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Abstract
An honest communication of uncertainty about quantities of interest enhances trans-
parency in scientific assessments. To support this communication, risk assessors should
choose appropriate ways to evaluate and characterize epistemic uncertainty. A full treat-
ment of uncertainty requires methods that distinguish aleatory from epistemic uncer-
tainty. Quantitative expressions for epistemic uncertainty are advantageous in scien-
tific assessments because they are nonambiguous and enable individual uncertainties
to be characterized and combined in a systematic way. Since 2019, the European Food
Safety Authority (EFSA) recommends assessors to express epistemic uncertainty in
conclusions of scientific assessments quantitatively by subjective probability. A sub-
jective probability can be used to represent an expert judgment, which may or may
not be updated using Bayes’s rule to integrate evidence available for the assessment
and could be either precise or approximate. Approximate (or bounded) probabilities
may be enough for decision making and allow experts to reach agreement on cer-
tainty when they struggle to specify precise subjective probabilities. The difference
between the lower and upper bound on a subjective probability can also be used to
reflect someone’s strength of knowledge. In this article, we demonstrate how to quan-
tify uncertainty by bounded probability, and explicitly distinguish between epistemic
and aleatory uncertainty, by means of robust Bayesian analysis, including standard
Bayesian analysis through precise probability as a special case. For illustration, the
two analyses are applied to an intake assessment.
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1 INTRODUCTION

1.1 Background and Aim

Uncertainty arising from limitations in knowledge is epis-
temic. An honest communication of uncertainty enhances
transparency in scientific advice (Fischhoff & Davis, 2014;
SAPEA, 2019). There are different ways to communicate
uncertainty (van der Bles et al., 2019). How and what to
communicate depends on how uncertainty is characterized
in scientific assessment, i.e., the process of using scientific
evidence and reasoning to answer a question or estimate a
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quantity in a specific decision-making context (EFSA et al.,
2018). Organizations responsible for scientific assessment
have developed guidance and recommendations about char-
acterizing epistemic uncertainty in scientific assessment and
communicating uncertainty to decisionmakers and the public
(EFSA et al., 2018, 2019; FAO & WHO, 2021; Institute of
Medicine, 2013).

The European Food Safety Authority (EFSA)’s guidance
on uncertainty analysis (EFSA et al., 2018) emphasizes the
importance of well-defined assessment questions, a system-
atic identification and characterization of individual sources
of uncertainty, and the ultimate goal to characterize overall

Risk Analysis. 2021;1–15. wileyonlinelibrary.com/journal/risa 1

mailto:ivette.raices_cruz@cec.lu.se
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/risa
http://crossmark.crossref.org/dialog/?doi=10.1111%2Frisa.13871&domain=pdf&date_stamp=2022-01-10


2 RAICES CRUZ ET AL.

uncertainty in the answer to the assessment question. This
can be done by dividing the assessment into parts, identifying
and characterizing uncertainty in each part, making a distinc-
tion between aleatory (i.e., inherent randomness, heterogene-
ity, or variability) and epistemic uncertainty, and evaluating
the combined uncertainty on the quantities of interest chosen
to support the conclusion of the assessment.

EFSA’s guidance includes a description of alternative ways
to characterize uncertainty, including qualitative and quanti-
tative methods (EFSA et al., 2018). Since 2019, EFSA recom-
mends that assessors should try to express epistemic uncer-
tainty about any quantity of interest in scientific assessments
(also known as overall uncertainty) in a quantitative way
using subjective probability (either precise or approximate).

To meet EFSA’s recommendation, we revisit a possible
framework to quantify these two expressions (precise and
bounded probability) for epistemic uncertainty that also com-
ply with the requirements of scientific assessments to

1. distinguish between aleatory and epistemic uncertainty,
and

2. integrate available evidence in a systematic way.

Epistemic uncertainty should be distinguished from
aleatory uncertainty to allow quantification of uncertainty
about a quantity of interest, even when it is based on a sum-
mary of aleatory uncertainty.

There is an ongoing debate in the risk analysis community
about the use of probability versus other expressions of epis-
temic uncertainty, and if probability should be restricted to
aleatory uncertainty (Aven, 2010, 2020; Ferson & Ginzburg,
1996; Helton & Oberkampf, 2004). There are limitations with
any expression of uncertainty, which should be acknowledged
in the assessment. The benefits of probability (precise or
bounded) are, besides being a quantitative expression, which
they comply with the two requirements listed above.

It is possible to maintain a distinction between aleatory
and epistemic uncertainty and quantify epistemic uncertainty
by a precise probability (see, e.g., Helton, 1997; Kelly &
Smith, 2011; Nauta, 2000; O’Hagan, 2013; US EPA, 2011).
In some part of an assessment, experts may provide pre-
cise and/or imprecise judgments which support the specifi-
cation of a precise and/or approximate probability for quan-
tifying epistemic uncertainty. When epistemic uncertainty is
quantified by precise probability, Bayesian inference allows
for a systematic integration of evidence into the assessment
(O’Hagan, 2013). There is a need for guidance on how to inte-
grate evidence when epistemic uncertainty is represented by
an approximate (bounded) probability. The EFSA guidance
for uncertainty analysis describes probability bound analy-
sis as a way to propagate epistemic uncertainty through an
assessment model, separating aleatory from epistemic uncer-
tainty (EFSA et al., 2018, section B.13). But, in the current
version of the guidance there is no recommendation on how
to integrate evidence in assessment when uncertainty is quan-
tified by approximate probability.

The aim of this article is to demonstrate a possible way for
EFSA to quantify uncertainty in a quantity of interest (that is

an output from an assessment model) by bounded probabil-
ity, and explicitly distinguish between epistemic and aleatory
uncertainty. This way, here referred to as robust Bayesian
analysis, includes standard Bayesian analysis where uncer-
tainty is quantified by precise probability as a special case.

1.2 Bayesian Analysis to Quantify
Uncertainty in Scientific Assessments

In scientific assessments, it is useful to make a clear distinc-
tion between assessment variables and assessment parame-
ters (EFSA et al., 2018). Parameters are theoretical constructs
within a scientific model, with values that are fixed (true)
but we are uncertain about (van der Bles et al., 2019). As
an example, variability in body weights of individuals of a
certain age and sex in a population can be modeled to fol-
low a normal distribution with unknown mean 𝜇 and (for
simplicity) known variance 𝜎2. Here, 𝜇 and 𝜎2 are assess-
ment parameters, and “body weight” is an assessment vari-
able modeled as N(𝜇, 𝜎2). Uncertainty about the parameter 𝜇
can be quantified by subjective probability, e.g., by specify-
ing how probable different values u of the parameter are, i.e.,
P(𝜇 < u). A probability distribution consists of probabilities
for all possible values on u.

A subjective probability represents someone’s degree of
belief that a statement is true now (or will be true at
a specified time in the future) conditional on the knowl-
edge that person has (Hampton et al., 1973; Lindley, 2006;
O’Hagan, 2013). Different interpretations of subjective prob-
ability exist. For example, in the betting interpretation, the
probability P(A) indicates how much a person is willing to
pay (sell) for a bet if he/she would receive a unit reward if
the event A occurs and nothing otherwise (de Finetti, 1937;
Hájek, 2019). This interpretation has the advantage of giv-
ing an operational method for measuring someone’s degree
of belief in terms of their behavior. However, it suffers from
the usual issues associated with operational interpretations of
probability. For instance, in some situations, the value of the
rewards involved in the bet may depend on the outcome of the
bet itself, or on whether the bet is placed at all (Hájek, 2019).
This can be particularly problematic in the context of risk
analysis, where for instance the life or quality of life of the
bettor (decision maker) itself might be at stake (Aven, 2021;
Aven and Reniers, 2013; Lindley, 2006).

To circumvent these well-known issues that may arise with
the betting interpretation of subjective probability, a nonoper-
ational interpretation of probability may be more suitable. For
instance, an alternative interpretation is proposed by Lindley
(2006), which links subjective probability to an uncertainty
standard such as an urn. Lindley suggested that the probabil-
ity P(A) is the number such that uncertainty about the occur-
rence of the event A is considered equivalent to uncertainty
about the occurrence of some standard event, e.g., if a per-
son assigns a probability of 0.2 for an event A, his/her degree
of belief in A occurring is equivalent to drawing a red ball
at random from an urn containing 10 balls where two balls
are red. The interpretation given by Lindley (2006) has been
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suggested by Aven and Reniers (2013), Aven (2021) as more
appropriate in the context of risk analysis because it does
not conflate uncertainty judgments with value judgments. We
refer the reader to Hájek (2019) for a much more exten-
sive discussion around the operational issues with the betting
interpretation and how some of these issues can be addressed.
In addition, Aven (2020) argues that in an assessment con-
text, a value-neutral interpretation of subjective probability
as a representation of the assessors’ uncertainty is prefer-
able. An expert can use a subjective probability to represent
her certainty about a statement given her current knowledge
(Singpurwalla & Wilson, 2008), which may or may not be
followed with Bayesian updating integrating evidence avail-
able for the assessment.

In Bayesian analysis, a prior is a subjective probability dis-
tribution quantified by expert judgment that represents uncer-
tainty about the parameters prior to considering information
in data (Gelman et al., 2013; Kelly & Smith, 2009; McEl-
reath, 2016; O’Hagan, 2013). Data are integrated by spec-
ifying a probabilistic model over the possible observations
under different values on the parameters, which can be used
to get the likelihood. Given prior information and the likeli-
hood for data, uncertainty about parameters is updated using
Bayes rule.

An assessment model may use probability distributions
to model aleatory uncertainty (Cox, 2006; Kelly & Smith,
2011). Bayesian analysis uses subjective probability to quan-
tify uncertainty in parameters. For example, the marginal dis-
tribution over parameter 𝜇 is interpreted as a characterization
of epistemic uncertainty about the population mean (Fig. 1B),
while the distribution of body weights given a specific value
on the mean 𝜇 = u is interpreted as aleatory uncertainty (one
of the cumulative density functions (cdf) in Fig. 1A).

In general, the ability to distinguish between aleatory and
epistemic uncertainty relies on the extent to which aleatory
uncertainty is explicitly modeled (i.e., if the statistical models
consider relevant sources of variability in the system and/or
measurement errors), since epistemic uncertainty is attributed
to the parameters of the specified model. A separation is pos-
sible by modeling the full probability distribution for both
parameters and variables (i.e., epistemic and aleatory uncer-
tainty), and then appropriately marginalizing the distribu-
tion to characterize epistemic uncertainty about a quantity
of interest. The quantity of interest is related to the assess-
ment question.

1.3 Beyond Bayesian Analysis

A common criticism of Bayesian analysis relying on subjec-
tive probability is that it needs subjective judgments to spec-
ify the prior (Aven, 2020; Gelman, 2008; Hampton et al.,
1973). This issue can be approached by carefully specify-
ing the priors using structured methods for expert knowledge
elicitation (EFSA, 2014; O’Hagan, 2019; O’Hagan et al.,
2006). On the other hand, there is no assessment free from
subjectivity. For example, the choice of statistical model (to

derive the likelihood) is always subjective for any type of
inference. A scientific approach for treating uncertainty in
assessments requires an acknowledgment that uncertainty is
subjective and conditional on the current knowledge (EFSA
et al., 2018; Goldstein, 2006; O’Hagan, 2019). Using a sta-
tistical principle that can work with uncertainty conditional
on knowledge (e.g., Bayesian analysis) is useful in scien-
tific assessments. In particular, this holds when the aim is to
quantify and revise uncertainty in a transparent and repro-
ducible way.

In scientific assessments, it is common to use precise prior
information, instead of flat priors elicited from expert knowl-
edge. However, in some situations scientific experts might
struggle to agree on a precise subjective probability (O’Hagan
et al., 2006). This difficulty could raise a concern when
experts are directly quantifying uncertainty in a quantity of
interest, or for Bayesian updating based on information in
data that is sparse, weak or conflicting (Walley, 1991; Wal-
ter & Coolen, 2016). To account for the issue of specifying
a precise probability and because approximate quantitative
expressions of uncertainty may be enough to inform decision
making, EFSA et al. (2018) allow for epistemic uncertainty in
overall uncertainty to be quantified by bounded probability.

A bounded probability can partially reflect someone’s
strength of knowledge, where a wider difference between the
lower and upper bounds indicates less strength. The lower
and upper bounds can also be interpreted as a range for the
probability expressing epistemic uncertainty without indicat-
ing strength of knowledge. This could occur when experts
provide judgments with bounds, for example, to possibly
simplify the expert elicitation process. The bounds can also
be given a betting interpretation (Walley, 1991). In this inter-
pretation, increasing the lower bound strengthens our belief
in favor of a statement because we are increasing the amount
we are willing to pay for a bet that gives us a unit reward if the
statement proves to be true. Similarly, decreasing the upper
bound strengthens our belief against a statement, because
we are increasing the amount we are willing to pay for a bet
that gives us a unit reward if the statement proves to be false.
In that sense, when lower and upper bounds coincide, we
have expressed the strongest possible belief in a statement
(Troffaes & Cooman, 2014; Walley, 1991). In all assess-
ments, there will always be limitations in knowledge that
is not considered in the assessment model, which should be
acknowledged in the conclusion (EFSA et al., 2018). There-
fore, approaches for uncertainty have emerged that commu-
nicate judgments on the strength of knowledge supporting the
assessment side by side with expressions of uncertainty about
the quantity of interest (Aven, 2020; van der Bles et al., 2019).

Probability bounds analysis (PBA) is a method to cal-
culate bounds on the probability of a composite event
based on expressions of bounded probability of the other
events (EFSA et al., 2018). PBA can propagate aleatory
and epistemic uncertainty through a model, by represent-
ing uncertainty associated to each assessment variable by a
probability box (p-box) (Ferson et al., 2003; Flage et al.,
2018). A “p-box for an assessment variable” is a set of
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F I G U R E 1 Uncertainty in assessment variable (“body weight”) and parameter average body weight (𝜇) quantified using Bayesian analysis (A, B),
probability bounds analysis (C, D), and robust Bayesian analysis (E, F). Under these three approaches, uncertainty in the parameter 𝜇 is quantified by (B) a
precise probability distribution (first a prior, then a posterior), (D) an interval, and (F) a set of probability distributions (first a set of priors (dashed lines), then
a set of posteriors (solid lines)). Uncertainty in the variable “body weight” is characterized by (A) a 2D-distribution, (C) a p-box, and (E) 2D-distributions for
every distribution in the set of probability distributions for the parameter (light blue and light red lines are 2D-distributions associated to the lower bound and
the upper bound of the posterior, respectively). A posterior predictive distribution (black line in (A)) is a marginalization over the 2D-distribution

probability distributions for aleatory uncertainty bounded by
a lower and an upper cumulative distribution function. A
p-box may arise from a parameterized distribution, where
uncertainty in parameters is expressed by intervals with no
further probabilistic model on those intervals. That is, no uni-
form or other distribution on parameters is assumed, and all
possible parameter values, within set bounds, are propagated.

Going back to our previous example, a p-box of body weight
(see, for instance, Fig. 1C) could have been derived by
expressing epistemic uncertainty in the expected body weight
𝜇 by an interval (for example, Fig. 1D) (instead of a subjec-
tive probability distribution).

P-Boxes on assessment variables may be hard to jus-
tify in scientific assessment. First, the intervals are treated
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as 100% probability intervals, which means that there is
a zero probability of a parameter taking a value outside
the interval. Second, some information from the underly-
ing evidence is lost when epistemic uncertainty is sum-
marized into intervals, instead of probability distributions
(where different values are weighted according to how prob-
able they are). Therefore, we argue that p-boxes on vari-
ables are appropriate when epistemic uncertainty is directly
quantified as intervals on parameters instead of probabil-
ity distributions, and there has been no formal updating
using Bayes rule. But this is often not the case in scientific
assessments, where available evidence (including data) are
to be taken into account. This leads to the question, what
to do instead in order to quantify epistemic uncertainty by
bounded probability?

1.4 Bayesian and Robust Bayesian Analysis
as a Possible Way Forward

Robust Bayesian analysis has been used to evaluate the sen-
sitivity to the choice of priors (e.g., the choice of family
or hyperparameters of the prior distribution) (Berger, 1990;
Roos et al., 2015). An alternative use of “robust” Bayesian
analysis is to apply Bayesian inference over a set of pri-
ors for quantifying uncertainty about parameters, resulting
in uncertainty quantified by bounded (imprecise) probabil-
ity (Walley, 1991; Walter & Coolen, 2016). Used in this
way, robust Bayesian analysis is based on statistical princi-
ples for inference within the theory of imprecise probability
(Walley, 1991). For example, Sahlin et al. (2021) use bounds
on probability for expressing severe uncertainty about the
state of the system. Because robust Bayesian analysis allows
integration of evidence, it is a useful approach to quantify
epistemic uncertainty by bounded probability in scientific
assessments.

A set of priors represents prior beliefs measured through
bounds. This results in a set of posterior distributions (see, for
example, Fig. 1F) and bounds are derived for relevant sum-
maries from probability distributions such as expectations,
percentiles, or probability intervals (for instance, see Fig. 1E).
Imprecision can also emerge from the likelihood of a given
parametric model, as a consequence of doubt about the spec-
ification of the likelihood and/or imprecise data, e.g., interval
data or categorical data with unclear class membership. For
more details, see Benavoli and Ristic (2011) and Cattaneo
and Wiencierz (2012).

In this article, we demonstrate a way to quantify epistemic
uncertainty by precise and bounded probability derived by
Bayesian analysis and robust Bayesian analysis. To illustrate
the approach, we specify an assessment model and quantify
epistemic uncertainty by precise and bounded probability for
an assessment of the weekly intake of aluminium via con-
sumption of cocoa and chocolate products (Schendel et al.,
2018). This example is chosen since this is a common type of
scientific assessment aiming to answer if a continuous assess-
ment variable (here exposure) exceeds a safety threshold.

2 A MATHEMATICAL FRAMEWORK
FOR THE QUANTIFICATION OF
EPISTEMIC UNCERTAINTY USING
BAYESIAN AND ROBUST BAYESIAN
ANALYSIS

2.1 The Separation of Epistemic and
Aleatory Uncertainty in Bayesian Analysis

Let us start with a simple model with one variable X and one
parameter 𝜃. In Bayesian analysis, uncertainty about param-
eter 𝜃 is quantified in the form of a subjective probability
distribution. Uncertainty about the parameter can be updated
using Bayes rule with evidence, e.g., observations of the vari-
able X. This is done by combining the model for the uncer-
tainty in the parameter before the variable X is observed
(the prior), and a model for how likely it is to observe the
data x := (x1, … , xn) given specific values on the parameter
𝜃 (the likelihood). In what follows, we assume that data are
conditionally independent and identically distributed given
the parameters in the model (i.e., exchangeable). Uncertainty
about the parameter after updating (the posterior) is

P(𝜃 ∣ x) ∝ P(𝜃)P(x ∣ 𝜃), (1)

where P(𝜃) is the prior probability and P(x ∣ 𝜃) is the likeli-
hood.

The prior can, but does not have to, be expressed with a
parametric probability distribution, for which the probability
density function (pdf) has a mathematical form with a fixed
number of parameters (Cox, 2006). To avoid double use of the
term parameter, parameters of a parametric prior distribution
are in Bayesian terminology referred to as hyperparameters.
Using a parametric prior, the posterior distribution is condi-
tional on data and the hyperparameters:

f (𝜃 ∣ x, t0) ∝ f (𝜃 ∣ t0)
n∏

i=1

f (xi ∣ 𝜃), (2)

where f denotes a pdf, and t0 denotes the hyperparameters.
A Bayesian model is a joint probability distribution of

parameters and variables, which are both mathematically
treated as random variables. Although both parameters and
variables are modeled as random variables, probability dis-
tributions for parameters should always represent epistemic
uncertainty interpreted as subjective probabilities. Note that a
parameter in a statistical model may not be a parameter in
the strict sense as defined in the context of an assessment
(i.e., a fixed, but uncertain number). An example of this is
a random effect in a multilevel or hierarchical model, which
is a quantity with variability (this issue is raised in Kadane,
2011, Chapter 9). When marginalizing the probability dis-
tribution of a parameter, the resulting distribution represents
only epistemic uncertainty. The probability distributions for
assessment variables represent aleatory uncertainty with a
frequency interpretation. This is in line with the probability
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on frequency approach (Apostolakis, 1990; Kaplan & Gar-
rick, 1981).

Since the distribution of X is dependent on the parame-
ter 𝜃, it is not possible to summarize aleatory uncertainty
without epistemic uncertainty. In Bayesian analysis, the
predictive distribution for a future value of a variable,
expresses a mixture of aleatory and epistemic uncertainty
which is represented by a single probability distribution
(Fig. 1A) (Gelman et al., 2013; McElreath, 2016). To illus-
trate the contribution of epistemic uncertainty in relation
to aleatory uncertainty, an assessment variable is specified
or visualized as a two-dimensional probability distribution
(2D-distribution) (Aldenberg & Jaworska, 2000; EFSA et al.,
2018). A 2D-distribution consists of pdfs or cdfs for the
variable, that are sampled from probability distributions for
the parameters within the model of the variable (Fig. 1B)
(EFSA et al., 2018). Thus, a 2D-distribution (Fig. 1A) repre-
sents aleatory uncertainty at the variable level by taking into
account epistemic uncertainty in parameters.

2.2 Quantifying Uncertainty in the
Quantity of Interest By Precise Probability

In order to characterize the magnitude of epistemic uncer-
tainty in the quantities of interest, there is a need to eval-
uate uncertainty. For illustration, the quantity of interest is
here (see next section) the frequency of a target population
exceeding a critical threshold. More specifically, the quan-
tity of interest is the frequency of the event “a function g(⋅)
of a future value of the assessment variable Xi, where i > n,
exceeds the critical value g∗.” We use a function g(⋅) to allow
for possible transformations of the assessment variable and
later on to generalize it into a function of several assess-
ment variables.

In standard Bayesian analysis, the posterior probability for
this event can be written as the integral of the quantity of
interest for a given value of the parameter 𝜃, times the poste-
rior distribution of 𝜃:

P(g(Xn+1) > g∗ ∣ x, t0) = ∫ P(g(Xn+1) ≥ g∗ ∣ 𝜃)f (𝜃 ∣ x, t0)d𝜃.

(3)

If we define the quantity of interest as a function of assess-
ment parameters 𝜃:

h(𝜃) := P(g(Xn+1) ≥ g∗ ∣ 𝜃), (4)

and Θ the random variable corresponding to uncertainty in
the parameter 𝜃, Equation (3) can be written as:

∫ h(𝜃)f (𝜃 ∣ x, t0)d𝜃 = E(h(Θ) ∣ x, t0). (5)

When presented in this way, the quantity of interest
h(𝜃) is a characterization of aleatory uncertainty (without

necessarily being directly observed). Uncertainty in the quan-
tity of interest, h(Θ) in Equation (5), is a random variable in
the form of a subjective probability distribution. This result
holds when generalizing the quantity of interest to be an event
over several assessment variables and when h(⋅) is a function
of several assessment parameters.

2.3 Bayesian Inference on the Quantity of
Interest

Monte Carlo simulation is a useful method for estimation
when it is difficult to obtain an analytical solution (Vose,
1996). To estimate the expected value of the quantity of
interest, let 𝜃1, … , 𝜃M be random samples drawn from the
posterior distribution f (𝜃 ∣ x, t0). For each j ∈ {1, … ,M}, let
xj

n+1, … , x
j
n+N be random samples drawn from the assessment

variable conditional on 𝜃j. Then, ĥ(𝜃j) is a Monte Carlo esti-
mate for h(𝜃j):

h(𝜃j) ≈ ĥ(𝜃j) :=
1
N

N∑
i=1

1{
g
(

x
j
n+i

)≥g∗
}. (6)

Thus, sample j of the quantity of interest ĥ(𝜃j) is not directly

computed from 𝜃j, but from the samples xj
n+1, … , x

j
n+N .

The posterior expected value of the frequency of exceeding
a threshold can be estimated by

E(h(Θ) ∣ x, t0) ≈
1
M

M∑
j=1

ĥ(𝜃j). (7)

In this approach, the quantity of interest is estimated in two
steps. First, we randomly generate parameters, 𝜃j, from the
posterior distribution which characterizes epistemic uncer-
tainty. Second, we generate values on the assessment vari-
able xj

n+i conditional on the generated parameters 𝜃j, by sam-
pling from the model expressing aleatory uncertainty. This
two-step procedure is called two-dimensional Monte Carlo
(2D-MC) simulation and is used to separate epistemic from
aleatory uncertainty (EFSA et al., 2018; Vose, 1996).

For communication of uncertainty in assessments, it is rec-
ommended to also summarize uncertainty in the quantity of
interest by one or several percentiles (EFSA et al., 2019).
Substituting the arithmetic mean by the posterior percentile
function of h(Θ) in Equation (7), we get hp(t0) with

P(h(Θ) ≤ hp(t0) ∣ x, t0) = p (8)

for a given p ∈ [0, 1]. The percentile is approximated by
the pth percentile in the sample of quantities of interest
(ĥ(𝜃1), … , ĥ(𝜃M)) as follows:

ĥp(t0) := ĥ(r), (9)
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where r = M
p

100
(smallest integer) and ĥ(r) is the rth

order statistics (the rth smallest value in the sample
ĥ(𝜃1), … , ĥ(𝜃M)). The percentile function can be used to esti-
mate the cdf for uncertainty in the quantity of interest.

2.4 Quantifying Uncertainty in the
Quantity of Interest by Bounded Probability

Robust Bayesian analysis specifies a set of prior distributions
to quantify uncertainty in parameter 𝜃. A set of prior dis-
tributions represents uncertainty, arising from ambiguity or
imprecision, in the specification of a unique (precise) prior
distribution. A bound on a probability is obtained by opti-
mizing a summary from a distribution, e.g., an expectation
or percentile, over the set of priors. To simplify the analysis,
one can assume that all prior distributions belong to the same
family of probability distribution. Thus, the set of prior distri-
butions is specified by a set of hyperparameter values T0. For
the assessment, we want to estimate a bound on a probability
or on the expectation of the quantity of interest over a set of
hyperparameters T0.

Let us first look how to estimate the upper bound on the
expected frequency of exceeding a threshold over our set of
prior distributions:

E(h(Θ) ∣ x, t0) := max
t0∈T0 ∫ h(𝜃)f (𝜃 ∣ x, t0)d𝜃, (10)

which can be approximated by

E(h(Θ) ∣ x, t0) ≈ max
t0∈T0

1
M

M∑
j=1

ĥ(𝜃j(t0)). (11)

Here, we explicitly write 𝜃j(t0) to emphasize its dependency
on t0.

This estimator gives a conservative bound on the upper
expectation, as it is a biased estimator (i.e., the expected value
of the estimator given by Equation (11) is higher than the
upper expectation given in Equation (10)); for details, see
Troffaes (2018). The bias can be kept small by expressing
the samples as smooth functions of the hyperparameters and
of the sources of randomness that produce the sample, and
thus by not resampling within the optimization process. In
our analysis, we do not quantify the bias explicitly because
the estimated bounds are already reasonable. However, if
needed, the bias can be quantified with additional compu-
tational effort, for instance by rerunning the sampling and
studying the variation in the approximation of the bounds as
described in Troffaes (2018).

The upper bound on the pth percentile for the quantity of
interest in Equation (8) can be approximated by

hp(t0) := max
t0∈T0

hp(t0) ≈ max
t0∈T0

ĥp(t0). (12)

Lower bounds can be computed using the minimum instead.
It is possible to visualize uncertainty in the quantity of

interest by combining estimated lower and upper bounds of
percentiles into a “p-box for uncertainty in a parameter.” This
is then a p-box for a parameter conditional on data and the
set of priors T0 (see, for example, Fig. 1F). Hence, robust
Bayesian analysis makes it possible to quantity bounds on
uncertainty quantified by probability and integrate data and
expert knowledge in a coherent way. In robust Bayesian anal-
ysis, there is no ideal way to visualize uncertainty at the vari-
able level (see, for example, Fig. 1E) in a way that clearly
separate aleatory and epistemic uncertainty similar to the 2D-
distribution in the precise probability case (see, for instance,
Fig. 1B).

3 A CASE STUDY

3.1 Introduction to the Case Study

To illustrate both frameworks, Bayesian analysis and robust
Bayesian analysis are applied on an assessment model that
contains several continuous assessment variables which are
combined to estimate a quantity of interest. This is a common
situation in scientific assessments, including both aleatory
and epistemic uncertainty.

To evaluate the main principles of EFSA’s new guidance
for uncertainty analysis (EFSA et al., 2018), the German
Federal Institute for Risk Assessment (BfR) applied differ-
ent methods for uncertainty analysis on an assessment of the
long-term aluminum intake (chronic toxicity) by consump-
tion of chocolate and cocoa products for children (Schen-
del et al., 2018). The population group consisted of children
in Germany that are infants from age 0.5 years to less than
five years (which are not breastfed). The weekly intake of
aluminum via consumption of cocoa and chocolate products
is considered to be safe if it does not exceed the tolerable
weekly intake of aluminium (1 mg/(kg bw)/week). The exam-
ples in the BfR report did not indicate any concern for safety.

In this article, we apply both frameworks on the safety
assessment in the report done by BfR. The intake of alu-
minum via consumption of cocoa and chocolate products is
modeled by the intake equation:

Y = C ⋅ A, (13)

where C is consumption per body weight per week and A is
aluminum concentration in the consumed products. We define
as our quantity of interest, the limit of the relative frequency
of children in the target population exceeding the tolerable
weekly intake of aluminum (referred to as the frequency of
exceeding TWI).

The BfR assessment (Schendel et al., 2018) used con-
sumption data collected in Germany during 2001/2002
on chocolate consumption per body weight of children.
In particular, the consumption of the following products
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was taken into consideration: sugar panned chocolate, milk
chocolate/baking chocolate, chocolate icing/chocolate sprin-
kles/chocolate coating, chocolate with fillings, dark choco-
late, cocoa powder and beverages containing cocoa powder,
chocolate-, nougat-, and cocoa-cream and mixed-milk bever-
ages containing cocoa. Because the consumption study was
judged out of date, they performed expert knowledge elicita-
tion to assess the rate of change of cocoa powder consump-
tion from 2001/2002 to 2017. Measurements of aluminum
concentrations in these chocolate products were taken from
a separate study. They used the data to inform the assessment
variables and weekly intake was derived by the intake equa-
tion (Equation (13)).

3.2 The Assessment Model

To assess the quantity of interest, we specify an assessment
model that allows us to (1) consider relevant variability, and
(2) integrate information in data and expert judgment using
Bayesian principles for inference. The model will consider
variability in consumption between individuals in the tar-
get population and variability in aluminum concentrations
between samples of chocolate products. Here, we consider
seven of the nine products in the BfR report (Schendel et al.,
2018), which were products with data on both consumption
and aluminum concentration. It is possible to consider all
products, but this decision was taken to simplify the descrip-
tion of the assessment model. As a consequence, the weekly
intake will be underestimated.

The weekly intake Yi for the ith child is modeled as a sum
of the intake from each of the seven products

Yi :=
7∑

k=1

CikAik, (14)

where Cik is the weekly consumption of product k by child i,
and Aik is the aluminum concentration in product k for child
i during a given week. There is variability in both aluminum
concentration Aik and consumption Cik between consumption
events. In this assessment, we assume that there is one poten-
tial consumption event per week per product.

Variability in aluminum concentration across consumption
events is modeled by a lognormal probability distribution
with the parameters mean 𝜇A

k and precision 𝜏A
k .

log(Aik) ∣ 𝜇A
k , 𝜏

A
k ∼  (

𝜇A
k , 𝜏

A
k

)
. (15)

Precision is the inverse of the variance, and is an alternative
specification of the second parameter for a normal distribu-
tion1 (Gelman et al., 2013).

1 The pdf for a normal distribution with precision as the spread parameter is f (x) =√
𝜏

2𝜋
exp(−

𝜏(x−𝜇)2

2
), where x is a sample from X. If Y is lognormally distributed, then

log(Y) is normally distributed with the same parameters.

In order to model consumption events among children, we
first acknowledge that not all children consume all these prod-
ucts every week. Let Bik be a variable that indicates whether
child i consumes chocolate product k taking the value 1 if
consumption occurs and 0 otherwise. Let 𝜋B

k be the frequency
a child consumes chocolate product k during a given week.
Then Bik is a Bernoulli variable

Bik ∣ 𝜋
B
k ∼ Bernoulli

(
𝜋B

k

)
. (16)

An advantage of modeling consumption as a mixture of con-
sumption events and consumption at a consumption event
is that it is easier to find suitable probability model for the
amount consumed at consumption events. Also, a high pro-
portion of zeros in consumption data might give rise to lower
reliability in the statistical estimates if no mixture is consid-
ered.

Consumption by child i of product k during a given week
is {

Cik if Bik = 1,
0 if Bik = 0,

(17)

where Cik = C′
ik(1 +

𝜓

100
) is defined as the product of con-

sumption from 2001/2002, C′
ik and the relative change in

consumption in 2017 compared to 2001/2002, 𝜓, elicited by
experts. The weekly consumption from 2001/2002 of a child
who consumes chocolate product k a given week is modeled
as a lognormal distribution with the parameters 𝜇C

k and 𝜏C
k

(mean and precision),

log(C′
ik) ∣ 𝜇C

k , 𝜏
C
k ∼  (

𝜇C
k , 𝜏

C
k

)
. (18)

The assessment model contains several variables and
parameters (1) and a structure for their dependencies is shown
in Fig. 2. The next step is to quantify uncertainty in these
parameters using Bayesian inference and combine them to
evaluate uncertainty in the frequency of exceeding the thresh-
old (i.e., the quantity of interest, later introduced in Equation
(26)).

Other models may be suitable for these variables. The fit
of each model could have been verified if data at individ-
ual level had been available. Given the models specified for
the variables above, sufficient statistics derived from data on
aluminum concentration and consumption from 2001/2002 in
the assessment by Schendel et al. (2018) were used to support
inference. The result from the expert knowledge elicitation is
taken from the published report.

3.3 Bayesian Analysis

3.3.1 Uncertainty in Parameters

In this example, parameters associated with aluminum con-
centration (A), chocolate consumption (C′), and consumption
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F I G U R E 2 The assessment model
represented as a directed acyclic graph. Parameters
are represented by ellipses, hyperparameters (or
other fixed quantities) by gray circles, observed
variables (i.e., data) by gray squares. Predicted
variables (white squares) are used to approximate
the frequency of exceeding the threshold y∗ using
Monte Carlo simulation, where n is greater than
nak

and nck
. Plates indicate repeated cases.

events B are to be informed with data. The parameter rela-
tive change 𝜓 in consumption is on the other hand informed
by expert judgment only. We use parametric distributions for
all priors.

Updating uncertainty about parameters in Bayesian analy-
sis can be done by analytical or sampling-based approaches
(McElreath, 2016). Bayesian updating with a conjugate
model is an example of an analytical approach, which has
the convenient property that the distribution of the parameters
belongs to the same family before and after Bayesian updat-
ing. Hence, updating is done by using a suitable paramet-
ric distribution for the prior and changing the hyperparam-
eters based on information in the data (Gelman et al., 2013;
McElreath, 2016). Let f (𝜃 ∣ t0) be the pdf of a conjugate prior
for the parameter 𝜃 with hyperparameters t0. Then, there are
hyperparameters t1 such that

f (𝜃 ∣ x, t0) = f (𝜃 ∣ t1). (19)

For a conjugate model, the hyperparameters for the posterior
t1 are a function of t0 and data x.

Here, we choose suitable conjugate priors for the parame-
ters that are updated with data. The selected priors are com-
mon for these types of parameters, i.e., mean, precision, and
frequency of binary events. In practice, the choice of prior
or sets of priors should be done with care and based on
expert knowledge elicitation at the variable or parameter level
(for details, see Daimon, 2008; Gosling, 2018; Oakley &
O’Hagan, 2020; Schad et al., 2019). Moreover, the choice of
prior should not be limited to conjugate priors.

The normal-gamma distribution is chosen for the parame-
ters within the model for aluminum concentration in product
k:

𝜏A
k ∼ Gamma

(
𝛼A

0 , 𝛽
A
0

)
, (20)

𝜇A
k ∣ 𝜏A

k ∼  (
𝛾A

0 , 𝛿
A
0 𝜏

A
k

)
, (21)
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TA B L E 1 The Assessment Variables, Parameters, and Hyperparameters Included in the Assessment of Weekly Daily Intake (Equation (14))

Name Variable Distribution Parameters Distribution Hyperparameters

Aluminum (Aik)7
k=1 lognormal (𝜇A

k , 𝜏
A
k )7

k=1 normal- (𝛼A
k , 𝛽

A
k , 𝛾

A
k , 𝛿

A
k )7

k=1

concentration gamma

Consumption (C′
ik ∣ Bik = 1)7

k=1 lognormal (𝜇C
k , 𝜏

C
k )7

k=1 normal- (𝛼C
k , 𝛽

C
k , 𝛾

C
k , 𝛿

C
k )7

k=1

gamma

Consumption (Bik)7
k=1 Bernoulli (𝜋B

k )7
k=1 beta (𝛼B

k , 𝛽
B
k )7

k=1

event

Change in 𝜓 normal (𝜇E , 𝜎E)

consumption

Note: The change in consumption 2001/2002–17 is denoted by the parameter 𝜓.

TA B L E 2 Results of Expert Knowledge Elicitation for the Relative Change in Cocoa Powder Consumption from 2001/2002–17 Given as Precise
(Values Taken from Table 27 in Schendel et al., 2018) and Bounded Probability (Values Assigned by the Authors)

Percentile 1% 25% 50% 75% 99%

Change of cocoa consumption in % Precise probability −30 −15 −5 7.5 20

Bounded probability – [−20, −10] – 7.5 –

where 𝛼A
0 , 𝛽A

0 , 𝛾A
0 , and 𝛿A

0 are hyperparameters for the normal-
gamma prior distribution (1). The same prior distribution is
used for all products k.

Due to conjugacy, the posterior distribution for these
parameters is also a normal-gamma distribution with hyper-
parameters 𝛼A

k , 𝛽
A
k , 𝛾

A
k , and 𝛿A

k :

𝜏A
k ∣ ak ∼ Gamma

(
𝛼A

k , 𝛽
A
k

)
, (22)

𝜇A
k ∣ 𝜏A

k , ak ∼  (
𝛾A

k , 𝛿
A
k 𝜏

A
k

)
, (23)

where ak := (ak1, … , aknk
) denotes the observed aluminum

log concentrations for product k and 𝛼A
k , 𝛽

A
k , 𝛾

A
k , and 𝛿A

k are
calculated by Equations (A5) to (A8) (Appendix A).

Epistemic uncertainty in consumption parameters
(mean 𝜇C

k and precision 𝜏C
k ) is characterized by a

normal-gamma distribution (Equations (20) and (21)),
but with different hyperparameters 𝛼C

0 , 𝛽C
0 , 𝛾C

0 , and 𝛿C
0

(Table 1).
Uncertainty in the parameter relative change in con-

sumption 𝜓, is quantified based on expert knowledge
elicitation on percentiles (Table 2). Since relative change
is continuous and able to take both positive and negative
values, a normal distribution is fitted by minimizing the
sum of the squared distances between elicited percentiles
and the probability distribution function, using the fitdist
function from the SHELF package in R (Oakley, 2020).
As a result, uncertainty in the relative change in con-
sumption is characterized by a normal distribution with
parameters mean, 𝜇E = −4.414 and standard deviation,
𝜎E = 14.854.

Uncertainty in the consumption event parameter (𝜋B
k ) is

quantified by the conjugate beta distribution (Appendix B):

𝜋B
k ∼ Beta

(
𝛼B

0 , 𝛽
B
0

)
, (24)

with hyperparameters 𝛼B
0 and 𝛽B

0 . Due to conjugacy, the pos-
terior distribution for this parameter is also a beta distribution:

𝜋B
k ∣ bk ∼ Beta

(
𝛼B

k , 𝛽
B
k

)
, (25)

where 𝛼B
k and 𝛽B

k are given by Equations (B3) and (B4).
A graphical representation of the assessment model

embedded in a Bayesian framework helps to visualize the
dependencies between variables (observed and predicted),
parameters and hyperparameters within the assessment model
(see, for instance, Fig. 2). Epistemic uncertainty by precise
probability is quantified when, given data x and prior knowl-
edge t0, we use Bayesian inference to update the hyperparam-
eters into t1 := (𝛼A

k , 𝛽
A
k , 𝛾

A
k , 𝛿

A
k , 𝛼

C
k , 𝛽

C
k , 𝛾

C
k , 𝛿

C
k , 𝛼

B
k , 𝛽

B
k )7

k=1.
The following values on hyperparameters are chosen
by the authors for illustrating the Bayesian analysis:
t0 := (𝛼A

0 = 1, 𝛽A
0 = 1, 𝛾A

0 = 3.5, 𝛿A
0 = 5, 𝛼C

0 = 1, 𝛽C
0 =

1, 𝛾C
0 = −3, 𝛿C

0 = 5, 𝛼B
0 = 1, 𝛽B

0 = 1).

3.3.2 Uncertainty in a Quantity of Interest

The assessment example in this article is based on a model
informed by data and expert judgment from Schendel et al.
(2018). There are uncertainties associated with expert judg-
ment, the choice of model, or how data have been been col-
lected, which can be evaluated by critical appraisal tools (e.g.,
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F I G U R E 3 Different representations of uncertainty in the assessment output: (A) a 2D-distribution of the weekly intake of aluminum via chocolate
consumption with the critical threshold (solid vertical line) and the probability 95% (dashed horizontal line), (B) the frequency of exceeding the tolerable
weekly intake (TWI) and the probability 98% (dashed horizontal line), (C) the weekly intake for a high consumer summarized as the 95th percentile with the
critical threshold (solid vertical line), and (D) the lower (blue) and upper (red) bounds for the probabilities quantifying uncertainty in the frequency of
exceeding and the probability 98% (dashed horizontal line)

Goerlandt & Montewka, 2015). Uncertainty in the weekly
intake of aluminum Y as quantified by the assessment model
is visualized by a 2D-distribution (Fig. 3A). The figure shows
that weekly intake is unlikely to exceed the critical threshold.
In this assessment, safety is evaluated based on the frequency
of the event that Y exceeds the threshold y∗. Conditional on
the parameters 𝜃,

h(𝜃) := P(Y ≥ y∗ ∣ 𝜃) (26)

represents the frequency of this event, and captures aleatory
uncertainty (see also Equation (4)).

Epistemic uncertainty in the parameters 𝜃 is expressed
through the posterior distribution f (𝜃 ∣ t1), which then trans-
lates into epistemic uncertainty about the quantity of interest
h(𝜃). The subjective probability representing epistemic uncer-
tainty in the quantity of interest is approximated using 2D-
MC simulation using 10,000 iterations for both aleatory and
epistemic uncertainty (Fig. 3B).

The analysis shows2 that for a random child in the target
population, the frequency of exceeding the safety threshold is
less than 0.05% with a probability of 98%. We find this a use-
ful way to decompose and represent the posterior uncertainty
in the event Y ≥ y∗.

There are other ways to marginalize the 2D-distribution.
For example, weekly intake for a child with high exposure can
be summarized as the 95th percentile of the output variable Y
(see also Equation (8)). The analysis shows that the 95th per-
centile is unlikely to exceed the safety threshold (Fig. 3C).
However, this marginalization does not say anything about
individuals with higher exposures and is not describing uncer-
tainty about the frequency of exceeding in the target popu-
lation. This example illustrates the importance of carefully
selecting the quantity of interest, which guides how to do the
summary over aleatory uncertainty.

2 Note that the conclusion of this assessment is not a result from an actual scientific
assessment done by EFSA. We have done several modifications from the example used
in Schendel et al. (2018).
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3.4 Robust Bayesian Analysis

Robust Bayesian analysis is an extension of the standard
Bayesian analysis of the intake assessment. Here, this is done
by defining a set of prior distributions for the parameters of
the assessment model.3

We let all prior distributions associated with the assessment
variables A and C belong to the same family of probability
distributions, but intervals have been defined on a selection of
the hyperparameters for 𝜇A

k and 𝜇C
k . The hyperparameters 𝛾A

0
and 𝛾C

0 are expanded by interval around the value chosen for
the Bayesian analysis. Instead of 3.5, 𝛾A

0 is set to be between
1 and 6, and instead of −3, 𝛾C

0 is specified to be between −5
and 1. For the assessment, the set of hyperparameters for the
prior T0 is defined by 𝛼A

0 = 1, 𝛽A
0 = 1, 𝛾A

0 ∈ [1, 6], 𝛿A
0 = 5,

𝛼C
0 = 1, 𝛽C

0 = 1, 𝛾C
0 ∈ [−5, 1], 𝛿C

0 = 5, 𝛼B
0 = 1, and 𝛽B

0 = 1
(Appendix C).

For illustration, we quantify uncertainty in parameter for
the change in consumption, 𝜓, by a bounded probability dis-
tribution. We set up a hypothetical expert knowledge elici-
tation where the experts provide percentiles with bounds. In
this case, we assign the 25th percentile to be in the interval
[−20, −10] and the 75th percentile to be 7.5 (Table 2).

In robust Bayesian analysis, the quantification and prop-
agation of uncertainty are merged in the process of finding
the bounds (see Equations (10) and (12)) by optimizing each
bound over the set of priors. Due to conjugacy, here the objec-
tive function is a summary of the quantity of interest as a
function of hyperparameters. This is maximized (or mini-
mized) considering the set of prior distributions defined by
𝛾A

0 , 𝛾C
0 and the elicited intervals on the 25th and 75th per-

centiles for 𝜓.
Bounds on subjective probabilities expressing epistemic

uncertainty are approximated using the Nelder–Mead algo-
rithm. This is a heuristic algorithm which is available in the
dfoptim package through the function nmkb in R (Varadhan &
Borchers, 2018). If sets of nonconjugate priors are used, the
optimization is more computational complex since requires
optimizing using Markov chain Monte Carlo (MCMC) sam-
pling.

Robust Bayesian analysis results in lower and upper
bounds for the subjective probability distributions expressing
uncertainty in the frequency of exceeding the safety thresh-
old (Fig. 3D). The frequency of exceeding the safety thresh-
old is less than 1.2% with a probability of at least 98%. Note
that using bounded probability to quantify uncertainty in the
quantity of interest allows us to express uncertainty about the
conclusion in an approximate way, using “at least” instead
of “is equal to.” The lower bound is obtained at 𝛾A

0 = 3.02,
𝛾C

0 = −2.51 and elicited value on the 25th percentile equal to
−13.45 and the upper bound is obtained at 𝛾A

0 = 6, 𝛾C
0 = 1

and elicited value on the 25th percentile equal to −10.17.

3 The analysis that is presented below is made by the authors to illustrate an application
of robust Bayesian analysis, and choices of sets are not elicited from experts.

3.5 Summary of the Case Study

It is worthwhile to carefully specify the assessment model. A
probability model for aleatory uncertainty allows for a clear
distinction between variables and parameters, which is nec-
essary for quantifying uncertainty in the parameters. With a
probabilistic assessment model, it is possible to consider dif-
ferent quantities of interest, e.g., the frequency of exceeding
the critical threshold (Fig. 3B) or the weekly intake for a high
consumer (Fig. 3C). Uncertainty in the quantity of interest is
derived by appropriate marginalization. This was done as the
last step of the assessment.

The assessment done here is not fully comparable to the
assessment done by BfR (Schendel et al., 2018) because
aleatory and epistemic uncertainty are separated, quantified,
and reported in different ways. We find that the result of the
assessment using precise probability is in the same range as
one done by BfR (comparing weekly intake for a child with
high exposure assuming no brand loyalty) (Schendel et al.,
2018). We did not expect a large underestimation due to the
two products left out from the assessment. Major differences
between this assessment and the one done by BfR are that we
consider aleatory uncertainty by a probability model for vari-
ability in aluminum concentration and consumption events
and that we quantify epistemic uncertainty by Bayesian anal-
ysis. In addition, we use a different probability distribution
for uncertainty in parameter change in consumption, 𝜓.

Both the precise and bounded analysis did not exclude the
possibility, although with small probability, of exceeding the
weekly intake safety threshold. From the precise Bayesian
analysis, the conclusion is that weekly intake is too high in
less than 5 out of 10,000 children in the target population
with a certainty of 98%. Robust Bayesian analysis shows that
weekly intake is too high in less than 120 of 10,000 chil-
dren in the target population with a certainty of 98% or more.
The latter is a more conservative assessment. The result of
standard Bayesian analysis is bounded by the result of robust
analysis, as long as the prior in the standard Bayesian analysis
is within the set of priors in robust Bayesian analysis. There-
fore, a robust analysis can be useful to evaluate the sensitivity
of the conclusions made by a precise analysis.

4 DISCUSSION

This work is motivated by the recommendation of EFSA to
use quantitative expressions of epistemic uncertainty in sci-
entific assessment. To meet this recommendation, we demon-
strate a framework to support assessment where uncertainty
is quantified by probability (precise or bounded) and show
that it meets two important requirements for scientific assess-
ment, the possibility to distinguish aleatory from epistemic
uncertainty, and a systematic principle to integrate evidence
to the assessment. The framework, robust Bayesian analysis,
allows for epistemic uncertainty to be quantified by bounded
probability, with Bayesian analysis and precise probabil-
ity as a special case. The framework is consistent with
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the probability on frequency approach (Kaplan & Garrick,
1981) with 2D probability distributions for all assessment
variables.

Robust Bayesian analysis allows for a more conservative
quantification of uncertainty, compared to standard Bayesian
analysis, by considering sensitivity to the choice of prior
or likelihood. It has the potential to reveal data-prior con-
flict (i.e., mismatch between an informative prior distribu-
tion and the observed data). If so, the difference between the
bounds is an emerging property from conflicting information
between priors and data, which would not be seen in a stan-
dard Bayesian analysis (Walter & Coolen, 2016).

The advantages of robust Bayesian analysis compared to
standard Bayesian analysis, will vary from case to case,
because it depends on whether bounds can be approximated
in a reliable way. The optimization step adds complexity
because bounds must be approximated using optimization
algorithms. For instance, bounds on probability or expecta-
tion could be directly estimated in the case of conjugate mod-
els as analytical forms are known. Otherwise, it is necessary
to apply Monte Carlo or MCMC sampling to estimate bounds
which could be slow under sets of priors as well as add com-
plexity to the problem at hand (Troffaes, 2017, 2018).

There are several ways to summarize a precise or bounded
probability distribution into quantitative expressions, such
as an expected value, a probability interval or a percentile
(EFSA et al., 2018; van der Bles et al., 2019). Consider as an
example the message: “we expect that the weekly intake is
exceeding the critical threshold for 12 out of 100,000 chil-
dren in the target population.” The message expresses an
expected value derived from an assessment where uncer-
tainty has been quantified by subjective (precise) probabil-
ity. Although uncertainty is taken into account, the expected
value does not explicitly reveal any uncertainty. Decision
makers may be sensitive to the magnitude of uncertainty in
the quantity of interest. To consider this, uncertainty in the
quantity of interest can be summarized by a probability inter-
val, with one or two sides.

EFSA recommends using combinations of quantitative and
verbal expressions of uncertainty (EFSA et al., 2019) to
enhance understanding of the uncertainty being communi-
cated. A message communicating uncertainty with quantita-
tive and verbal expressions can be: “we are 95% certain (i.e.
with a probability equal to 95%) that the weekly intake is
exceeding the safety threshold for 40 out of 100 000 chil-
dren in the target population.” The results of bounded prob-
ability can be communicated in a similar way as “we are at
least 95% certain (i.e., with a probability greater or equal to
95%) that the weekly intake is exceeding the safety thresh-
old for less than 980 out of 100 000 children in the target
population.”

Whether to use bounded or precise probability will depend
on a variety of concerns, including the nature of the infor-
mation at hand, the amount of risk involved, the purpose of
the analysis, and possibly also computational requirements.
Precise probability is a special case of bounded probability,

which when the modeling is performed well, always falls
between the lower and upper bounds of the probabilities
characterizing uncertainty in the quantity of interest. Meth-
ods of statistical (Bayesian) inference and expert elicitation
resulting in uncertainty quantified by precise probability are
well established, and useful for assessment as long as the
assessor is confident about her (un)certainty about the con-
clusion. In practice, it can be easier for an expert to pro-
vide, or for experts to agree on, a bounded compared to a
precise probability. Bounded probabilities can be used in a
coarse uncertainty analysis to evaluate the need for a refined
approach. We have shown that, when expert knowledge is
provided with imprecision, it is still possible to do statis-
tical (robust Bayesian) inference and propagate uncertainty
without being limited to quantifying uncertainty by precise
probability.

A subjective probability (precise or approximate) is an
unambiguous expression for uncertainty (EFSA et al., 2018;
van der Bles et al., 2019). This can be accompanied by judg-
ments about the strength of knowledge supporting the assess-
ment (Aven, 2020; van der Bles et al., 2019) to support the
final characterization of overall uncertainty about the conclu-
sion. In any assessment, the usefulness of subjective prob-
ability for quantifying epistemic uncertainty in risk assess-
ment depends on having specified clear assessment questions
and an assessment model that can consider aleatory uncer-
tainty and integrate evidence from data and expert knowl-
edge. These requirements hold for any quantitative measure
of epistemic uncertainty.

S U P P L E M E N TA R Y M AT E R I A L
The code to produce the assessment and generate graphs in
this article is available as an R-package at https://github.com/
Iraices/PrecisePvsBoundedP.
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A P P E N D I X A : N O R M A L - G A M M A
M O D E L
Let x := (x1, … , xn) ∣ 𝜇, 𝜏 ∼ (𝜇, 𝜏) with unknown mean (𝜇)
and precision (𝜏) and the prior distribution for parameters
(𝜇, 𝜏) has a normal-gamma distribution

𝜏 ∼ Gamma(𝛼0, 𝛽0), (A1)

𝜇 ∣ 𝜏 ∼  (𝛾0, 𝛿0𝜏). (A2)

Then, due to conjugacy, the posterior distribution is also a
normal-gamma distribution

𝜏 ∣ x ∼ Gamma(𝛼, 𝛽), (A3)

𝜇 ∣ 𝜏, x ∼  (𝛾, 𝛿𝜏), (A4)

where

𝛼 := 𝛼0 +
n
2
, (A5)

𝛽 := 𝛽0 +
1
2

(n − 1)S2 +
n𝛿0

𝛿0 + n

(x − 𝛾0)2

2
, (A6)

𝛾 :=
𝛿0𝛾0 + nx

𝛿0 + n
, (A7)

𝛿 := 𝛿0 + n, (A8)

where x is the sample mean and S2 is the sample variance of
x.

A P P E N D I X B : B E TA M O D E L
Let B ∼ Bernoulli(𝜋) a binary random variable that indicates
the occurrence of an event taking the value 1 and 0 otherwise.
The prior distribution for parameter 𝜋 follows a Beta distri-
bution

𝜋 ∼ Beta(𝛼′′0 , 𝛽
′′
0 ), (B1)

where 𝛼′′0 and 𝛽′′0 are hyperparameters for this prior. Due to
conjugacy, the posterior distribution for this parameter is also
Beta distribution

𝜋 ∣ b ∼ Beta(𝛼′′, 𝛽′′), (B2)

where b := (b1, … , bn) and

𝛼′′ := 𝛼′′0 +

n∑
i=1

bi, (B3)

𝛽′′ := 𝛽′′0 + n −
n∑

i=1

bi. (B4)

A P P E N D I X C : S E T O F P R I O R
D I S T R I B U T I O N S
The set of prior hyperparameters T0, is defined as

T0

(
𝛾A

0 , 𝛾
C
0

)
=

⎧⎪⎪⎨⎪⎪⎩

t0
(
𝛾A

0 , 𝛾
C
0

)
:=

(
𝛼A

0 , 𝛽
A
0 , 𝛾

A
0 , 𝛿

A
0 , 𝛼

C
0 , 𝛽

C
0 , 𝛾

C
0 , 𝛿

C
0 , 𝛼

B
0 , 𝛽

B
0

)
:

𝛾A
0 ≤ 𝛾A

0 ≤ 𝛾A
0 ,

𝛾C
0 ≤ 𝛾C

0 ≤ 𝛾C
0 .

⎫⎪⎪⎬⎪⎪⎭
,

(C1)

where 𝛼A
0 = 1, 𝛽A

0 = 1, 𝛾A
0 = 1, 𝛾A

0 = 6, 𝛿A
0 = 5, 𝛼C

0 = 1,

𝛽C
0 = 1, 𝛾C

0 = −5, 𝛾C
0 = 1, 𝛿C

0 = 5, 𝛼B
0 = 1, 𝛽B

0 = 1.
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