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On the limitations of magneto-frictional relaxation
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ABSTRACT
The magneto-frictional method is used in solar physics to com-
pute both static and quasi-static models of the Sun’s coronal mag-
netic field. Here, we examine how accuratelymagneto-friction (with-
out fluid pressure) is able to predict the relaxed state in a one-
dimensional test case containing two magnetic null points. Firstly,
we show that relaxation under the full ideal magnetohydrodynamic
equations in the presence of nulls leads necessarily to a non-force-
free state, which could not be reached exactly by magneto-friction.
Secondly, the magneto-frictional solutions are shown to lead to
breakdown of magnetic flux conservation, whether or not the fric-
tion coefficient is scaled with magnetic field strength. When this
coefficient is constant, flux is initially conserved, butonlyuntil discon-
tinuous current sheets form at the null points. In the ensuing weak
solution, we show that magnetic flux is dissipated at these current
sheets. The breakdown of flux conservation does not occur for an
alternative viscous relaxation scheme.
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1. Introduction

Magneto-friction (hereafter abbreviated to MF) is a computational method for obtain-
ing force-free magnetic equilibria, whereby one retains the (ideal) magnetohydrodynamic
(MHD) induction equation

∂B
∂t

= ∇ × (u × B), (1)

but specifies the frictional velocity

u = ν−1J × B, (2)

rather than solving the full fluid equations. Here B is the magnetic field and J = μ−1
0 ∇ ×

B is the current density. This form of velocity changes equation (1) from hyperbolic to
(degenerate) parabolic type (Craig and Sneyd 1986), and indeed the magnetic energy in a
volume V satisfies

d
dt

∫
V

B2

2μ0
dV = −

∫
V

ν−1|J × B|2 dV −
∮

∂V
ν−1B2J × B · dS. (3)
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Thus energy is dissipated monotonically within the volume until a force-free state J × B is
reached.

The basic method dates back at least to Chodura and Schlüter (1981), and was adopted
(with ν = 1) by Craig and Sneyd (1986), who called it a “fictitious fluid” and introduced a
Lagrangian numerical method with the aim of better preserving magnetic flux conserva-
tion. Yang et al. (1986) used a friction coefficient of the form ν ∼ B2, which has the effect
of accelerating the relaxation in regions of weak B. They observed a change in magnetic
topology during the relaxation, but attributed this to the effect of numerical diffusion.

Subsequent authors have used MF in different ways to model the magnetic field in
the solar corona, taking it to be force-free to first approximation (Wiegelmann and Saku-
rai 2021). For example, Klimchuk and Sturrock (1992) wrote B in terms of Euler potentials
and used these to specify the field line connectivity on the lower boundary (the solar
photosphere). Roumeliotis (1996) developed a “stress-and-relax” method for comput-
ing force-free equilibria, where the magnetic field on the lower boundary is updated
step-by-step toward an observed vector magnetogram, with the coronal field responding
step-by-step by MF. This technique has been successfully used for modelling solar active
regions (Valori et al. 2005, 2010, Guo et al. 2016).

MF has also been used (with sufficiently small ν) to model the quasi-static response
of the coronal magnetic field to slowly evolving boundary conditions, rather than com-
puting a single equilibrium. This idea was introduced by van Ballegooijen et al. (2000),
who modelled the evolution of the large-scale coronal magnetic field in response to both
large-scale solar surface motions (primarily differential rotation) and small-scale (super-
granular) convection, which they parametrised by a surface diffusion term. They showed
that this simplemodel can capture the formation of sheared filament channels, and even the
sudden eruption of twistedmagnetic structures due to loss of equilibrium (e.g.Mackay and
Yeates 2012, Lowder and Yeates 2017, Bhowmik and Yeates 2021). The MF model has also
been applied with resolved small-scale boundary driving, using either an imposed con-
vective velocity field (Meyer and Mackay 2016) or an imposed electric field constrained
by observed magnetograms (Mackay et al. 2011, Cheung and DeRosa 2012, Pomoell et
al. 2019, Hoeksema et al. 2020, Yardley et al. 2021). The electric-field driven MF simula-
tions have been successful at reproducing the formation of observed non-potential mag-
netic structures within individual active regions, and have also performed favourably in
reconstructing the injected magnetic energy and relative helicity when compared directly
to a full-MHD flux emergence simulation (Toriumi et al. 2020).

In this paper, our aim is to explore how well MF is able to reproduce the equilibrium
state that would be predicted by relaxation under the full ideal MHD equations. Goldstraw
et al. (2018) have recently published just such a test for a setup that models a solar coro-
nal loop whose magnetic field lines are sheared by footpoint displacements at either end.
They find that MF gives an excellent approximation of the quasi-static sequence of MHD
equilibria for small plasma-beta, defined as β = 2μ0p/B2, where p is the fluid pressure.
For large β , their MF result departs from the MHD solution because it neglects the effects
of pressure. Here, we build on that study by considering a magnetic field containing null
points (B = 0). Near these points, which are common in the coronal models mentioned
above, the β parameter is necessarily large and this raises the question of whether MF – as
given by equation (2) – will be successful at reproducing the ideal MHD relaxation of such
magnetic fields.
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It is important to note that some implementations of theMFmethod do include an addi-
tional fluid pressure term in equation (2), writingu = ν−1(J × B − ∇p). These include the
original calculations of Chodura and Schlüter (1981), those of Linardatos (1993), and the
Lagrangian schemes of Craig and Litvinenko (2005) or Candelaresi et al. (2015). There are
also implementations that add an MF term to a momentum equation where the inertial
terms are retained (Hesse and Birn 1993, Candelaresi et al. 2015). As such, our conclusions
will apply only to the MF model without additional pressure or inertial terms, which is
nevertheless widely used in solar physics.

Some particular criticisms of the MF method were raised by Low (2013). The first
important objection is that null points cannot move duringmagneto-friction, since at such
points equation (2) implies that u = 0. This suggests that the method will fail if the null
points need to move during the relaxation, as will be the case for our test in this paper. The
second objection is that discontinuous current sheets (jumps in Bwith infinite J) will form
in finite time, so that the method breaks down. We shall return to both of these impor-
tant points below. Again, it should be noted that both of these criticisms apply to the MF
model without plasma pressure, but need no longer apply if a pressure term is added to the
velocity.

The outline of the paper is as follows. Section 2 describes our test setup, along with the
“ground truth” ideal MHD solution. In order to be sure that our results are not affected
by numerical diffusion, we adopt a simple one-dimensional setup, inspired by Bajer and
Moffatt (2013). In section 3, we present one-dimensional MF results for different forms of
ν, and we conclude in section 4 with a discussion of the implications for future modelling.

2. Test setup

We will consider the relaxation of a magnetic field that initially has the (non-equilibrium)
form

Bx(x, 0) = Bz(x, 0) = 0, By(x, 0) = 1
2 + sin(πx), (4)

on the domain −1 ≤ x ≤ 1. For simplicity we will assume periodic boundary conditions
on all variables. This initial magnetic field is shown by the solid curve in figure 1. The offset
of 1/2 is added so that the magnetic null points, which are initially at x = x0 = −1/6 and
x = x′

0 = −5/6, will move during the relaxation, allowing a fairer test of the MF method.

2.1. Ground truth: full MHD

Here we illustrate the solution of the full ideal MHD equations with our initial condi-
tion (4), where we take the initial pressure and density to be constant, with p(x, 0) = 0
and ρ(x, 0) = 10−2. Thus we begin with a low-beta plasma away from the locations where
By ≈ 0, consistent with the solar coronal plasmas where magneto-friction is typically
applied. We assume an adiabatic ideal gas with polytropic index γ = 5/3, so that the ideal
MHD equations for this initial condition reduce to

∂ρ

∂t
= − ∂

∂x
(ρux), (5a)
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Figure 1. The initial magnetic field for our test setup (dark line). The feint line shows the state of mini-
mummagnetic energy, discussed in section 2.2. The positions of the null points in the former and current
sheets in the latter are indicated.

ρ

(
∂ux
∂t

+ ux
∂ux
∂x

)
= − ∂

∂x

(
p + B2y

2μ0

)
+ μ

∂2ux
∂x2

, (5b)

∂p
∂t

+ ux
∂p
∂x

= −γ p
∂ux
∂x

+ (γ − 1)μ
(

∂ux
∂x

)2
, (5c)

∂By
∂t

= − ∂

∂x
(uxBy). (5d)

A uniform viscosityμ is included, together with corresponding viscous heating term in the
pressure equation (5c) to ensure the conservation of total energy E = Ekin + Eint + Emag,
where the kinetic, internal, and magnetic energies are

Ekin =
∫ 1

−1

ρu2x
2

dx, Eint =
∫ 1

−1

p
γ − 1

dx, Emag =
∫ 1

−1

B2y
2μ0

dx. (6)

We solve equations (5a)–(5d) numerically with the ATHENA code (Stone et al. 2008),
using the HLLD Riemann solver with third-order reconstruction on a uniform grid of
1024 points in the x-direction. We set μ0 = 1 so that the maximum Alfvén speed is order√

ρ−1 = 10 in our units. Results are illustrated in figure 2(a ),(b) for the inviscid caseμ = 0
as well as three increasing values of viscosity μ. Figure 2(c),(d) shows the complete time
evolution for the single case μ = 10−1.

First, consider the evolution of B. When the evolution begins, Alfvén waves are imme-
diately launched in opposite directions from the region of peak By(x, 0) around x = 1/2.
These are seen as diagonal fronts in figure 2(c), moving at a speed of approximately 10.
These waves interact each time they cross the domain, as the magnetic field relaxes to a
lower energy state.

Figure 3 shows that the magnetic energy reduces from its initial value of 0.75 to approx-
imately 0.52 during this initial relaxation phase, which lasts until around t = 1. After this
time, the kinetic energy is very small, even for μ = 0 although in that case some resid-
ual waves remain, as evidenced by the oscillations at the Alfvén frequency in Emag. These
oscillations are damped by viscosity, and for μ = 10−1 this happens before t = 4, as seen
in figure 2(c).
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Figure 2. Illustration of the full MHD relaxation. Panels (a) and (b) show By and p at t = 10 for several
values of μ, while panels (c) and (d) show the time evolution up to t = 4 of By and p for the case μ =
10−1. The thick gray line in (a) is the minimum energy solution in section 2.2. (Colour online)

It is clear from figure 3 that the magnetic energy lost during the relaxation goes entirely
into internal energy, asmust be the case if a stationary equilibrium is reachedwithEkin = 0,
owing to conservation of total energy. This internal energy is manifested in the relaxed
state by a non-zero fluid pressure, as shown in figure 2(b). The pressure is strongest in the
regions where By changes rapidly, consistent with this being a magnetostatic equilibrium,
which in our one-dimensional system amounts to a total pressure balance

∂

∂x

(
p + B2y

2μ0

)
= 0. (7)

Thus in the final equilibrium the plasma-beta is quite variable: it is small in the regions
where By was initially strong and so decreased, while it is larger (0.2 to 0.4) in the region
where the fluid has been compressed in order to increase By. This conclusion is little
changed by the presence of viscosity (at least for the μ values considered here).
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Figure 3. Time evolution of the three components of the total energy in the full MHD relaxation, for
different values of viscosityμ. (For each component, lighter coloured curves indicate largerμ.) The thick
gray horizontal line (just visible) indicates theminimummagnetic energy under an ideal relaxation with
no further constraints (section 2.2). (Colour online)

2.2. State ofminimummagnetic energy

Since the MF method will be ignoring the fluid equations (5a–c), it is useful to compare
the full MHD solution to the state of minimum Emag constrained only by the induction
equation (5d). This would be a state of uniformmagnetic pressure, B2y = constant, and for
our initial condition (4), conservation of total unsigned flux shows that

|By| = 1
2

∫ 1

−1
|By(x, 0)| dx = 1

6
+

√
3

π
. (8)

Since the magnetic topology is preserved, the two null points must survive and become
discontinuous current sheets in the relaxed state, at which By changes sign (cf. Bajer and
Moffatt 2013). From conservation of flux between the nulls, and symmetry, it follows that
these current sheets would be located at

x0(T) = −1 + Δ

2
, x′

0(T) = −1 − Δ

2
, Δ = 6

√
3 − 2π

6
√
3 + π

. (9a–c)

This minimum Emag magnetic field is shown by the feint line in figure 1, repeated in figure
2(a) for comparison to the fullMHD solution. It is evident that the finite pressure in the full
MHD solution modifies the shape of the equilibrium and smooths out the current sheets
to some extent. Nevertheless, the magnetic energy in the MHD solution reaches close to
that of the minimum Emag solution, which is

Emag = 1
36

+
√
3

3π
+ 3

π2 ≈ 0.516. (10)

This is shown by the feint grey horizontal line in figure 3.
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3. Magneto-frictional results

For a one-dimensionalmagnetic field of the formBx = Bz = 0,By = By(x, t), the frictional
velocity (2) reduces to

ux = −1
ν

∂

∂x

(
B2y
2μ0

)
, uy = uz = 0, (11a,b)

so equation (1) takes the form

∂By
∂t

= 1
μ0

∂

∂x

(
B2y
ν

∂By
∂x

)
. (12)

The behaviour of this equation depends on the chosen form of the friction coefficient ν.
Overall scaling of ν is simply equivalent to scaling the time variable, so we only need to
consider its functional form. In the following subsections, wewill consider three illustrative
cases:

(i) ν = B2y ;
(ii) ν = 1;
(iii) ν = B2y + εe−B2y/ε , where ε is a small constant (10−1 in our computations).

These cover the basic forms that have been used by different authors in the literature.
The results of these three test cases are shown in figure 4, and discussed in the follow-
ing subsections. For cases (ii) and (iii), equation (12) was solved with the Crank-Nicolson
method, treating the nonlinearity by Picard iteration (see appendix A for details). Results
shown in the figure 4 used mesh resolution nx = 1024. The unsigned magnetic flux in
figure 4(e) is defined as

|Φ| =
∫ 1

−1
|By| dx. (13)

3.1. Case (i) – linear diffusion

As noted in section 1, applications of MF have commonly set ν = B2, in order to speed up
relaxation in regions of low B. In our one-dimensional case, this reduces (12) to the linear
diffusion equation

∂By
∂t

= 1
μ0

∂2By
∂x2

, (14)

whose solution remains smooth for all time. For the test case (4), the solution is precisely
By(x, t) = 1/2 + sin(πx) exp(−π2t), shown by the green dotted lines in figure 4.

Unfortunately, equation (14) no longer conserves (unsigned) magnetic flux, as evi-
denced by the green dotted line in figure 4(e). (After approximately t = 0.07 unsigned flux
is conserved because the two null points have been completely eliminated.) Thus it vio-
lates a fundamental property of ideal relaxation. Althoughwe are still solving the induction
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Figure 4. MF results for the test casewith each form of ν. Panels (a) to (d) show the solutions at selected
times, according to the legend in panel (f ). The thick gray line shows theminimum energy solution from
section 2.2. Panel (e) shows the total unsigned magnetic flux as a function of time, and panel (f ) shows
the magnetic energy. Vertical dashed lines in (e) and (f ) indicate the times of panels (a)–(d), and vertical
solid lines in (e) indicate the breakdown times t∗ and t∗ε as described in the text. We take ε = 10−1.
(Colour online)

equation (5d), there is no contradiction because the frictional velocity from (11) is

ux = − 1
μ0By

∂By
∂x

, (15)
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which is singular at null points so that flux conservation breaks down (e.g. Wilmot-Smith
et al. 2005). Not surprisingly, the magnetic energy of this solution in figure 4(f) reaches far
below that of the ideal minimum energy state (in the limit, it tends to 1/4, approximately
half that of the ideal minimum).

More generally, it would be only the perpendicular current that would be diffused with
ν = B2. To see this, note that, in three dimensions, setting ν = B2 in equations (1) and (2)
would give

∂B
∂t

= −∇ × J⊥, J⊥ = J − J · B
B2

B. (16a,b)

Nevertheless, our one-dimensional test suggests that the method is unable in general to
accurately reconstruct an ideal relaxed state if null points are present. For example, we
propose that this diffusion, rather than numerical error, could have been responsible for
the change in magnetic topology observed in two dimensions by Yang et al. (1986).

3.2. Case (ii) – ambipolar diffusion

Next, consider the case of constant ν. In that case, equation (12) is equivalent to the
induction equation for a partially ionised plasma under ambipolar diffusion and vanishing
plasma velocity (Brandenburg and Zweibel 1994, Hoyos et al. 2010). It is a particular case
of the porous medium equation (Vazquez 2006). An important property of this equation
is that discontinuous current sheets develop at finite time from null points By = 0 in the
initial state. We can predict the time of this breakdown by considering the slope wx0(t) =
(∂By/∂x)x0 at a null point x = x0 (Low 2013). As long as the solution remains smooth, the
null point cannot move because ux(x0, t) = 0 by equation (11). So differentiating (12) with
respect to x and setting By = 0 shows that

dwx0
dt

= 2
μ0

w3
x0 (17)

and hence the slope at the null, wx0(t), obeys

w2
x0(t) = w2

x0(0)
1 − 4w2

x0(0)t
. (18)

It follows that the smooth solution will break down and a current sheet will form at
time t∗ = [4w2

x0(0)]
−1. Similar behaviour is expected in higher dimensions, and indeed

finite-time formation of a discontinuous current sheet at a three-dimensional null point is
strongly suggested by the numerical results of Pontin and Huang (2012), who also use MF
with constant ν. Such breakdown of smoothness is not in itself a problem in our test case,
wherewe know that theminimumenergy state under ideal relaxation neglecting fluid pres-
sure would have discontinuous current sheets. Incidentally, Craig and Litvinenko (2005)
show that adding a pressure gradient term to the magneto-frictional velocity (2) can pre-
vent the formation of discontinous current sheets in one-dimensional configurations (see
their appendix A). But in higher dimensions, Pontin and Craig (2005) demonstrate that
adding a pressure term is insufficient to prevent current-sheet collapse, since the Lorentz
force is not generally irrotational.
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Figure 5. Verification that the numerical MF solution with ν = 1 satisfies the formulae (19) and (20b).
The solid curves show (a) the position of the right-hand null/current sheet and (b) the total unsigned
magnetic flux. The dashed curves show predictions of these quantities found by estimating the jumps
in (19) and (20b) numerically and integrating these expressions in time. (Colour online)

After t∗, which takes the value t∗ = (3π2)−1 for our test case, we can continue to follow
the evolution as a weak solution, since (12) has the form of a conservation law. However,
two properties that held while the solution was smooth are no longer true: the null points
can now move, and the unsigned magnetic flux is no longer conserved. We now discuss
each of these in turn.

It is evident from the time snapshots in figure 4(a)–(d) that, once the null points
have degenerated into discontinuous current sheets, these start to move. Their speed of
movement is given by the standard Rankine-Hugoniot condition,

dx0
dt

= −[By]−1
x0(t)

[
B2y
ν

∂By
∂t

]
x0(t)

, (19)

where square brackets denote the limiting jump in a quantity across the current sheet x =
x0(t). Note that the right-hand side would vanish if the ideal minimum energy state were
reached, although it is not actually reached. Figure 5(a) shows that our numerical solution
recovers the correct speed for the current sheet that starts at x0(t∗) = −1/6. It is clear that
the objection of Low (2013) to MF – that null points cannot move – holds only while the
solution remains smooth, and is not relevant in the long term.

Next we consider the breakdown in the conservation of unsigned flux after t∗. This is
clearly evident in figure 4(e), and is not caused by numerical error. The fact that ambipolar
diffusion leads to loss of magnetic flux after the formation of current sheets was shown by
Hoyos et al. (2010) for a By profile with a single step. They called it “reconnection in the
absence of ohmic diffusivity”. For our periodic domain with discontinuous current sheets,
the dissipation rate of unsigned flux may be expressed in terms of jumps at the current
sheets. In our example with two current sheets x0(t) and x′

0(t), careful evaluation of the
integral (13) shows – after some algebra – that

d|Φ|
dt

= [By]−1
x′
0(t)

[
2B3y
ν

∂By
∂x

]
x′
0(t)

− [By]−1
x0(t)

[
2B3y
ν

∂By
∂x

]
x0(t)

(20a)
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= −4[By]−1
x0(t)

[
B3y
ν

∂By
∂x

]
x0(t)

, (20b)

where in the second line we used the symmetry of the setup. Although we cannot evaluate
these quantities analytically, equation (20b) gives us a relation that we can use to check that
the dissipation observed in the numerical solution is accurate. Indeed, figure 5(b) shows
that our numerical method obeys this relation to reasonable accuracy, despite the difficulty
in estimating the limiting quantities on either side of the current sheet from the numerical
solution. This arises since By is not uniform on each side of the current sheet but varies like
(x − x0)1/3 (Brandenburg and Zweibel 1994). In conclusion, it is clear that the dissipation
of unsigned flux after t∗ is a real phenomenon. This clearly prevents the method from
recovering the correct minimum-energy state, although it is evident from figure 4(e) that
the unwanted dissipation is much slower than for linear diffusion.

3.3. Case (iii) – linear diffusionwith limiting

The final friction coefficient we consider is ν = B2y + ε e−B2y/ε . This functional form is plot-
ted in figure 6, and is seen to limit theminimum value of ν to ε, while keeping ν ≈ B2y away
from null points, as with linear diffusion. Such a limit is typically (albeit tacitly) employed
in numerical calculations; for example, Yeates (2014) uses the simpler non-smooth form
ν = max{B2y , ε}, also shown in figure 6. The parameter ε would be set to a small number.
The resulting equation is

∂By
∂t

= 1
μ0

∂

∂x

⎛
⎝ B2y
B2y + εe−B2y/ε

∂By
∂x

⎞
⎠ . (21)

This limited formof ν is interestingmathematically because it prevents the frictional veloc-
ity (11) from being singular at null points, thus preserving flux conservation. However,
there is a catch: near null points, the equation looks like the ambipolar diffusion case (con-
stant ν). Thus we might expect the finite-time breakdown of smoothness and formation
of discontinuous current sheets at nulls. Indeed we can apply the argument of Low (2013)
to equation (21) to see – after some algebra – that a smooth solution with a null point will
break down at t∗ε = ε[4w2

x0(0)]
−1, where wx0(0) is again the initial slope of By at the null.

In particular, for ε < 1, this will occur more rapidly than for the ambipolar diffusion case.
The orange dashed curves in figure 4 show the numerical solutionwith the limiting form

of ν for ε = 10−1, and indeed a discontinuous current sheet forms already at t = t∗ε . As for
the constant ν solution, the null points remain stationary and flux is conserved until this
breakdown, but both properties are violated thereafter. It should be noted that a large value
of ε = 10−1 was used here for illustration. As ε is reduced, t∗ε gets earlier and earlier, while
the current sheets at any fixed later time have less and less of a jump in By, with the solution
tending to the linear diffusion case as ε → 0. For the small ε typically used in simulations
to avoid division by zero, the solutionwould be essentially indistinguishable from the linear
diffusion case, despite the fact that the frictional velocity is initially non-singular.
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Figure 6. Functional forms of the friction coefficient with limiting, for ε = 10−1, compared to the linear
diffusion case. (Colour online)

4. Discussion

Wehave shown that, when amagnetic null point is present, magneto-frictional (MF) relax-
ation is unable to accurately predict the relaxed state that would be obtained by an ideal
MHD evolution. We have demonstrated two separate reasons for this. Firstly, as shown
in section 2.1, a relaxation under the full MHD equations starting from a uniform pres-
sure will – at least in our one-dimensional example – build up a non-trivial distribution
of fluid pressure, owing to the fact that magnetic energy is transformed to internal energy.
In particular, fluid pressure accumulates at the magnetic null points in order to reach total
pressure balance. Thus the true equilibrium will be magnetostatic rather than force-free.
In effect, the plasma-beta is high near the null points, even if it is low elsewhere. This moti-
vates the use of relaxation schemes that include fluid pressure, while still avoiding the need
for small timesteps to resolve MHD waves. As discussed, one approach is to modify the
MF velocity to u = ν−1(J × B − ∇p). To determine p in two-dimensional simulations,
Linardatos (1993) used the requirement that∇ · u = 0 (see alsoMoffatt andDormy 2019).
Unfortunately, this would not work for our one-dimensional test case, where the relaxation
velocity is necessarily compressible. Instead, one could write ∇p = β∇ρ, and evolve ρ by
mass conservation (Craig and Litvinenko 2005, Candelaresi et al. 2015).

A more significant limitation of MF without pressure is that it fails to respect conserva-
tion of unsignedmagnetic flux, which would follow from the ideal induction equation (5d)
provided that u remains smooth. The problem is that u does not remain smooth for any of
the forms of MF in common use. When ν = B2y , our one-dimensional problem reduces to
a linear diffusion equation. When ν is constant, or becomes constant near to a null point,
then u is initially smooth but this breaks down at a finite time. In itself, we would argue (in
contrast to Low 2013) that this formation of discontinuous current sheets is not a problem,
since the state of minimum magnetic energy when fluid pressure is neglected is a discon-
tinuous one (section 2.2). However, the ensuing weak solution obtained does not conserve
unsigned flux, so does not evolve toward this expected solution. For one-dimensional con-
figurations such as that investigated here, Craig and Litvinenko (2005) show that adding
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Figure 7. Result of viscous relaxation (with μ = 1) for the test case. As in figure 4, panels (a) and (b)
show snapshots of the solution during relaxation, while (c) and (d) show the unsignedmagnetic flux and
magnetic energy, respectively. The thick gray line shows theminimum energy solution from section 2.2.
(Colour online)

plasma pressure can also prevent the formation of a discontinuous current sheet, and hence
also the breakdown of flux conservation.

To end this paper on a more positive note, we point out an alternative method that is
able to avoid the second limitation (flux non-conservation) and reach the expected min-
imum energy state from section 2.2. This is the viscous relaxation scheme (Bajer and
Moffatt 2013) where we again solve the induction equation (1), but determine u from the
force balance

μs�u +
(
1
3
μs + μb

)
∇(∇ · u) + J × B = 0. (22)

In our one-dimensional case this reduces to

μ
∂2ux
∂x2

− ∂

∂x

(
B2y
2μ0

)
= 0, (23)

where μ = 4μs/3 + μb. For our periodic system, this scheme again has the property that
the magnetic energy decreases monotonically, with

d
dt

∫
V

B2

2μ0
dV = −μ

∫
V

∣∣∣∣∂ux∂x

∣∣∣∣
2
dV . (24)
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In the periodic system, equation (23) specifies ux only up to an additive constant. In view
of the symmetry of our test problem, we set ux(−1/2, t) = 0, so solving (23) for ux gives

ux(x, t) = 1
μ

∫ x

−1/2

B2y
2μ0

dx − x + 1/2
2μ

∫ 1

−1

B2y
2μ0

dx. (25)

Substituting this into the induction equation (5d) gives an integro-differential evolution
equation for By. Figure 7 shows a numerical solution on the same uniform mesh used for
theMF simulations, but using a simple upwind scheme (as the equation is nowhyperbolic).
UnlikeMF, we see that the viscous relaxationmethod evolves rapidly toward theminimum
energy state. In future, it would be fruitful to explore as an alternative to MF in the context
of the solar coronal magnetic field, where null points are prevalent.
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Appendix A: Numerical method for MF

The MF equation (12) has the form of a nonlinear diffusion equation, and is either parabolic or
degenerate parabolic, depending on the form of ν. As such it is best treated with an implicit method,
although solar physics applications have often used an explicit method with the resulting timestep
restriction. In this paper we adopt an implicit Crank-Nicolson scheme, treating the nonlinearity with
Picard iteration. For shorthand, let B = By and β(B2) = B2/[μ0ν(B2)], so that the equation is

∂B
∂t

= ∂

∂x

(
β(B2)

∂B
∂x

)
. (A1)

We take a uniform mesh xj = j�x − 1 for j = 0, . . . , nx − 1, with spacing �x = 2/(nx − 1). The
magnetic field valuesBn

j+ 1
2
are located at cell centres 1

2 (xj + xj+1), wherendenotes the time level tn =
n�t. A single timestep, to compute Bn+1

j+ 1
2
from Bn

j+ 1
2
, involves iteratively solving the Crank-Nicolson

formula over k, where

− α
n,k
j Bn,k+1

j− 1
2

+ (1 + α
n,k
j + α

n,k
j+1)B

n,k+1
j+ 1

2
− α

n,k
j+1B

n,k+1
j+ 3

2

= α
n,0
j Bnj− 1

2
+ (1 − α

n,0
j − α

n,0
j+1)B

n
j+ 1

2
+ α

n,0
j+1B

n
j+ 3

2
, (A2)

starting fromBn,0
j+ 1

2
= Bn

j+ 1
2
. The coefficients comprise the scaled “diffusivity”β evaluated at themesh

points,

α
n,k
j = �t

2�x2
β([B2]n,kj ), (A3a)

in which

[B2]n,kj = 1
4
[(Bnj− 1

2
)2 + (Bnj+ 1

2
)2 + (Bn,k

j− 1
2
)2 + (Bn,k

j+ 1
2
)2]. (A3b)

Equation (A2) is iteratively solved until ‖Bn,k+1
j+ 1

2
− Bn,k

j+ 1
2
‖∞ < 10−14, then we set Bn+1

j+ 1
2

= Bn,k+1
j+ 1

2
.

We have verified the convergence against exact solutions for (i) linear diffusionwhen ν = B2, and
(ii) ambipolar diffusion when ν = 1. For (ii) we do not have the exact solution for our test problem,
so we tested instead with the well-known Barenblatt solution (Vazquez 2006) in the form

By(x, t) =
√
max

{
0,

1
10

t̃−1/2 − x2

12
t̃−1
}
, t̃ = 1

3

(
t + 1

10

)
. (A4)

For case (i), and in smooth regions of case (ii), the expected second-order convergence is recovered,
where we took�t = 10�x2. The position of the moving “front” at x = (

√
6/5)t̃1/4, where the slope

of By in the exact solution becomes infinite and discontinuous, still converges, but only to first order.
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