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Abstract
Improved estimates of aboveground biomass (AGB) are required to improve our understanding of
the productivity of mangrove forests to support the long-term conservation of these fragile
ecosystems which are under threat from many natural and anthropogenic pressures. To understand
how individual species affects biomass estimates in mangrove forests, five species-specific and four
genus-specific allometric models were developed. Independent tree inventory data were collected
from 140 sample plots to compare the AGB among the species-specific models and seven frequently
used pan-tropical and Sundarbans-specific generic models. The effect of individual tree species was
also evaluated using model parameters for wood densities (from individual trees to the whole
Sundarbans) and tree heights (individual, plot average and plot top height). All nine developed
models explained a high percentage of the variance in tree AGB (R2 = 0.97–0.99) with the diameter
at breast height and total height (H). At the individual tree level, the generic allometric models
overestimated AGB from 22% to 167% compared to the species-specific models. At the plot level,
mean AGB varied from 111.36 Mg ha−1 to 299.48 Mg ha−1, where AGB significantly differed in all
generic models compared to the species-specific models (p < 0.05). Using measured species wood
density (WD) in the allometric model showed 4.5%–9.7% less biomass than WD from published
databases and other sources. When using plot top height and plot average height rather than
measured individual tree height, the AGB was overestimated by 19.5% and underestimated by
8.3% (p < 0.05). The study demonstrates that species-specific allometric models and individual
tree measurements benefit biomass estimation in mangrove forests. Tree level measurement from
the inventory plots, if available, should be included in allometric models to improve the accuracy
of forest biomass estimates, particularly when upscaling individual trees up to the ecosystem level.

1. Introduction

There has been a global effort to develop accur-
ate and efficient methods to quantify aboveground
carbon (measured as biomass) in mangrove forests
(Hutchison et al 2014, Ni-Meister 2015, Baccini et al
2017, Lagomasino et al 2019). A range of remote sens-
ing (RS) technologies can indirectly infer forest bio-
mass but field data are needed to calibrate and val-
idate products (Gibbs et al 2007, Chave et al 2019,

Réjou-Méchain et al 2019). Destructive harvesting of
trees provides the most precise estimates of above-
ground biomass (AGB), yet is impractical, labori-
ous, costly and often illegal (Komiyama et al 2008,
Edwards et al 2019) and somathematical models have
been developed to estimate tree biomass from eas-
ily measured biophysical parameters (tree diameter
at breast height (DBH), height (H), or wood dens-
ity (WD)) (Brown 1997, Komiyama et al 2005, Picard
et al 2012, Chave et al 2014). These models are known
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as allometric models. However, this method of estim-
ation can yield a large degree of uncertainty scaling
up from individual tree biomass to plot and forest-
level as uncertainties associated with individual trees
are propagated (van Breugel et al 2011, Petrokofsky
et al 2012, Réjou-Méchain et al 2019). The choice
of appropriate allometric model is therefore critical
to reduce uncertainties in the estimation of forest
biomass.

All allometric models have limitations since they
are based on a limited number of destructively
sampled trees and often the sample locations are
unrepresentative of forest heterogeneity (Weiskittel
et al 2015, Hickey et al 2018). These models also
introduce an uncertainty when applied to species
without the destructive sample (Mitchard et al 2013,
Ngomanda et al 2014, Mahmood et al 2019). For
example, de Souza Pereira et al (2018) found AGB
estimation errors between minus 18% and plus 14%
when using biome-specific allometries rather than
species-specific ones in Brazilian mangrove forests.
On the other hand, a few studies have shown that gen-
eric models can outcompete locally developed ones
(Rutishauser et al 2013, Stas et al 2017). Uncertain-
ties also arise from inappropriate use of regression
models without considering collinearity of paramet-
ers, uncritical use of model dredging and inappropri-
ate criteria for model selection (Sileshi 2014, Vorster
et al 2020). Recently published global and continental
AGB estimates contain errors due to an under repres-
entative sample size and the exclusion of the climatic
regime, geophysical and geomorphological variables,
which are key to understanding the spatial distribu-
tion of biomass (Rovai et al 2016). Inclusion of bio-
physical parameters such as WD and tree height can
help to capture geographical heterogeneity and also
act as a suitable proxy of environmental drivers such
as variation in salinity which affects the growth rate,
WD, species composition and tree height (Mahmood
et al 2019, Rahman et al 2020, 2021, Virgulino-Júnior
et al 2020).

AlthoughWD is an important variable for assess-
ing carbon content, it is rarely measured during field
inventories. Most studies identify species and then
use published WD values from a database of gen-
eric values (Njana et al 2016, Réjou-Méchain et al
2019). Using the same, or grouped, WD in the allo-
metricmodel tends to smooth species-level variations
in AGB (Mitchard et al 2013, Ni-Meister 2015). The
inclusion of tree height has a large effect on individual
tree and forest AGB (Feldpausch et al 2012). Any
errors introduced during individual tree heightmeas-
urements can originate from the choice of methods
and/or instruments and can be propagated as estim-
ates are scaled up (Larjavaara and Muller-Landau
2013). For example, the use of height–diameter
(H–D) models, developed from the height and stem
diameter of individual trees, often exhibit uncertainty
due to wider height-variation at different spatial

scales (Feldpausch et al 2011, Vieilledent et al 2012).
Space-borne and air-borne LiDAR and RADAR tech-
nologies can improve the accuracy of the heightmeas-
urement and have been used to develop canopy height
models (Fatoyinbo et al 2021).

The Sundarbans mangrove forest is one of the
largest and most bio-diverse mangroves in the world,
located between Bangladesh and India. It contains
the highest carbon densities (345 Mg ha−1) in
both above- and below-ground among all forests
in Bangladesh (GOB 2019, Henry et al 2021). The
Bangladesh Forest Department estimated carbon
stocks in the Sundarbans in 2009 and 2015 using pan-
tropical allometric models and Sundarbans-specific
generic models (BFD 2010, Rahman et al 2015,
Mahmood et al 2019, Henry et al 2021). Other stud-
ies such as Kamruzzaman et al (2017) and Azad et al
(2020) used pan-tropical generic models to estim-
ate AGB in selected areas. However, species-specific
allometric models are not yet available to estimate
AGB in the Sundarbans. Therefore, it is timely to
examine whether species-specific allometric models
using measured wood densities and tree heights can
yield more accurate estimates of AGB in the Sundar-
bans and in mangrove forests more generally. The
aim of this paper is to report research that com-
pares a range of sources of uncertainty in allomet-
ric models, WD, and height measurement for AGB in
the Sundarbans mangrove forest, Bangladesh. First,
the study compares site- and species-specific AGB
between the Sundarbans and pan-tropical generic
allometric models for variability of aboveground tree
biomass. Secondly, the study determines variability
of AGB in the Sundarbans by comparing measured
and published WD values at multiple spatial scales.
Thirdly, the study quantifies the impact of different
methods of tree height determination on estimates of
AGB in mangrove forests.

2. Material andmethods

2.1. Study area
The Bangladesh Sundarbans is situated between
21◦30′ N and 22◦30′ N and 89◦00′ E and 89◦55′ E
in the lower delta plain of the Ganges–Brahmaputra–
Meghna delta covering an area of 6017 km2 (figure 1)
(Giri et al 2011, Aziz and Paul 2015, Sarker et al 2016).
The forest is of international significance as a Ramsar
andUNESCOWorldHeritage site. It provides a num-
ber of valuable ecosystem services such as protecting
inland areas from storms and tidal surges (Barua et al
2020). The near-constant mean annual minimum
and maximum temperature (29 ◦C–31 ◦C) and high
annual rainfall (1474–2265 mm) made the climate
of the Sundarbans warm and humid between 1948
and 2011 (Chowdhury et al 2016, Sarker et al 2016).
The soil is fine-gained silt and clay and slightly cal-
careous (Siddiqi 2001). The Sundarbans has a distinct
salinity zonation with the high salinity zone in the
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Figure 1. Sample plot location in the Sundarbans mangrove forest, Bangladesh. The pink star indicates tree location by Mahmood
et al (2019).

west (polyhaline) to low salinity zone (oligohaline)
in the east along with medium salinity zone (meso-
haline) between (Siddiqi 2001, Chanda et al 2016).
Salinity regulates the geomorphology and hydrolo-
gical characteristics and also the morphology, growth
and distribution of plant species (Sarker et al 2016,
2019a, Rahman et al 2020, 2021).

2.2. Allometric models in the Sundarbans
Species-specific allometric models are not available
for all species in the Sundarbans as destructive
sampling was not permitted due to an imposed felling
moratorium of all species since 1989 (Mahmood
et al 2019). However, four species-specific models
were developed through destructive sampling in the
Bangladesh Sundarbans (table 1). Three generic allo-
metric models were recently developed for 14 species
by using semi-destructive sampling methods where
biomass of stems and larger branches were measured
through volume and WD, and small branches and
foliage through weighing after pruning (Mahmood
et al 2019). Published pan-tropical models have also
been used to estimate biomass in the Sundarbans
(Rahman et al 2015, Kamruzzaman et al 2017, 2018).

2.3. Development of species-specific allometric
model
A conceptual diagram of the research methodology
is presented in the figure 2. The species-specific

allometric models were developed from the semi-
destructive sampling data (324 individuals, 13 spe-
cies, except Sonneratia caseolaris) from Mahmood
et al (2019), where AGB (kg/tree) was presented
along with DBH and total height (H) (figure 1).
Species-specific models for S. caseolaris were not
developed as the independent tree inventory data did
not have any individuals of this species. Out of 13
species, eight species (Avicennia officinalis, Avicen-
nia marina, Bruguiera gymnorrhiza, Bruguiera sex-
angula, Rhizophora apiculata, Rhizophora mucronata,
Xylocarpus granatum and Xylocarpus moluccensis)
were merged into genus level to yield sufficient
data for model fitting. Therefore, nine allometric
models were developed for Aglaia cucullata, Avicen-
nia sp., Bruguiera sp., Excoecaria agallocha, Heritiera
fomes, Lumnitzera racemosa, Rhizophora sp., Sonnera-
tia apetala, and Xylocarpus sp.

Log-linear ordinary least square regression was
used to fit models to predict AGB for each species.
The choice of log-linear regression over nonlinear
regression was done by comparing error distribution
of biomass. According to Xiao et al (2011), the lin-
ear regression of log-transformed data better char-
acterizes multiplicative, heteroscedastic and lognor-
mal error, whereas the nonlinear regression performs
additive, homoscedastic, normal error. The good-
ness of fit of two models were compared and the
lower value of Akaike’s information criterion (AIC)
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Figure 2. Conceptual diagram of the research methodology. The model numbers are labeled according to table 1. Here, DBH:
diameter at breast height, H: height and WD: wood density.

provides significantly better fit when the magnitude
of the difference of AIC is greater than 2 (Burnham
and Anderson 2002). These two models were com-
pared for all species following Xiao et al (2011). In all
cases, the log-linear regression provided significantly
better fit (table A.1 available online at stacks.iop.org/
ERL/16/124002/mmedia). Therefore, the following
six log-linear regression models were used to fit AGB
as the dependent variable, and DBH and tree height
(H) as independent variables

E1: ln(AGB)= ln(a) + bln(DBH)

E2: ln(AGB) = ln(a) + bln(H)

E3: ln(AGB) = ln(a) + bln(DBH×H)

E4: ln(AGB) = ln(a) + bln(DBH2 ×H)

E5: ln(AGB) = ln(a) + bln(DBH×H2)

E6: ln(AGB)= ln(a) + bln(DBH) + cln(H).

The underlying assumptions for the regres-
sion analysis such as normality of residuals and
heteroscedasticity were used to judge the suitabil-
ity of each regression model. Percent relative stand-
ard errors (PRSEs) of each regression coefficient
was measured according to Sileshi (2014), where
PRSE > 25 is considered an unreliable model. The
multicollinearity of each model was measured with
the variance inflation factor (VIF), where VIF > 5
indicates high collinearity among independent vari-
ables. Due to high multicollinearity, complex models
withmore independent variables were not considered
in this study. After obtaining the eligible potential
models for each species, the best models were selec-
ted by the lowest second-order Akaike information

criterion (AICc) and residual standard error (RSE),
and the highest Akaike information criterion weight
(AICw) and coefficient of determination (R2) val-
ues (Picard et al 2012, Sileshi 2014, Mahmood et al
2019, 2020). Models with non-significant parameter
of estimates were not considered regardless of meet-
ing the criteria outlined. Since, the AICw provides
the likelihood of each model to be the best, it was
given highest priority compared with other para-
meters (Sileshi 2014). For all models, the correction
factor was calculated to minimize systematic bias
while converting biomass from ln scale to normal
scale (Sprugel 1983). The K-fold cross-validation
technique was used to validate the best model. This
technique randomly divides the original dataset into
K subsets (ten in this case) of equal sizes, where
each subset is validated with K − 1 subsets (James
et al 2013). The K-fold validation technique was also
run for Sundarbans-specific and pantropical generic
model (Model no. 7–11 in table 1) to measure tree
level variability in AGB in the Sundarbans.

2.4. Tree inventory
Aboveground tree data were collected from 140 ran-
dom sample plots within the Bangladesh Sundarbans
(figure 1). Out of 140 sample plots, 120 plots
were randomly placed within permanent sample plot
(PSP) (20 × 100 m) established by the Bangladesh
Forest Department whilst the remaining 20 plots were
outside of the PSP. These sample plots are distributed
to all 55 compartments in the Bangladesh Sundarbans
covering all three salinity zones (oligohaline, meso-
haline and polyhaline) and forest types (Iftekhar and

5
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Saenger 2008, Sarker et al 2019b). Each plot con-
sists of a circular plot with the radius of 11.3 m
(400m2) formeasuring bigger trees (DBH> 14.5 cm)
and a smaller circular plot within this of 5 m radius
(79m2) for smaller trees (DBH>2.5–14.5 cm) (figure
A.1). After establishing the plots, all individual trees
(DBH > 2.5 cm) were marked, and DBH and total
height (H) measured by using a diameter tape and a
Vertex III hypsometer (Haglöf, Sweden), respectively.
Haglöfwood increment borer (5.15mmdiameter and
300 mm bit length) was used to collect woody spe-
cimen at DBH point to determine the WD of stud-
ied species according to Wiemann and Williamson
(2013). TheWD (gm cm−3) was thenmeasured from
the volume and dry mass of the specimen. The cyl-
indrical volume was measured in the field from the
diameter and length of the specimen and brought to
the laboratory for oven-drying at 105 ◦C until con-
stant weight.

2.5. Variability of AGB in the Sundarbans
The magnitude and patterns of differences in AGB at
plot level in the Sundarbans were compared by using
different allometric models with an independent set
of collected inventory data from the Sundarbans. Plot
level AGB variability was measured by actual AGB
difference (Mg ha−1), absolute difference (Mg ha−1)
and relative absolute difference (%) among different
allometric models.

2.5.1. AGB variability with allometric models
Measured DBH, H andWD were used in the species-
specific allometric models and other site-specific and
pan-tropical generic models (Model 7–11 in table 1)
to assess AGB at the individual tree level. In order
to compute plot-level AGB estimation per hectare
(Mg ha−1), a hectare expansion factor (HEF) for each
stem was used according to the size of the sample plot
(i.e. HEF = 25 for bigger plots, and HEF = 126.58
for smaller sub-plot) and subsequently summed up
all tree biomass in each plot to get plot biomass.
To estimate biomass from the species-specific mod-
els, the developed nine species-specific models were
used alongside four published species-specific mod-
els (Model 1–4 in table 1). If no species-specific allo-
metric model was available, models for similar genus
or family level were applied. Since measuring the
girth at collar height (GCH) for Ceriops decandra
and Aegialitis rotundifolia is laborious and time con-
suming, DBH was measured in the field and sub-
sequently converted to GCH from the developed rela-
tionship between DBH and GCH of 50 individuals
(figure A.2).

2.5.2. AGB variability with WD
Variation of tree AGB was compared with meas-
ured and databases-sourced WD obtained from
published WD databases including the global WD
database (Chave et al 2009, Zanne et al 2009),

World Agroforestry’s tree functional attributes
and ecological databases (ICRAF 2016) and from
Bangladesh Forest Research Institute (Sattar et al
1995). The Sundarbans-specific generic allometric
model (Model 7: Mahmood_2019_DHW) was used
for comparison of AGB frommultipleWD sources. If
there was no measured WD for any species, the WD
from the same genus or family was used. Instead of
applying species WD, plot-level mean WD, salinity
zone WD and Sundarbans level WD were used to
investigate how the spatial scale of WD variation on
AGB estimates in the Sundarbans. To measure salin-
ity zone mean WD, measured WD were averaged
according to three salinity zones in the Sundarbans
according to Rahman et al (2021).

2.5.3. AGB variability with tree height
To derive the variation of AGB from different
height measurement, mean height and maximum
height from each plot was used in Model 7 (Mah-
mood_2019_DHW). The Model 7 was used in this
case as it is originated from the Sundarbans and it
contains both H and WD parameters.

2.6. Statistical analysis
All statistical analysis and graphics used R4.0.4 for
Windows in RStudio Version-1.4.1106 (R Core Team
2020). The normality of residuals, heteroscedasticity
and multicollinearity of each regression model were
tested with Shapiro–Wilk normality test by using ‘R
stats’ base package, studentized Breusch–Pagan test
by using ‘lmtest’ package and VIF test using ‘car’
package, respectively (Zeileis and Hothorn 2002, Fox
andWeisberg 2019). AICc for fitted regression model
was assessed by ‘MuMIn’ package (Bartoń 2020). K-
fold cross validation was run using ‘caret’ package
and model accuracy was compared with mean abso-
lute error (MAE) and root mean squared error (Kuhn
2008). Pairwise comparison of tree AGB between the
species-specific and other models were tested either
by paired t-test if the underlying assumptions such
as normality and heteroscedasticity were met; oth-
erwise, Wilcoxon signed-rank non-parametric test
was used. The ‘rstatix’ package was used for Wil-
coxon signed-rant test and ‘R stats’ base package was
used for paired t-test (Kassambara 2020). The graph-
ical output was generated using the ‘ggplot2’ ‘ggef-
fects’ and ‘cowplot’ package (Wickham2016, Lüdecke
2018, Wilke et al 2019).

3. Results

3.1. Species-specific allometric model
Out of 54 log-linear regression models for nine spe-
cies, 26 models passed all four criteria including
normality of residuals, heteroscedasticity, PRSE and
VIF (table A.2). These 26 models were then fitted
species-wise to the 324 semi-destructively harves-
ted tree dataset with DBH and H: A. cucullata (19),
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Figure 3. Best species-specific allometric model aboveground biomass in the Sundarbans.

Avicennia sp. (41), Bruguiera sp. (31), E. agallocha
(35), H. fomes (97), L. racemosa (13), Rhizophora sp.
(17), S. apetala (20), and Xylocarpus sp. (51).

Out of 26 models, the best nine species-specific
models are presented for each species group (table 2;
figure 3). The AICw shows that the best-chosenmod-
els for A. cucullata, Bruguiera sp., E. agallocha, H.
fomes, and Xylocarpus sp. have 100% chance for being
the best model, while Avicennia sp., L. racemosa,
Rhizophora sp. and S. apetala have respectively 81%,
94%, 82%, and 71% chance to be the best model
(table 3). In the case of S. apetala, while E6 models
had the highest and lowest RSE and AIC value, the
E4 model was chosen based on higher AICw for its
greater chance for being the best model. The adjusted
coefficient of determination (R2) varied from 0.77 to
0.99 for all models. All species-specific models com-
prised single predictor value with only DBH for six
species: A. cucullata, Avicennia sp., Bruguiera sp., H.
fomes, L. racemosa, and Xylocarpus sp. and with com-
bination of DBH andH (DBH2 ×H) for E. agallocha,
S. apetala, and Rhizophora sp.

The ten-fold cross validation showed that
the species-specific model gives the lowest aver-
age MAE of all species in comparison to three
Sundarbans-specific and four pan-tropical generic
allometric models (figure 4, table A.4). The lowest

average MAE revealed that the species-specific mod-
els performed well to predict the AGB in the Sundar-
bans. AGB estimation at tree level had mean rel-
ative absolute difference in MAE between 21.85%
withMahmood_2019_DHWmodel to themaximum
167.43% with Komiyama_2005_DWmodel followed
byChave_2005_DHWandChave_2014_DHW(table
A.4). The paired t-test of MAE for species-specific
models with generic models showed that there is no
significant difference ofMAEwith three Sundarbans-
specific models (p > 0.05); however, all four pan-
tropical models showed significantly higher MAE
than the species specific-model (p < 0.05). The
largest error was obtained for E. agallocha with Kom-
iyama_2005_DW.

3.2. Aboveground tree biomass in the Sundarbans
The tree inventory in the Bangladesh Sundarbans
indicates a total of 24 tree species. The mean DBH,
height, measured and database-sourced WD of all
tree species are presented in the table 3. The DBH and
H distribution are presented in the supplementary
figures A.3 and A.4. Frequency distribution of the
topmost ten species based on basal area (m2 ha−1)
and tree density (trees ha−1) showed that E. agallocha,
H. fomes and C. decandra comprise 90% of the stems
in the Sundarbans, although they represent 60% in

8
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Figure 4. Species-wise mean absolute error (MAE) of tree AGB with all allometric models after ten-fold cross validation. The
models are arranged from highest average MAE to minimum.

Figure 5. Frequency distribution of the ten most frequently occurring species based on basal area (m2 ha−1) and tree density
(tree ha−1).

terms of basal area (figure 5). E. agallocha and H.
fomes was within the top two species in both categor-
ies; C. decandra was the third in terms of tree density,
however, the sixth in case of basal area for its lower
DBH.

The mean AGB varied from 111.36 Mg ha−1

with the Chave_2005_DHW model to the highest
299.48 Mg ha−1 for Chave_2005_DW model
(figure 6). Except for Chave_2005_DHW and
Chave_2014_DHW, all other models yielded higher
AGB than the species-specific model (123 Mg ha−1).
The mean relative absolute difference in AGB ranged
from 9% with Mahmood_2019_DHW to 142% with
Chave_2005_DW. Pairwise comparison with the
Wilcoxon signed-rank test between species-specific

and other models showed that all generic mod-
els measured significantly different AGB than the
species-specific model in the Sundarbans (p < 0.05).
Both Chave_2005_DW and Komiyama_2005_DW
overestimated AGB (supplementary table A.5). The
absolute difference between allometric models ten-
ded to increase with DBH in all species, suggesting
that larger trees are crucial for estimating AGB with
a variety of available allometric model leading to a
greater error and uncertainty.

AGB was significantly higher when models used
published WD compared to species-specific meas-
ured WD (Wilcoxon signed-rank test, p < 0.05)
(figure 7(A), table 4). The maximum mean relative
difference biomass was for Sundarbans mean WD
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Figure 6. Comparison of aboveground biomass (Mg ha−1) with different allometric models. The models are arranged from the
highest median AGB to the lowest. The black horizontal line of box plot for each model represents the median and the width of
violin plot represents the proportion of the data located there as a measure of kernel probability density. The black dots represent
the outliers, which are 1.5 times of the interquartile range above the upper quartile and below the lower quartile (McGill et al
1978).

Figure 7. Comparison of aboveground biomass with (A) different wood density and (B) different height parameters. The
parameters are arranged from the highest median AGB to the lowest. For details of the violin-box plot, see figure 6.

followed by salinity zone mean WD and database-
derived WD. Looking at different sources of height
data, using plot top height tended to be overes-
timate AGB by 19.46%, while using average height
underestimated AGB by 8.31% compared to the
measurements from individual species (figure 7(B),
table 4).

4. Discussion

The results show that the species-specific allometric
models provide the lowest average MAE for all spe-
cies in the Sundarbans (figure 4, table A.4). However,
the three Sundarbans-specific genericmodels showed
no significant difference of mean MAE at tree-level
compared with the species-specific models (table
A.4). At plot-level, all local and pan-tropical gen-
eric models either overestimated or underestimated
AGB when compared to local species-specific mod-
els (figure 6). Several studies have concluded that

site-specific AGB models estimate biomass or car-
bon with less error than regional or pan-tropical
models; for example, Sundarbans mangrove forest
(Mahmood et al 2019), lowland Dipterocarp forest
in Indonesia (Basuki et al 2009), degraded landscape
in Northern Ethiopia (Mokria et al 2018), central
African forest (Ngomanda et al 2014) and Mexican
tropical humid forests (Martínez-Sánchez et al 2020).
In contrast, only a few studies report better perform-
ance from regional or pan-tropical models and these
appear result from large uncertainties in the data used
to build the local model; for example, West Africa
(Aabeyir et al 2020). The accuracy of these generic
models for a particular forest depends on whether
thesemodels incorporate sufficient samples from that
forest. Chave et al (2014) point out that the dis-
crepancy between local models and their own model
(Chave_2014_DHW) in wet forests (including man-
groves) is largely due to failure to address the wider
variation of tree form and other characteristics like
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buttresses, which are common in the Sundarbans.
Their previous model (Chave_2005_DW) overestim-
ated AGB in the Sundarbans because of its inability
to estimate biomass from larger trees (DBH > 42 cm)
(Chave et al 2005). However, surprisingly, the world-
wide generic models for mangroves also overestimate
AGB, possibly because of the samples drawn from the
mangroves of Asia-Pacific and Australia (Komiyama
et al 2008).

The structure and morphological characteristics
of all mangroves vary according to their ability to
adapt to environmental conditions such as salinity,
which is less pronounced in otherwet and dry tropical
areas (Ball and Pidsley 1995, Tomlinson 2016). Envir-
onmental drivers such as salinity and water deficit
are considered the main stressors for the growth and
development of mangroves, including the Sundar-
bans. For example, the third most abundant species
in the Sundarbans, C. decandra, is a multi-stemmed
bushy species, on the other hand, the top two, H.
fomes and E. agallocha are tree-like structures. The
pantropical models yielded a large error in the dwarf,
bushy species and other true mangrove species in
the Sundarbans (table A.5). Moreover, the extreme
salinity has reduced the stature (Rahman et al 2015),
trunk diameter (Rahman et al 2020) and the leaf
area (Khan et al 2020) of H. fomes and S. apetala,
present in all three salinity zones in the Sundarbans.
Due to these widermorphological variation, Banerjee
et al (2013) highlighted the importance of developing
models based on salinity zonation.

This study demonstrates that when using meas-
ured wood densities and individual tree heights, gen-
eric equations yield accurate estimates of AGB in
mangroves at the plot scale (figure 7). Most species
had a higher published WD than the measured value
seen in table 3 (Henry et al 2010). The use ofWD from
different databases such as the Global WD database
resulted in a 9% variation for species having multiple
values, which could provide a significant variation in
AGB if upscaled (Réjou-Méchain et al 2019). Aver-
aging WD at the plot scale, salinity zone scale or eco-
system scale also introduces errors. WhileWD is con-
sidered an important variable to capture a range of
characteristics such as high density versus low dens-
ity timber species, climax versus pioneer species or
primary versus secondary species, the use of WD
value from the secondary sources or averaging them
in the higher scales might not reflect the true bio-
mass (Slik et al 2008, Kenzo et al 2009). Phillips et al
(2019) noted significant AGB error in the Amazon
rainforest while scaling up from the plot level to forest
and amazon-wide level. Yuen et al (2016) observed
31 Mg ha−1 higher AGB with the difference of meas-
ured and published WD of only 0.13 gm cm−3.

Among nine developed models, six models
showed that DBH alone is a strong predictor of AGB
across the Bangladesh Sundarbans. The remaining

three models of E. agallocha, S. apetala, and Rhizo-
phora sp. showed sensitivity to height. However, the
inclusion of top height or average height instead of
using individual tree height can increase the error
at the plot level and above. Kearsley et al (2013)
observed 24% overestimation of AGB in the cent-
ral Congo Basin by using a regional height–diameter
relationship developed by Feldpausch et al (2012)
compared to the local relationship. On the other
hand, using mean height could reduce the difficulty
of taking height measurements in dense forests, yet
may lead to a significant underestimation of AGB
(Hunter et al 2013). The difficulty of measuring
height under a dense forest canopy allows researchers
to use H-D relationship or to use bioclimatic vari-
ables in allometric models. However, these also lead
to non-uniform bias in biomass estimation (Réjou-
Méchain et al 2019).

Although species-specific WD and individual
height data can be used to accurately estimate AGB
at the plot and ecosystem level, collecting species
information is impractical in highly diverse mixed
tropical forests such as in Amazonia, Southeast Asia
and the Congo basin, which comprise of more
than 53 000 tree species (Feldpausch et al 2012, Slik
et al 2015). Mangroves, by comparison exhibit less
diversity. Developing allometric models for domin-
ant species could improve the biomass inventory.
For example, in the Sundarbans only 28 species were
recorded (24 in this survey) and just three species
(E. agallocha, H. fomes and C. decandra) constitute
about 90% of stand density (figure 5), which implies
that developing three allometric models is enough
to produce acceptable AGB estimates in the Sundar-
bans (GOB 2019). The model used for C. decandra
was developed by destructive sampling from Hossain
et al (2012) and so this study recommends develop-
ing models with destructive samples from all salinity
zones for H. fomes and E. agallocha.

The errors and uncertainties in the individual
tree and plot level AGB estimates will result in large
errors when scaling up to the ecosystem, region or
country level by RS techniques. Réjou-Méchain et al
(2019) described the errors due to poor choice of allo-
metric models and failure to capture variabilities of
WD and H as uniform and non-uniform bias. Uni-
form bias systematically propagates over- or under-
estimation whereas non-uniform bias is related to
an inability to capture the variabilities across land-
scapes, for example, WD and H variation among
successional stages or environmental gradients such
as the salinity in the Sundarbans (Rahman et al
2020). These two types of bias, in addition to map-
ping errors resulting from the use of RS, may result
in serious anomalies in national and global carbon
budgets and result in poor understanding of species
contribution to ecosystem processes and function in
mangroves.
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5. Conclusion

This study developed and tested five species-specific
and four genus-specific allometric models for the
nine most important species in the Sundarbans. All
developed models explained a high percentage of the
variance in tree AGB (R2 = 0.97–0.99) using meas-
ured DBH and total height (H) data. At the indi-
vidual tree level, the generic allometric models over-
estimated AGB between 22% and 167% compared to
the species-specific models and at the plot level, they
showed statistically significant AGB differences com-
pared to the species-specificmodels (p < 0.05).Meas-
ured WD showed 5%–10% less biomass than WD
from databases and other sources and AGB was over-
estimated by up to 20% when using plot top height
and underestimated by 8% using plot average height
data rather than individual tree heights. The study
concludes that biomass estimation in mangroves
forests always benefit from species-specific models
and individual tree measurements when appropri-
ate input data are available. Tree level measurements
from inventory plots play an important role for the
improved estimation of forest biomass while scal-
ing from individual trees up to the ecosystem level.
Improved estimates of AGB will improve support
our understanding of the productivity of mangrove
forests, information that is needed for the long-term
conservation of these fragile ecosystems that face
many natural and anthropogenic pressures.
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