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We present a joint likelihood analysis of the real-space power spectrum and bispectrum measured from a
variety of halo and galaxy mock catalogs. A novel aspect of this work is the inclusion of nonlinear triangle
configurations for the bispectrum, made possible by a complete next-to-leading order (“one-loop”)
description of galaxy bias, as is already common practice for the power spectrum. Based on the goodness of
fit and the unbiasedness of the parameter posteriors, we accomplish a stringent validation of this model
compared to the leading order (“tree-level”) bispectrum. Using measurement uncertainties that correspond
to an effective survey volume of 6 ðGpc=hÞ3, we determine that the one-loop corrections roughly double
the applicable range of scales, from ∼0.17 h=Mpc (tree level) to ∼0.3 h=Mpc. This converts into a 1.5–2x
improvement on constraints of the linear bias parameter at fixed cosmology, and a 1.5–2.4x shrinkage of
uncertainties on the amplitude of fluctuations As, which clearly demonstrates the benefit of extracting
information from nonlinear scales despite having to marginalize over a larger number of bias parameters.
Besides, our precise measurements of galaxy bias parameters up to fourth order allow for thorough
comparisons to coevolution relations, showing excellent agreement for all contributions generated by the
nonlocal action of gravity. Using these relations in the likelihood analysis does not compromise the model
validity and is crucial for obtaining the quoted improvements on As. We also analyzed the impact of higher-
derivative and scale-dependent stochastic terms, finding that for a subset of our tracers the former can boost
the performance of the tree-level model with constraints on As that are only slightly degraded compared to
the one-loop model.
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I. INTRODUCTION

Upcoming surveys of the large-scale structure (e.g., [1–3]),
will enable precise measurements of higher-order statistics,
which probe the non-Gaussian nature of the distribution of
galaxies and other luminous tracers in our Universe. These
statistics include the three-point correlation function and its
Fourier transform, the bispectrum, whose importance for
exploiting the full potential of the new survey generation has
been stressed in several recent studies. In particular, they are
expected toprovide significant advances in our understanding
of dark energy and gravity [4–9], the determination of

neutrino masses [10–13], and for a glimpse into the initial
inflationary phase [14–19]. Past applications of the two
measures to data collected in the Baryon Oscillation
Spectroscopic Survey (BOSS) have been mostly limited to
large scales [20–24], while in order to satisfy the aforemen-
tioned expectations it will be critical that their signal can also
be reliably extracted fromat least themildly nonlinear regime.
This requires careful modeling of nonlinearities that arise

from the gravitational evolution of the matter density,
redshift space distortions due to peculiar velocities, and
the connection between matter and tracer densities, also
known as galaxy bias. Considerable developments on the
bispectrum have taken place over the last years for all three
of these modeling challenges (e.g., [25–34]), but their*alexander.eggemeier@durham.ac.uk
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implementation in the analysis of real or mock data is still
largely lacking. In this work we intend to take an important
step in this direction by conducting a detailed test of the
perturbative galaxy bias model at next-to-leading, or one-
loop, order that was presented in [34], which we apply here
to a variety of mock data samples.
The aim of the perturbative galaxy bias expansion (for a

comprehensive review, see [35]) is to capture all gravita-
tional effects that can influence galaxy formation on scales
much larger than their host dark matter halos, and absorb
the uncertainties of the formation process into a set of
unknown bias parameters. The lowest-order term in this
expansion is the dark matter density itself, leading to the
well-known linear relationship δg ¼ b1δ [36], where δg and
δ denote the galaxy and matter density contrasts respec-
tively, and b1 is the linear bias parameter. Nonlinear
corrections to this relation involve powers of the matter
field [37,38], as well as the tidal field [39–42], which are
generated by the anisotropic collapse of overdensities. Both
of their signatures appear at leading order in the bispectrum
and have already been detected at great significance in
analyses of simulated data [43–55], whereas constraints on
the former have also been reported from BOSS [20–22,56].
As shown in [28,34], the bispectrum model at one-loop
order receives a number of additional contributions from
the bias expansion. Since each of the associated bias
parameters needs to be marginalized over for making
robust inferences on cosmology, one of the leading ques-
tions we want to address is whether this increased param-
eter space strongly penalizes the amount of information that
can be extracted from the nonlinear regime.
An important question related to this problem is whether

the full set of galaxy bias parameters is truly required to
describe the measurements of the bispectrum, or whether
one can propose universal simplifications that do not
compromise the model’s validity. Principal candidates
for that are the so-called coevolution relations between
galaxy bias parameters [34,45,46,57], which arise from
making simplifying assumptions about the matter-tracer
connection at some time in the far past, and allow one to fix
a subset of the parameters at later times. Previous data
analyses have relied heavily upon such relations, fixing
varying numbers of bias parameters in the power spectrum
or two-point function (e.g., [58–61]). This motivated
various studies to check their validity by making precise
measurements of bias parameters from dark matter halo
catalogs using either the combination of the power spec-
trum and bispectrum [49], or more recently, using the
cross-correlation between the halo density and multiple
higher-order fields [53,54]. These studies have shown that
the coevolution relations generally provide a good descrip-
tion of the measurements, although deviations have been
reported in particular for the tidal bias parameter. Due to
parameter space degeneracies this is likely not a concern
for analyses of the power spectrum alone [62], but in

combination with the bispectrum, which is affected by tidal
bias even on large scales, application of the coevolution
relation can lead to significant errors.
Our strategy for tackling these questions closely follows

the approach presented in the other two installments of this
series of papers [62,63]. We perform full likelihood fits to
the measured power spectra and bispectra from a diverse
pool of tracers, including samples that mimic the SDSS
Main, as well as the BOSS LOWZ and CMASS galaxies, in
addition to four halo catalogs with different mass cuts and
redshifts. Subsequently, we assess the quality of these fits
based on the unbiasedness of the recovered parameters and
the goodness of fit in order to quantitatively determine the
range of scales over which the model can be considered to
be valid. Contrasting the constraining power of various
modeling options at the respective maximum scale of
validity gives a straightforward and robust means of
comparison of the adopted assumptions. As our focus in
this paper lies on identifying a potentially optimal model
for galaxy bias, we ignore redshift-space distortions and
keep cosmological parameters fixed, with the exception of
the amplitude of fluctuations As. We also note that our set
of samples does not cover the main targets of the upcoming
Dark Energy Spectroscopic Instrument [1] or the Euclid
satellite mission [2], but its diversity still allows for a strong
test of the universality of the one-loop bias model and for
shedding new light on the validity of the coevolution
relations.
The paper is organized as follows: in Sec. II we give a

brief review of the theoretical background including all
relevant expressions that enter the models; in Sec. III we
provide details on our samples, measurements, and fitting
methodology. Section IV presents the main analysis of this
paper with an estimation of the model validity ranges and a
detailed test of the coevolution relations under fixed
cosmology, while in Sec. V we check the impact of varying
As. Our conclusions are given in Sec. VI.

II. STATISTICS OF BIASED TRACERS
IN PERTURBATION THEORY

In order to describe the clustering of galaxies, the bias
expansion must account for all properties of the matter field
that affect the formation and evolution of the galaxies. Based
on the equivalence principle and symmetry considerations
these properties—in the following also called “operators”—
have recently been systematically identified and organized
into a basis of terms at each order of perturbation theory,
where increasingly higher orders become relevant at smaller
and smaller scales [34,35,64,65]. In this section we present
the operator basis up to fourth order as required by one-loop
corrections to the bispectrum, starting from effects that are
purely induced by gravity. We review the multipoint
propagator formalism for galaxy bias, which simplifies
the computation of the correlation functions, and finally
discuss contributions to the bias expansion from two
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additional types of effects: “higher-derivative” operators
and stochasticity.

A. Galaxy bias expansion

In the basis presented in [34] the galaxy density contrast
is written as

δgðxÞ ¼ b̄1δðxÞ þ
b̄2
2
δ2ðxÞ þ γ̄2G2ðΦvjxÞ þ

b̄3
6
δ3ðxÞ

þ γ̄×2 G2ðΦvjxÞδðxÞ þ γ̄3G3ðΦvjxÞ þ γ̄21G2ðφ2;φ1jxÞ
þ γ̄×21G2ðφ2;φ1jxÞδðxÞ þ γ̄211G3ðφ2;φ1;φ1jxÞ
þ γ̄22G2ðφ2;φ2jxÞ þ γ̄31G2ðφ3;φ1jxÞ þ � � � ; ð1Þ

where we have suppressed all time dependencies as well as
ignored terms that do not contribute to the one-loop
power spectrum or bispectrum. Each term in Eq. (1) is a
combination of an operator (to be described in the follow-
ing) and a bias coefficient denoted by the symbol bX or γX,
while Φv is the (scaled) velocity potential,1 and φn are the
Lagrangian perturbation theory (LPT) potentials.
In this particular representation of the bias expansion we

distinguish between two different groups of effects, des-
ignated either as local or nonlocal evolution operators (LE
and NLE operators, respectively). The former are con-
structed exclusively out of products of the matter density
perturbations, δ, and the two Galileons, G2ðΦvÞ and
G3ðΦvÞ, which are defined as follows (repeated indices
are summed over):

G2ðΦvÞ≡ ð∇ijΦvÞ2 − ð∇2ΦvÞ2; ð2Þ

G3ðΦvÞ≡ ð∇2ΦvÞ3 þ 2∇ijΦv∇jkΦv∇kiΦv

− 3ð∇ijΦvÞ2∇2Φv: ð3Þ

Apart from ∇2Φv these are the only other two scalar
invariants of the tensor ∇ijΦv in three dimensions, and the
usual tidal field enters the bias relation at second order
through the combination G2ðΦvÞ þ 2=3δ2. Furthermore, at
leading order each of the LE operators is a local function of
the linear velocity potential, and if gravitational instability
was a local process, this would remain true at all orders,
such that we could expect the LE operators to be sufficient
for the description of galaxy bias [45] (barring higher-
derivative and stochasticity effects to be discussed in
Secs. II E and II F).
Gravity, however, acts over long distances and the

meaning of the second group of operators is to account
for the new dependencies that emerge as a consequence of
this nonlocality. In LPT the nonlocal nature of gravity is

manifest in all terms beyond the Zel’dovich approximation
[66,67], for instance the second-order LPT potential φ2,
given by ∇2φ2 ¼ G2ðφ1Þ, is a nonlocal function of the
linear (Zel’dovich) potential φ1 ¼ −∇−2δ. Using this fact it
was demonstrated in [34] that the new dependencies can
also be captured by Galileons, but involving the higher-
order LPT potentials, i.e.,

G2ðφn;φmÞ≡∇ijφn∇ijφm −∇2φn∇2φm; ð4Þ

and analogously for G3ðφn;φm;φkÞ. At leading order we
have Φv ¼ −φ1, so the first time an NLE operator can
appear in the bias expansion is at third order, with the only
possibility being G2ðφ2;φ1Þ. At fourth order four additional
terms must be taken into account whose expressions are
summarized in Appendix A.
The set of LE and NLE operators in Eq. (1) covers all

nonredundant (linear independent) combinations that can
be constructed out of second derivatives of the gravitational
and velocity potentials. According to the equivalence
principle and the Galilean invariance of the equations of
motion these are precisely the leading gravitational
effects that impact the formation of galaxies. Based on
the same principles, another complete bias basis up to
fourth order was previously presented in [35] following
the work of [65], and is equivalent to the one adopted
above by means of the relations provided in Appendix A.2
in [34].

B. Multipoint propagator formalism

The coefficients—or bias parameters—of the expansion
in Eq. (1) depend on the order at which this series is
truncated, which implies that they are not immediately
comparable with direct measurements of the bias param-
eters, for instance through cross-correlations with the
matter field [53,54]. This was first pointed out in [68]
and can be remedied by appropriate redefinitions (“renorm-
alization”) of the original parameters that preserves the
overall form of the bias expansion.
An alternative (but equivalent) way of thinking about this

complication is to guarantee that the expansion coefficients
are strictly defined as observable quantities. As shown in
[34] this can be achieved by expanding the galaxy density
contrast in terms of Wiener-Hermite functionals Hn,
such that

δg¼Γð1Þ
g ⊗H1þ

1

2
Γð2Þ
g ⊗H2þ

1

3!
Γð3Þ
g ⊗H3þ��� : ð5Þ

The role of the bias parameters is here taken by the scale-

dependent functions ΓðnÞ
g , which we call galaxy “multipoint

propagators” in analogy to similar quantities appearing in
the context of renormalized perturbation theory [69], and
they are defined as ensemble averaged derivatives of δg

1We scale the peculiar matter velocity field u by the growth rate
and conformal Hubble rate, such that v≡ −u=ðfHÞ. The corre-
sponding scaled velocity potential is defined by∇2Φv ≡ θ≡∇ · v.
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with respect to the linear matter perturbations δL. At nth
order and written in Fourier space2 we have

� ∂nδgðkÞ
∂δLðk1Þ � � � ∂δLðknÞ

�
≡ ð2πÞ3ΓðnÞ

g ðk1;…; knÞ

× δDðk − k1���nÞ; ð6Þ

where δD denotes the Dirac delta function and k1���n ≡
k1 þ � � � þ kn. TheWiener-Hermite functionals are given in
terms of the linear matter perturbations and the first three
read as follows (� stands for complex conjugation)

H1ðkÞ ¼ δ�LðkÞ;
H2ðk1; k2Þ ¼ δ�Lðk1Þδ�Lðk2Þ − hδLðk1ÞδLðk2Þi;

H3ðk1; k2; k3Þ ¼ δ�Lðk1Þδ�Lðk2Þδ�Lðk3Þ
− ½hδLðk1ÞδLðk2Þiδ�Lðk3Þ þ cyc�; ð7Þ

while the product ⊗ in Eq. (5) is defined as

½ΓðnÞ
g ⊗ Hn�ðkÞ≡ ð2πÞ3

Z
k1;…;kn

δDðk − k1���nÞ

× ΓðnÞ
g ðk1;…; knÞHnðk1;…; knÞ: ð8Þ

One can show that the multipoint propagators are related to
cross-correlations between the galaxy and matter fields
[70], for example h∂δg=∂δi ¼ hδgδi=hδδi.3 This highlights
that these quantities are indeed directly measurable and in

the particular case of Γð1Þ
g we see that the low-k limit

matches the linear bias parameter typically extracted from
simulations or mock catalogs. The scale dependence of the
multipoint propagators is determined by the functional
form of the various operators that appear in the bias
expansion, and for the basis presented in Sec. II A they
have a particularly simple structure in Lagrangian space
(i.e., at an initial time where nonlinearities in the matter
density perturbations are negligible). More precisely, [34]
demonstrated that the n-point propagator is given by all
contributions that enter Eq. (1) at nth order, in addition to
loop corrections (of order nþ 2 at one-loop level) that can
only involve NLE operators. Given this, and using only
operators up to fourth order, the first three Lagrangian
(indicated by the subscript L) multipoint propagators are

Γð1Þ
g;LðkÞ ¼ b1;L þ 2γ21;L

Z
q
Kðk − q; qÞKðk; qÞPLðqÞ; ð9Þ

Γð2Þ
g;Lðk1; k2Þ ¼ b2;L þ 2γ2;LKðk1; k2Þ

þ 12

Z
q
½γ×21;LKð4;FÞ

δG2ðφ2;φ1Þ þ γ211;LK
ð4Þ
G3ðφ2;φ1;φ1Þ

þ γ22;LK
ð4Þ
G2ðφ2;φ2Þ þ γ31;LK

ð4Þ
G2ðφ3;φ1Þ�PLðqÞ;

ð10Þ

Γð3Þ
g;Lðk1; k2; k3Þ ¼ b3;L þ 2γ×2;L½Kðk1; k2Þ þ cyc�

þ 2γ21;L½Kðk1; k2ÞKðk12; k3Þ þ cyc�
þ 6γ3;LLðk1; k2; k3Þ; ð11Þ

where PL is the linear matter power spectrum, and K and L
are the Fourier space kernels of the two Galileons G2ðΦvÞ
and G3ðΦvÞ,

Kðk1; k2Þ≡ μ212 − 1; ð12Þ

Lðk1; k2; k3Þ≡ 2μ12μ23μ31 − μ212 − μ223 − μ231 þ 1; ð13Þ

with μij ≡ ki · kj=kikj. The square bracket in the integral
appearing in Eq. (10) is evaluated for the argument
ðk1; k2; q;−qÞ and the kernel functions associated to the
fourth order NLE operators are collected in Appendix A.
We stress that the parameters in Eqs. (9)–(11) are auto-
matically “renormalized” and no longer depend on the
order of the bias expansion, which we have indicated by the
lack of an overbar. In this way, we bypass the cumbersome
process of renormalization altogether.
The transition from Lagrangian to Eulerian space, that is,

to the observed late-time galaxy density fluctuations,
induces corrections to the above propagators because of
nonlinear evolution. This leads to lower order (<n) bias
contributions entering a given n-point propagator, as well
as additional loop corrections that are no longer constrained
to NLE operators alone. Assuming the conservation of
tracers,4 all these terms can be computed by the nonlinear
evolution of the multipoint propagators themselves, which
are determined by a set of recursion relations [34]. If we

combine ΓðnÞ
g with the multipoint propagators for the matter

field and velocity divergence [which are defined in analogy

with Eq. (6)] into the three-vector ΓðnÞ
a ≡ ½ΓðnÞ

m ;ΓðnÞ
θ ;ΓðnÞ

g �,
and using the logarithm of the growth factor as the time
variable η≡ lnD, we can write the recursion relations as

2We use the following Fourier space convention δðxÞ ¼R
k exp ð−ik · xÞδðkÞ, and write all k-space integrals with the
short-hand notation

R
k1;…;kn

≡ R
d3k1=ð2πÞ3 � � � d3kn=ð2πÞ3.

3Note that this property provides a connection to the bias
renormalization procedure outlined in [28].

4This is not a strong assumption, all it requires is that for each
tracer of interest identified at redshift z, one follows back the
center of mass of its constituents to the time of the initial
conditions. This defines the tracers in Lagrangian space and
ensures conservation by construction.
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ΓðnÞ
a ðk1;…;kn;ηÞ¼gabðηÞΓðnÞ

b;Lðk1;…;knÞ

þ
Z

η

0

dη0gabðη−η0Þ½ΓðnÞ
b;treeþΓðnÞ

b;1L�; ð14Þ

where ΓðnÞ
m;L ¼ ΓðnÞ

θ;L ¼ 1 for n ¼ 1 and are otherwise zero,
and the last two terms are given by

ΓðnÞ
b;tree ¼

Xn−1
m¼1

½γbcdðk1���m; kmþ1���nÞΓðmÞ
c ðk1;…; km; η0Þ

× Γðn−mÞ
d ðkmþ1;…; kn; η0Þ þ sym�; ð15Þ

and

ΓðnÞ
b;1L ¼

Xnþ1

m¼1

Z
q
½γbcdðk1���m−1 þ q; km���n − qÞ

× ΓðmÞ
c ðk1;…; km−1; q; η0Þ

× Γðn−mþ2Þ
d ðkm;…; kn;−q; η0Þ þ sym�PLðqÞ: ð16Þ

The expressions are symmetrized over all participating k
modes and definitions for the linear time propagator gabðηÞ
as well as the vertices γabc are provided in Appendix B.
The first term in Eq. (14) is thus a linear extrapolation of the
initial conditions, while the remaining two terms give rise
to the nonlinear evolution corrections at either tree-level or
one-loop order. Although these relations are straight-
forward to evaluate, the resulting expressions are cumber-
some to reproduce, so we instead direct the reader to a
Mathematica notebook accompanying this paper,5 which
implements Eq. (14) and computes all relevant quantities.

C. Coevolution and peak-background split relations

A subset of the contributions generated by the nonlinear
evolution of the multipoint propagators has the same scale
dependence as those terms already present at initial time.
We can group those terms together and define them as the
Eulerian bias parameters, which yields the following
coevolution relations for the parameters appearing in
Eqs. (9)–(11) [34]:

γ2 ¼ −
2

7
ðb1 − 1Þ þ γ2;L; ð17Þ

γ×2 ¼ −
2

7
b2 þ γ×2;L; ð18Þ

γ3 ¼ −
1

9
ðb1 − 1Þ − γ2 þ γ3;L; ð19Þ

γ21 ¼
2

21
ðb1 − 1Þ þ 6

7
γ2 þ γ21;L; ð20Þ

γ×21 ¼
2

21
b2 þ

6

7
γ×2 þ γ×21;L; ð21Þ

γ211 ¼
5

77
ðb1 − 1Þ þ 15

14
γ2 −

9

7
γ3 þ γ21 þ γ211;L; ð22Þ

γ22 ¼ −
6

539
ðb1 − 1Þ − 9

49
γ2 þ γ22;L; ð23Þ

γ31 ¼ −
4

11
ðb1 − 1Þ − 6γ2 þ γ31;L; ð24Þ

where b1 ¼ 1þ b1;L and b2 ¼ b2;L. We see, in particular,
that bias operators that might have been absent at initial times
(vanishing Lagrangian bias parameter) are sourced by non-
linear evolution, in which case the corresponding parameters
are fixed in terms of the remaining ones. A special case, the
so-called local Lagrangian approximation, arises if the initial
galaxy bias relation only involves powers of the matter
perturbations, such that at late times all bias parameters
can be expressed as functions of b1, b2 etc. This has already
been invalidated by detailed measurements in [53,54], which
have found that γ2;L < 0 and thus demonstrated an impact of
at least the tidal field at initial time, although in practice
Eq. (17) with γ2;L ¼ 0 can still be a reasonable assumption,
depending on how sensitive a given observable is to effects
from the tidal field [62]. Given that all terms deriving from the
nonlocality of gravity (our NLE operators) are inherently
linked to nonlinear evolution, a potential simplification is to
assume that these operators are not needed for characterizing
the distribution of protohalos—a property that is also mani-
fest in peak bias models (e.g., [71,72]). We will study this
assumption in Sec. IV C, but note that it would provide us
with a useful simplification as it significantly reduces the
overall number of free parameters in the one-loop bispectrum.
Based on the separate universe approach [73], the

authors of [74] measured the response of the halo pop-
ulation to changes in a long wavelength mode and thus to a
local modulation of the density threshold that triggers halo
formation. This corresponds to an exact implementation of
the peak-background split (PBS) and yields precise mea-
surements of the set of local bias parameters bn, which in
turn revealed tight relationships between the higher-order
parameters b2 and b3, and the linear bias parameter. As the
PBS is sensitive to the total overdensities, these measure-
ments match the spherically averaged parameters of our
bias basis (see Appendix C.3 of [34]), so that

b2;PBS ¼ bsph2;PBSðb1Þ þ
4

3
γ2 ð25Þ

b3;PBS ¼ bsph3;PBSðb1Þ þ 4γ×2 −
4

3
γ3 −

8

3
γ21 −

32

21
γ2; ð26Þ5https://doi.org/10.5281/zenodo.4529886.
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where we denoted the relations found in [74], which
were fitted by a third-order polynomial in b1, as bsph2;PBS

and bsph3;PBS.

D. Power spectrum and bispectrum
from multipoint propagators

Besides being the (scale-dependent) physical bias
parameters, we now show that the multipoint propagators
serve a second important role: they are also the main
building blocks of the moments or correlation functions of
the galaxy density fluctuations. In this paper we are
interested in the two lowest-order correlation functions
in Fourier space, the power spectrum and bispectrum,
which are given by

hδgðk1Þδgðk2Þi≡ ð2πÞ3Pggðk1ÞδDðk12Þ; ð27Þ

hδgðk1Þδgðk2Þδgðk3Þi≡ð2πÞ3Bgggðk1;k2;k3ÞδDðk123Þ; ð28Þ

with analogous definitions for the matter perturbations. In
particular, the linear power spectrum PL corresponds to the
correlation of two linear Fourier modes δLðkÞ. Note that in
this work we ignore redshift space distortions, which means
that statistical isotropy holds and the power spectrum and

bispectrum are determined by either a single or three kis,
respectively.
In order to compute these statistics we have to relate

them to the linear matter spectrum by plugging in the bias
expansion. This step is greatly simplified when the bias
expansion is written in the form of Eq. (5), as we can
exploit the orthogonality relations for the Wiener-Hermite
functionals (see, e.g., [34,75]), which ensure that many
terms have to vanish when taking products of galaxy
densities. It is then easy to see that in case of the power
spectrum there is only one term at each loop order, such that

PggðkÞ ¼ ½Γð1Þ
g ðkÞ�2PLðkÞ þ

1

2

Z
q
½Γð2Þ

g ðk − q; qÞ�2

× PLðjk − qjÞPLðqÞ þ � � � : ð29Þ

To compute Pgg strictly at the one-loop level we only need
to keep those terms that are of order OðP2

LÞ, which means

we require Γð1Þ
g at next-to-leading order (this includes the

usual P13 contribution), but it is sufficient to evaluate Γ
ð2Þ
g at

tree level. Proceeding to the bispectrum and using the
product formula for three Wiener-Hermite functionals
given in [34] (see also [76] for a direct evaluation), we
obtain

Bgggðk1; k2; k3Þ ¼ Γð2Þ
g ðk1; k2ÞΓð1Þ

g ðk1ÞΓð1Þ
g ðk2ÞPLðk1ÞPLðk2Þ þ cyc

þ
�Z

q
Γð2Þ
g ðk1 − q; qÞΓð2Þ

g ðk2 þ q;−qÞΓð2Þ
g ðk1 − q; k2 þ qÞPLðjk1 − qjÞPLðjk2 þ qjÞPLðqÞ

þ 1

2

Z
q
Γð3Þ
g ðk3; k2 − q; qÞΓð2Þ

g ðk2 − q; qÞΓð1Þ
g ðk3ÞPLðjk2 − qjÞPLðqÞPLðk3Þ þ cyc

�
þ � � � ; ð30Þ

which is (up to next-to-leading order) fully determined by
the first three multipoint propagators, but opposed to the
power spectrum each term can involve the combination of
propagators from different orders. A consistent computation
at one-loop order further limits the expression toOðPLÞ3, so
we need to take into account loop corrections ofΓð1Þ

g andΓð2Þ
g

but no more than Γð3Þ
g at tree level. Note that, apart from the

tree-level bispectrum, the first line of Eq. (30) also contains
the terms that are commonly denoted as BII

321 and B411 [77].

From these expressions we also see clearly that Γð2Þ
g

constitutes a higher-order contribution for the power spec-
trum, but enters the bispectrum at leading order. As we will
verify in Sec. IVA, this is one of the reasons why the
bispectrum is so helpful in reducing the uncertainties on the
second-order parameters b2 and γ2, as is well known.

E. Higher-derivative effects

The formation of dark matter halos and galaxies occurs
through the gravitational collapse of material from an

extended region of space, whose size can be roughly
identified with the Lagrangian radius R of the halos (or
host halos in case of galaxies). This process implies a
spatial nonlocality between the matter and tracer densities
that is not accounted for by the galaxy bias expansion in
Eq. (1), because it implicitly assumes that δg is locally
related to each of the bias operators: at position x the galaxy
density only depends on the value of the bias operators at
the same position x. Therefore, we should instead consider
each term on the right-hand side of Eq. (1) as integrated
over a patch of size R, in which case the spatially local
assumption becomes valid in the limit that we consider
correlations on scales r ≫ R, or equivalently for Fourier
modes k ≪ 1=R. When approaching smaller scales (but
still larger than R) it is possible to capture the resulting
effects perturbatively, which leads to the occurrence of
higher-derivative terms, starting from R2∇2δ [41,78,79].
We assume here that the scale 1=R is of the same order as
the nonlinearity scale knl, defined as k3nlPðknlÞ=ð2π2Þ≡ 1,
such that R2∇2δ is the only relevant higher-derivative effect
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for the one-loop power spectrum. For the bispectrum,
though, the four additional terms,

∇2δ2; ð∇δÞ2; ∇2G2ðΦvÞ; G2ð∇iΦv;∇iΦvÞ ð31Þ

need to be taken into account, and together they give rise to
the following higher-derivative corrections to Eqs. (29) and
(30), respectively:

P∇ðkÞ ¼ −βPk2PLðkÞ; ð32Þ

B∇;123 ¼ −f½βB;aðk21 þ k22Þ þ βB;bk23�F2ðk1; k2Þ
þ ½βB;cðk21 þ k22Þ þ βB;dk23�Kðk1; k2Þ
þ βB;ek1 · k2gPLðk1ÞPLðk2Þ þ cyc: ð33Þ

Here, F2 denotes the second-order SPT kernel [80], and we
have introduced βP and βB;a=���=e as the higher-derivative
bias parameters, which are not fully independent as one can
show that βP ¼ ðβB;a þ βB;bÞ=2. We have absorbed the
dependence on the scale R into the parameters, which
consequently have units of ½Length�2. Recently, Ref. [81]
has reported the first measurements of βP for various halo
masses and showed that they follow the expected scaling
with Lagrangian radius.
As discussed in [34], corrections that result from a

breakdown of the perfect, pressureless fluid assumption in
the nonlinear regime [82] are completely degenerate with
higher-derivative galaxy bias. However, if both effects are
considered simultaneously, the relation between βP and
βB;a=b no longer holds and all six parameters must enter the
model as freely adjustable values. On the other hand, if we
can ignore higher-derivative bias while keeping the stress-
tensor effects, we can set βB;e ¼ 0.

F. Stochasticity

Apart from the various deterministic terms discussed
thus far, the galaxy bias relation is also subject to
stochasticity, which can be thought of as the impact of
deeply nonlinear modes on the formation of halos and
galaxies. Since these are uncorrelated with the large-scale
fields (provided that no significant primordial non-
Gaussianities generate such correlations), their contribution
appears stochastic in the perturbation theory regime of
validity [83–85]. To account for this, we write the galaxy
density as a sum of deterministic and stochastic contribu-
tions, δgðxÞ ¼ δdetg ðxÞ þ εgðxÞ, where the stochastic galaxy
field,

εgðxÞ ¼ εðxÞ þ εδðxÞδðxÞ þ ε∇2δðxÞ∇2δðxÞ þ � � � ; ð34Þ

can be decomposed into the first-order term ε, and a series
of composite terms, such as εδδ, which are induced by

gravitational evolution6 [35]. Each of the stochastic fields
has vanishing ensemble average and is uncorrelated with
the large-scale density δL, which ensures that hεgðxÞi ¼ 0

and implies that correlations among each other must be
highly localized in configuration space. In Fourier space we
can therefore express the power spectrum of two stochastic
fields as an effective low-k expansion [35]:

PεaεbðkÞ≡ hεaðkÞεbðk0Þi0 ¼Pεaεb;0þPεaεb;2k
2þ��� ; ð35Þ

with the constants Pεaεb;0 and Pεaεb;2, and using the primed
ensemble average to indicate that we have dropped a factor
of ð2πÞ3 as well as the momentum conserving Dirac
delta function. Analogous expressions hold for all higher
N-point functions.
Based on these considerations, the galaxy stochasticity

power spectrum in the large-scale limit is given by

CggðkÞ≡ hεgðkÞεgðk0Þi0 ¼ hεðkÞεðk0Þi0 þ � � �
¼ NP;0 þ NP;2k2 þ � � � ; ð36Þ

where contributions from stochastic fields not written down
are absorbed by the constantsNP;0,NP;2 etc. Physically, the
galaxy stochasticity power spectrum represents deviations
from purely Poissonian shot noise, which can either lead to
less large-scale power, NP;0 < 0 (sub-Poisson), due to
reduced small-scale clustering from the halo exclusion
effect, or enhanced power, NP;0 > 0 (super-Poisson) due to
subhalo or satellite galaxy clustering [86–89]. In the limit
k → ∞ we expect the shot noise to approach the Poisson
limit and so limk→∞CggðkÞ ¼ 0 [90], which suggests an
anticorrelation between NP;0 and the scale-dependent noise
parameter NP;2. This was empirically confirmed in [62],
which presented the first detailed measurements of NP;2,
and showed further that its contribution is important for
making consistent predictions of the galaxy auto power
spectrum and the galaxy-matter cross spectrum.
For the bispectrum we also have to account for three-

point correlations between δdetg and εg, which leads to the
following stochasticity bispectrum:

Cgggðk1; k2; k3Þ≡ hεgðk1Þεgðk2Þεgðk3Þi0
þ ½hδdetg ðk1Þεgðk2Þεgðk3Þi0 þ cyc�: ð37Þ

In the large-scale limit the first term can be expanded as for
the power spectrum, yielding

hεgðk1Þεgðk2Þεgðk3Þi0 ¼ NB;0 þ NB;2

X3
n¼1

k2n þ � � � ; ð38Þ

6In principle every operator in the bias expansion will appear
in Eq. (34) with an associated stochastic field, but for simplicity
we have ignored terms of order Oðδ2LÞ or higher.
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and we make use of Wick’s theorem to evaluate the second
term

hδdetg ðk1Þεgðk2Þεgðk3Þi0
¼ b1½Pεεδðk2Þ þ k21Pεε∇2δðk2Þ�Pmmðk1Þ þ � � � ; ð39Þ

where the right-hand side has to be symmetrized over k2
and k3. Expanding the stochasticity power spectra in
Eq. (39) up to order Oðk2Þ, and introducing the three
new parameters MB;0 and MB;2a=b, we finally obtain

Cgggðk1; k2; k3Þ ¼ NB;0 þ fNB;2k21 þ ½MB;0 þMB;2ak21

þMB;2bðk22 þ k23Þ�Pmmðk1Þ þ cycg
þ � � � ð40Þ

Again we note that contributions from higher-order sto-
chastic fields can be absorbed by the already included noise
parameters, but we see that the addition of ε∇2δ∇2δ was
important as it generates a separate scale dependence.
While the parameters NB;0 and MB;0 are routinely taken
into account for analyses involving the bispectrum (though
not necessarily as independent parameters) [21,55,91], the
relevance of the three scale-dependent parameters is so far
unexplored. The fact that NP;2 was found to be crucial for
tracers with strong deviations from Poisson shot noise (see
[62]) motivates the inclusion of NB;2 andMB;2a=b, as we are
going to do in Sec. IV B.
As was shown in [34,68], a subset of the loop corrections

to the galaxy power spectrum and bispectrum have a
nonvanishing large-scale limit, which means that the
models retain a sensitivity to the nonlinear regime even
on linear scales and thus strongly depend on the order at
which we truncate the perturbative expansion. However,
these terms are fully absorbed by the noise parameters, and
so we can subtract them from the power spectrum and
bispectrum. In our bias model, the large-scale limit of the
loop corrections are explicitly given by [34]

lim
k→0

PggðkÞ ¼
b22
2

Z
q
PLðqÞ2; ð41Þ

lim
k1;k2→0

Bgggðk1; k2; k3Þ ¼ b1b2

�
115

42
b2 þ b3 −

8

3
γ×2

�

× ðP1 þ P2 þ P3Þ
Z
q
PLðqÞ2

þ b32

Z
q
PLðqÞ3; ð42Þ

where Pi ≡ PLðkiÞ.

III. MEASUREMENTS AND METHODOLOGY

A. Galaxy and halo catalogs

The joint fits of the power spectrum and bispectrum in
this work will be performed on measurements from the
same set of tracers as those described in [62]. We give a
brief overview in the following, but for full details on the
underlying simulations we direct the reader to [62] and
references therein.
We consider a total of seven different catalogs that

were generated from dark-matter only simulations: three
galaxy samples based on a halo occupation distribution
(HOD) approach, and four halo samples with different
mass cuts. The galaxy samples have redshifts z ¼ 0.132,
0.342 and 0.57, and are designed to match the num-
ber densities and clustering properties of the SDSS
Main Galaxy Sample, BOSS LOWZ, and BOSS
CMASS, respectively (referred to as MGS, LOWZ, and
CMASS for the remainder of the paper), but do not
account for the survey geometry or any systematic
effects. The volumes of a single simulation box in
these three cases are ð1000 Mpc=hÞ3, ð2400 Mpc=hÞ3,
and ð1500 Mpc=hÞ3, and we make use of 40 indepen-
dent realizations for MGS and LOWZ, and 100 for
CMASS. Our halo samples HALO1 and HALO2
cover the mass ranges ½1; 10� × 1013 M⊙ and ½10;∞� ×
1013 M⊙ at z ¼ 0, while HALO3 and HALO4 have
z ¼ 0.974 and contain halo masses in the intervals
½1.3; 2� × 1013 M⊙ and ½2;∞� × 1013 M⊙. In all of these
cases we have 40 realizations, each with a volume
of ð2400 Mpc=hÞ3.

B. Measurements of the power spectrum
and bispectrum

We measure the power spectrum on scales ranging from
kmin ¼ ΔkP to kmax ¼ 0.3 h=Mpc, where the bin width is
chosen to be ΔkP ¼ kf for the galaxy samples and ΔkP ¼
2kf for the halo samples (kf ≡ 2π=Lbox denotes the
fundamental frequency of the simulation box). The mea-
surements are corrected for the Poisson shot noise con-
tribution PPoisson ¼ 1=n̄, depending on the number density
n̄ of the tracers.
In order to estimate the bispectra, we use the fast

algorithm presented in [92,93] and for a given bin width we
determine all triangle configurations that satisfy the follow-
ing conditions: (1) k1 ≥ k2 ≥ k3, and (2) k1 ≤ k2 þ k3. The
bin width for the bispectrum measurements does not have
to coincide with that of the power spectrum, and we adopt
the values ΔkB ¼ kf for MGS and ΔkB ¼ 2kf in all other
cases. The maximum scale is kept fixed at 0.3 h=Mpc,
while kmin ¼ kf for MGS, kmin ¼ 2kf for CMASS, and
kmin ¼ 4kf for the remaining samples. In that way we
obtain a total of 9959 distinct triangle configurations for
MGS, 4353 for CMASS and 17374 for LOWZ and the halo
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catalogs. As for the power spectrum we subtract the
Poisson shot noise, which in case of the bispectrum is
given by [94]

BPoissonðk1;k2;k3Þ¼
1

n̄2
þ 1

n̄
½P̂ðk1Þþ P̂ðk2Þþ P̂ðk3Þ�; ð43Þ

where P̂ðkÞ denotes the (shot noise corrected) power
spectrum estimate at scale k.7

It is interesting to visualize the configuration dependence
of the bispectrum by computing the reduced bispectrum
Q̂123 ≡ B̂123=ðP̂1P̂2 þ P̂2P̂3 þ P̂3P̂1Þ and averaging over
an interval in k1 while keeping the ratios x2 ¼ k2=k1 and
x3 ¼ k3=k1 fixed, such that

Q̄ðx2; x3Þ≡ 1

ku − kl

Z
ku

kl

dkQ̂ðk; kx2; kx3Þ: ð44Þ

As an example, we take the LOWZ measurements between
kl ¼ 0.03h=Mpc and ku ¼ 0.3 h=Mpc, which results in the
plot in the upper panel of Fig. 1, where valid configurations
(according to the two conditions above) are constrained to
the triangular plotting area. Note that due to the finite value
of kmin, it is not possible to measure arbitrarily “squeezed”
configurations. The figure displays the typical shape of
the gravitationally induced bispectrum that is already
well known from previous studies (e.g., [25,95,96]): an
enhanced signal for elongated triangle configurations
(along the left side) that continually decreases as the
configurations become more equilateral, which reflects
the filamentary nature of the large-scale distribution of
matter and galaxies. The three tree-level terms involving b1,
b2 and γ2 contribute differently to this behavior of Q̄: the
dominating effect stems from the matter contribution
(proportional to b31), which peaks for elongated triangle
shapes, whereas it is easy to see that the nonlinear bias is
independent of configuration and the γ2 term vanishes for
elongated triangles. The configuration dependence of the
bispectrum therefore enables us to clearly disentangle their
differing effects, which presents a great advantage over the
power spectrum, where these can be largely degenerate
(particularly from b2 and γ2), as we will see in Sec. IVA.
The covariance matrices used in this work, both for the

power spectrum and bispectrum, are assumed to be
diagonal but not strictly Gaussian. We evaluate the variance
in each bin from the independent set of realizations for each
sample, and to reduce noise we compare these estimates
with the respective Gaussian prediction (see, e.g., [4]) on a
bin-by-bin basis and retain whichever values are larger. The
low number densities of our tracers work in favor of this

approximation as the high degree of shot noise enhances
the variance compared to correlations between different
bins and thus drives the covariance matrices to become
more diagonal. More importantly, we do not expect this
approximation to impinge on our test of the galaxy bias
modeling—the main motivation for this work—though one
should bear in mind that the nonzero correlations in a
realistic covariance matrix will likely lead to less stringent
constraints than those reported below. We also ignore any
cross-correlation between the power spectrum and bispec-
trum, which again is not true in practice. However, this
approximation should rather be considered a conservative
one, as it has been shown in [4,7] that inclusion of the
cross-covariance helps shrinking parameter uncertainties
(in particular for amplitudelike parameters, such as galaxy
bias and σ8). Finally, like in [62] we rescale each covariance
matrix by an appropriate factor η,

Cij → Cij=η; ð45Þ

so that they match the effective volume [97,98] of our
LOWZ catalog at k ¼ 0.1 h=Mpc, which corresponds
to Veff ≈ 6 ðGpc=hÞ3.
Using the resulting covariance matrix we compute the

cumulative signal-to-noise ratio per x2 − x3 bin for the
LOWZ catalog over the range 0.03 to 0.3 h=Mpc, and

FIG. 1. Upper panel: reduced bispectrum measurements from
the LOWZ catalog, averaged over k1 between 0.03 h=Mpc and
0.3 h=Mpc, and plotted as a function of the triangle side ratios x2
and x3. Lower panel: cumulative signal-to-noise per x2 − x3 bin
for the same measurements, relative to the total signal-to-noise
ratio.

7The power spectrum estimates used for the shot noise
correction are averaged over fundamental triangles defined by
shells with the same bin width as the respective bispectrum
measurements.
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compare this to the total signal-to-noise ratio in the same
interval, which is shown in the lower panel of Fig. 1. The
plot reveals that the elongated triangle configurations carry
the highest signal-to-noise ratio, although squeezed shapes
lag somewhat behind due to there being fewer distinct
configurations. The lowest signal-to-noise ratio is found in
triangle shapes that are close to equilateral, but as there are
many of those, they still comprise a significant fraction of
the total information content of the bispectrum.

C. Binning correction

The measurements of the power spectrum and bispec-
trum involve the average over finite bin widths. As long as
our observables do not vary strongly over the course of a
given bin, we can compare the measurements with model
predictions evaluated at the center of the bin. This is
typically sufficient for the power spectrum (except on very
large scales) but can amount to a major source of systematic
error for the bispectrum [27].
In order to correct for this, we have to bin average our

theoretical models in precisely the same way as the
measurements are performed, which means

Bbinðk1; k2; k3Þ ¼
X
q1∈k1

X
q2∈k2

X
q3∈k3

δKðq123Þ
NT

123

Bðq1; q2; q3Þ

≃
Y3
i¼1

Z
ki

d3qi
δDðq123Þ
VB;123

Bðq1; q2; q3Þ; ð46Þ

where the sums in the first line are taken over all
Fourier modes qi whose magnitude satisfies ki − ΔkB=2 ≤
qi ≤ ki þ ΔkB=2, δK denotes the Kronecker delta, and
NT

123¼
Q

3
i¼1

P
qi∈ki δKðq123Þ are the number of fundamental

triangles per bin. In the second step we have approximated
the discrete sums by integrals over spherical shells cen-
tered on ki and made the identification VB;123 ¼ k6fN

T
123.

Computing the integrals in Eq. (46) for the one-loop matter
bispectrum of the LOWZ catalog and comparing to the
evaluation at the center of the bins, we can demonstrate
the impact of ignoring the binning effect. This is shown in
the left panel of Fig. 2, which plots the relative difference
between the corrected and uncorrected model predictions,
averaged over k1 from 0.02h=Mpc to 0.2h=Mpc. We see
that the impact is most severe for (nearly) collinear triangle
configurations, where the relative difference can be as large
as ∼20% in the squeezed limit, which is comparable to or
even larger than our measurement uncertainties (∼10% on
average). For other triangle configurations the difference
quickly drops to the order of ∼1% and becomes minimal
for equilateral shapes.
Beyond tree level the exact integration becomes com-

putationally very expensive and so we face two options:
either we discard all collinear configurations, which should
be disfavored as they carry the highest signal-to-noise (see
Fig. 1), or we find an acceptable approximation. One such
approximation was explored in [55,99] and defines a triplet
of effective ðk1; k2; k3Þ modes, which are constructed from
averages over all fundamental triangles that can be realized
on the discrete Fourier grid, and at which the theory
predictions will be computed instead of the bin centers.
This has the advantage that no additional model evaluations
are necessary and it has been shown that it improves the
accuracy to a level of a few percent. In this work we pursue
an alternative, which approximates Eq. (46) by interpolat-
ing over a set of triplets Q ¼ ðQ1; Q2; Q3Þ that are
chosen such that the three-dimensional integration region
for each triangle configuration is covered entirely by a
group of tetrahedra T 123 ¼ T ðk1; k2; k3Þ. The integration
over q1, q2, and q3 subject to the Delta function constraint
can therefore be replaced by a sum over these tetrahedra,
each integrated over its entire volume. Using linear
(Delaunay) interpolation to obtain the value of the bispec-
trum inside a given tetrahedron T based on its four edge

points Qð1Þ
T ;…;Qð4Þ

T , we can write

FIG. 2. Relative difference between the exact bin-averaged (LOWZ) one-loop matter bispectrum according to Eq. (46) and two
approximate solutions, averaged over k1 in the interval ½0.02; 0.2� h=Mpc: no correction (left panel), correction of tree-level and loop
contribution using Delaunay interpolation (middle panel), exact bin average of tree-level contribution and Delaunay correction of the
one-loop part (right panel).
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Bbinðk1; k2; k3Þ ¼
48π2

VB;123

X
T ∈T 123

VT

Z
1

0

dλ3

Z
1−λ3

0

dλ2

Z
1−λ2−λ3

0

dλ1

�Y3
i¼1

X4
j¼1

λjQ
ðjÞ
T ;i

��X4
j¼1

λjBðQðjÞ
T ;1; Q

ðjÞ
T ;2; Q

ðjÞ
T ;3Þ

�
;

¼ 48π2

VB;123

X
T ∈T 123

X4
j¼1

VT αjðQð1Þ
T ;…;Qð4Þ

T ÞBðQðjÞ
T ;1; Q

ðjÞ
T ;2; Q

ðjÞ
T ;3Þ; ð47Þ

where λj denote the barycentric coordinates (note that
λ4 ¼ 1 −

P
3
j¼1 λj), VT is the volume of the tetrahedron,

and αj are interpolation polynomials depending only on the
four edge points, which can be computed analytically. We
can further simplify Eq. (47) by rearranging the summa-
tions as a single sum over all unique edge points, and
summarizing all bispectrum configurations into the vectors
Bbinðk1; k2; k3Þ and BðQ1; Q2; Q3Þ, which are connected by
the matrix multiplication

Bbinðk1; k2; k3Þ ¼ Mbin · BðQ1; Q2; Q3Þ: ð48Þ

The matrix Mbin is determined by the values of the
interpolation polynomials and as it does not depend on
cosmology, it only has to be computed once. The binning
correction therefore amounts to the bispectrum evaluation
at all unique edge points and multiplication with Mbin,
which can be implemented as a fast sparse matrix product.
Along with this paper we provide a simple PYTHON

package8 that produces the list of all unique tetrahedra
edge points and computes the binning matrix given the bin
width and kmin, kmax values of the measurements.
Applying this procedure to the one-loop matter bispec-

trum and comparing to the exact integration, we obtain the
middle panel of Fig. 2, which shows that the binning effect
on the collinear configurations has been significantly
reduced. The relative difference for these triangle shapes
is now of the same order as for the equilateral ones and
generally subpercent. The largest deviation occurs for the
most squeezed configuration in the k1 interval considered,
but is no larger than ∼1.5%, which is already well below
the measurement uncertainties that we use in this work.
Since we are not going to vary cosmological parameters in
our model fits below, we can afford to bin average at least
the tree-level model predictions exactly. As can be seen
from the right-hand panel in Fig. 2 this improves the
agreement further, with the majority of configurations
displaying relative differences smaller than 0.1%.

D. Likelihood function and prior probabilities

The posterior distributions of the model parameters are
determined following a standard Bayesian inference
method, which requires us to define an appropriate like-
lihood function and prior probabilities for all parameters.

We assume that the data from a single realization of our
catalogs is drawn from a multivariate Gaussian,

−2 logL ¼
XNbin

i;j¼1

ðXi − μiÞC−1
X;ijðXj − μjÞ; ð49Þ

where Xi is the vector containing the Nbin measurements of
the power spectrum and bispectrum, either individually or
combined, and μi denotes the corresponding model pre-
dictions, which have been bin averaged for the bispectrum.
CX;ij is the covariance matrix obtained as described in
Sec. III B. Since the various realizations are statistically
independent, we combine them into a total likelihood by
computing the product of the NR individual ones, such that

logLtot ¼
1

NR

XNR

n¼1

logLðnÞ: ð50Þ

The factor 1=NR is needed to ensure that the sampling
volume, as characterized by the measurement uncertainties,
is left unchanged by this combination.
When quoting χ2 values as a measure of the goodness of

fit, we have to account for the fact that our covariance
matrices correspond to a fixed sampling volume and not the
total combined volume of all realizations. The fluctuations
in the data are therefore smaller than expected, which we
can correct for by rescaling the χ2 by the factor NR=η [see
Eq. (45)], and hence we compute

χ2 ¼ −
2NR

η
logLtot: ð51Þ

Some of the model fits presented in Sec. IV will make use
of the matter bispectrum extracted from the underlying
N-body simulations in exchange for the tree-level or one-
loop models. These measurements contain fluctuations
themselves and consequently account for a part of the
scatter in the galaxy or halo bispectrum measurements. For
the analog case of the power spectrum it has been shown in
[62] that this leads to a predictable reduction in the χ2

values and following the same reasoning one can show that
for the bispectrum this reduction is given by

Δχ2 ¼ −b31
XNbin

i;j¼1

ð2CBg×Bm;ij − b31CBm;ijÞC−1
Bg;ij

; ð52Þ
8https://github.com/aegge/BispTools.
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where CBg;ij and CBm;ij are the galaxy and matter bispec-
trum covariance matrices, respectively, and CBg×Bm;ij their
cross-covariance. As for CBg;ij we take the matter auto and
cross-covariances to be diagonal with their elements given
by the maximum between the measured variances and the
Gaussian predictions.
We adopt flat prior probability distributions for all model

parameters, with bounds that are symmetric around zero
(with the exception of b1) and wide enough to minimize
any prior dependence on the posteriors.9 The exact values,
most of which are identical across our various samples, can
be found in Table I. The lower bounds of the leading
stochastic parameters—NP;0 for the power spectrum and
NB;0, as well asMB;0 for the bispectrum—are motivated by
the Poisson limit, ensuring that the overall stochastic
contribution is strictly positive (keeping in mind that the
Poisson part has been subtracted from the measurements).
For the parameter MB;0, which is multiplied by the matter
power spectrum in our model, this means that its lower
bound should scale as ∼b21 and the numbers quoted in
Table I derive from the fiducial b1 values. The upper limits
of these parameters are in principle not constrained, but
based on the study in [62] we do not expect large super-
Poisson deviations and so we keep these priors symmetric.
In contrast to [62] we no longer use a Gaussian prior on the
tidal bias parameter, since the bispectrum data breaks the
otherwise strong degeneracy between γ2 and γ21.
Our fits are conducted by minimizing the negative total

log-likelihood from Eq. (50) using a Markov chain
Monte Carlo (MCMC) approach. For each case we run
several independent Markov chains with different initial
seeds and make sure they are converged according to the
Gelman-Rubin criterion with R < 0.01 (see [100]) and that
we reach a total number of 120,000 accepted steps.
Afterwards these chains are postprocessed with GETDIST

[101] in order to extract the parameter posteriors and
related statistics.

IV. JOINT ANALYSIS OF POWER SPECTRUM
AND BISPECTRUM AT FIXED COSMOLOGY

We are now going to present the results from jointly
fitting the power spectrum and bispectrum model described
in Sec. II to the measurements from our galaxy and halo
catalogs. We keep all cosmological parameters fixed in this
section, which allows us to probe the galaxy bias model
itself. Additionally, we replace the contributions from the
matter power spectrum and bispectrum (i.e., the terms
multiplied by b21 and b31, respectively) by their simulation
measurements and so remove the leading model uncertain-
ties from stress-tensor corrections that originate from the
nonlinear evolution of the matter field. We are further going
to use these results to derive rigorous constraints on the full
bias parameter space and compare them to PBS and
coevolution relations.

A. Consistency between power spectrum and
bispectrum: A visual demonstration

Before delving into a more detailed test of the bias
modeling and its regime of validity, we aim to give a visual
impression of the consistency between the power spectrum
and bispectrum constraints and the importance of the bias
loop corrections in the bispectrum, which are included here
for the first time.
To this end we consider for now a fiducial model setup,

in which we ignore all of the higher-derivative and scale-
dependent stochastic parameters (fixing their values to
zero), but keep NP;2 for the power spectrum, as [62]
demonstrated that its contribution is relevant for most of
our samples. The remaining parameters appearing in the
general bias expansion up to fourth order are allowed to
vary, which results in a total of 6 model parameters for the
power spectrum, 13 for the bispectrum, and 15 for their
combination (see Table II).
The parameter constraints resulting from fits including

modes up to kmax ¼ 0.25h=Mpc are shown for the three
galaxy samples in Fig. 3. In order to focus on the
consistency between the power spectrum and bispectrum,
we have limited these plots to the four parameters the two
statistics have in common and marginalized over all

TABLE I. Upper and lower limits of uniform prior distributions for the complete set of model parameters. For the higher-derivative
and next-to-leading noise parameters we use an arbitrary normalization scale, which is fixed to kHD ¼ 0.4 h=Mpc.

Catalog b1 b2 γ2, γ21 γ3 b3
γ×2 , γ

×
21, γ211,

γ22, γ31

n̄NP;0,
n̄2NB;0 n̄MB;0 βB;a=…=e

n̄NP;2, n̄2NB;2,
n̄MB;2a=b

MGS [0.5, 3] [−7, 7] [−4, 4] [−30, 30] [−80, 80] [−50, 50] [−1, 1] [−2, 2] [−100, 100] k−2HD [−50, 50] k−2HD
LOWZ [1, 4] ” ” ” ” ” ” [−5, 5] ” ”
CMASS [1, 4] ” ” ” ” ” ” [−4, 4] ” ”
HALO1 [0.5, 3] ” ” ” ” ” ” [−2.1, 2.1] ” ”
HALO2 [1.5, 4.5] ” ” ” ” ” ” [−8.5, 8.5] ” ”
HALO3 [1.7, 3.7] ” ” ” ” ” ” [−7.2, 7.2] ” ”
HALO4 [2.5, 6.5] [0,10] ” ” ” ” ” [−12.7, 12.7] ” ”

9Note that when the maximum scale included in the model fits,
kmax, is small it is not possible to remove all prior dependence due
to degeneracies and low sensitivities to certain parameters.
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remaining ones. Even for this choice of kmax the power
spectrum alone (gray contours) places only relatively weak
constraints on the bias parameters, particularly on the three
higher-order parameters, which is primarily caused by the
strong degeneracy between γ2 and γ21. This degeneracy is
due to the galaxy power spectrum being dominated by the
one-point propagator contribution, which is only sensitive
to the combination γ21 − 6γ2=7. As already discussed in
Sec. III B, the bispectrum’s configuration dependence
breaks these degeneracies, leading to constraints on b2,
γ2, and γ21 (see light blue contours) that are tighter by more
than an order of magnitude. In addition, we see that for all
three galaxy samples the posteriors from the individual
power spectrum and bispectrum fits are fully consistent.
While combining both (blue contours) does not yield
further improvements for the higher-order parameters as
they are dominated by the bispectrum, uncertainties on the
linear bias parameter are reduced by a factor four to seven.
These constraints are in excellent agreement with the large-
scale measurements of b1 from the galaxy-matter cross
power spectrum (using the combined volume of all sim-
ulations), which are shown as the red error bands in Fig. 3.
Apart from the parameter constraints themselves, it is

illuminating to consider the residuals between the mea-
surements and the best-fit model predictions. Taking the
latter from the joint fits at kmax ¼ 0.25h=Mpc and averag-
ing the relative difference ðBmodel − BdataÞ=Bdata over three
different k1 bins, gives the upper rows in the three
subpanels of Fig. 4. The first panel displays the results
for MGS, where the relative differences in the first bin from
0.1 to 0.15h=Mpc can grow as large as �2% for certain
triangle configurations, but they are generally at the level of
∼1% or below for the two subsequent bins. The fact that the
agreement becomes better with an increasing scale of k1 is
simply because the fit was performed at a kmax value larger
than the scales involved in the first two bins, which have
larger measurement errors and thus less weight in the
likelihood function. As we go up in redshift to the LOWZ
and CMASS samples, the relative differences become even
smaller and in the latter case are well below the 1% limit for
the majority of triangle configurations in all three bins. We
stress that this good match between theory and measure-
ment can be regarded as further evidence for the

TABLE II. Number of fitting parameters for the power spectrum,
bispectrumand their combination in differentmodel configurations
at fixed cosmology. The scale-dependent noise parameter for the
power spectrum is included in all cases. The distinction between
tree-level and one-loop orders only concerns the bispectrum.

Power
Spec.

Bispectrum Combination

Model Tree Loop Tree Loop

Fiducial 6 5 13 8 15
Scale-dep. stoch. 8 16 11 18
Higher-deriv. 7 10 18 13 20

FIG. 3. Marginalized posteriors for the common power
spectrum and bispectrum parameter space, obtained from
individual and joint fits to the three galaxy samples with
kmax ¼ 0.25 h=Mpc. The red band indicates the fiducial value
of b1.
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FIG. 4. Relative difference between the bispectrum measurements and corresponding models using the best-fit parameters obtained
from the joint power spectrum and bispectrum fit at kmax ¼ 0.25 h=Mpc (top rows of the three subpanels); ratio of the bias loop
contributions compared to the full model prediction using the same best-fit parameter sets (bottom rows). In both cases the results have
been averaged over three consecutive k1 bins of width Δk1 ¼ 0.05 h=Mpc [see Eq. (44)].
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consistency of our power spectrum and bispectrum models,
since the best-fit parameters derive from their joint fit
instead of the bispectrum alone.
How important are the bias loop corrections to achieve

this level of agreement? This is demonstrated by the lower
rows for each galaxy sample, where we plot the ratio of all
loop contributions (except for the matter part) over the full
model prediction, using the same best-fit parameters as
above. Already in the first k1 bin the bias loops contribute
with 15–20% for MGS and LOWZ (somewhat less for
CMASS) for the nearly equilateral configurations, whereas
their impact is less significant for collinear configurations.
This is not unexpected because, for a fixed k1, the squeezed
and folded configurations contain either one or two shorter
(and thus more linear) modes. The same trend continues
and amplifies towards larger k1 values, reaching 15% and
beyond for most triangle shapes in case of MGS and even
up to 40% for LOWZ in the last k1 bin. The CMASS
sample is the only one where the loop diagrams predomi-
nantly contribute negatively and where the effect is more
strongly skewed towards equilateral configurations, with
collinear shapes remaining mostly unchanged. Overall
these plots show that the bias loop corrections quickly
gain importance beyond kmax ∼ 0.15 h=Mpc and taking into
account that our measurement uncertainties are of the order
∼10% they can no longer be ignored from that point
onward. However, their reduced impact on collinear tri-
angles [34] suggests that for these particular configurations
the validity of a given model can be extended to larger
values of kmax than for equilateral ones, analogously to the
behavior of the matter bispectrum [102]. This motivates the
introduction of a configuration-dependent cutoff scale, but
we leave a more detailed exploration of the benefits in
connection to this for a future study.

B. Detailed test of the one-loop galaxy bias model

Having seen that loop corrections to the galaxy bispec-
trum become relevant starting from kmax ∼ 0.15h=Mpc, we
now want to assess the validity of the tree-level or one-loop
model in a more quantitative manner.

1. Performance metrics

As already done in [62] we are going to estimate the
range of validity by a combination of two performance
metrics, the figure of bias (FOB) and the goodness of fit.
The former is defined as the deviation between the posterior
means θ̄α of a set of parameters and their fiducial values
θfid;α, weighted by the inverse parameter covariance matrix:

FOB≡
�X

α;β

ðθ̄α − θfid;αÞS−1tot;αβðθ̄β − θfid;βÞ
�
1=2

: ð53Þ

The total parameter covariance matrix, Stot;αβ¼SαβþSfid;αβ,
is given by the sum of the posterior covariance and

measurement uncertainties in the fiducial values (in case
they are not known with complete certainty). In this section
we only have a fiducial measurement of the linear bias
parameter to compare against,10 in which case the FOB

simplifies to jb̄1 − b1;fidj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2b1 þ σ2fid;b1

q
. As a measure of

the goodness of fit we take the χ2 computed following the
description in Sec. III D and compare its value to the
confidence limits of a χ2 distribution with

dof ¼ NR × Nbin − Np ð54Þ

degrees of freedom, where Np are the number of free fitting
parameters. Either metric on its own is insufficient to
faithfully judge the validity of the model, since an accept-
able χ2 might hide a biased recovery of parameters,
whereas the FOB can be subject to posterior projection
effects (especially when only based on a small subset of the
fitting parameters) or can accidentally be low. For that
reason we define the validity range k† as the cutoff scale at
which the combination of the two exceeds a critical value in
comparison to their respective 95% limits,

FOBðk†Þ
FOB95%

þ χ2ðk†Þ − dofðk†Þ
χ295%ðk†Þ − dofðk†Þ

¼ σcrit ð55Þ

where FOB95% ¼ 2 when based on a single parameter and
we set σcrit ¼ 1.11

Finally, using a thirdmetric—the figure ofmerit (FOM)—
we contrast the validity scales of various modeling assump-
tions in terms of their constraining power. This allows us to
determine whether there is a benefit of adding complexity
to the model, while unlocking the information from more
nonlinear scales. We define the FOM as the inverse of the
posterior volume enclosed by the 68% confidence limit,
normalized by the fiducial parameter values, so that

FOM≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ½Sαβ=ðθfid;αθfid;βÞ�

p : ð56Þ

As for the FOB, in this section we measure the FOM solely
in terms of the linear bias parameter, and therefore the FOM
is given by b1;fid=σb1.
In Fig. 5 we plot all three of these metrics derived from

joint fits of the power spectrum and bispectrum with
various kmax values for both the galaxy and halo samples.
The power spectrum model is fixed and includes all
relevant loop corrections as well as the scale-dependent
stochastic parameter NP;2, but we distinguish between

10Mean and standard deviation of the fiducial measurement for
all of our samples can be found in Table I of [62].

11Note that this definition differs slightly from the one
introduced in [62]. Even though they do not have a significant
impact on the results, the changes were made in order to treat the
FOB and goodness-of-fit metrics on equal footing.
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different modeling configurations for the bispectrum: tree-
level bias terms only (red lines), and the full one-loop
model presented in Sec. II B (blue lines). In both cases we
further consider the same fiducial setup from Sec. IVA
without higher-derivative terms and scale-dependent sto-
chasticity but now also allow separately for either of these
effects, depicted by the dashed and dotted lines. Note that
when including the higher-derivative terms in the bispec-
trum model, we also include the corresponding term in the
power spectrum, although it does not enter with a free
parameter since we have eliminated the stress-tensor

corrections (see Sec. II E). The varying number of fitting
parameters in each of these cases is given by the last two
columns of Table II. For easier visual comparison between
the models we have evaluated k† according to Eq. (55) and
stopped plotting the FOM at that scale, which is indicated
by an arrowhead symbol.

2. Fiducial case

Starting with the fiducial case we observe that ignoring
the bias loop corrections generally diminishes the

FIG. 5. FOB, goodness of fit, and FOM for joint fits of the galaxy or halo power spectrum and bispectrum as a function of the
maximum k mode allowed to participate in the fit. Differently colored lines indicate whether bias loop corrections in the bispectrum
model have been included (blue) or not (red). Solid lines correspond to a bispectrum model that includes neither higher-derivative terms,
nor scale-dependent stochasticity, while dashed lines account for the former and dotted lines for the latter (see Table II for the number of
fitting parameters in these cases and note that the power spectrum model always includes the scale-dependent stochastic term). The
FOM is truncated at the estimated validity scale of the respective model, indicated by an arrowhead symbol. Grey shaded areas depict the
68% and 95% confidence limits.
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agreement with the measurements—as is evident from the
χ2=dof panels—and for some of the samples leads to a
clearly biased estimation of b1. The validity scales are
therefore significantly reduced compared to the one-loop
bias model and suggest a breakdown of the theory
description soon after kmax ¼ 0.17h=Mpc. This is consis-
tent with our previous discussion on the importance of the
loop corrections based on the best-fit results alone and
besides shows that they cannot be adequately absorbed by
the tree-level terms. The one-loop model, on the other hand,
remains valid over the entire tested range of scales up to
kmax ¼ 0.3 h=Mpc, with the exception of some of the halo
samples, in particular HALO1 (where it fails before
0.2 h=Mpc). Most importantly, there is a clear benefit from
including the bias loops and extending the model further
into the nonlinear regime, since this leads to a greatly
improved FOM (up to a factor 1.5 to 2) despite the
increased number of nuisance parameters.

3. Extensions to higher-derivatives and scale-dependent
stochasticity

Inclusion of the five higher-derivative contributions
yields an enhanced model performance for the tree-level
bias case, extending its validity for most samples to a scale
equivalent with that of the fiducial one-loop model (at least
within the range of kmax that we consider). Although its
goodness of fit becomes worse when including more
nonlinear scales, this seems to imply that the higher-
derivative parameters efficiently absorb the neglected bias
contributions. However, marginalization over these addi-
tional parameters greatly reduces the FOM, which stays
well below what we obtain for the fiducial one-loop model
for all samples, even though the latter has a larger number
of free parameters in total. The same effect can be observed
when higher derivatives and one-loop bias terms are taken
into account simultaneously, suggesting that for our sam-
ples there is no advantage to be gained from doing so.
The extension to scale-dependent stochasticity has little

impact on the validity ranges for the tree-level case, but in
combination with one-loop bias produces very similar χ2

values as the extension to higher derivatives, and thus
slightly increases the scales before the model breaks down
for several samples (HALO1, HALO2, and HALO4).
Moreover, the three extra parameters do not strongly
penalize the FOM, such that for these samples we are able
to achieve a higher overall constraining power. For that
reason we are going to continue to work with the scale-
dependent noise model for these cases in the following
sections.

C. Constraints on galaxy bias parameters

1. Dependence on cutoff kmax

In this section we consider in greater detail the con-
straints on the various bias parameters obtained from the

best-performing models identified above. We begin with
the three higher-order bias parameters that appear both in
the power spectrum and bispectrum, and are thus the
parameters (apart from b1) that are most strictly con-
strained. These are b2, γ2, and γ21, whose mean posterior
values from a joint fit along with their 1-σ uncertainties,
indicated by the shaded error band, are shown for each
sample in Fig. 6.
The results are plotted as a function of the maximum

k-mode allowed in the fit, and the blue lines correspond to
either the fiducial one-loop model or with the inclusion of
scale-dependent stochasticity, depending on whichever
configuration performed better according to Fig. 5 (note,
however, that for LOWZ we instead show the constraints
from the one-loop scale-dependent stochasticity model for
reasons becoming clear in a moment). While the uncer-
tainties decrease with increasing kmax, we clearly see that
there are little to no shifts in the parameter mean values for
the majority of cutoff scales and samples. The most obvious
one occurs for HALO2, where the constraints, particularly

FIG. 6. Constraints on b2, γ2, and γ21 from joint fits of the
power spectrum and bispectrum as a function of the cutoff scale
kmax. The blue error bands represent the results from the one-loop
bias model in the fiducial (Fid) configuration or including scale-
dependent stochasticity (SDS) as indicated in the panels for each
sample. Red error bands show the fiducial tree-level bias model
for comparison. Arrowheads of matching colors mark the scale at
which we identify a trend in the constraints of one of the
parameters (see text). For tree-level results on HALO2 this
happens before kmax ¼ 0.15 h=Mpc.
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on b2, are driven towards smaller values starting from a
scale shortly after kmax ¼ 0.15 h=Mpc. Encountering shifts
in the recovered parameters as one ventures deeper into the
nonlinear regime signifies that the model is attempting to
compensate potentially missing contributions and can
therefore be regarded as another indicator for a breakdown
of its validity. The fact that we do not observe such strong
shifts in the one-loop model is in very good agreement with
our conclusions drawn in Sec. IV B based on the FOB and
goodness of fit. For comparison, Fig. 6 also shows the
analogous results for the fiducial tree-level model, in which
case the parameter shifts are simultaneously much stronger
and arise at smaller kmax for each of the samples. Again, this
is consistent with our analysis in Sec. IV B. We stress that
the qualitative behavior of all the remaining parameters not
shown in the plot is very similar.
In the following we would like to contrast our bias

measurements with the coevolution and PBS relations and
for a stringent comparison it is important to choose a kmax
value at which no significant shift in the constraints has
occurred yet. To this end we check whether the mean
posterior value of a given parameter and at a given cutoff
scale is consistent with the 68% confidence intervals of all
previous kmax, starting from 0.1 h=Mpc. We follow this
procedure for every parameter that is being varied in the
model and from all of these determine the maximum scale
at which the criterion is still satisfied, yielding a unique
scale for each combination of model and sample. This scale
is indicated by the arrowhead at the top of each panel in
Fig. 6 using matching colors to distinguish between the
one-loop or tree-level model, and we see that this quanti-
tative assessment confirms our purely visual discussion
from above. Finally, we note that in case of LOWZ this
analysis revealed stronger parameter shifts for the fiducial
one-loop model compared to the extension including scale-
dependent stochasticity. Since it allows us to use a larger
kmax value for the constraints presented in the next section,
we adopt the latter for this particular sample.

2. Comparison to coevolution and PBS relations

As we have seen in Sec. IVA, the combination of power
spectrum and bispectrum allows us to place considerably
stronger constraints on b2, γ2, and γ21 than the power
spectrum alone. In addition, through the one-loop correc-
tions to the bispectrum we are sensitive to the remaining
third-order bias parameters and even the fourth-order
parameters associated with NLE operators. It is interesting
to examine whether these constraints enable us to shed
more light on the coevolution and halo-calibrated PBS
relations presented in Sec. II C, which are often employed
in the analyses of real survey data.
We use the one-loop model with or without the addition

of scale-dependent stochasticity (as indicated in Fig. 6) and
choose to display the constraints at different kmax values for
each sample. In order to be conservative we take the

minimum between the model validity scale determined
in Sec. IV B and the scale before parameter shifts appear as
found in Sec. IV C 1, which leads to the results presented in
Fig. 7, and the values reported in Tables III and V. The
parameter constraints are shown as functions of b1, except
for γ×2 and γ×21, which are plotted against b2 instead.
Beginning with the two second-order parameters, b2 and

γ2, we see that the four halo sample constraints on the
former are in very good agreement with the PBS prediction
from [74] (shown by the black solid line). This prediction
was calibrated against measurements from their own halo
catalogs using separate universe simulations, which means
that arriving at the same results albeit with an entirely
different approach and different halo catalogs, is further
convincing proof of the robustness of our model and
methodology. Curiously, we find a significantly larger
(in terms of our measurement uncertainties) b2 for all
three galaxy samples than the PBS prediction at the
equivalent b1 values. For the tidal bias parameter we find
very obvious deviations from the local Lagrangian approxi-
mation (in this case identical with the general coevolution
relation shown by the solid line), demonstrating this trend
more clearly than the previous power spectrum and
bispectrum studies in [47,49]. Moreover, this conclusion
is fully consistent with the two analyses [53,54], which
measured bias parameters through cross-correlations
between the halo density and second- and third-order fields
representing the various operators appearing in the bias
expansion [see Eq. (1)]. However, we note that in the high-
mass (large b1) limit our γ2 measurements are in tension
with the excursion-set relation from [47], which is not the
case for those reported in [53] (cf. Fig. 1 of [62]), but seems
to be in good agreement with [54].
Moving on to the first nonlocal parameter, γ21, we obtain

an equally evident deviation from the local Lagrangian
approximation (dashed line). This was also reported in
[53,54] (for the equivalent parameters btd and bΓ3

, respec-
tively), but this is in contrast with [49], who found their
results (b3nl in their notation) to be consistent with a local
Lagrangian bias expansion. Since they only considered the
tree-level bispectrum, γ21 only enters through the one-loop
power spectrum, where it is partly degenerate with a
potential higher-derivative contribution. This was not
included in their model, and so [53] argued that their
study likely produced biased measurements. We did not
take into account higher-derivative contributions to derive
the constraints shown in Fig. 7 either, but account for scale-
dependent stochasticity through NP;2, which the power
spectrum is actually more sensitive to, as we showed in
[62], and which also correlates strongly with γ21 (see
Sec. IV C 3). In addition, we include the bispectrum loop
corrections, which grant further constraining power on γ21,
and prevent a slight overestimation that occurs for the tree-
level model even when NP;2 is being varied (as we always
do). According to Fig. 6 this is the case for most samples
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when comparing the tree-level and one-loop constraints
at the respective scales before we identify a cutoff
dependence.
After this discussion on the robustness of our γ21

measurements, it is interesting to see that they are in
excellent agreement with the solid line, which depicts γ21 in
the general coevolution assumption, i.e., γ21;L ¼ 0 and
subsequent conserved evolution. This relation depends on
both, b1 and γ2 [see Eq. (20)], and in order to plot it as a
function of b1 only, we have fitted a simple quadratic form
to the γ2ðb1Þ data from all samples, which is shown by the
light dotted line in the top right panel. This agreement is

remarkable as it suggests that the leading NLE operator is
absent from the initial bias expansion and its effect only
comes to bear through gravitational evolution. Although a
similar trend was already present in [53,54], our reduced
errors on γ21 have allowed for a more precise test of this
assertion. However, one should keep in mind that such tests
are to be regarded in the context of the adopted statistical
uncertainties, i.e., effective volume, which we assumed to
be Veff ¼ 6 ðGpc=hÞ3—significantly larger than the red-
shift slices analyzed in past galaxy surveys or what is
expected in upcoming ones.
The constraints on all of the remaining bias parameters

come solely from the loop corrections of the bispectrum
and are therefore much less stringent, and in many cases is
still consistent with zero. As above we compare the results
for each parameter with the respective local Lagrangian or
coevolution relations and the PBS prediction in case of b3,
and apply the same strategy to plot these relations as single
functions of b1 and b2, which requires quadratic fits to the
data from γ21, γ3, and γ×2 (see Sec. II C for the dependencies
on these parameters). In general, we find sensible results
that follow these relations fairly closely, though we lack the
constraining power to distinguish clearly between the local
Lagrangian approximation and general coevolution, like we
could for γ21. The only exception seems to be the fourth-
order parameter γ211, which shows a strong deviation from

FIG. 7. Constraints on galaxy bias parameters, plotted against the linear bias parameter, or nonlinear bias parameter b2 in case of γ×2
and γ×21 (last column). The constraints derive from a joint power spectrum and bispectrum fit using the one-loop model with or without
scale-dependent stochasticity (indicated for each sample in Fig. 6) at a conservative choice of kmax values (see text). Dashed lines
correspond to the local Lagrangian approximation, while solid lines show either the more general coevolution relations or PBS
predictions (in case of b2 and b3). The dot-dashed line for γ2 is the excursion-set inspired relation used in [62], and the light dotted lines
are quadratic fits that were used to plot coevolution relations depending on more than one parameter as a function of b1 only.

TABLE III. Constraints on b2, γ2, and γ21 from a joint analysis
of the power spectrum and bispectrum. The fiducial values for b1
can be found in [62].

Sample b2 γ2 γ21

MGS −0.22� 0.05 −0.14� 0.03 −0.060� 0.04
LOWZ 0.3� 0.2 −0.54� 0.07 −0.43� 0.08
CMASS −0.2� 0.1 −0.46� 0.06 −0.29� 0.08
HALO1 −0.80� 0.09 −0.23� 0.05 −0.11� 0.07
HALO2 1.1� 0.4 −0.83� 0.14 −0.62� 0.17
HALO3 0.6� 0.3 −0.83� 0.14 −0.49� 0.19
HALO4 3.8� 0.4 −1.2� 0.2 −1.0� 0.3
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the latter for the highly biased halo samples. However, this
should be considered with caution as the coevolution
relation is dominated by the quadratic fit to γ3, which in
turn is influenced strongly by the last data point for the
HALO4 sample. It will be interesting to combine our joint
power spectrum and bispectrum fits here with the large-
scale trispectrum, where the four third-order bias param-
eters appear at leading order and should thus show a boost
in sensitivity.
Finally, let us return to the question why there is an

evident difference between the galaxy and halo samples in
the trend for b2, whereas they are identical for γ2 and γ21.
Since the galaxy samples were generated using an HOD
approach, it is illuminating to consider the relation between
the galaxy and halo bias parameters in the large-scale limit.
Given a mean halo mass function, n̄hðMhÞ, and mean
occupation function of central and satellite galaxies,
hNgðMhÞi, we can write a galaxy bias parameter bO;g

associated to some operator O of the bias expansion as
(e.g., [103])

bO;g ¼
1

n̄g

Z
d ln Mhn̄hðMhÞhNgðMhÞibO;hðMhÞ; ð57Þ

where n̄g ¼
R
d ln Mhn̄hðMhÞhNgðMhÞi is the mean gal-

axy number density. If the halo bias for this particular
operator obeys a linear relationship with a set of other bias
parameters (with numerical coefficients αi),

bO;hðMhÞ ¼ α1bO1;hðMhÞ þ α2bO2;hðMhÞ þ � � � ;
¼ F½bO1;hðMhÞ; bO2;hðMhÞ; � � ��; ð58Þ

then it follows immediately from Eq. (57) that the HOD
galaxy bias parameter must follow the same relation, i.e.,
bO;g ¼ F½bO1;g; bO2;g;…�. From Fig. 7 we see that the halo
sample constraints on γ2 and γ21 are well described by
linear functions of b1, but for b2 this is clearly invalid.
Assuming that we can take these measurements as repre-
sentative for the general trend at arbitrary halo masses, our
results for the galaxy samples appear to be sensible. In
particular, the fast growth of b2 with increasing b1 should
yield a stronger weighting of the high-mass halos in
Eq. (57) and thus larger values for b2;g.

3. Parameter correlations

As mentioned before, the γ2 and γ21 terms contribute
only as the combination γ21 − 6γ2=7 to the evolved one-
point propagator, leading to a strong degeneracy between
these two parameters when fitting the power spectrum
alone. Let us now consider whether there are equally strong
correlations in the joint power spectrum and bispectrum
parameter space.
In Fig. 8 we show the full parameter correlation matrix

Sαβ originating from fitting the scale-dependent stochastic

model for the power spectrum and bispectrum to the LOWZ
data with cutoff scale kmax ¼ 0.3 h=Mpc, which is quali-
tatively representative for the remaining samples and for
different cutoff scales. The two most striking features in
this plot are the correlations between the three higher-order
bias parameters appearing both in the power spectrum and
bispectrum—b2, γ2, and γ21—and among the three remain-
ing third-order parameters, in addition to γ×21 and γ211 at
fourth order. As explained before, the correlation between
γ2 and γ21 is expected based on their identical contribution
to the one-point propagator, but the addition of the
bispectrum partially breaks this degeneracy and so
decreases the correlation coefficient to ∼0.7 from ∼1,
which we would obtain for the power spectrum alone.
The correlation between b2 and γ2 is equally strong, but its
origin is less obvious. It might arise as a consequence of the
nonzero spherical average of the second-order Galileon,
i.e., Ḡ2 ¼ −2=3δ2 [34], which would imply a dependence
on the combination b2 − 4γ2=3. We indeed find this to be in
good agreement with the degeneracy directions obtained
for the MGS, HALO1, and HALO4 samples, while all
other samples display trends that are 25–35% steeper.
Moving on to the second block of correlated parameters,

we first note that strong correlations between γ×2 and γ×21, as
well as between γ3 and γ211 are to be expected because
they contribute the same scale-dependent terms to the
evolved two-point propagators (analogous to the γ2 and
γ21 terms in the one-point propagator). In particular, one
can show that

Γð2Þ
g;γ×

21
¼ −

7

6
Γð2Þ
g;γ×

2
; and Γð2Þ

g;γ211 ¼
7

9
Γð2Þ
g;γ3 ; ð59Þ

FIG. 8. Full parameter correlation matrix for a joint power
spectrum and bispectrum fit to the LOWZ data sample at
kmax ¼ 0.3 h=Mpc, including all scale-dependent stochastic
parameters. Note that the size of the squares scales with the
absolute value of the correlation coefficients.
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which indicates that the bispectrum is mostly sensitive to
the combinations γ×21 − 6γ×2 =7 and γ211 þ 9γ3=7, provided
that the third-order parameters are not strongly constrained
themselves. Note that the opposite signs in these combi-
nations also explain the correlation or anticorrelation of the
two parameter pairs in Fig. 8. The additional correlations
with the remaining parameters from the same block are
induced by a strong degeneracy between b3, γ3, and γ×2 .
This degeneracy can be described by a single principle
component, which means that there must be two parameter
combinations that are much tighter constrained than the
three parameters individually. Such combinations can be
determined from the parameter correlation matrix, but in
order to gain some insight into their potential origin and
whether they are universal across the various samples, let us
again consider the spherical average of the bias expansion.
Using that Ḡ3 ¼ 2=9δ3 [34] we see that in this case the three
parameters effectively appear in the combination

b3;eff ¼ b3 − 4γ×2 þ 4

3
γ3: ð60Þ

By defining the new parameter b̃3 ≡ b3 − 4γ×2 we can
measure the coefficient in front of γ3 in this equation from
the parameter covariance matrix as follows:

α ¼ −
Sb̃3;γ3
Sγ3;γ3

: ð61Þ

The results are shown in the upper panel of Fig. 9 for each
of the samples, and demonstrate that all except HALO2
indeed follow the degeneracy implied by Eq. (60) within
∼10%. Our constraints on b3;eff (using the same kmax values
as in Sec. IV C 2), which are plotted in the lower panel of
Fig. 9 against b1, are thus much narrower than for the
individual parameters (cf. Fig. 7), and are found to be
inconsistent with zero at the 68% confidence level in all
cases except HALO4. Comparing with the PBS relation
after accounting for γ2 and γ21 in Eq. (26) as discussed in
Sec. IV C 2, we obtain good agreement—only for HALO2
we measure a somewhat lower value. We find that the
second well-constrained parameter combination depends
more sensitively on the sample, but the results so far
suggest that a reasonable simplification of the parameter
space could be to fix b3 using the PBS relation, and fixing
either γ3 or γ×2 to zero or to the respective coevolution
relation, while leaving the third parameter free.
The correlation structure among the stochastic parame-

ters and their cross-correlations with parameters from the
general bias expansion appears more complex. One promi-
nent feature is the anticorrelation between NP;0 and NP;2,
which is consistent with the expected limiting behavior of
the stochasticity power spectrum, limk→0CggðkÞ ¼ 0, and as
shown in [62] it is well described by the linear relationship

NP;2ðNP;0Þ ≈ −0.42
NP;0

k2HD
ð62Þ

with kHD ¼ 0.4 h=Mpc. We also note the degeneracy
between NP;2 and γ21, which shows that ignoring the
scale-dependent stochasticity in the power spectrum can
lead to a biased estimation of γ21 and in particular invalidate
the agreement of the latter with the general coevolution
assumption as discussed in Sec. IV C 2. In the high-k limit
the stochasticity bispectrum should equally vanish, which
would imply the existence of similar features for the
corresponding noise parameters. Figure 8 indeed reveals
anticorrelations betweenNB;0 andNB;2, as well asMB;0 and
MB;2b, although they are less significant than for the power
spectrum and do not appear across all samples. Further
studies, possibly by utilizing also the cross bispectra with
the matter field, are required to confirm whether this is truly
the case. The strong anticorrelation between NB;0 and
MB;2a, on other hand, is most likely caused by the 1=k2

scaling of the power spectrum for modes where the scale-
dependent stochastic contributions become relevant, such
that NB;0 þMB;2a½k21Pmmðk1Þ þ cyc:� ≈ NB;0 þ αMB;2a for
some (positive) constant α. Since we do not find strong
constraints on MB;2a individually for most samples, we

FIG. 9. Upper panel: estimated slope α in the relation
b3;eff ¼ b3 − 4γ×2 þ αγ3, compared to the value implied by the
spherically averaged bias expansion (dashed line); the gray bands
indicate 5 and 10% deviations from this value. Lower panel:
constraints on b3;eff with α ¼ 4=3, plotted as a function of the
fiducial linear bias of each sample, and compared to the PBS
prediction (solid line).
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could make the simplification, MB;2a ¼ 0, and thus effec-
tively consider both parameters together.

D. Reducing the parameter space

Having found good agreement with the coevolution and
PBS relations, as well as strong correlations among subsets
of the full parameter space, we now consider whether these
results offer possibilities to reduce the total number of free
model parameters without diminishing our estimated val-
idity ranges.
To begin with, we make the assumption that various

fourth-order bias parameters are consistent with coevolu-
tion [see Eqs. (21)–(24)], which implies that they are absent
from the initial bias expansion, and hence, γ×21;L ¼ 0 etc.
The corresponding late-time, Eulerian, bias parameters still

depend on the values of other bias parameters, such as b1
and beyond,12 and for that reason they are not completely
held fixed, although they no longer appear as independent
fitting parameters. In Fig. 10 we show a subset of the
posteriors (all parameters not shown are marginalized over)
obtained from fits to the LOWZ catalog at kmax ¼
0.3 h=Mpc and using the scale-dependent stochastic bis-
pectrum model. The gray (and largest) contours represent
the 68% and 95% confidence levels when all model
parameters are being varied, whereas all of the subsequent

FIG. 10. This figure shows 68% and 95% posterior contours for model parameters fitted to the LOWZ catalog at kmax ¼ 0.3 h=Mpc
(including scale-dependent stochasticity); parameters not shown have been marginalized over. Gray contours (solid lines) derive from a
fit where all model parameters are being varied, while the various colored contours apply coevolution relations to an increasing number
of bias parameters. Starting with γ22 and γ×21 (light green, dashed) an additional parameter is fixed up to a total of five (dark blue, dotted).
The red error band in the first column indicates the 1σ and 2σ uncertainties on the fiducial measurement of b1.

12A dependence on b1 alone is only the case in the local
Lagrangian approximation, which is clearly incorrect following
our discussion in Sec. IV C 2.
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colored contours employ coevolution relations for an
increasing number of parameters, as indicated.
From this plot we see that fixing γ22, γ×21, and γ31 (green,

dot dashed) only has a significant impact on the posteriors
for b3, γ3, and γ×2 , but they remain fully consistent with the
original results. The narrowing of the constraints for these
three parameters is not surprising, because from Sec. IV C 3
we know that γ×2 and γ×21 are strongly correlated, meaning
that once the latter is not considered as an independent
parameter anymore, the former is automatically better
constrained. This improvement additionally propagates to
b3 and γ3 due to their degeneracy with γ×2 . Since γ211 and
γ×21 are also correlated, an interesting case is the simulta-
neous assumption of coevolution for both of these param-
eters, which might be inconsistent with their degeneracy
direction. As shown by the light blue (double dot dashed)
contours, this does not appear to be the case: even though
slight parameter shifts occur, most notably for b2 and the
noise parameter MB;0, the posteriors do not become
inconsistent at a level greater than 1σ. Remarkably, apart
from a minor decrease in the uncertainties, having fixed all
fourth-order parameters has not affected the results
for γ21, so that its agreement with coevolution as found in
Sec. IV C 2 should still be valid. This is explicitly verified by
the blue (dashed) contours, where all NLE operators are
assumed to absent from the initial bias expansion.
For all other samples and at cutoff scales smaller than

those where we detect significant shifts (see Sec. IV C 1)
we get a qualitatively very similar picture. To provide a full
overview of these results, in Fig. 11 we plot the three
performance metrics from Sec. IV B 1 as a function of kmax
and compare the case where all five bias parameters
associated to NLE operators are fixed by means of
coevolution relations (red lines) with the previous results
(black lines), using either the fiducial or scale-dependent
stochastic bispectrum model. We find that this five-
dimensional reduction of the parameter space has no major
negative impact on the FOB or the goodness of fit, and thus
on the deduced model validity ranges. Only for the HALO4
sample the model fails at a slightly smaller kmax value,
which can be traced back to the fact that fixing γ211 and γ×21
simultaneously becomes increasingly inconsistent on small
scales, as is also indicated by Fig. 7. On the other hand, the
FOM, which in Fig. 11 is normalized with respect to the
FOM at the validity scale of the full parameter space model,
shows only little improvements up to 15% to 20%. These
improvements mainly derive from being able to fix γ21
because of its correlation with b1 (cf. Fig. 8).
We contrast the performance of this coevolution model

with simply ignoring the four fourth-order operators, i.e.,
setting the corresponding bias parameters to zero, and the
more drastic case, where we ignore all bias operators in the
bispectrum that do not contribute to the power spectrum
(but we keep all remaining terms, i.e., b2, γ2, and γ21,
including their loop corrections). These two cases are,

respectively, indicated by the blue long- and short-dashed
lines, and we see that the former also does not lead to any
diminished model validity ranges. However, for most
samples we find that the constraints on γ21 are consistently
driven towards smaller values, while those for γ2 stay
constant, which means that they become in tension with the
coevolution relation. Fixing γ21 in that way is therefore no
longer a generally applicable assumption, which is why we
loose its positive benefit on the FOM. On the contrary, the
second considered case is strongly disfavored, as is evident
both from the FOB as well as the goodness of fit, and gives
rise to validity scales that are even smaller than when all
bias loop corrections to the bispectrum are ignored
(cf. Fig. 5). This is consistent with our analysis in
Sec. IV C 3, where we found that two parameter combi-
nations involving b3, γ3, and γ×2 are well constrained and
strongly disfavored to be zero.
Finally, we test whether additional parameters can be

fixed in the NLE coevolution model, in particular whether
we can exploit the degeneracy between NP;2 and NP;0, and
the PBS relation for the effective parameter b3;eff. The
former case is shown by the light blue, dot-dashed lines in
Fig. 11, where we made use of Eq. (62) in order to remove
NP;2 as an independent parameter. This reduction does not
diminish the applicable range of the model with the only
critical exception being the HALO4 sample, for which we
already reported in [62] a departure from the relation in
Eq. (62). However, being able to fix NP;2 brings substantial
improvements in the FOM and thus on the constraints on b1
for all samples considered. Although NP;2 and b1 do not
appear correlated in the full parameter space according to
Fig. 8, we find that this correlation is induced once the
coevolution assumptions are applied to the NLE operators.
Even in this considerably more constrained model, the PBS
relation for the parameter combination b3;eff is still an
excellent description, as demonstrated by the light blue,
dotted lines. It gives rise to a slight further increase in FOM,
most notably for the galaxy samples, without compromis-
ing in the validity range. The model performance for the
HALO2 sample is poorer, due to the disagreement between
the measured value of b3;eff and the PBS relation that we
found earlier (see Fig. 9).

V. JOINT ANALYSIS WITH VARYING
AMPLITUDE OF FLUCTUATIONS

A crucial advantage of combining the power spectrum
and bispectrum is the ability to break degeneracies between
cosmological and bias parameters. One of the most
prominent degeneracies in the power spectrum concerns
the amplitude of fluctuations, As, and the linear bias
parameter, since they appear as the combination b1

ffiffiffiffiffi
As

p
in the leading contribution to the power spectrum.
Although this degeneracy is somewhat reduced by infor-
mation from nonlinear scales, as well as for analyses in
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redshift space, the bispectrum’s different dependence on As
and b1 allows us to separate their effects much more clearly.
It is therefore interesting to investigate whether our

previous results on the model performances still hold once
we include As in the fitting procedure, and whether the one-
loop bispectrum can yield improved constraints on As

despite its increased parameter space. We focus here on As

while leaving other cosmological parameters fixed, since
As, like the bias parameters, appears as a coefficient in front
of contributions that can be tabulated, making its variation
in the MCMC computationally very cheap.

A. Methodology

Varying the amplitude of fluctuations means that we can
no longer follow our previous approach of using the
measured matter bispectrum since the leading-order and
nonlinear contributions scale differently with As. In order to
obtain an optimal description of the matter bispectrum for
testing the bias modeling in this case nonetheless, we
compute its one-loop expression from Eq. (30) including
stress-tensor corrections as described in Sec. II E. We then
determine the four stress-tensor parameters βB;a=…=d by
fitting this model to the measured matter bispectrum with

FIG. 11. FOB, goodness of fit and FOM (normalized by the FOM of the full parameter space model at its validity scale) as a function
of kmax. Different line styles correspond to different assumptions on subsets of the participating bias operators: coevolution for all five
NLE operators (red, solid), removal of the four fourth-order operators (blue, long dashed), removal of fourth-order operators and b3, γ3,
and γ×2 (blue, short dashed), NLE coevolution with b3 fixed using the PBS relation and with or without the empirical relation for NP;2

(light blue, dotted, and dot dashed). Each set of panels indicates whether scale-dependent stochastic terms have been included or not and
the legend lists the number of free fitting parameters.
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varying cutoff scales, kmax, using a covariance matrix that is
constructed in the same way as for the galaxy and halo
samples (see Sec. III B). At a cutoff scale at which the
reduced χ2 of these fits exceeds the 95% confidence limit
we find their best-fit values and use them from here on in all
subsequent analyses involving the one-loop galaxy or halo
bispectrum, keeping them fixed unless stated otherwise.
The values at the five different redshifts of our samples, as
well as the cutoff scale of the corresponding fit are given in
Table IV. For the power spectrum we instead model the
matter component using the response function formalism
[104,105], as implemented in the RESPRESSO package
[106], which was found to yield the best results in the
comparison of different matter models presented in [62].
The strong degeneracies between the amplitude of fluc-

tuations and the bias parameters can complicate the MCMC
procedure, which is why we choose to sample combinations
of the two. In particular, we use the prescription

bnth → bnthA
n=2
s ð63Þ

for a generic nth-order bias parameter, such that our new
linear bias parameter becomes b1

ffiffiffiffiffi
As

p
, the new tidal bias

parameter becomes γ2As etc., which removes the main
degeneracies. We keep the same prior distributions for these
combinations as for the original parameters given in Table I
and varyAswithin a uniformpriorwith bounds [0.086, 1.95].

B. Results

1. Comparison of validity and merit

To begin with, let us compare the achievable constraining
power on As for various previously discussed modeling
options of the bispectrum, while keeping the power spec-
trummodel fixed. We evaluate the goodness of fit, FOB and
FOM for these cases as before, but with a focus on the
amplitude of fluctuations by defining the latter two metrics
with respect to As instead of b1, and plot the results as a
function of cutoff scale in Fig. 12. The solid red and blue
lines indicate the tree-level and one-loop galaxy bispectrum,

where the latter includes scale-dependent stochastic correc-
tions for the same samples as above, and all participating
bias parameters are allowed to vary. We see that the
former typically becomes insufficient at scales beyond
kmax ∼ 0.15 h=Mpc, while the consideration of nonlinear
corrections extends the validity to 0.2 h=Mpc, and for most
samples even to 0.25 h=Mpc and beyond (validity ranges are
shown by the arrowhead symbols in the FOM panels as
before). This is largely consistent with our previous findings
for fixedAs, thoughwe note that the scales at which the one-
loop model breaks down are slightly reduced, possibly due
to inaccuracies in the matter bispectrum.13 Comparing the
maximum FOM for these two cases reveals that for the
majority of samples the benefit of extending the one-loop
model deeper into the nonlinear regime is not enough to
overcome the penalizing effect from having to marginalize
over an increased number of bias parameters.
However, this situation changes once we apply coevo-

lution relations to all of the NLE bias operators (blue
dashed), which we validated in Sec. IV D for fixed As.
Again we find that this assumption has virtually no impact
on the estimated validity ranges across all samples, but we
observe a larger decrease of the uncertainties on As than
previously for b1. That in turn leads to a clearly improved
maximal FOM for the one-loop model, achieving con-
straints on As that are tighter by factors of about 1.5
(CMASS) up to 2.4 (MGS) than what can be obtained from
the tree-level model. Only for the HALO1 sample does the
one-loop model fail at a kmax that is too low to guarantee an
enhanced constraining power. Using additionally the
empirical relation for the scale-dependent stochastic param-
eter of the power spectrum, NP;2, does not give rise to
the same significant boost in FOM for As as for b1
(cf. Sec. IV D), as shown by the blue dotted line. Apart
from the HALO4 sample, the performance is generally very
similar to the previous case, although some slight improve-
ments can be observed, including for LOWZ and CMASS.
We also explore whether we can augment the pure tree-

level model represented by the red solid line. To that end,
we consider two possibilities where we substitute the tree-
level matter bispectrum by its one-loop expression with
(1) fixed stress-tensor contributions, identical to how we
treat the full one-loop model (red dashed), and (2) all
higher-derivative parameters allowed to vary (red dotted).14

TABLE IV. Best-fit values of the stress-tensor parameters at the
various redshifts of our simulations (see also Sec. III A), resulting
from fits of the matter bispectrum up to a scale kmax where the
reduced χ2 is smaller than the corresponding 95% confidence
limit. All parameters βB;a=…=d are given in units of k−2HD with
kHD ¼ 0.4 h=Mpc.

Simulation
redshift βB;a βB;b βB;c βB;d kmax [h=Mpc]

0.0 0.144 0.361 −0.287 −0.135 0.16
0.132 −2.58 1.75 −0.588 −0.506 0.23
0.342 −1.31 0.958 −0.530 −0.114 0.19
0.57 −0.256 0.403 −0.235 −0.0597 0.20
0.97 −0.0421 0.232 0.0287 −0.163 0.23

13Since we now model the matter bispectrum, the correction of
the χ2 values according to Eq. (52) is no longer necessary. The
fact that we generally find good agreement between the χ2 values
in Fig. 12 and those reported earlier (with the exception of MGS
for large kmax) can be regarded as an a posteriori validation of our
applied correction term.

14Note that because the higher-derivative parameters now also
partially encompass deviations from a nonvanishing stress tensor,
we can no longer exploit the relationship between βP and βB;a=b
(see discussion in Sec. II E). For that reason all six parameters are
being varied in this case.
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While the first option does improve the goodness of fit, the
FOB becomes worse for many samples, indicating that the
fit adapts As to scale the matter loop correction up or down
in an attempt to account for the lacking bias loop correc-
tions. As a result, the overall validity range and thus the
maximal FOM is not significantly enhanced compared to
the plain tree-level model—only MGS stands out in this
regard, where the uncertainties on As shrink by a factor ∼2.
The addition of the higher-derivative terms, considered in
the second option, yields further improvements in the
goodness of fit, and at least for all three galaxy samples
does not strongly bias the recovery of As. Interestingly,

in contrast to our results in Sec. IV B, here we do not find
an equally severe decrease in constraining power from
marginalizing over the additional parameters, which ren-
ders the maximal FOM for the LOWZ and CMASS
samples comparable to the one-loop model with fixed
NLE bias operators. However, for all other samples this is
not the case, so this result might be fortuitous and should be
interpreted carefully. Moreover, the fact that the validity
ranges are consistently lower than for the one-loop model,
despite having a larger parameter space, suggests that the
higher-derivative terms mainly act as a convenient way of
absorbing the bias loop corrections. This conclusion is also

FIG. 12. Same as Fig. 5, although the FOB and FOM are computed with respect to As instead of b1. The power spectrum model
includes loop corrections and is the same for all shown results. The bispectrum models corresponding to lines in red color only contain
tree-level bias terms, but unlike the solid line, dashed and dotted ones make use of the one-loop matter bispectrum (see Sec. VA). All
blue lines account for the full one-loop expressions with or without scale-dependent stochasticity (SDS/Fid, respectively) and different
line styles distinguish various assumptions on a subset of the parameters. The total number of free parameters Np is given in the plot
legend.
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supported by various higher-derivative parameters attaining
a significant dependence on kmax.

2. Improvements over the power spectrum

After finding the validity ranges for the joint power
spectrum and bispectrum analysis, we can turn to the
question of how much extra information on As we gain
compared to the power spectrum alone. For that purpose we
show in Fig. 13 the 68% and 95% confidence limits on As
and b1 (rescaled back to the original linear bias parameter)
obtained for these two cases, where we have used the one-
loop bispectrum model with fixed NLE bias operators and
similarly assumed coevolution for γ21 (the only contribut-
ing NLE operator) in the individual power spectrum
analysis. The constraints are respectively plotted at the
maximum valid kmax value of the joint fit as determined
from the data shown in Fig. 12. For each of the samples the
power spectrum contours (gray) tightly follow the expected
degeneracy direction, b1

ffiffiffiffiffi
As

p ¼ const, which prevents any
better constraint on As. Inclusion of an increasing number
of bispectrum triangle configurations (larger kmax), how-
ever, breaks this degeneracy more and more efficiently,
which leads to substantial reductions in the uncertainties.
As indicated for As by the green arrows in the plot, these
range between factors of 2.2 for HALO1 and 5.7 for
HALO3. Moreover, we have checked that enlarging the
cutoff scale for the power spectrum fit, e.g., to
kmax ¼ 0.3 h=Mpc, has little to no impact on this outcome,

and ΔAs generally shrinks by at least a factor of 3 (except
for HALO1).
Nevertheless, as mentioned at the beginning of this

section, these results are not fully representative in the
sense that this analysis was performed in real opposed to
redshift space, where the combination of power spectrum
multipoles already helps in disentangling b1 from As
(assuming ΛCDM, otherwise from a combination of As
and the growth rate of structure). In addition, correlations
between different triangle configurations, which we have
ignored in the covariance matrix of the bispectrum, could
further diminish the improvement factors quoted in Fig. 13.
On the other hand, similar correlations in the power
spectrum part of the covariance matrix would act in the
opposite direction and the cross-covariance between both
statistics, which was also not included in our analysis, has
been shown to have a strong positive effect on constraining
the amplitude of fluctuations [4,7]. Our results are therefore
at the very least indicative of the large potential of the
bispectrum, and in particular we have shown here for the
first time that this potential is not heavily diminished by
the increased parameter space that is required for describing
the bispectrum on mildly nonlinear scales.

VI. CONCLUSIONS

We have analyzed real-space measurements of the power
spectrum and bispectrum from a large set of galaxy and
halo mock catalogs, and performed fits of their joint

FIG. 13. This figure shows 68% and 95% confidence limits on As and b1 [rescaled to the original linear bias parameter by inverting
Eq. (63)] from the power spectrum alone (gray contours) and from the combination with the bispectrum (blue contours) using the full
one-loop model with NLE terms assumed to follow the coevolution relations. In both cases the constraints have been evaluated at the
maximal scale where the latter is still valid according to Fig. 12. Red lines (error bands) indicate fiducial parameter values (and their
uncertainties) and the improvement in the constraint on As from adding the bispectrum is given by the green arrow.
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likelihood using models build from perturbation theory. In
particular, we have accounted here for the first time for all
next-to-leading (one-loop) corrections due to galaxy bias in
the bispectrum, which puts its description on equal footing
with models routinely used in the analysis of the power
spectrum [60,61,91,107–109], and allowed us to include
more nonlinear triangle shapes than in previous studies
[21,22,24,49,59,110,111]. Since modeling the nonlinear
corrections requires the introduction of additional bias
parameters, and thus a larger number of nuisance param-
eters that need to be marginalized over, our analysis
pursued two main goals: (1) identifying whether the
information from nonlinear scales in the bispectrum offsets
the penalty of the extra parameters, and (2) testing the
applicability and universality of coevolution and PBS
relations in order to reduce the bias parameter space.

A. At fixed cosmology

Holding initially all cosmological parameters fixed at
their fiducial values, we have found that the one-loop
galaxy bias corrections to the bispectrum become relevant
at scales k≳ 0.17 h=Mpc. This is largely consistent across
our various samples, for each of which we adopted
statistical uncertainties corresponding to an effective survey
volume of 6 ðGpc=hÞ3, and also agrees qualitatively with
the scale at which analogous corrections start to signifi-
cantly affect the power spectrum. The posteriors of
both statistics remain fully compatible and based on the
goodness of fit, as well as the accurate recovery of the linear
bias parameter b1, we have quantitatively ascertained that
joint fits of the power spectrum and bispectrum can
be applied over the entire tested range of scales, i.e.,
kmax ¼ 0.3 h=Mpc, for most of the samples. Notably, we
gain a factor of 1.5 to 2 when contrasting the constraining
power on b1 at the maximum scale at which our metrics
regard the model as valid with that of a model excluding
loop corrections. This indicates a clear benefit from the
information on nonlinear scales, despite the larger nuisance
parameter space.
From the same analysis we have carefully extracted

measurements of all bias parameters up to fourth order, and
for the parameters shared between the power spectrum and
bispectrum—the nonlinear and tidal biases b2 and γ2, as
well as the nonlocal parameter γ21—these range among the
most stringent that have been reported so far. Comparing
these measurements with the commonly applied local
Lagrangian approximations for γ2 and γ21, we have found
clear deviations that are in agreement with the results of
other, independent analyses [53,54]. This suggests the
presence of Lagrangian tidal bias and, especially, the
importance of including its effect in joint analyses of
the power spectrum and bispectrum (see also [55]). At
the high-mass end of our halo samples (large b1), we have
also detected a departure from the excursion-set prediction
of [47] for γ2, which was working well when considering

only data from the power spectrum [62]. On the other hand,
for all of our samples γ21 is in excellent agreement with the
more general coevolution relation, which takes the nonzero
Lagrangian tidal bias into account. The PBS relation of [74]
for b2 (calibrated for dark matter halos) matches very well
with the results obtained from the halo samples, but
disagrees strongly with those from all three galaxy catalogs,
which we have attributed to the nonlinearity of the b2ðb1Þ
relation.
Constraints on higher-order bias parameters are gener-

ally much weaker and individually often consistent with
zero, since they only enter as nonlinear corrections to
the bispectrum. However, an analysis of the parameter
correlation matrix revealed that there are two very well-
constrained combinations of third-order parameters—one
of them in good agreement with the PBS relation for b3—
which implies that they cannot simply be dropped from
the model.
Taking these results as guidance in order to find suitable

reductions of the parameter space, we have shown that the
application of coevolution relations to all galaxy bias
contributions that are generated by nonlocal gravitational
evolution (NLE bias operators corresponding to γ21 and all
four fourth-order parameters) presents an exceptionally
good approximation for our data. The estimated validity
ranges are not diminished, while the uncertainties on b1
shrink by 15–20%. Further improvements can be achieved
by fixing the scale-dependent stochastic component in the
power spectrum using the empirical relation provided in
[62]. Hence, with these approximations, modeling the
bispectrum at one-loop order only takes three more
parameters in excess of those already required by the
one-loop power spectrum.

B. Varying As

In a second part of our analysis we have allowed the
amplitude of fluctuations, As, to vary alongside the bias
parameters. Judging the model performance in that case by
goodness of fit and an accurate estimation of As, we have
found slightly reduced validity ranges for both the tree-
level and one-loop bias descriptions compared to the results
at fixed cosmology, although the latter remains reliable up
to at least kmax ¼ 0.25 h=Mpc for the majority of samples.
We have further shown that the penalty on As from
marginalizing over bias parameters is more severe than
on b1, leading for some samples to comparable or even
worse constraints on As from the one-loop model than what
we obtain from the tree-level bias description.
However, we have also demonstrated that the coevolu-

tion relations for NLE operators continue to hold and their
application turns the situation clearly in favor of the one-
loop model. In particular, it improves the statistical uncer-
tainties on As by factors of 1.5 to 2.4 compared to an
analysis constrained to larger scales using the tree-level
model. In comparison with the power spectrum alone the
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joint analysis shrinks the constraints on As by factors of
∼4–6 for most samples, and evidently highlights its
value for breaking the prominent b1 − As degeneracy.
Even though this degeneracy is already partly broken by
the power spectrum monopole and quadrupole in a redshift-
space analysis, likely leading to less pronounced improve-
ments than those quoted above, the bispectrum will
still be instrumental in disentangling the effects of As
and the growth rate of structures, which we will consider in
future work.

C. On scale-dependent stochastic and
higher-derivative contributions

We have also analyzed the effect of including scale-
dependent stochastic (three extra parameters) and higher-
derivative (five extra parameters) contributions both to the
tree-level and one-loop galaxy bias models of the bispec-
trum. While the performance of the tree-level model is
not significantly enhanced when augmented by scale-
dependent stochasticity, we have seen that it leads to
slightly improved results and less kmax dependent fitting
parameters for the one-loop model when applied to the
more heavily biased samples. This is in accordance with the
same finding for the power spectrum presented in [62].
At fixed cosmology higher-derivative terms can extend the

validity of the tree-level bias description far into the nonlinear
regime for multiple samples, which implies that they are able
to efficiently absorb the missing bias loop corrections.
However, this comesat the expenseof a significantly increased
uncertainty on b1, such that in this case there is little benefit in
going beyond the large-scale analysis. Interestingly, the same
effect is not as severe with varying As, giving minimum
measurement errors on As that are larger than those obtained
by the one-loop model by only a few percent for the galaxy
samples. On the contrary, for the halo samples we did not
find the same improvements from the inclusion of higher-
derivative contributions, so we caution that their ability to
absorb andmarginalizeover loopcorrectionsmaywell depend
on the particular sample under consideration.
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APPENDIX A: FOURTH-ORDER
BIAS OPERATORS

The one-loop bispectrum receives contributions from
four fourth-order bias operators, whose expressions are
collected in the following. As explained in Sec. II A, each
of them can be written in terms of Galileons and higher-
order LPT potentials:

iÞ δG2ðφ2;φ1Þ; ðA1Þ
iiÞ G3ðφ2;φ1;φ1Þ; ðA2Þ
iiiÞ G2ðφ2;φ2Þ; ðA3Þ

ivÞ G2ðφ3;φ1Þ ¼
1

18
G2ðφðaÞ

3 ;φ1Þ þ
5

42
G2ðφðbÞ

3 ;φ1Þ

− 1

14
∇ið∇ × A3Þj∇ijφ1; ðA4Þ

where the last operator is a combination of the two scalar
third-order potentials φðaÞ

3 and φðbÞ
3 , and the vector potential

A3 [34].15 They are defined as

∇2φðaÞ
3 ¼ −G3ðφ1Þ; ðA5Þ

∇2φðbÞ
3 ¼ −G2ðφ2;φ1Þ; ðA6Þ

∇2A3 ¼ −êiϵijkð∇jlφ1Þð∇klφ2Þ; ðA7Þ

where ϵijk is the fully antisymmetric Levi-Civita symbol
and êi denotes the unit vector in the i direction.
In Fourier space we can express any of these operators as

the integral

Oð4ÞðkÞ ¼ ð2πÞ3
Z
k1;…;k4

δDðk − k1234Þ

×Kð4Þ
O ðk1;…; k4Þ

Y4
i¼1

δLðkiÞ; ðA8Þ

and the kernel functions corresponding to the four oper-
ators are given by [34]

Kð4Þ
δG2ðφ2;φ1Þðk1; k2; k3; k4Þ

¼ 1

12
½Kðk1; k23ÞKðk2; k3Þ þ symð12Þ�; ðA9Þ

Kð4Þ
G3ðφ2;φ1;φ1Þðk1; k2; k3; k4Þ

¼ 1

6
½Lðk1; k2; k34ÞKðk3; k4Þ þ symð6Þ�; ðA10Þ

15We note that [34] has a typo in the expression corresponding
to Eq. (A4) [their Eq. (50)], due to a missing minus sign in the
growth factor for the vector part of the third-order displacement
field.
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Kð4Þ
G2ðφ2;φ2Þðk1; k2; k3; k4Þ ¼

1

3
½Kðk12; k34ÞKðk1; k2ÞKðk3; k4Þ þ symð3Þ�; ðA11Þ

Kð4Þ
G2ðφ3;φ1Þðk1; k2; k3; k4Þ ¼

1

12

�
1

18
Kðk1; k234Þ

�
15

7
Kðk23; k4ÞKðk2; k3Þ − Lðk2; k3; k4Þ

�

þ 1

14
ðMðk1; k23; k4; k234Þ −Mðk1; k234; k23; k4ÞÞKðk2; k3Þ þ symð12Þ�; ðA12Þ

where symðnÞ stands for the n − 1 terms that need to be
added in order to symmetrize the expressions over the four
participating wave vectors. In Eq. (A12) we have further
made use of the kernel function

Mðk1;k2;k3;k4Þ≡ðk1 ·k2Þðk2 ·k3Þðk3 ·k4Þðk4 ·k1Þ
ðk1k2k3k4Þ2

: ðA13Þ

Finally, when computing the loop corrections for the two-
point propagator [see Eq. (10)], we need to make sure to
only include the “finite” part of the kernels and subtract any
potential sensitivities to the nonlinear regime in the large-
scale limit (which are absorbed by the bias parameters).
This only occurs for the first operator [Eq. (A1)] and one
can show that

Kð4;limÞ
δG2ðφ2;φ1Þðk1;k2;qÞ≡ lim

q→0
Kð4Þ

δG2ðφ2;φ1Þðk1;k2;q;−qÞ;

¼ 1

3
Kðk1;qÞKðk2;qÞ

þ 1

6
Kðk1;k2ÞKðk1 þ k2;qÞ; ðA14Þ

and so we define

Kð4;FÞ
δG2ðφ2;φ1Þ ≡Kð4Þ

δG2ðφ2;φ1Þ −Kð4;limÞ
δG2ðφ2;φ1Þ; ðA15Þ

where we have suppressed the argument ðk1; k2; q;−qÞ.

APPENDIX B: EVOLUTION
OF CONSERVED TRACERS

To complete the expressions given in Sec. II B, we here
briefly review the general solution of the coupled equations
for matter and tracer densities, δ and δg, as well as matter
velocity θ, where we assume the conservation of tracers and
the absence of velocity bias (θg ¼ θ). For further informa-
tion, see [34,45,113].
We start by introducing the triplet

Ψaðk; τÞ≡ ½δðk; τÞ; θðk; τÞ=fH; δgðk; τÞ�; ðB1Þ

where τ is the conformal time, H the conformal Hubble
rate, and f the growth rate of structures. Using this triplet
and changing time variable to the logarithm of the linear
growth factor, η≡ lnDðτÞ, the continuity and Euler equa-
tions can be written in the following compact form

∂Ψaðk;ηÞ
∂η þΩabΨbðk;ηÞ¼ ð2πÞ3

Z
k1;k2

δDðk−k12Þγabcðk1;k2Þ

×Ψbðk1;ηÞΨcðk2;ηÞ: ðB2Þ
The couplings between densities and velocities at a linear
level are described by the matrix

Ωab ≡ 1

2

2
64

0 −2 0

−3 1 0

0 −2 0

3
75; ðB3Þ

whereas nonlinear interactions are encoded in γabcðk1; k2Þ,
whose only nonzero components are given by

γ121 ¼ γ323 ¼ αðk1; k2Þ≡ k12 · k1
2k21

; ðB4Þ

γ222 ¼ βðk1; k2Þ≡ k212ðk1 · k2Þ
2k21k

2
2

; ðB5Þ

and γ112ðk1; k2Þ ¼ γ121ðk2; k1Þ. Letting ϕaðkÞ denote the
initial conditions for the three fields at η ¼ 0, it can be
shown via Laplace transformation that Eq. (B2) has an
integral solution,

Ψaðk; ηÞ ¼ gabðηÞϕbðkÞ þ ð2πÞ3
Z

η

0

dη0gabðη − η0Þ

×
Z
k1;k2

δðk − k12Þγbcdðk1; k2Þ

×Ψcðk1; η0ÞΨdðk2; η0Þ; ðB6Þ
with gabðηÞ denoting the linear (time) propagator, which is
given by a combination of growing and decaying modes:

gabðηÞ ¼
eη

5

2
64
3 2 0

3 2 0

3 2 0

3
75 −

e−3η=2

5

2
64
−2 2 0

3 −3 0

−2 2 0

3
75

þ

2
64

0 0 0

0 0 0

−1 0 1

3
75: ðB7Þ

Plugging in the multipoint propagator expansion forΨa and
ϕa into Eq. (B6) one can derive a set of recursion relations
at arbitrary order of perturbation theory, which leads to the
expressions in Eqs. (14)–(16).
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APPENDIX C: CONSTRAINTS ON HIGHER-ORDER BIAS PARAMETERS

In Table V we have collected the remaining constraints on the third- and fourth-order bias parameters for all of our
samples. These values derive from the same joint power spectrum and bispectrum analysis that was described in Sec. IV C
and thus complete Table III.
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