
Robust analysis of phylogenetic tree space 1 

Martin R. Smith 2 

Department of Earth Sciences, Durham University, Lower Mountjoy, Durham, DH1 3LE, UK; 3 

martin.smith@durham.ac.uk 4 

Running head: Analysis of phylogenetic tree space 5 

 6 

Abstract.—Phylogenetic analyses often produce large numbers of trees. Mapping trees’ 7 

distribution in ‘tree space’ can illuminate the behaviour and performance of search strategies, 8 

reveal distinct clusters of optimal trees, and expose differences between different data sources or 9 

phylogenetic methods – but the high-dimensional spaces defined by metric distances are 10 

necessarily distorted when represented in fewer dimensions. Here, I explore the consequences of 11 

this transformation in phylogenetic search results from 128 morphological datasets, using 12 

stratigraphic congruence – a complementary aspect of tree similarity – to evaluate the utility of 13 

low-dimensional mappings. 14 

I find that phylogenetic similarities between cladograms are most accurately depicted in 15 

tree spaces derived from information-theoretic tree distances or the quartet distance. Robinson–16 

Foulds tree spaces exhibit prominent distortions and often fail to group trees according to 17 

phylogenetic similarity, whereas the strong influence of tree shape on the Kendall–Colijn 18 

distance makes its tree space unsuitable for many purposes. 19 

Distances mapped into two or even three dimensions often display little correspondence 20 

with true distances, which can lead to profound misrepresentation of clustering structure. 21 



  Analysis of phylogenetic tree space 

2 

Without explicit testing, one cannot be confident that a tree space mapping faithfully represents 22 

the true distribution of trees, nor that visually evident structure is valid. 23 

My recommendations for tree space validation and visualization are implemented in a 24 

new graphical user interface in the ‘TreeDist’ R package. 25 

Key words 26 

tree distance metrics; multidimensional scaling; treespace projections; phylogenetic software. 27 

 28 

Phylogenetic analysis seeks to reconstruct historical relationships between evolving lineages, 29 

such as species, languages or cell lines. Such analyses often identify many candidate trees, 30 

making it difficult to encapsulate the underlying phylogenetic signal. Single summary trees 31 

generated through consensus, compromise, or centroid methods (Wilkinson 1994; Nixon and 32 

Carpenter 1996) cannot communicate information about the ‘landscape’ (Bastert et al. 2002) that 33 

trees occupy, such as the existence of tightly defined but potentially dissimilar ‘islands’ or 34 

‘terraces’ (Maddison 1991). 35 

The structure of ‘tree space’ – formally, the metric space defined by the distances 36 

between each pair of trees in a set – can help to establish the progress of tree searches; to 37 

produce more informative summary trees; to reveal relationships within a set of optimal trees 38 

obtained from different datasets or methods; and to illuminate the posterior distribution of trees 39 

resulting from Bayesian analysis (Amenta and Klingner 2002; Stockham et al. 2002; Hillis et al. 40 

2005; Holmes 2006; Chakerian and Holmes 2012; Whidden and Matsen 2015; Willis and Bell 41 

2018; Wright and Lloyd 2020). 42 

To appreciate this structure, a tree space that may have many intrinsic dimensions must 43 

be mapped into fewer: ideally two or three. However, dimensionality reduction discards 44 
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information: mapping into too few dimensions will misrepresent spatial relationships. Few 45 

published studies evaluate whether a mapped tree space meaningfully depicts true tree-to-tree 46 

distances – perhaps because such distortion is deemed a theoretical rather than practical concern. 47 

Alongside the dimensionality of a mapping, other factors known to influence the nature 48 

and utility of tree space include the method of dimensionality reduction; the means of calculating 49 

distances between trees; the specific trees used to generate the tree space; and how clusters 50 

(‘islands’) of trees are identified (Hillis et al. 2005; Huang and Li 2013; Wilgenbusch et al. 51 

2017). The methods implemented in the popular ‘TreeSetVis’ and ‘treespace’ software packages 52 

(Amenta and Klingner 2002; Jombart et al. 2017) are frequently used, but there otherwise seems 53 

to be little consensus as to how a method should be selected. 54 

Here I evaluate the behaviour of eight distance metrics, four clustering approaches and 55 

six mapping methods in the construction and interrogation of tree spaces from 128 sets of 56 

stratigraphically-calibrated cladograms (Lloyd and Wright 2020). I explore the degree to which 57 

methodological decisions can materially impact the analysis and interpretation of tree space, and 58 

identify recommendations for best practice. 59 

METHODS 60 

Wright and Lloyd (2020) used a selection of 128 morphological datasets to demonstrate how tree 61 

space analysis can facilitate the interpretation of phylogenetic results. They estimated Bayesian 62 

trees under the Mk model of morphological evolution (Lewis 2001), partitioning datasets 63 

according to the number of observed tokens per character, and using four rate categories to 64 

describe the speed of morphological change, with each category’s mean rate drawn from the 65 

quartiles of a gamma distribution. A single MCMC run was executed in ‘RevBayes’ (Höhna et al. 66 
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2016) for 300 000 generations. To minimize the risk of artefacts due to non-convergence of 67 

chains, I conservatively discard the first 50% of Bayesian trees as burn-in, and sample 2 500 of 68 

the remaining trees at uniform intervals to represent the posterior distribution. 69 

Wright and Lloyd (2020) identified most-parsimonious trees using TNT (Goloboff and 70 

Catalano 2016) under equal-weights parsimony, using exhaustive searches for datasets with < 25 71 

leaves, and heuristic searches for larger datasets. I include all most parsimonious trees reported, 72 

with an upper limit of 1 000 trees for each dataset. 73 

I treat all trees as cladograms, discarding branch length information in order to focus 74 

exclusively on the evolutionary relationships contained within each tree. 75 

The underlying palaeontological datasets contain 4–88 (median: 15) terminal taxa and 8–76 

540 (median: 57) morphological characters, address a broad range of vertebrate and invertebrate 77 

taxa, and are each associated with stratigraphic occurrence data from the fossil record (Lloyd and 78 

Wright 2020). This broad suite of tree sets with disparate properties helps to illuminate, if 79 

incompletely, the nature of tree spaces constructed from typical morphological data sets. 80 

Molecular datasets are not added to this sample because they cannot be directly 81 

integrated with stratigraphic information from the fossil record. Besides data type, the character 82 

of tree space may also depend on factors such as the method of inference, the signal:noise ratio, 83 

or the number of sites per taxon. Whilst acknowledging that certain details of the results might 84 

therefore be particular to these specific datasets, this study documents the degree to which 85 

methodological decisions have the potential to influence tree space analysis. 86 

Distances 87 

This study considers distances that purport to quantify the similarity of relationships between 88 

cladograms: the Robinson–Foulds (RF), matching split information (MS), phylogenetic 89 
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information (PI), clustering information (CI), path (Pt), Kendall–Colijn (KC) and quartet (Q) 90 

metrics, and a new metric (SV) derived from vector representations of trees. 91 

The Robinson–Foulds (symmetric partition) distance (Robinson and Foulds 1981) counts 92 

the number of splits (loosely equivalent to edges or nodes) that occur in one tree but not the 93 

other, making no allowance for the existence of splits that may be almost—but not quite—94 

identical. This distance is crude: it has a low resolution, is readily saturated, and is sensitive to 95 

the relocation of a single group within a tree (Steel and Penny 1993). 96 

Information-theoretic distances (Smith 2020a) generalize the Robinson–Foulds distance 97 

to account for the differing information content of differently sized splits, and to acknowledge 98 

similarities between pairs of splits that are not quite identical. These metrics construct a 99 

‘matching’ that pairs splits between two trees so as to maximize the amount of information that 100 

all paired splits hold in common; the amount of information not held in common gives the 101 

distance. The clustering, phylogenetic or matching split concepts of information capture subtly 102 

different aspects of similarity between relationships. 103 

The quartet distance (Estabrook et al. 1985) counts whether the relationships between 104 

each possible combination of four leaves are the same or different between two trees; it has a 105 

similar objective to information theoretic distances, but is slower to calculate. 106 

Euclidian vector-based tree distances are the square root of the sum of squared 107 

differences between explicit vector representations of trees. The path distance (Steel and Penny 108 

1993) constructs a vector such that for each pair of leaves {𝑖𝑖, 𝑗𝑗}, the entry of the vector 𝑒𝑒𝑖𝑖𝑖𝑖 is the 109 

number of edges between 𝑖𝑖 and 𝑗𝑗. For the Kendall–Colijn (KC, Kendall and Colijn 2016) 110 

distance with 𝜆𝜆 = 0 (which discards branch length information), 𝑒𝑒𝑖𝑖𝑖𝑖 denotes the number of edges 111 

separating the common ancestor of 𝑖𝑖 and 𝑗𝑗 from the root; taxa whose most recent common 112 
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ancestor is further from the root belong to a smaller taxonomic group. Setting 𝑒𝑒𝑖𝑖𝑖𝑖 to the number 113 

of leaves in the smallest bipartition split containing both 𝑖𝑖 and 𝑗𝑗 provides an alternative measure 114 

of the size of a taxonomic group that is defined for unrooted trees; the Euclidian distance 115 

between such vectors defines a metric that I term the split size vector (SV) metric. 116 

The KC metric is the only metric examined that assigns significance to the position of the 117 

root of a tree. To establish the degree to which annotating the position of the root influences the 118 

properties of tree space, all experiments with the clustering information distance are repeated 119 

with and without the root node labelled. 120 

I do not consider distances that incorporate branch length information (e.g. Billera et al. 121 

2001; Speyer and Sturmfels 2004; Garba et al. 2018), whilst acknowledging that these can 122 

produce ‘natural’ tree spaces with desirable properties (Gori et al. 2016; Monod et al. 2018; 123 

Garba et al. 2021). Neither do I include ‘edit’-based distances, which are difficult to calculate 124 

exactly, and whose approximations exhibit undesirable properties (Smith 2020a). 125 

Other distances, which capture other aspects of tree similarity, might also be used as the 126 

basis for tree space construction: leaf-to-leaf distances (e.g. Leigh et al. 2011) emphasize branch 127 

lengths over relationships; shape metrics (e.g. Mir et al. 2013; Colijn and Plazzotta 2018) 128 

consider aspects of tree shape but not relationship information. As these distances do not denote 129 

the similarity in the evolutionary relationships implied by cladograms in any straightforward 130 

sense, I do not consider them further. 131 

I have previously evaluated a number of tree distance metrics in their ability to assign 132 

higher distances to cladograms that denote increasingly different evolutionary relationships 133 

(Smith 2020a). In summary, these tests evaluate whether tree distances exhibit the following 134 

desirable properties: 135 
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• Moving a single subtree a greater distance results in a greater distance to the resulting 136 

tree (‘length of move’); 137 

• Moving a small subtree represents a smaller change than moving a larger subtree the 138 

same distance (‘number of leaves moved’); 139 

• Few pairs of trees exhibit the maximum possible distance (‘saturation’); 140 

• Few pairs of trees are allocated identical distance values (‘sensitivity’); 141 

• Tree shape is not correlated with tree distance (‘shape independence’); 142 

• Simulated clusters of trees can be recovered (‘cluster recovery’); 143 

• Trees inferred from progressively more degraded datasets are further from the reference 144 

topology used to generate the pristine dataset, whether datasets are degraded by 145 

subsampling characters (‘bullseye subsampling’) or by switching character states 146 

between leaves (‘bullseye miscoding’); 147 

• Trees separated by more subtree pruning and regrafting rearrangements tend to exhibit 148 

greater distances (‘SPR rearrangement’); 149 

• Random tree pairs exhibit a consistent score (‘random distances interquartile range’). 150 

The present study evaluates the KC and SV metrics against these criteria (detailed in full in 151 

Smith (2020a)), and against a new benchmark designed to explore the sensitivity of metrics to 152 

differences in tree balance. This new ‘balance independence’ test uses 10 000 pairs of 25-leaf 153 

trees drawn from a uniform distribution. I calculate the distance between each pair of trees using 154 

each distance metric, and the degree of balance for each tree using the total cophenetic index 155 
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(TCI, Mir et al. 2013), using R function TreeTools::TotalCopheneticIndex() (Smith 156 

2019a). Low TCI values denote a balanced tree, in which the left and right children of each node 157 

exhibit an equal number of descendants. A lack of correlation (𝑟𝑟2) between a metric distance and 158 

the difference in TCI values indicates that a metric is independent of tree balance. 159 

Clustering 160 

I identify clusters of unique tree topologies using: 161 

• the Hartigan–Wong K-means algorithm (Hartigan and Wong 1979, R function 162 

kmeans()), with 3 random starts and up to 42 iterations; 163 

• partitioning around medoids (cluster::pam(), Maechler et al. 2019), using 3 random 164 

starts and the algorithmic shortcuts of Schubert and Rousseeuw (2021); 165 

• hierarchical clustering with minimax linkage (Murtagh 1983) 166 

(protoclust::protoclust(), Bien and Tibshirani 2011) (chosen after outperforming 167 

other linkage methods in initial informal analyses); and 168 

• spectral clustering (using custom function TreeDist::SpectralEigens() alongside 169 

cluster::pam()). 170 

I use silhouette coefficients to calculate the optimal clustering method and number of clusters for 171 

each analysis (after Kaufman and Rousseeuw 1990). The silhouette value of a given tree 172 

compares its cohesion – its distance from each other tree within its cluster – with its separation – 173 

its distance from each tree that is not within its cluster. Values close to +1 denote a high 174 

proximity to other trees within its cluster; values close to −1 indicate proximity to trees in other 175 

clusters. The silhouette coefficient is the mean silhouette value of all trees. Following Kaufman 176 
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and Rousseeuw (1990), I interpret silhouette coefficients greater than 0.7 as representing ‘strong’ 177 

structure; > 0.5 as ‘reasonable’ structure; > 0.25 as ‘weak structure that may not be genuine’; and 178 

< 0.25 as lacking clustering structure. 179 

Clusterings (i.e. assignments of trees to clusters) are compared using their variation of 180 

information (VI, Meilǎ 2007). Similar clusterings exhibit a low VI: the cluster to which a tree 181 

belongs in one clustering strongly predicts which cluster it belongs to in the other. The VI of two 182 

clusterings that each divide objects into two equally sized clusters will range from zero to two; 183 

the maximum possible VI decreases if clusters are uneven in size, and increases where more 184 

clusters are present in a clustering. 185 

To evaluate whether clustering structure is preserved after mapping to two dimensions, I 186 

consider all tree sets with ‘reasonable’ clustering structure (silhouette coefficient > 0.5). I 187 

selected two mapping approaches – PCoA and t-SNE – for detailed (and computationally 188 

expensive) investigation on the basis of preliminary analyses. After computing clusterings from 189 

distances mapped into two dimensions, I record any change to the number of clusters, and 190 

calculate the VI between clusterings computed from original and mapped distances. 191 

Mapping 192 

Distances are calculated using the R (R Core Team 2021) packages ‘TreeDist’ (Smith 2020b) and 193 

‘Quartet’ (Sand et al. 2014; Smith 2019b) and mapped into 1–12 dimensions using a suite of 194 

multidimensional scaling (MDS) approaches: 195 

• principal coordinates analysis (PCoA, also termed classical MDS) (Gower 1966; R 196 

function stats::cmdscale(), R Core Team 2021); 197 
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• non-metric MDS with a Kruskal-1 stress function (Kruskal 1964) (MASS::isoMDS(), 198 

Venables and Ripley 2002); 199 

• Sammon’s (1969) metric non-linear mapping (MASS::sammon(), Venables and Ripley 200 

2002); 201 

• curvilinear components analysis (CCA) (Demartines and Herault 1997; Sun et al. 2013) 202 

(ProjectionBasedClustering::CCA(), Thrun et al. 2020), another metric MDS 203 

method; 204 

• diffusion mapping (Coifman and Lafon 2006) (diffusionMap::diffuse(), Richards 205 

and Cannoodt 2019); 206 

• Laplacian eigenmapping (Belkin and Niyogi 2003) (dimRed::embed(), Kraemer et al. 207 

2018), a kernel eigenmap method; and 208 

• t-distributed stochastic neighbour embedding (van der Maaten and Hinton 2008; van der 209 

Maaten 2014) (Rtsne::Rtsne(), Krijthe 2015). 210 

PCoA is a simple approach which essentially rotates a high-dimensional space such that as much 211 

of the variance of the data as possible falls within the plotted dimensions (Thrun 2018). PCoA 212 

requires Euclidean distances, and converting distances between phylogenetic trees into a 213 

Euclidean space entails a loss of information (Nye 2011). To make the distances Euclidian, I 214 

follow the standard practice of adding a constant to each distance (Cailliez 1983; Jombart et al. 215 

2017), whilst noting that this might distort the relative magnitude of individual distances.  216 

Kruskal-1 and Sammon MDS mappings minimize the normalized difference between 217 

original and mapped distances, each using a separate stress function to quantify the normalized 218 
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difference. In the usual case where tree distances are metrics, Sammon MDS is expected to 219 

closely resemble PCoA (Ekman and Blaalid 2011) – though it can emphasize accuracy in shorter 220 

rather longer distances (van der Maaten et al. 2009), providing a clearer depiction of local 221 

geometric features such as separation between clusters (Thrun 2018). 222 

CCA uses a stress function that implicitly assigns points in a high number of dimensions 223 

to locations on a ‘manifold’ that can be readily represented in fewer dimensions – akin to 224 

reconstructing original two-dimensional distances on a sheet of paper that has since been 225 

crumpled into a three-dimensional ball. This is accomplished with a stress function that penalizes 226 

distortion in distances that are short when mapped (contra short original distances, as in the 227 

Sammon stress function), allowing longer distances to deform more readily. The length scale that 228 

qualifies as ‘short’ decreases as the mapping is refined. 229 

Diffusion mapping is a different manifold-learning approach. Rather than minimizing a 230 

stress function, trees are represented as nodes on a graph, with each node connected to others by 231 

edges whose lengths are a function of the distances between trees. A Markov chain constructed 232 

over this graph generates a transition matrix; treating the eigenvectors of this Markov matrix as 233 

coordinates results in a low-dimensional space that, when successful, captures the main structure 234 

of the data, in particular preserving the spatial relationships of near neighbours (Coifman and 235 

Lafon 2006). Laplacian eigenmapping is a special case of diffusion mapping that emphasizes the 236 

influence of local density on the mapping, in part by connecting trees only to a number (here, 50) 237 

of their nearest neighbours in the initial graph; it is considered particularly appropriate when data 238 

contain meaningful clusters (Belkin and Niyogi 2003). 239 

Finally, t-distributed stochastic neighbour embedding (t-SNE) constructs a probability 240 

distribution whereby trees that lie close to a specified tree are more probable. A low-dimensional 241 
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mapping is selected in order that the equivalent treatment of mapped distances replicates this 242 

probability distribution as closely as possible. 243 

Distortion 244 

To evaluate the susceptibility of a tree space to distortion on mapping, I calculate its correlation 245 

dimension (Camastra and Vinciarelli 2002), a measure of its intrinsic dimensionality – that is, the 246 

number of dimensions necessary in order to reproduce all the structure present in the tree space. 247 

I evaluate the distortion of mappings using the product of the trustworthiness and 248 

continuity metrics (Venna and Kaski 2001; Kaski et al. 2003), calculated using R package 249 

‘dreval’ with k = 10 nearest neighbours. Trustworthiness measures the degree to which points 250 

that are nearby in a mapping are truly close neighbours; continuity, the extent to which points 251 

that are truly nearby retain their close spatial proximity when mapped. Their product gives a 252 

composite score that encapsulates both aspects of quality. I also calculate the strength of 253 

correlation (Pearson’s 𝑟𝑟2 and Kendall’s 𝜏𝜏) between original and mapped distances, which 254 

corresponds to the goodness of fit of a Shepard (1962) plot. Pearson’s 𝑟𝑟2 measures the degree to 255 

which the original distance can be predicted from the magnitude of the mapped distance: it will 256 

be zero if mapped distances are random with respect to original distance, and one where the ratio 257 

between any two distances is identical before and after mapping. Kendall’s 𝜏𝜏 considers only the 258 

ranking of distances; where 𝜏𝜏 = 1, tree pairs will be ranked in the same sequence whether sorted 259 

by original or mapped distances. 260 

I graphically depict stress by plotting the minimum spanning tree (MST, Gower and Ross 261 

1969) – the shortest path connecting all trees – for 350 trees uniformly selected from the list of 262 

all Bayesian and parsimony results. Tortuous paths indicate distortion in a mapping (Anderson 263 

1971). To quantify the distortion thus shown, I calculate the ‘MST extension factor,’ which I 264 
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define as the ratio between the mapped length of the MST and the shortest length possible for 265 

each mapping (i.e. the length of the MST calculated from mapped distances); in the absence of 266 

distortion, this ratio will be unity. 267 

The adequacy of PCoA mappings can be further evaluated by calculating the proportion 268 

of variation retained, or through visual examination of scree plots (Jolliffe 2002); these 269 

approaches were not systematically applied in this study. 270 

Stratigraphic congruence 271 

The distribution of fossil taxa in the stratigraphic record is independent of their morphology, 272 

except insofar as both represent a single historical record of evolution (Sansom et al. 2018). The 273 

stratigraphic congruence of trees ought therefore to be reflected in the structure of any space that 274 

fully reflects the nature of the evolutionary histories implied by its constituent trees, even where 275 

the data used to assess stratigraphic fit are not used to construct the space. 276 

Wright and Lloyd (2020) quantified stratigraphic congruence with the minimum implied 277 

gap (MIG) statistic, calculated using fossil occurrence data from the Palaeobiology Database 278 

after rooting each tree on a manually specified outgroup taxon. A ‘gap’ in the fossil record is a 279 

period of time in which a taxon is inferred to exist, but is not represented by fossils. The MIG is 280 

the sum of gaps across all edges, when each node is situated at the time that minimizes gaps. A 281 

small MIG denotes a good fit with the stratigraphic record, and by implication an increased 282 

likelihood that a tree faithfully represents evolutionary history. To establish the extent to which 283 

mappings of tree space portray stratigraphic structure, I calculate the cumulative proportion of 284 

variance (adjusted 𝑟𝑟2) of stratigraphic consistency predicted by the first one to twelve 285 

dimensions of each mapping. 286 
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RESULTS 287 

Six-dimensional mappings for each dataset, tree distance method and mapping method, with 288 

evaluation of clusterings and depiction of stratigraphic fit, are provided in the online 289 

supplementary material (Smith 2021). Results obtained under the clustering information distance 290 

when trees were rooted do not materially differ from those when trees are treated as unrooted 291 

(Smith 2021). 292 

Tree distance metric 293 

The results of the tests devised to compare tree distances by Smith (2020a), plus the new 294 

‘balance independence’ test, are presented in Table 1. 295 

Of the metrics examined, only the quartet and information theoretic tree distances 296 

consistently reflect differences in the evolutionary relationships within trees (Table 1). Relative 297 

to these distances, Euclidian vector-based distances – the path, Kendall–Colijn and split size 298 

vector metrics – do a poor job of representing pre-defined structures in sets of trees. They are 299 

less effective at identifying known clusters of trees (Table 1, ‘cluster recovery’), and more often 300 

fail to assign greater distances to trees that are increasingly far from a reference tree (Table 1, 301 

‘length of move,’ ‘bullseye’ and ‘SPR rearrangement’ tests). 302 

The KC metric places a particular emphasis on differences in tree shape (𝑟𝑟2 = 0.35 for 303 

eight-leaf trees; see Table 1, ‘shape independence’), and thus downplays differences in the 304 

relationships between labelled leaves; 38% of the variation in the KC score between pairs of 25-305 

leaf trees can be attributed to differences in the degree of balance (Table 1, ‘balance 306 

independence’), compared to < 3% for all other studied distances. The sensitivity of the KC 307 

metric to properties of trees that take no account of which leaf is which curtails its ability to 308 
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discriminate trees based on the evolutionary relationships they imply, reducing its relevance to 309 

phylogenetic questions. 310 

The SV metric outperforms the KC metric against all but two of the examined 311 

benchmarks, but still performs poorly relative to the quartet distance and information theoretic 312 

distances (Table 1). As such, it is difficult to see a clear case for using Euclidian vector-based 313 

distances, whose values have no straightforward interpretation, to measure the phylogenetic 314 

similarity of trees. 315 

Because different metrics capture different aspects of tree similarity, the tree spaces they 316 

define can exhibit very different properties. The strong connection between tree shape and the 317 

KC distance means that differences in the degree of tree balance are often the primary feature of 318 

KC tree spaces, but do not characterize spaces constructed using other metrics (e.g. Fig. 1d–f). 319 

Mappings of Robinson–Foulds spaces often stand out as particularly different to those of other 320 

spaces; in many cases, the underlying RF space lacks structures, such as clusters and correlation 321 

with stratigraphic fit, that are present in all other tree metric spaces (Fig. 1a–c, g–l; Smith 2021); 322 

though in other cases (e.g. Fig. 1d), RF mappings exhibit structure that is not evident in other 323 

spaces. 324 

Clusters 325 

If a dataset displays genuine clustering structure, then it is desirable for clusters to be clearly 326 

distinguished. Tree spaces constructed on the quartet, KC and SV metrics exhibit the most 327 

prominent clusters, whereas clustering is least defined in RF tree spaces (Fig. 2a). Better-defined 328 

clusters exhibit a higher silhouette coefficient, increasing the number of cases in which 329 

‘reasonable’ clustering structure (silhouette coefficient > 0.5) can be identified (Fig. 2c). For tree 330 

spaces that exhibit ‘reasonable’ clustering, the clustering solution identified is very similar (VI ≤ 331 
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0.01 bits) under all distance metrics except the quartet, KC and SV metrics (VI with each other 332 

metric ≥ 0.03, ≥ 0.02 and ≥ 0.01 bits respectively) (Fig. 2e). 333 

The highest silhouette coefficients are typically obtained with hierarchical clustering (Fig. 334 

2g, h). Where ‘reasonable’ structure is present, K-means and PAM tend to produce similar results 335 

to each other (VI = 0.0094 bits) and to hierarchical clustering (VI = 0.011 bits) (Fig. 2f). Spectral 336 

clustering tends to resolve clusterings that are somewhat different from those of other methods 337 

(VI ≥ 0.021 bits) (Fig. 2f), often with lower silhouette coefficients; these clusters often fall 338 

below the threshold for ‘reasonable’ structure, even in some instances where ‘strong’ structure 339 

(silhouette coefficient > 0.7) is recovered by other methods. 340 

Effects of mapping 341 

The degree of clustering is often exaggerated in two-dimensional mappings of tree space. 342 

Silhouette coefficients on clusterings calculated from mapped distances are typically higher by 343 

around 0.25 (Fig. 2a–d), with the effect that ‘weak’ structure in the original tree space often 344 

appears ‘reasonable’ when mapped, and ‘reasonable’ structure often appears ‘strong’ (for an 345 

extreme example see Fig. 1d, noting how the minimum spanning tree hints at a discrepancy 346 

between mapped and original distances). 347 

This said, the existence of ‘reasonable’ structure in the original tree space does not 348 

guarantee that clustering will be evident in a 2D mapping. Of the 116 tree spaces (11% of 128 349 

datasets × eight distance metrics) with at least ‘reasonable’ clustering structure, 19 2D PCoA 350 

mappings and 66 2D t-SNE mappings display no more than ‘weak’ structure, meaning that 351 

genuine clusters cannot be distinguished. 352 

Even where clustering structure exists in both the original tree space and its two-353 

dimensional mapping (97 PCoA mappings; 50 t-SNE mappings), dimensionality reduction often 354 
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changes the composition of clusters markedly (VI > 0.25 bits in 39% of PCoA and 94% of t-SNE 355 

mappings) (Fig. 1g–i). Clusterings are identical in only 53% of PCoA and 6% of t-SNE 356 

mappings (Fig. 3a–b). Changes in cluster composition are particularly pronounced in mappings 357 

of the Euclidian vector-based and quartet distances, and in PCoA mappings of RF distances (Fig. 358 

3a–b). 359 

More broadly, tree spaces defined by different metrics have different propensities for 360 

mapping. Mappings of RF tree spaces exhibit greater distortion than mappings of other spaces, 361 

reflected by lower trustworthiness and continuity metrics, higher stress, more extended minimum 362 

spanning trees, and less correlation with original distances (Fig. 3c–e). To obtain a trustworthy 363 

and continuous mapping of RF distances, it is often necessary to plot at least one dimension 364 

more than with other distance metrics (Fig. 3c). 365 

Conversely, KC tree space, and to a lesser extent the quartet, path and SV spaces, can be 366 

mapped in a more trustworthy and continuous fashion than information theoretic tree spaces, 367 

often attaining the same degree of distortion with one or even two fewer dimensions (Fig. 3c) – 368 

reflected by lower stress, less extension of the minimum spanning tree, and a higher correlation 369 

between original and mapped distances (Fig. 3c–e). 370 

Though mappings of KC, SV and quartet tree spaces are the most faithful to the original 371 

distances, these mappings tend to exhibit a lower intrinsic dimensionality (Fig. 3g) and, for the 372 

SV and quartet spaces, a correspondingly weaker correlation with stratigraphic congruence (Fig. 373 

3f) – suggesting that the improved mapping may reflect a simpler original tree space that fails to 374 

represent certain aspects of tree similarity. 375 
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Mapping method 376 

In most cases, PCoA, Kruskal-1 and Sammon mappings of tree space differ only in small details, 377 

a recurrent theme being that Sammon maps often contain outliers plotted far from the majority of 378 

trees (Smith 2021). These methods consistently attain the highest correlation with the original 379 

distances and stratigraphic congruence, and high levels of trustworthiness and continuity (Fig. 4), 380 

indicating that these methods map the original tree space with the least distortion. 381 

The lower correlation between other methods and original distances reflects their 382 

different motivations – for example, contraction of large distances may be seen as justified if it 383 

allows a clearer mapping of spatial relationships on a more local scale. In the case of t-SNE, this 384 

trade-off results in mappings with higher trustworthiness and continuity and with less-extended 385 

MSTs. The opposite is true for Laplacian eigenmapping, diffusion mapping or CCA. t-SNE, 386 

Laplacian eigenmapping and diffusion mapping each exhibit prominent and idiosyncratic 387 

structure (which may or may not correspond to structure in the original tree space), whereas a 388 

typical CCA map simply depicts a separate, approximately hyperspherical cloud corresponding 389 

to each ‘reasonable’ cluster, with no clear evidence of any further structure (Smith 2021). 390 

Number of dimensions 391 

RF, path and information theoretic tree spaces have particularly high intrinsic dimensionalities 392 

(median ≈ 5; Fig. 3g). Correspondingly, in the great majority of datasets considered herein, two-393 

dimensional mappings exhibit low (<<0.95) trustworthiness and continuity values. Mapping 394 

additional dimensions depicts distances more accurately and often reveals additional structure 395 

(Figs 4, 5): it is not uncommon for a single high dimension of tree space to account for 50% of 396 

the variance in stratigraphic fit (Fig. 5). 397 
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In contrast, the lower dimensionalities of quartet (3.8), KC (2.7) and SV (2.5) tree spaces 398 

indicate that these spaces might often be mapped to three or even two dimensions with little 399 

distortion. But even with these metrics, two dimensions are enough to produce mappings with 400 

high values (> 0.95) of trustworthiness and continuity only where the number of distinct tree 401 

topologies within the tree space is minimal (< 30). A third dimension is enough to attain these 402 

values only in a minority of cases, and never in datasets containing trees with twenty or more 403 

leaves; the majority of analyses require at least four to five dimensions for a trustworthy and 404 

continuous representation (Figs 3c, 4a). 405 

The intrinsic dimensionality of a space also reflects properties of the datasets under 406 

examination. Under all distance metrics, it is negatively correlated with the log ratio of the 407 

number of characters to the number of taxa (𝑟𝑟2 = 0.1 − 0.24, 𝑝𝑝 < 10−3; Supp. Fig. 1). 408 

Dimensionality correlates positively with the total number of taxa in RF space (𝑟𝑟2 ≈ 0.1,𝑝𝑝 <409 

10−3), and negatively in quartet space (𝑟𝑟2 ≈ 0.1, 𝑝𝑝 < 10−3), but displays no significant 410 

correlation in other metric spaces. Tree space dimensionality is positively correlated with the 411 

number of unique trees under the RF (𝑟𝑟2 = 0.24,𝑝𝑝 < 10−3) and information theoretic (𝑟𝑟2 =412 

0.11 − 0.14, 𝑝𝑝 < 10−3) distances, and (more weakly) the path and KC distances (𝑟𝑟2 < 0.03,𝑝𝑝 =413 

0.03 − 0.04); but no such correlation exists under the SV and Quartet distances. 414 

DISCUSSION 415 

When analysing the distribution of phylogenetic trees, three decisions prove highly 416 

consequential: the distance metric used to construct a tree space; how clusters are identified; and 417 

how tree space is visualized. 418 
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Distance metric 419 

Tree spaces are defined with reference to an underpinning distance metric. Fundamentally, a 420 

distance metric should afford smaller distances to trees that are more similar with respect to the 421 

properties under consideration – different metrics can impose profoundly different tree spaces 422 

(Fig. 1), so a tree space will only be illuminating if its underlying metric is relevant to its 423 

application. 424 

Robinson–Foulds spaces 425 

The properties of the RF distance that produce poor performance in a range of practical settings 426 

[Table 1; Steel and Penny (1993); Smith (2020a)] are particularly relevant to the construction of 427 

tree spaces: its low resolution imposes an over-quantized and thus ‘gappy’ space; its ready 428 

saturation means that even quite similar trees can be assigned the maximum distance; and its 429 

sensitivity to the relocation of a single group or leaf means that a subset of otherwise similar 430 

trees will be allocated unrepresentatively large distances. 431 

In part, the high intrinsic dimensionality of RF tree spaces (Fig. 3g) reflects the 432 

distortions necessary to accommodate these phenomena. Correspondingly, the RF mappings 433 

analysed in this study often contain artefacts, fail to depict structures that are apparent under 434 

other metrics, recover weaker clustering structure, and are highly distorted (Figs 1–3). As such, it 435 

is difficult to be confident that interpretations of RF tree spaces accurately represent any 436 

meaningful aspect of tree similarity. 437 

Euclidian vector-based spaces 438 

At first blush, tree spaces defined on Euclidian vector-based metrics look like promising 439 

alternatives – particularly with regard to the high fidelity of their low-dimensional mappings 440 

(Figs 1–3). The particularly low intrinsic dimensionalities of the KC and SV metrics (Fig. 3g) 441 
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allow the majority of their tree space structure to be represented in three or even two dimensions 442 

(Fig. 3). These two metrics also stand out for the clear definition of their clustering structure 443 

(Fig. 2a–d), even if this maps less faithfully into few dimensions (Fig. 3). 444 

However, such clustering structure often fails to correspond to artificial structure known 445 

to characterize the true distribution of trees (Table 1, ‘cluster recovery’). Lower intrinsic 446 

dimensionalities seem to be accomplished by downplaying phylogenetic differences between 447 

trees, resulting in simplistic spaces whose structures emphasize the contribution of tree shape. A 448 

substantial proportion of the variance in KC distances reflects the degree of tree balance (Table 449 

1), meaning that KC tree spaces are often dominated by a single dimension that discriminates 450 

balanced from unbalanced trees (as in Fig. 1e), independently from how leaves happen to be 451 

labelled. The contribution of tree shape to the path and SV metrics, though more nuanced, results 452 

in comparable behaviour. 453 

Because the relative contributions of phylogenetic and shape-based factors are not 454 

explicit in the definition of these vector-based metrics, it is difficult to disentangle their 455 

contribution to the structure of tree space. Consequently, Euclidian vector-based tree distances, 456 

and the KC metric in particular, are poorly suited to questions of evolutionary relationships. 457 

Quartet and information-theoretic metrics 458 

Though each have subtly different emphases, quartet and information-theoretic distances 459 

increase monotonically as tree topologies undergo increasing amounts of deformation (Table 1), 460 

making them inherently relevant to questions concerning the similarity of evolutionary 461 

relationships between cladograms (Smith 2020a). 462 

The matching split information, phylogenetic information and clustering information 463 

distances produce broadly similar tree spaces with similar clustering, dimensionality and 464 
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mapping characteristics (Figs 1–3), so are treated together here. Quartet tree spaces exhibit a 465 

more pronounced clustering structure (Fig. 2a–d) and a lower intrinsic dimensionality (Fig. 3g) 466 

than information-theoretic tree spaces, meaning that they can produce more information-rich 467 

maps using fewer dimensions (Fig. 3). 468 

In many cases, being able to obtain a tree space that discriminates clusters more readily 469 

and which requires one fewer dimension to obtain a given level of trustworthiness and continuity 470 

will more than offset the slightly poorer performance of the quartet metric against the 471 

benchmarks of Smith (2020a) and Table 1, and justify its significantly greater running time – 472 

measured in hours rather than minutes for many of the datasets examined here. On the other 473 

hand, clusters obtained using information-theoretic distances are typically rendered more 474 

faithfully in mappings. Confidence that interpreted structure genuinely characterizes the 475 

underlying trees will be greatest if its presence can be demonstrated in both quartet and 476 

information-theoretic tree spaces, which offer complementary views on the phylogenetic 477 

similarity of trees. 478 

Clusters 479 

One motivation for tree space analysis is the identification of subsets of trees that are more 480 

similar with respect to the evolutionary histories they imply. This objective is most readily met 481 

when the distance from which clusters are calculated measures that property directly. Clusters 482 

identified through the visual inspection of 2D tree space mappings will group trees according to 483 

mapped distances, which are an opaque function of original tree-to-tree distances, distorted in a 484 

manner that is particular to each mapping technique and influenced by all other tree-to-tree 485 

distances under consideration. Such clusters thus have no straightforward interpretation in their 486 
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own right, except as approximations to the clustering structure imposed by the original, 487 

undistorted distances. 488 

My results show that clusters derived from mapped distances are poor approximations to 489 

clusters based on measured distances. In the majority of RF, SV and quartet tree spaces in which 490 

‘reasonable’ or better structure is present in both original and mapped spaces, clusters derived 491 

from original versus mapped distances differ substantially in their constitution (median VI > 0.2 492 

bits; Fig. 3a). Mapping a tree space into two dimensions using PCoA consistently exaggerates 493 

clustering structure, causing a mean increase in silhouette coefficient of 0.3 (Fig. 2a–b) – enough 494 

that maps may depict ‘reasonable’ or even ‘strong’ structure where original, undistorted distances 495 

exhibit only ‘weak’ structure that ‘may not be genuine.’ Correspondingly, many mappings depict 496 

multiple clusters that lack ‘reasonable’ support in the underpinning tree space (Fig. 2c–d). 497 

It is therefore inadvisable to assume that clusters interpreted from two-dimensional 498 

mappings represent genuine structure. Even if such clusters sometimes happen to group trees 499 

with certain characteristics in common, it is difficult to see how they would be preferable to a 500 

clustering derived from a direct and explicit measure of those specific characteristics. 501 

Where a tree space does exhibit clustering structure, a secondary objective is to assign 502 

trees to clusters in a fashion that minimizes overlap between clusters, thus maximizing the 503 

silhouette coefficient. Hierarchical clustering usually performs best against this criterion (Fig. 504 

2h), though partitioning around medoids and K-means clustering occasionally produce the best-505 

defined clustering. Differences between the clusterings recovered by different methods tend to be 506 

relatively small (Fig. 2f), and which method is most appropriate will depend on the specific 507 

structure within a given dataset and the emphases of the particular clustering methods: for 508 

example, K-means and PAM are very effective when clusters are consistent shapes or sizes, but 509 
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can produce unexpected results when this assumption is violated (MacKay 2003; Hastie et al. 510 

2009). 511 

Such factors may explain contribute to the poor performance of spectral clustering in 512 

these datasets (Fig. 2f–h), despite its accurate recovery of pre-defined clusters of trees in other 513 

settings (Gori et al. 2016): the geometry of these artificial tree spaces may align better with the 514 

strengths of spectral clustering. Though the use of a single clustering method is unlikely to 515 

mislead, the use of multiple methods provides additional opportunities to maximize the 516 

silhouette coefficient, and thus to better appreciate the clustering structure of a tree set. 517 

Visualizing tree spaces 518 

Different mapping techniques have different motivations, and thus differ markedly in the 519 

structure they depict. Mapping has an order of magnitude more impact on the clustering 520 

structures perceived – the easiest aspect of structure to quantify – than the measurement of tree 521 

distance or the method of cluster detection (Figs 2e–f; 3a–b). 522 

PCoA, Sammon and Kruskal-1 mappings have a similar philosophy: they seek to 523 

minimize the stress induced by a mapping by minimizing a measure of distortion that penalizes 524 

mismatches between original and mapped distances. Interpretation of such mappings is 525 

straightforward: mapped distances are approximately proportional to the true distances between 526 

trees. (This does not mean that mapped areas are proportional to original hypervolumes – see 527 

Mammola (2019).) In line with this common principle, and despite the potential shortcomings of 528 

PCoA (Lee and Verleysen 2007), these methods often result in very similar mappings – 529 

consistent with some other results from simulated and real datasets (van der Maaten et al. 2009; 530 

Ekman and Blaalid 2011). As PCoA is significantly faster to calculate, its status as the most 531 

widely used mapping method seems justified. 532 
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CCA mapping likewise seeks to minimize stress – but the cost function employed aims 533 

not to faithfully reflect original distances, but rather to produce a “revealing representation” of 534 

the data, with an emphasis on facilitating the visual recognition of clustering (Demartines and 535 

Herault 1997). The clear depiction of clustering structure seems here to be obtained by largely 536 

discarding other aspects of tree space structure. In contrast to the results of Wilgenbusch et al. 537 

(2017), CCA-mapped distances exhibited lower correlation with original distances, and CCA 538 

mappings exhibited lower trustworthiness and continuity than PCoA, Sammon and Kruskal-1 539 

mappings (Fig. 4). This difference may reflect idiosyncrasies of the tree sets being examined: for 540 

example, the Wilgenbusch et al. tree sets cluster according to the gene from which trees had been 541 

inferred, so emphasizing the distinction between clusters captures relatively more of the variation 542 

in tree-to-tree distances than in datasets with weak clustering structure. 543 

Diffusion mappings and Laplacian eigenmappings attempt to identify a lower-544 

dimensional manifold that underlies the high dimensional space; the poor performance of 545 

explicitly manifold-learning methods relative to other mapping techniques (Fig. 4) suggests that 546 

the sets of optimal trees examined herein are not associated with any manifold, or sample the 547 

manifold at too low a density for its inferred structure to improve mapping (Venna et al. 2010). 548 

Finally, t-SNE obtains very high levels of trustworthiness and continuity, at the expense 549 

of a weak correlation between mapped and original distances (Fig. 4). As such, the interpretation 550 

of t-SNE mappings is not intuitive: distances between clusters, and the sizes of clusters, may not 551 

be representative; and t-SNE mappings can display apparent structure in datasets known to be 552 

homogeneous (Wattenberg et al. 2016). These properties characterize many of the t-SNE maps 553 

generated herein (see for example studies 20,  36,  89  in Smith 2021), meaning that the capacity 554 

of t-SNE mapping to represent local structure must be weighed against the danger of 555 
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misinterpretation. This risk can be reduced by exploring different values of the ‘perplexity’ and 556 

‘epsilon’ parameters that govern the structure of t-SNE mappings, and comparing results to a 557 

PCoA mapping. 558 

Dimensionality 559 

Tree spaces inherently exist in many dimensions. More trees tend to produce more complicated 560 

structure with more intrinsic dimensions, as previously noted by Wilgenbusch et al. (2017), and 561 

observed here under the RF and information-theoretic distances. Tree sets derived from datasets 562 

with a low character:taxon ratio also tend to exhibit higher dimensionalities, perhaps because 563 

matrices containing fewer characters constrain relationships less decisively: a broader posterior 564 

distribution of tree topologies will encompass a larger region of tree space and thus encounter 565 

more distortion when mapped (just as a map of the globe is more distorted than a cartographic 566 

map of a smaller region). 567 

The dimensionality of tree space is also influenced by the choice of distance metric (Fig. 568 

3). Whereas tree spaces with more intrinsic dimensions have the capacity to contain more 569 

sophisticated and instructive structure, they are harder to faithfully depict in few dimensions. 570 

This trade-off does not have a natural optimum, as the utility of a tree space is not a simple 571 

function of its dimensionality. 572 

KC and SV tree spaces obtain a low dimensionality by downplaying phylogenetic aspects 573 

of tree similarity. Although mappings produced after discarding relevant features of tree space 574 

may be less distorted, this is unlikely to compensate for the concomitant loss of information: at 575 

the extreme, a dimensionality of zero can be obtained by a metric that assigns all pairs of trees a 576 

distance of zero. 577 
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On the other hand, the mere fact that more dimensions are present need not make a tree 578 

space more instructive: a metric that assigns all pairs of trees a unit distance can produce a 579 

meaningless tree space with many dimensions. Analogously, the low sensitivity and rapid 580 

saturation of the RF distance (Table 1) mean that it allocates many tree pairs identical scores, 581 

potentially increasing the number of dimensions necessary to map RF spaces without distortion 582 

(Fig. 3c–e) without a corresponding gain in utility. 583 

In contrast, the lower dimensionality of quartet tree space relative to tree spaces defined 584 

by information-theoretic distances seems not to reflect a substantial difference in how well the 585 

metrics measure the phylogenetic similarity of cladograms (Table 1). Consequently, the lower 586 

amount of distortion introduced when quartet spaces are mapped (Fig. 3c–f) is a reason to prefer 587 

this distance for visualization, so long as examination of higher dimensions of both quartet and 588 

information-theoretic spaces confirms that a low-dimensional mapping adequately summarizes 589 

structure. 590 

Even under the quartet distance, however, the majority of datasets require more than three 591 

(median: five) dimensions to attain levels of trustworthiness and continuity greater than 0.95 592 

(Fig. 3c). Humans are less able to perceive metric distances in three-dimensional visualizations 593 

than in two dimensions (Kjellin et al. 2010), and 3D displays are ineffective for estimating 594 

relative positions (Tory et al. 2006). Mappings that require multiple dimensions may thus fail in 595 

their objective of making distances easier to visualize. 596 

Wilgenbusch et al. (2017) take the more optimistic position that that two-dimensional 597 

mappings capture the most important aspects of tree space structure, including clustering. In 598 

practice, I suspect that individual datasets each occupy their own position between these 599 

extremes. Although 2D maps tend to exaggerate the degree of clustering – leading to the 600 
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misidentification of clusters (Figs 1d, 2a–d, 3a–b), and in some cases the failure to depict aspects 601 

of tree space structure that are relevant to interpretation (Fig. 5) – whatever structure is portrayed 602 

by a 2D plot can at least by deciphered at a glance, in contrast to more cognitively taxing 603 

portrayals of higher-dimensional space, which must still ultimately be perceived through the two 604 

dimensions of the retina. The potential for misinterpretation can be reduced by plotting the 605 

minimum spanning tree (e.g. Fig. 1d), by marking clusters that are statistically supported by the 606 

original distances, by evaluating how well a low-dimensional mapping conveys tree-to-tree 607 

distances, and by carefully examining higher dimensions for evidence of additional structure. 608 

Recommendations 609 

In summary, commonly used practices are generally inadequate for the interpretation of the 610 

phylogenetic tree spaces explored herein. The Kendall–Colijn and Robinson–Foulds metrics do 611 

not directly measure trees’ phylogenetic similarity; their associated tree spaces are poorly suited 612 

to phylogenetic questions. Clusters identified by visual inspection of mappings are likely to 613 

misrepresent the true structure of a tree set. Two dimensions are seldom sufficient to convey the 614 

full structure of tree space, and 2D mappings should be viewed with suspicion unless shown to 615 

exhibit high values of continuity and trustworthiness; a low correlation between original and 616 

mapped distances indicates that the interpretation of a mapping may require additional care. 617 

The 128 tree sets studied herein include multiple examples where standard practice would 618 

lead to invalid conclusions. For instance, Wright and Lloyd (2020) correctly interpret the RF 619 

space of trees from Yates (2003) (Fig. 1a; cf. fig. 1C in Wright and Lloyd (2020)) as exhibiting 620 

no relationship with stratigraphic congruence – yet a strong relationship is present in all other 621 

metric spaces (see Fig. 1b and Smith (2021)). Similarity, 2D mappings of Russell and Dong 622 

(1993) or Xu et al. (2018) tree spaces (Fig. 5) contain no hint of the significant correlation with 623 
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stratigraphic congruence that exists in higher dimensions. Strong clustering in the mapped RF 624 

space of trees from Fischer et al. (2016) is entirely an artefact of mapping: no corresponding 625 

structure exists in the original distance matrix. These are not isolated instances, but examples that 626 

illustrate recurrent patterns evident across all these studies; and there is no obvious reason that 627 

the tree sets analysed here should be particularly intractable to tree space analysis. With the 628 

caveat that ‘landscapes’ of trees selected using different optimality criteria or from different 629 

sources of data may exhibit different properties, these results raise serious concerns over the 630 

validity of previous presentations of tree spaces. 631 

To minimize artefacts when analysing the distribution of cladograms, I recommend that 632 

tree space analysis employs the clustering information or quartet distances – ideally, both. These 633 

distances are sensitive to differences in the evolutionary relationships implied by cladograms, but 634 

not to factors such as tree shape that are irrelevant to most phylogenetic questions. 635 

Information-theoretic distances (particularly the clustering information distance) measure 636 

the similarity between cladograms more effectively than the quartet distance, and have a higher 637 

intrinsic dimensionality. Insofar as this higher dimensionality denotes a more information-rich 638 

tree space, the clustering information distance is well suited to the identification of clusters of 639 

trees; moreover, these clusters tend to retain their identity when mapped. On the other hand, the 640 

lower dimensionality of quartet tree space means that it suffers less distortion when mapped. 641 

Structure evident in both metric spaces might warrant additional confidence. 642 

Except where clustering is conducted for a separate purpose (Gori et al. 2016) – for 643 

instance, when using clusterings to generate summary trees (Stockham et al. 2002) – clusters 644 

should be identified objectively from original tree distances. The clustering with the highest 645 

silhouette coefficient can be considered the best representation of the underlying structure, 646 
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provided that this coefficient is high enough to indicate that the structure is meaningful (> 0.5). 647 

Hierarchical clustering often finds the best clustering, but as the optimal method depends on the 648 

nature of clustering structure, I encourage the use of multiple clustering methods. Depicting the 649 

best clustering on mappings (as in Fig. 1g–i) reduces the potential for misinterpretation where 650 

mappings do not reflect the structure of the original tree space. 651 

The optimal mapping method will depend on the purpose of the visualization. PCoA 652 

maps – which tend to closely resemble Sammon and Kruskal mappings, but are much faster to 653 

compute – tend to reproduce original tree-to-tree distances most faithfully, making them easy to 654 

interpret, whilst also depicting structure consistently (high trustworthiness and continuity); as 655 

such, they are an obvious choice for instructive mappings. Alternatively, t-SNE maps emphasize 656 

local structural relationships, though their interpretation can be counter-intuitive; whereas CCA 657 

maps depict cluster membership whilst downplaying other structural features. 658 

Whichever mapping method is employed, it is important to evaluate the quality of the 659 

mapping: high (> 0.95) values of the trustworthiness and continuity measures are desirable, as is 660 

a good correlation with original distance metrics. Even if minimum spanning trees can help to 661 

visually assess the degree of distortion, it is not possible to be confident that any apparent 662 

structure is genuine unless the quality of a mapping is explicitly documented. Of course, these 663 

metrics will be invalid, and distances misrepresented, unless plotting software is configured to 664 

plot x and y axes to the same scale. 665 

These recommendations are drawn from a limited sample of morphological datasets; it is 666 

likely that tree sets obtained from different datasets using different methods will occupy tree 667 

spaces with different properties. Nevertheless, the degree to which methodological decisions can 668 

influence the interpretation of tree space represents a strong argument for conducting and 669 



M R Smith 

31 

documenting basic checks to establish that presented results truly represent the underlying 670 

structure of the high-dimensional tree space. 671 

To facilitate best practice in the construction, evaluation and interpretation of tree space, I 672 

have produced a ‘point-and-click’ graphical interface within R – installed using 673 

install.packages('TreeDist') and launched by executing the command 674 

TreeDist::MapTrees(). This software allows users to upload trees, select tree distance, 675 

mapping and clustering methods, and generate high-dimensional mappings, with real-time 676 

evaluations of mapping and clustering quality to ensure that interpretations truly reflect the 677 

underlying distribution of phylogenetic trees. 678 
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FIGURE CAPTIONS 866 

Figure 1: Different distances can impose tree spaces with different characteristics. 867 

First two dimensions of PCoA mappings of tree spaces, with minimum spanning tree of 350 868 

points (solid lines). Higher dimensions depicted in supplementary information (Smith 2021). (a–869 

b), 2 500 Bayesian (dots) and 100 parsimony (rings) trees from analysis of Yates (2003), 870 

coloured by stratigraphic congruence (MIG, millions of years); (a) RF tree space does not exhibit 871 

clear structure; MST indicates that the two apparent clusters do not correspond to clusters in the 872 

original tree space, and that the mapping is highly distorted (MST extension factor = 22.4); (b) 873 

path distance tree space (MST extension factor = 12.1), showing stratigraphic structure and clear 874 

separation of parsimony and Bayesian trees; (c), cumulative correlation of stratigraphic fit (MIG) 875 

with first n tree space axes; (d–f), 2 500 Bayesian and 54 parsimony trees from analysis of 876 

Carpenter (2001); points coloured by tree balance (total cophenetic index; dark = balanced): (d), 877 

strong clustering in RF mapping (silhouette coefficient = 0.70) has no underlying basis 878 

(silhouette coefficient = 0.040 ≪ 0.2), as suggested by tortuous minimum spanning tree 879 

(extension factor = 33.3); (e) vertical axis in KC mapping (MST extension factor = 9.61) shows 880 

clear correspondence with tree balance; (f) quartet mapping (MST extension factor = 13.4) 881 

faithfully represents the absence of clustering and tree balance correlation present in the original 882 

space; (g–i) trees from analysis of Fischer et al. (2016), showing (lack of) correspondence 883 

between original clusters (point colour, corresponding to Bayesian vs. parsimony trees) and 884 

clusters identified from mappings (using hierarchical clustering; dashed lines = convex hulls); (j–885 

l) trees from analysis of Schoch and Milner (2008), coloured by stratigraphic fit; different 886 

metrics result in spaces with different (non-clustering) structures, whose validity is supported by 887 

inspection of MST and of higher dimensions. Abbreviations: CID, clustering information 888 
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distance tree space; KC, Kendall–Colijn tree space; MIG, Minimum implied gap; Q’tet, Quartet 889 

tree space; RF, Robinson–Foulds tree space; SV, split size vector tree space; TCI, total 890 

cophenetic index. 891 

 892 

Figure 2: Methods for optimal clusterings. 893 

(a–b), strength of clustering (silhouette coefficient) across all 128 tree sets under each tree 894 

distance metric in (a) original tree space; (b) 2D PCoA mapping. Box plots denote median and 895 

interquartile range; strong evidence that medians differ exists where notches do not overlap. (c–896 

d), Number of clusters in optimal clustering under each tree distance method, calculated from (c) 897 

original distances; (d) 2D PCoA mapping. Tree sets lacking ‘reasonable’ structure (i.e. silhouette 898 

coefficients < 0.5) are taken to exhibit a single cluster. (e–f), Mean difference (variation of 899 

information) between optimal clusterings obtained under (e), each tree distance metric, (f), each 900 

clustering method, from datasets exhibiting at least ‘reasonable’ clustering structure. Brighter 901 

colours represent greater differences. (g), Definition (silhouette coefficient) of optimal clustering 902 

obtained under each clustering method, summarized for all distances and tree sets. Bars denote 903 

medians and interquartile ranges. (h), Method obtaining clustering with highest silhouette 904 

coefficient, across all tree spaces with at least ‘reasonable’ clustering structure (silhouette 905 

coefficient > 0.5). 906 

 907 

Figure 3: Quality of tree space mappings based on underlying tree distance method. 908 

(a–b), difference between original and mapped clusterings, in tree spaces that contain at least 909 

‘reasonable’ clustering structure (silhouette coefficient > 0.5); (c), number of dimensions where 910 
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trustworthiness and continuity are each > 0.95; (d), length of minimum spanning tree relative to 911 

shortest possible in 3D PCoA mappings; increasing values indicate more distorted mappings; (e–912 

f), cumulative correlation coefficient (r²) between Sammon mapping axes and (e), original tree 913 

distance; (f), stratigraphic congruence (MIG); (g), correlation dimension of tree spaces. 914 

Box and whisker plots depict medians and interquartile ranges; where notches do not 915 

overlap, strong evidence exists that medians differ. 916 

 917 

Figure 4: Effectiveness of mapping methods. 918 

(a), trustworthiness × continuity; (b), minimum spanning tree extension factor; (c), correlation 919 

with original distances (adjusted r²); (d), correlation with stratigraphic congruence (MIG, 920 

adjusted r²). Lines depict median and interquartile range. Kruskal-1 mappings (omitted for 921 

clarity) behave equivalently to PCoA. t-SNE mapping results only available for first three 922 

dimensions. 923 

 924 

Figure 5: Structure ‘hidden’ in higher dimensions. 925 

First six dimensions of phylogenetic information distance PCoA tree space, showing 2500 926 

Bayesian trees (dots) and single most parsimonious tree (circles). Results from: bottom left, 927 

Russell and Dong (1993); top right, Xu et al. (2018). Structural features evident in higher 928 

dimensions are not apparent within the first two dimensions (top left corner), particularly with 929 

regard to stratigraphic congruence, which is strongly correlated with higher dimensions of tree 930 

space (bottom, right). 931 
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TABLE CAPTIONS 932 

Table 1. Performance of selected tree distance metrics against tests of tree distance behaviour. 933 

Parentheses denote range of possible scores for each measure (best to worst). Note that random 934 

tree pairs obtain the maximum possible RF distance, resulting in a zero interquartile range (*). 935 

Full details and results in Smith (2020a) and Smith (2021). 936 

Acronyms: CID: clustering information distance; KC: Kendall–Colijn distance; QD: 937 

quartet distance; RF: Robinson–Foulds distance; SV: split size vector distance. 938 
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