL cross-section with S for one of the low-mass clusters occurs because a large secondary critical curve separates from (and later merges with) the primary
critical curve as S is increased.

3 R ESULTS

In Fig. 2 we plot the GGSL cross-section as a function of source
redshift for the 30 C-EAGLE clusters, as well as for the simulated
and observed samples from M20. Note that we only show the ‘Ref’
observational sample for clarity, but the other two observed samples
had similar GGSL probabilities. The C-EAGLE GGSL probabilities
vary by over two orders of magnitude, with an unsurprising trend
that more massive clusters tend to produce more GGSL. Even
haloes with similar masses show a non-negligible spread in GGSL
probability, such that a detailed comparison between the observations
and simulations would need to consider cluster properties beyond
simply halo mass. The most massive C-EAGLE clusters have similar
GGSL probabilities to the observed clusters. There is no obvious
discrepancy between observed galaxy clusters and those simulated
in the context of �CDM.

3.1 Dependence of the GGSL probability on simulation
resolution

The C-EAGLE simulations have around two orders of magnitude better
mass resolution than the simulations in M20. Using the subsampling
procedure defined in Section 2.4 we can asses whether the lower
GGSL probabilities in the M20 simulations compared with C-EAGLE

are driven by resolution. In Fig. 3 we plot both the number of
secondary caustics, and the total area enclosed within the secondary
caustics (the GGSL cross-section), as a function of subsampling
factor, S. The lower panels show these same quantities relative to

their values with S = 1, giving an indication of how we expect these
quantities to vary with simulation resolution.

Both the number of secondary caustics and the GGSL cross-
sections appear to be numerically converged at C-EAGLE resolution.
At the resolution of the M20 simulations, neither the GGSL cross-
sections nor the number of secondary caustics are converged, and
from the C-EAGLE results we would expect a 20 − 50 per cent
reduction in the GGSL cross-section due to the M20 resolution,
with a similar reduction in the number of secondary caustics. This
goes some way to explaining the low GGSL cross-section of the
M20 simulations, although it is clearly not the entire cause given the
order of magnitude discrepancy between the M20 simulations and
the largest GGSL cross-section C-EAGLE clusters.

3.2 Subhalo concentrations

The remaining discrepancy between the GGSL probabilities for C-
EAGLE and the M20 simulations is explained by the fact that the
C-EAGLE subhaloes are more concentrated than those in the M20
simulations (Bahé 2021). This can be expressed in terms of C-EAGLE

subhaloes having a higher maximum circular velocity, vmax, at a
given subhalo mass. For a singular isothermal sphere with a small
core (that is approximately the density profile with which M20 model
their subhaloes) the strong-lensing cross-section is proportional to
v4

max (Hinshaw & Krauss 1987). As such, even modest changes to
the central concentration of subhaloes will have substantial effects
on the probability of GGSL.
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4 C O N C L U S I O N S

Our primary finding is that state of the art simulations of galaxy
clusters in a �CDM universe can produce clusters with GGSL
probabilities in good agreement with those inferred for observed
clusters. This agreement is in stark contrast to the order of magnitude
discrepancy shown by M20 between the same observations and
the simulations of Planelles et al. (2014). The resolution of the
Planelles et al. (2014) simulations is not sufficient to accurately
predict the GGSL probability. Even with higher resolution, different
hydrodynamical simulations currently make different predictions for
the internal structure of subhaloes (Bahé 2021).

It is not yet possible to use the GGSL probability to constrain the
nature of dark matter. This is not to say that �CDM is correct, and
instead indicates that more work is required before hydrodynamical
simulations can make robust predictions for the internal structures
of subhaloes within galaxy clusters. Going forward, the probability
of GGSL within clusters may well prove a useful test of the �CDM
model, but care will have to be taken to ensure that the theoretical
predictions are converged with respect to the numerical resolution of
simulations used, and that uncertainties in baryonic physics are taken
into account. It would also be instructive to test the methods used to
infer the GGSL probabilities of observed clusters on mock lensing
data generated from simulations, in which the truth is known.
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