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ABSTRACT The characteristic extraction of ultrasonic Lamb wave is the prerequisite for its efficient utilization 

in the structural health monitoring. In the situation of intentional signal compression or unexpected data missing, 

the accurate recovery of contained information is challenging. To address this problem, this work proposes the 

time-frequency representation (TFR) reconstruction scheme for undersampled Lamb wave signal. Unlike the con-

ventional method, both the sparse prior and structural sparse prior in the two dimensional plane are considered in 

the design of Bayesian compressive sensing. The simulated signal is adopted to validate the effectiveness of the 

proposed method. Furthermore, different ratios of available samples are investigated to analyze the recovery ratio 

of TFR. Even if the available samples are smaller than those from the Nyquist rate, the TFR recovery ratio can 

reach 70%. The experiments using array transducers in noisy environments are also conducted. The time-of-flight 

information extracted from the recovered TFR is accurate and the relative error is smaller than 3%. Besides, the 

comparisons with conventional schemes for compressive sensing are carried out to demonstrate its superiority. 
 

INDEX TERMS Bayesian inference, Compressive sensing, Sparse prior, Time-frequency representation, Time-of-

flight 
 

 

1.Introduction 

  Lamb wave is the commonly used guided wave in the 

structural health monitoring of plates [1–5]. After propagat-

ing through the structure, the wave can be received to extract 

the encoded information and further locate, even image the 

damage [6–9]. Lamb wave owns the natures of dispersion and 

multi-modes and they bring the challenges for its effective 

utilization [10–12]. Therefore, the appropriate signal post-

processing method is pivotal in the interpretation of Lamb 

wave. 

  The received Lamb wave signal is typically non-stationary 

signal. Corresponding signal processing techniques have 

been developed to accomplish the Lamb wave exploitation 

[13–15]. The guided wave field was described by a wave-

number analysis method and the frequency-wavenumber 

spectra was applied to identify the structural discontinuity 

[16]. The theoretical basis signal was calculated and the cor-

relation analysis between basis signal and received signal was 

conducted to implement the mode separation [17]. The singu-

lar value decomposition approach had been introduced to an-

alyze the array signal and obtain the timeof- flight (TOF) of 

scattered wave [18]. Besides, the time-frequency representa-

tion (TFR) provides an efficient method. The cross Wigner-

Ville distribution (xWVD) was employed on the received sig-

nal and excitation signal to separate the Lamb wave modes in 

the time-frequency plane [19]. The wavelet network was pro-

posed to extract the damage features from the signal and fur-

ther estimate the damage location and severity [20]. The 

warped frequency transform, chirplet transform, S transform, 

and the like had also been investigated to analyze the disperse 

Lamb wave [21–24]. These methods proved to be available 

in different aspects, however, they ignored the data compres-

sion or data missing problem in the long-term and large-area 

inspection. 

  For Lamb wave imaging, usually dense acoustic rays need 

to cover the whole plate structure. The huge amounts of in-

spection data lead to the storage and transmission problem 

[25]. Compressive sensing attracted considerable attention 

due to its different perspective compared with Shannon’s the-

orem [26–28]. The compressed sampling provides a potential 

way to decrease the data amount. In addition, the removal of 

impulsive noise may cause the missing of samples [29]. 

Therefore, a suitable post-processing scheme is required to 

deal with the incomplete signal [30]. The structural responses 

were compressed with different compression ratios by the 

random measurement and the recovery process was solved 

through the convex optimization [31]. The dictionary algo-

rithm had been designed to recover the Lamb wave through 

the sparse spatial domain [32]. Combining the probability and 

statistics theory, Bayesian compressive sensing and improved 
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strategy for cluster sparse signals had been developed [33,34]. 

The TFR can present the Lamb wave effectively in the two-

dimensional plane, and further the time-relevant or fre-

quency-relevant or time-frequency relevant characteristics 

can be obtained. However, to the best of the authors’ 

knowledge, the TFR had not been directly recovered from the 

incomplete Lamb wave signal. 

  In this work, the Bayesian compressive sensing with struc-

tural sparse prior has been proposed to extract the time-fre-

quency characteristics of the undersampled Lamb wave. The 

Lamb wave signal is undersampled in a random way and only 

a certain proportion of samples are available. The relation of 

TFR and instantaneous autocorrelation function (IAF) is ap-

plied to construct the compressive sensing model. Then the 

sparsity and structural sparsity of time-frequency distribution 

are both utilized to reconstruct the TFR. The maximum en-

ergy time-frequency ridge is obtained from the TFR and fur-

ther the TOF can be extracted for the Lamb wave tomography. 

The successful recovery ratios of the TFR grids are also in-

vestigated in different undersampled situations. The proposed 

method is also compared with conventional compressive 

sensing and Bayesian compressive sensing. In the basis of 

compressive sensing, the proposed method introduces the 

Bayesian inference. The combining of sparse prior and struc-

tural sparse prior can explore deeper feature of dispersive 

Lamb wave. It helps to exert the superiority of compressive 

sensing and make the proposed method achieve the highest 

recovery ratios. Besides, the extracted TOFs are compared 

with those from threshold method and cross correlation 

method to verify the accuracy in the TFR recovery.  

  The remainder of this paper is organized as follows. Sec-

tion II outlines the detailed scheme for the TFR reconstruc-

tion from the undersampled Lamb wave signal. In section III, 

the validation using the simulated signal is conducted to 

demonstrate the effectiveness of proposed method. Experi-

mental investigations and further comparisons with conven-

tional compressive sensing are presented in section IV. Con-

cluding remarks are summarized in section V. 

 

2. Time-frequency characteristics extraction 

scheme 

  The overall diagram of the proposed scheme is depicted in 

Fig. 1. The incomplete Lamb wave signal is recovered in the 

time-frequency domain using sparse prior and structural 

sparse prior. The sparse prior means that most of the entries 

in the TFR are zero values. Due to the features of wavepack-

ets in structural sparse prior is also considered in the proposed  

scheme. The TFR can facilitate the signal analysis and char 

acteristics recognition efficiently. In this context, the TOF is 

extracted for further utilization. The detailed procedures are 

given in the following sections. 

 

2.1 Framework of compressive sensing 

  If the signal x only owns limited non-zero elements, the 

‘‘sensing” of original signal can be accomplished using a 

measurement matrix Φϵ𝑅𝑀𝑥𝑁. This process can be described 

as follows [35]: 

 
Where y is the observed value. Usually, M≪ 𝑁 and then y 

has smaller data dimensions than x. 

The precondition of the compressive sensing is that the signal 

is sparse or at least it is sparse in a certain domain. The 

‘‘sparse” means that the number of non-zero entries is limited. 

In the case of guided wave signal, it is not sparse in the time 

domain mathematically. Therefore, it must be transformed to 

the other domain and it can be expressed as: 

 
where Ψ′ is the transformation matrix. 

The calculated coefficient s after the proper transformation 

can be sparse. Combining (1) and (2), the compressive sens-

ing model can be obtained: 

 
  To recover the original signal x from the observed data, the 

measurement matrix Φ needs to satisfy the restricted isome-

try property (RIP). Because the dimensions of observed val-

ues y are smaller than that of original signal x, the conven-

tional method can not accomplish the inverse recovery of the 

signal. Compressive sensing has attracted considerable atten-

tion recently and Bayesian compressive sensing is the new 

model which will be analyzed and adapted to the Lamb wave 

signal. 

 

2.2 Bayesian compressive sensing for TFR 

 

  The aim of Bayesian compressive sensing in this work I sto 

recover the time-frequency signatures from the undersampled 

signal. The original signal is denoted as x(t) and the under-

sampled data is denoted as y(n). The signal can be correlated 

with its time-frequency distribution by using the instantane-

ous autocorrelation function (IAF) [36]. The relation of clas-

sical Wigner-Ville distribution (WVD) and IAF constitutes 

the basis of compressive sensing model. The IAF can be ex-

pressed as: 

 

 
 

Fig.1. The block diagram for the time-frequency characteristics extraction scheme through the structural sparse Bayesian 

compressive sensing. 
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where n is the discrete time point and s denotes the time-lag. 

Considering putting all the R from different time-lags and 

time points together, the IAF matrix R can be obtained. The 

WVD can be calculated by the discrete Fourier transform of 

IAF with respect to timelag: 

 
Where ℱ𝜏  represents the discrete Fourier transform. The 

WVD owns accurate time-frequency analysis capability for 

one single signal. However, the cross-term will be generated 

when the signal is the summation of multiple signals or the 

signal has multiple concentrated areas in the TFR. The time-

frequency kernel, which is considered as the window function 

for WVD, can be applied to filter this interference. Then, the 

general form or Cohen’s class of TFR is obtained: 

 
Where 𝐑′ is the matrix of general IAF and c denotes the Co-

hen’s class. The general IAF can be expressed as: 

 
where g is the smoothing kernel and R' is the general IAF. 

Different kernels will determine different time-frequency dis-

tributions. For the inverse process of (6), it can be given by:  

 
where W is the error which is considered as the Gaussian 

white noise with mean of zero and covariance matrix of 𝜎2I. 

  It is worth noting that each column of the matrix conforms 

to the compressive sensing model of (3): 

 
where Θ is the notation for ℱ 𝑓

 −1 . 

  The c in the time-frequency domain is sparse and conven-

tionally, the sparse Bayesian learning assumes that each entry 

of c satisfies the Gaussian distribution with variance of 𝛾[33]: 

 
where p is the probability density, N denotes the Gaussian 

distribution and ci is the unknown parameter which will be 

estimated by the algorithm. The ci is called the hyperparam-

eter and it obeys the Gamma distribution: 

 
where a and b are the two parameters in the Gamma distribu-

tion.  

The illustration of Bayesian compressive sensing model is 

shown in Fig. 2. The hyperparameters control the process of 

TFR recovery. Due to the sparse prior, usually most of the 𝛾𝑖 

will become zero, thus, the corresponding ci will be zero. In 

this model, the hyperparameters of 𝛾𝑖 are independent with 

each other and the structural information is not utilized suffi-

ciently. 

 
Fig.2. The illustration of Bayesian compressive sensing 

model. 

2.3 Structural Sparse prior design 

   

  Since the excitation signal of Lamb wave owns certain pat-

terns in the time-frequency distribution, the received signal 

also presents prior properties in the two-dimensional plane of 

TFR. Specifically, the time-frequency domain forms the 

block sparse structure and each entry is influenced by adja-

cent elements. The coupled model is expressed as: 

 
where 𝛼𝑙,𝑚is defined as: 

 
where N(l,m) is the adjacent grid of (l,m) and 𝜉 is the cou-

pling coefficient. The TFR can be regarded as a two-dimen-

sional picture composed of discrete grids. The horizontal axis 

is the time and the vertical axis is the frequency. The grid in 

the time scale is depended on the time interval of the discrete 

signal. The grid in the frequency scale is also derived from 

the sampling rate divided by number of sampling points. 

  Due to the dispersion of Lamb wave, the waves of different 

frequencies propagate in different velocities. In this context, 

the excitation signal of Lamb wave is a windowed sinusoidal 

signal which owns a narrow bandwidth. After propagating a 

certain distance, the time-frequency ridge of Lamb wave will 

be in an oblique line according to the dispersion. Considering 

the TFR of disperse Lamb wave, the N(l.m) is defined as: 

 

 
   

Similarly, the hyperpriors of hyperparameters are Gamma 

distributions: 

 

 
  The illustration of this model with structural sparse prior 

is shown in Fig. 3. When the grid (l,m) is in the margin of 

the time-frequency plane, the set of 𝛼𝑙,𝑚 will also be modi-

fied. The parameter 𝜉 which belongs to the range of 0~1 

indicates the degree of the coupling from surrounding ele-

ments. When this coefficient is equal to zero, this model is 

degraded into the conventional Bayesian compressive sens-

ing. 

 

 
Fig.3. The Bayesian compressive model with structural 

sparse prior in two-dimensional situation. 
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2.4 Bayesian inference 

  To make it clear in the following description, the noise 

variance 𝜎2is denoted as Λ. According to the Bayesian for-

mula, the posterior distribution of c is expressed as [37]: 

 
Where p(r;c;Λ) is the conditional probability density func-

tion of r: 

 
where N is the dimension of r. To learn from the noise situa-

tion, the Gamma hyperprior is assigned to Λ: 

 
where a and b are the two parameters in the Gamma distri-

bution. 

This posterior of c on the whole also complies with the 

Gaussian distribution. Then its mean and covariance matrix 

can be obtained from the following equations: 

 
Where 𝜇 and Σ are the mean and covariance matrix, re-

spectively. D is the diagonal matrix and is defined as: 

 
The object of Bayesian inference is to obtain the maximum a 

posterior (MAP) of the time-frequency distribution. The ex-

pectation–maximization (EM) approach can be employed to 

learn the sparse property. This approach is divided into two 

steps with an iterative process. In the first E-step, given the 

estimated hyperparameters, calculate the posterior distribu-

tion of c based on (16). In the second M-step, through max-

imizing the bound of posterior probability p (𝛾, Α; 𝒓) which 

is called the Q-function, the hyperparameters of 𝛾, Α can be 

calculated. The generalized approximate message passing 

(GAMP) algorithm provides a computationally efficient 

method. The literature [38,39] gives the detailed description. 

The diagram of this EM process is summarized in 

Fig. 4. The iteration will be terminated when the difference 

between two estimations are within a limited error 𝜀. 

 

3. Test with simulated lamb wave 

 

  The generation of Lamb wave is conducted in the finite el-

ement software COMSOL Multiphysics. The geometric 

model of plate is constructed and the force is loaded on the 

left boundary to simulate the excitation of Lamb wave. The 

force is in the form of a tone-burst pulse and its equation is 

given by: 

 
where T is the time duration of pulse and f is the center fre-

quency. The corresponding parameters of plate and pulse are 

given in Table 1. 

  The plate model and the pulse are depicted in Fig. 5. The 

Lamb wave receiver point is set at a distance of 2000 mm 

away from the excitation boundary. The original sampling 

rate for the signal is 1 MHz. To simulate the undersampled 

situation, 40% of the original samples are considered as the 

missing points and set as zero values on their positions. The 

positions of missing points are random and they are marked 

as small red circles in Fig. 6. Thus, the available samples are 

equal to 60% of the total samples. It can be seen that two 

main wave-packets appear in the signal. They are the two 

modes of Lamb wave since the generated modes are not 

controlled. According to the dispersion relation of Lamb 

wave, the group velocities of S0 mode and A0 mode are 5279 

and 3127 m/s, respectively. Therefore, the first wave-packet 

is symmetric S0 mode which owns the faster velocity. The 

second wave-packet is the anti-symmetric A0 mode.  

 

 
Fig.4. The expectation-maximization approach in an itera-

tive process is applied to solve the sensing problem. 

 

Table 1 

Parameters of the plate and pulse for Lamb wave generation. 

Plate Thickness Corresponding Symbol Value 

Plate Thickness h 4mm 

Plate Young’s Modulus E 205 GPa 

Plate Density 𝜌 7850kg∙ 𝑚−3 

Plate Poisson’s Ratio 𝑣 0.28 

Pulse Frequency f 200 kHz 

Paulse Amplitude A 1 

Paulse Time Duration 30 𝜇𝑠 

 

 
 

Fig. 5. The geometric model of plate is built and the paulse 

is located to generate the simulated Lamb wave. 
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Fig.6. The undersampled waveform in the simulated Lamb 

wave signal. The red circles indicate the positions of miss-

ing points.  

 

In the initialization process, the parameters of 𝛾, Λ are set 

as 0. The hyperparameters in the Gamma distribution are set 

as follows: a = 1.5, b=10-6, c = 1, and d=10-6. The coupling 

coefficient 𝜉is set as 0.3. The error for the termination of 

the iteration is set as 0.03. 

 

 
Fig.7. The obtained time-frequency distribution. (a) Results 

of direct transformation using the undersampled signal. (b) 

Results of the proposed structural sparse Bayesian compres-

sive sensing. 

 

  The undersampled signal is firstly directly transformed to 

the time-frequency distribution. The results are shown in Fig. 

7a. The two wave-packets form two concentrated areas in the 

TFR, however, the disturbances with non-negligible values 

are spread over the whole two-dimensional plane. This is not 

only caused by cross-terms, but also by the missing points. 

They react together to bring the disturbances. These disturb-

ances will negatively influence the recognition of time-fre-

quency relevant characteristics, which is adverse to the accu-

rate information extraction. After implementing the proposed 

structural sparse Bayesian compressive sensing, the obtained 

time-frequency distribution from the undersampled signal is 

shown in Fig. 7b. It can be observed that most of the time-

frequency regions are zero and conform to the sparse property. 

Meanwhile, the TFR presents the group sparse characteristic, 

which means only several concentrated areas have the im-

portant values. The time-frequency distributions of the two 

wave-packets also show in the oblique shape in the plane, 

which is coincident with the theoretical analysis. Due to the 

different dispersion relationship, the TFRs of A0 mode and S0 

mode present different oblique patterns. The direct TFR of 

original simulated signal without undersampling is shown in 

Fig. 8. The time frequency aggregation in the TFR accords 

with the Lamb wave characteristics. The structure aware 

Bayesian compressive sensing help to recover the TFR in a 

high accuracy. 

  The time information corresponding to the center fre-

quency 200 kHz can be readily obtained from the time-fre-

quency ridge. In detail, the times of the S0 mode and A0 mode 

are 405 and 667 𝜇s, respectively. Considering the center time 

of the pulse is 15 𝜇s, the TOFs of S0 mode and A0 mode are 

390 and 652 𝜇s, respectively. Combining the group veloci-

ties of these two modes, the theoretical TOFs are 398 and 655 

𝜇s, respectively. The relative error of obtained TOFs com-

pared with the theoretical values are both smaller than 2%. 

Therefore, the calculated TOFs are rather accurate. The pro-

posed approach allows the direct information extraction from 

the compressed signal. The TOF is the key parameter to input 

in the tomography algorithm, which will be conducted in the 

experimental part. 

  To further study the success rate of the Bayesian compres-

sive sensing, the reconstruction of TFR is employed under 

different cases of available samples. The available ratios of 

samples vary from 5% to 75%, then the obtained grids in the 

TFR are compared with the recovered TFR grids from full 

samples. Since the small values might exist in some grids of 

TFR and it is meaningless to consider these grids, the thresh-

old is set to count on the large values in the TFR. Then the 

recovered grids with values larger than the threshold are 

counted and used to calculate the recovery ratio. The thresh-

old is set as 5% of the maximum amplitude in the TFR. 

 

 
Fig.8. The direct TFR of original simulated signal without 

undersampling. 



6 

 
VOLUME XX, 2022 

All grids in the TFR are searched and the number is rec-

orded. The recovery ratio is expressed as: 

 
where Nrec and Nall denotes the numbers of grids in the TFR 

from proposed method and that from the full samples, respec-

tively. It needs to note that the grids with values larger than 

the threshold are counted. 

  The proposed method is compared with conventional com-

pressive sensing and the Bayesian compressive sensing. The 

results of available samples and the recovered TFR grid ratios 

are shown in Fig. 9. It can be seen that the proposed method 

achieves the highest recovery rate and owns distinct ad-

vantage. While the other two methods have similar recovery 

rates, the Bayesian compressive sensing performs better but 

the gap is small. When the missing point is smaller than 75%, 

the recovered TFR ratio approximately achieves 60%. When 

the available sample ratio is larger than 40%, the recovery 

owns rather high accuracy. Since the center frequency of sig-

nal is 200 kHz, when the available sample ratio is 40% the 

equivalent sampling rate will be equal to the Nyquist rate. Un-

der this sample ratio, the recovery ratio is larger than 70%. 

Therefore, this relation shown in Fig. 9 demonstrates that 

even when the signal is in the sub-Nyquist sampling, the com-

pressive sensing can assist to reconstruct the time-frequency 

distribution. It is worth noting that although the data compres-

sion and data missing problem can be solved by compressive 

sensing to some degree, the post-processing is computation-

ally expensive and also timeconsuming. This is because that 

the complex numeration is brought by the recovery from only 

few data. 

. 

4. Experimental verification and discussion 

4.1 Experimental investigation and comparison 

  The Lamb wave inspection of a large plate (1.5 m x 1.5 m) 

is chosen for the experiment. Multiple transmitters and re-

ceivers are placed on the two sides of a metallic plate. The 

configuration is shown in Fig. 10. The transmitter will be ex-

cited in turn and all the receivers will receive the Lamb wave. 

In the center of the plate, one circle defect is built to simulate 

the actual damage. 

  The adopted numbers of transmitter and receiver are both 

10. Thus, the amount of different transmitter–receiver pairs is 

equal to 10 x 10. The experiment waveform will subtract the 

baseline signal to reduce the wave from fixed boundary re-

flection. For transmitter #5 and receiver #5, the received 

waveform in the undersampled way is depicted in Fig. 11.  

 
Fig.9. The recovery ratio of TFR grids under different ratios 

of available samples. 

 
 

Fig. 10. The configuration of transmitter and receiver array 

for the plate tomography. 

 

 
Fig.11. The undersampled wavefrom the pair of transmitter 

#5and receiver #5. 

 

Similar with the simulation the original sampling rate is 1 

MHz and only 60% of the original samples are available. The 

other samples are set as zero considering the data compres-

sion or data missing. It can be seen that the evident noise is 

introduced in the signal due to the experimental environment. 

  The reconstruction of TFR is conducted using the proposed 

scheme and the results are shown in Fig. 12a. It can be ob-

served that the time-frequency distribution is recovered in an 

accurate way. Meanwhile, the TFR is clear and clean, nearly 

without interference. The noise problem is overcome by the 

sensing process. The result of direct TFR of the undersampled 

signal is shown in Fig. 12b. It can be found that with the lost 

information, the blurs appear in the TFR and make the com-

ponents difficult to identify. 

  To validate the superiority of structural sparse Bayesian 

compressive sensing, the comparisons with conventional 

compressive sensing and Bayesian compressive sensing are 

conducted. For commonly used compressive sensing, the in-

verse process of the model (3) can be described as the solution 

for: 

 
where the notation kk1 means the l1 norm term. This equation 

can be considered as an optimization problem and then the 

corresponding algorithms can be used to solve it. The orthog-

onal matching pursuit (OMP) is adopted in this work and the 

results are shown in Fig. 12c. It can be observed that the ag 
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Fig.12. The TFR from proposed method and other three methods for comparison. (a) recovery ratio of TFR grids under differ-

ent ratios of available samples. 

 

gregate time-frequency distribution can be identified. How-

ever, some disturbances of time-frequency distributions ap-

pear in the arrival time of wavepacket and the contour of this 

area is relatively blurred. 

  For the conventional Bayesian compressive sensing, it only 

utilizes the sparse property but not the structural prior infor-

mation in TFR. The results are presented in Fig. 12d. Due to 

the lack of the structural sparse prior, the recovered TFR is 

not coherent in the inner part of the concentrated distribution 

area. The timefrequency distribution is not as concentrated as 

that in the results from proposed scheme. 

  Furthermore, the direct TFR of original signal without un-

dersampling is shown in Fig. 13. It can be seen that the TFR 

presents the aggregated feature and the usage of structural 

sparsity is reasonable. By comparing Fig. 13 and 12a, the 

TFR are recovered in most of the grids when using the pro-

posed method. 

The differential signal-to-noise ratios (SNR) are also consid-

ered to evaluate the performance of proposed method. The  

 
Fig. 13. The direct TFR of original signal without under-

sampling in the experiment. 

 

Gaussian noise is introduced to the signal. For SNR of 5, 10, 

15 and 20 dB, the recovery rates are calculated and the results 

are shown in Table 2. When facing the noisy environment in 

the Lamb wave inspection site, the proposed method can still 

recover the TFR. However, when the SNR is smaller than 

10db, the recovery rate drops distinctly.  

 

4.2 Further discussion 

The TFR can facilitate the analysis of Lamb wave in a two-

dimensional plane. In this plane, the time-relevant or fre-

quency relevant or time-frequency characteristics can be fur-

ther extracted. In this context, the maximum energy time-fre-

quency ridge is considered. Through the ridge, the time infor-

mation corresponding to the excitation frequency of Lamb 

wave can be obtained. The mathematical expression for the 

ridge is shown as follows: 

 
where Ri is the extracted ridge. 

  The time information can be further obtained from the en-

ergy ridge readily. Then the TOF can be used in damage lo-

calization or tomography. By using (25), the energy ridge and 

TOF can be extracted. To demonstrate the effectiveness of 

TOF extraction, multiple TOFs are compared with the theo-

retical values from the ray tracing (RT) technique. The value 

from RT can be regarded as the true TOF. We also conducted 

the TOF calculation from commonly used threshold method 

and cross correlation method. In the threshold method, the 

signal amplitude of 10% of maximum amplitude is used to 

measure the arrival of the wavepacket. In the cross correlation 

method, the correlation of received signal and excitation sig-

nal is employed to obtain the TOF. Fig. 14 presents the results 

from all the receivers with the transmitter #1 at work. It 
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Table 2 

The recovery rates under differential signal-to-noise ratios. 

 

Signal-to-noise ratio 5 10 15 20 

Recovery rate 41.6 59.5 67.1 72.3 

 

 
Fig. 14. The theoretical TOF from the ray tracing and the ob-

tained TOF from other three methods. The waveforms from 

receivers (#1 ~#10) is adopted  

 

can be seen that the proposed method presents robust and ac-

curate TOF extraction capacity. While for the threshold 

method, the values experience drastic fluctuate with different 

propagation routes. The errors brought by the cross correla-

tion method become distinct when the waves propagate 

longer distances. The relative errors are numerically calcu-

lated and they are no larger than 3% for the proposed method. 

When more samples are available, the relative error of TOF 

can be further decreased. 

  The TOF is the input for the Lamb wave tomography. The 

slight disturbance in TOF might cause apparent differences 

due to the inherent characteristic of its iterative algorithm. 

Therefore, the accurate TOF is vital. After extracting all the 

TOFs, the tomography using the simultaneous iterative re-

construction technique is implemented and the obtained im-

age is shown in Fig. 15. It can be seen that the damage region 

forms larger values than the surrounding medium. However, 

the imaging is not elaborate since the transducer number is 

not large enough. When more transducers are applied, the 

data compression problem will become more important. 

  For the TFR from the conventional compressed sensing 

and Bayesian compressive sensing, when extracting the max-

imum energy ridge, the TFR values with deficient concentra-

tion bring interference and the ridge can not be successfully  

 

 
Fig.9. The results of Lamb wave tomography using the TOF 

as the input data.. 

extracted in some discrete time points. The obtained TOF also 

presents a larger error in the array signal processing. There-

fore, the proposed method combining the sparse prior in two-

dimensional plane outperforms the conventional Bayesian 

compressive sensing which considers the recovery in a one-

dimensional situation. Meanwhile, the advantage also follows 

with the price of longer computation time. 

 

5. Conclusion and future directions 

 

In this paper, a new scheme for time-frequency distribution 

recovery directly from the undersampled signal is proposed. 

The conventional Bayesian compressive sensing is modified 

through utilizing the structural sparse prior in the TFR of dis-

perse Lamb wave signal. In the investigation using the simu-

lated signal, the TFR is accurately reconstructed. The recov-

ery from different subsampling cases indicates that when the 

available sample ratio is larger than 25%, the recovery rate of 

TFR is satisfactory. Even when the equivalent sampling rate 

is under the Nyquist rate, the TFR can be reconstructed to 

some extent. In the experimental validation, signals from dif-

ferent transmitter–receiver pairs are adopted to implement the 

proposed method. The relative error of TOF characteristic 

extracted from the TFR is smaller than 3%. Compared with 

current methods, the designed scheme is superior than con-

ventional compressive sensing. However, it also brings a 

higher computation complexity. In the future, the damage im-

aging directly recovered from the compressed signal is prom-

ising in the situation where there is high demand for visuali-

zation. 
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