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Permeability of packs of polydisperse hard spheres

Jérémie Vasseur ,1,* Fabian B. Wadsworth ,2 Jason P. Coumans,2 and Donald B. Dingwell1
1Department of Earth and Environmental Science, Ludwig-Maximilians-Universität, Theresienstrasse 41, 80333 München, Germany

2Department of Earth Sciences, Durham University, Durham, DH1 3LE, United Kingdom

(Received 9 February 2021; revised 27 May 2021; accepted 27 May 2021; published 25 June 2021)

The permeability of packs of spheres is important in a wide range of physical scenarios. Here, we create nu-
merically generated random periodic domains of spheres that are polydisperse in size and use lattice-Boltzmann
simulations of fluid flow to determine the permeability of the pore phase interstitial to the spheres. We control the
polydispersivity of the sphere size distribution and the porosity across the full range from high porosity to a close
packing of spheres. We find that all results scale with a Stokes permeability adapted for polydisperse sphere sizes.
We show that our determination of the permeability of random distributions of spheres is well approximated by
models for cubic arrays of spheres at porosities greater than ∼0.38, without any fitting parameters. Below this
value, the Kozeny-Carman relationship provides a good approximation for dense, closely packed sphere packs
across all polydispersivity.
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I. INTRODUCTION AND BACKGROUND

Understanding the relationship between the microstructure
of porous solids and their bulk properties is central to general
descriptions of randomly assembled heterogeneous materi-
als [1]. In particular, the hydraulic properties of packs of
solid particles are fundamental to a wide range of applied
problems from hydrology and carbon capture and storage
[2], hydrocarbon transport and accumulation in sedimentary
sequences [3,4], soil science [5], liquefaction [6], volcanic
eruptions [7,8], and ceramic synthesis [9], among others. At
low Reynolds number, Darcy’s law describes the proportion-
ality between a fluid pressure gradient ∇p, and the resultant
average fluid velocity 〈u〉 [10] – where a proportionality factor
is the ratio between the fluid viscosity μ f and the permeability
of the porous solid k:

∇p = −μ f

k
〈u〉. (1)

Therefore, a fundamental aim of research into porous me-
dia is to build predictive constitutive models for how k varies
with the porosity φ. The form of that relationship, k(φ), is
often found to be specific to individual microstructure types
[1,8].

Perhaps the most widely used permeability model for
real packed particulate or granular media is the so-called
Kozeny-Carman equation [11,12] together with extensions or
adaptations thereof [13,14]. These approaches are successful
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in part because they typically involve the use of a dimension-
less scaling factor C, which can be determined empirically,
and which allows a degree of freedom in fitting the equation
to data across a range of microstructure types. The Kozeny-
Carman models are given by a general form [15],

k = φ3

Cs2
, (2)

where s is the specific surface area. For systems of hard
monodisperse spheres of radius R, s = 3(1−φ)/R. Thus
Eq. (2) may be expanded into the more commonly found form
k = φ3R2/[9C(1−φ)2] [16]. While Eq. (2) is powerful and
used widely, the observation that C is not universal to all mi-
crostructures renders its value specific to each microstructure
type. Torquato [1] suggests that C = 5 facilitates a good fit
to k(φ) across many porous media. We note, however, that in
some cases C is found to be variable and is composed as a
function of porosity itself [15].

In contrast, for the case of packs of spheres arranged in
cubic arrays, there are theoretical approaches that require no
empirical adjustment within their field of validity [17,18] and
for which validation against data exists [8,19]. These models
are in the form of asymptotic series expansions of Stokes
scaling for permeability ks in the dilute limit φ → 1, with the
aim of extending ks to intermediate φ. Expansions of this type
have the form [1,18]

k = ks

[
30∑

i=0

ci

(
1 − φ

φm

)i/3
]−1

, (3)

where ci are the expansion coefficients [18] for indices i
(given by Sangani and Acrivos [18] up to i = 30), and φm

is the porosity at maximum packing such that φ < φm is
physically inaccessible (for cubic pack types φm is well
defined). For simple, body- and face-centered cubic lattice
arrangements, the porosity at maximum packing is given by
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FIG. 1. Rendered examples of numerical domains used herein at polydispersivity S = 0.99 (a)–(c), S = 0.6 (d)–(f), and S = 0.2 (g)–(i). In
all cases, N = 1000, the gray shaded region represents the pore phase (with volume fraction φ) and the sphere phase is transparent. Examples
are shown at φ = 0.8 (a), (d), (g), φ = 0.6 (b), (e), (h), and φ = 0.4 (c), (f), (i). Inset: example 2D slices through the full 3D distribution of
fluid speeds output from the lattice-Boltzmann simulations with a pressure gradient applied in the y direction. Warm colors denote high speeds
compared with cold colors (note that the colors are given for relative comparison and that the absolute values of the speed are not relevant).

φm = 1−π/6, φm = 1−√
3π/8, and φm = 1−√

2π/6, re-
spectively. Equation (3) has been shown to only give accurate
results for (1−φ)/φm < 0.85 and deviations are to be ex-
pected for closely packed arrays. It should be noted that,
while Sangani and Acrivos [18] derive an expression for the
drag coefficient K , it can be shown that k = ks/K [1,19]. The
Stokes permeability ks is

ks = 2(1 − φ)

s2
. (4)

For a dilute bed of identical spheres, Eq. (4) can be
expanded to recover the well-known Stokes result ks =
2R2/[9(1−φ)] [1]. As noted above, the asymptotic series ex-
pansions [Eq. (3)] are validated for spheres packed in cubic
lattice arrangements, but it is as yet not clear how applicable
this approach is for packs of randomly assembled spheres or
polydisperse sphere packs.

Here, we use a sphere pack generation algorithm to create
populations of polydisperse hard spheres and a numerical fluid

flow simulation tool to determine the Darcian permeability of
the packs. We seek to find a simple solution for the perme-
ability of packs of hard spheres that explicitly accounts for
polydispersivity of the sphere sizes across as wide a range of
φ as possible.

II. METHODS AND SAMPLE GEOMETRIES

Here we describe the numerical methods we used to (1)
create the domains of polydisperse sphere packs at a wide
range of porosity, and (2) simulate the fluid flow that is used
to compute the permeability of the packs.

A. Numerically generated samples

The widely used random sequential adsorption (RSA)
method for producing numerical packs of spheres [20] is ef-
fective at producing low-density packs at high φ, but is usually
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FIG. 2. Basic properties of the sphere packs used here for L = 300μm. (a)–(e) The size distribution of the sphere packs used here for
N = 1000 and φ = 0.9 and for (a) S = 0.2, (b) S = 0.4, (c) S = 0.6, (d) S = 0.8, and (e) S = 0.99. The measured distributions are given by
the histograms binned at 0.5 μm bin sizes in R, and the continuous curves represent the target Weibull distribution of the algorithm used with
shape parameter (a) α = 0.75, (b) α = 1.14, (c) α = 1.71, (d) α = 2.94, and (e) α = 17.04. (f) The porosity as a function of polydispersivity
of the packs produced here. The hatched region represents an empirical approximation for the inaccessible region at low φ below φm given
here by φm ≈ φrcp = φ∗

rcpS1/4 with φ∗
rcp = 0.366. This curve is given to guide the eye and is not anticipated to be rigorous. The dashed curve

is the empirical formula given by Desmond and Weeks [27], which breaks down for S � 0.26. (g) The specific surface area as a function of
porosity used to validate the pack resolution. Each data point in (f), (g) represents the arithmetic mean across N and the error bars give 1σ

about that mean.

unable to produce sphere packs at higher density [21,22].
Higher densities can, however, be readily achieved if the RSA
method is used to produce relatively low-density packs, which
are then numerically stepwise compressed [23]. While this
method can extend sphere pack densities, it cannot generate
jammed packs. Densities that approach jammed states can
instead be achieved with a molecular dynamics approach [24]
applied to spheres [25]. This approach begins with a fixed
number of particles N at zero sphere volume in the domain
of a given edge length L. The spheres are assigned random
velocity vectors and the domain has periodic boundaries. At

each iteration step, a growth law is applied such that the
volume of the spheres increases with time at a fixed rate,
and particle-particle collisions are processed to recalculate
velocities where necessary.

In this work we use the molecular dynamics approach.
Specifically, we use the event-based numerical algorithm by
Ghossein and Lévesque [21]. Our implementation differs most
substantially from theirs in that the particle radius growth
rates r are drawn from a Weibull distribution such that the
probability that a particle has a radius growth rate between r
and r + dr is given by p(r) = αrα−1 exp(−rα ), where α is a
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(a) (b)

FIG. 3. The average fluid speed as a function of iteration number from the numerical simulation of fluid flow through the packs generated
here. We show the results for all φ for domains at N = 1000 and L = 300μm, for two S: (a) S = 0.2 and (b) S = 0.6. The fluid speed at steady
state (large iteration number) is used to compute k. Here we show curves for flow in one principal direction only.

constant shape parameter. In this manner we obtain particles
with radii following the same distribution, i.e., p(R).

In order to create packs in which the sphere size distribu-
tion is polydisperse, we define a polydispersivity parameter S
[1],

S = 〈R〉〈R2〉
〈R3〉 , (5)

for which 〈R j〉 is the jth moment of the distribution of sphere
sizes with 〈R〉, 〈R2〉, and 〈R3〉 corresponding to the mean, vari-
ance, and skewness, respectively. S can be thought of as the
ratio of the specific surface area of a polydisperse system to
that of a monodisperse system with the same φ and for which
the mean of the polydisperse system is the monodisperse
radius. Therefore, S = 1 is the monodisperse limit regardless
of the values of 〈R j〉 and S = 0 is an infinitely polydisperse
limit. Torquato [1] provides examples of S(φ) for the Schulz
and log-normal distributions in which the distribution control
parameter is varied continuously; similar behavior arises with
the Weibull distribution used herein where α is our distribu-
tion control parameter. We vary S across a wide range and
then compute α accordingly to result in each distribution of
sizes. For the probability density function p(R) defined here,
〈R j〉 = �(1 + j/α) where � is the gamma function.

In Fig. 1 we show rendered examples of the pore phase
between the spheres (the spheres are made invisible because
the phase of interest is the pore phase with volume fraction
φ) in each domain. In Fig. 2 we show the output sphere
size distributions f (R) measured in the domains produced
together with the corresponding Weibull target distribution
[Figs. 2(a)–2(e)] for each value of φ. We generate samples
in two steps—first, we generate samples at high φ covering
0.1 � S � 0.99 and 0.4 � φ � 0.9, as well as 100 � N �
2000. In the second step, we generate samples close to their
close packing state [Fig. 2(f)]. Whereas for cubic packs of
spheres, there is a formal maximum packing φm [see Eq. (3)],

for random and heterogeneous packs of spheres, this is not
well defined [26]. However, we have a porosity limit below
which our algorithm cannot generate a pack, which we refer
to as the random close-pack porosity φrcp.

In Fig. 2(f) we give an empirical form for the random close
pack window φrcp(S) where φ < φrcp is inaccessible. We use
φrcp = φ∗

rcpS1/4 where φ∗
rcp is the porosity corresponding to

the random close pack value for monodisperse spheres (i.e.,
φ∗

rcp = 0.366). We note that this parametrization is not rigor-
ous [26] and is simply to guide the reader in Fig. 2(f). Other
authors have proposed an empirical formula to describe this
random close pack window [27]. However, their description
is valid only for S > 0.26 [Fig. 2(f)].

As a verification step to test the accuracy and resolution
of our numerically generated samples, we use a marching
cubes algorithm to find the surface area of the spheres [28,29].
Normalizing the surface area to the domain volume gives the
specific surface area, s. The specific surface area is analyti-
cally found from [1]

s = 3(1 − φ)

R
, (6a)

s = 3(1 − φ)
〈R2〉
〈R3〉 = 3(1 − φ)

S

〈R〉 , (6b)

where Eqs. (6a) and (6b) are for monodisperse and polydis-
perse distributions of hard spheres, respectively. Equation (6)
can be compared with our results directly. We confirm that
we reproduce the expected specific surface areas to within
99.7% accuracy [Fig. 2(g)]; using the normalized functions
s̄ = sR = 3(1−φ) and s̄ = s〈R3〉/〈R2〉 = 3(1−φ), we arrive
at a universal description of the specific surface internal to
packs of hard spheres for monodisperse and polydisperse
packs, respectively. This gives us confidence that our numer-
ical resolution of the sphere surfaces is sufficient across all S
and φ and leads us to use L = 300μm (see Sec. II B).
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(a) (b)

FIG. 4. The effect of particle number N on the normalized permeability k/δ2. Each data point represents the arithmetic mean of the
permeability in the three principal directions and the error bars give 1σ about that mean. We show the fits (solid lines) to Eq. (7), based on a
semiempirical function proposed by Matyka et al. [32]. We use this to extrapolate to large L/δ beyond the region where domain size plays a
role. In subsequent analysis, only these single extrapolated values are used (see text and Fig. 6). We show the results for two S: (a) S = 0.2 and
(b) S = 0.6.

B. Numerical simulations

The numerically generated samples (Sec. II A) are binary
(i.e., two phase). We define the spheres as the “solid phase”
and the space between the spheres as a fluid phase. LBflow
is a lattice-Boltzmann fluid flow simulator [19,30], which has
been calibrated for body-centered cubic [19] and simple-cubic
[31] packs of spheres. The LBflow code discretizes the pore
phase of interest into a lattice of fluid nodes (one fluid node
per voxel). Packets of fluid mass are propagated through the
lattice positions with numerical time t and undergo collisions
using a D3Q15 lattice arrangement. We apply a numerical
pressure gradient of ∇p = 0.01 Pa m−1 and an input fluid
viscosity of μ f = 1.8205 × 10−5 Pa s and density of ρ f =
1.2047 kg m−3 corresponding to that of air at ambient pres-
sure and temperature conditions. We employ a steady-state
criterion such that the average fluid speed across the lattice
must not vary by a factor of 10−5 twice consecutively over 50
iteration steps [30].

The ultimate output of the LBflow model is the spa-
tial distribution of fluid velocity vectors at steady state.
Representative two-dimensional (2D) slices through the full
three-dimensional (3D) velocity vector distribution are shown
as insets to Fig. 1. The average fluid velocity in the direction
of the applied pressure gradient is given by 〈u〉 = uφ and
is used as an input to Darcy’s law [Eq. (1)] to compute the
permeability for a given domain. In Fig. 3 we demonstrate
how the average fluid speed relaxes to a steady-state value
as the simulation approaches the convergence criterion for
S = 0.2 [Fig. 3(a)] and S = 0.6 [Fig. 3(b)]. It is the steady-
state value of 〈u〉 that we use in Eq. (1) to find k.

The input conditions for μ f and ρ f are selected to en-
sure creeping flow at low Reynolds number Re and low
Mach number Ma. Using an average approach, we define
Re = 〈u〉ρ f L/μ f and Ma = 〈u〉/vs [7,8,19,30], where vs is

the speed of sound in the fluid medium (see [19,30]). For
our simulations we find that 10−8 < Re < 10−5 and 10−12 <

Ma < 10−9. The invariance of our result with variations in Re
and Ma supports a conclusion that our results do not depend
on the fluid properties we choose here and that all simulation
results are in the same regime for which Eq. (1) is valid.

When using lattice-Boltzmann fluid flow simulations, im-
portant considerations include (1) that the flow in the small
gaps is well resolved, and (2) that the domain is represen-
tative of continuum parameters (including the permeability).
The former is of particular concern when investigating fluid
flow for packs of particles close to their random close pack-
ing. To test these two issues, we follow the approach of
Matyka et al. [32] (cf. their Sec. IV D) for which we use
δ = 〈R3〉/〈R2〉 = 〈R〉/S as our normalization length scale,
consistent with Torquato [1].

We vary the number of particles in the domain N , which
affects the sphere sizes and therefore the discretization reso-
lution of our domains such that δ is varied over a wide range.
For a given L, that results in a range of L/δ over which the
analysis is performed. We find that at a combination of low φ

and high S, our results do not depend strongly on L, whereas at
high φ and/or low S, there is an apparent dependence (Fig. 4).
To account for this, we normalize the permeability k/δ2 and
fit

k

δ2
= κ∞ − κ

(L

δ

)−2/3

, (7)

where κ∞ and κ are dimensionless constants. Matyka et al.
[32] use the same approach to extrapolate their permeability
results to large L/δ at which they can be sure that the volume
is representative (i.e., the value of κ∞). Here we apply this
approach and in Fig. 4 we show the fits to this approach
[Eq. (7)] for S = 0.2 [Fig. 4(a)] and S = 0.6 [Fig. 4(b)].
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FIG. 5. The raw permeability k as a function of porosity φ for
all polydispersivity S for N = 1000 and L = 300μm. Each data
point represents the arithmetic mean of the permeability in the three
principal directions and the error bars give 1σ about that mean.

III. RESULTS AND MODEL ANALYSIS

We find that the permeability depends on the porosity φ,
the polydispersivity S, and the sphere sizes via s. At fixed
φ, decreasing S (moving to more polydisperse distributions
of spheres) has the effect of increasing k. Similarly, at fixed
S, decreasing φ has the effect of decreasing k (Fig. 5). Most
of our results for k(φ, S) are for a given fixed 〈R〉. However,
in order to generalize to arbitrary sphere sizes, we recast the
existing models in dimensionless form. This is achieved by
normalizing each model (see Sec. I) by a form of ks that is
adapted to account for polydisperse sphere sizes by introduc-
ing s from Eq. (6b). Here we give three equivalent variants of
this polydisperse ks:

ks ≈ 2〈R3〉2

9(1 − φ)〈R2〉2 = 2〈R〉2

9(1 − φ)S2
= 2δ2

9(1 − φ)
. (8)

In Eq. (8), we state that ks is only approximately
equal to the polydisperse extensions, because we note that
Torquato and Lu [33] found that strictly speaking, ks =
2〈R3〉/[9(1−φ)〈R〉]. Nevertheless, we follow Torquato and
Lu [33] in using Eq. (8) as the most effective scaling for
polydisperse systems.

A. Dimensionless models

Taking a dimensionless permeability as k̄ = k/ks, we can
render each model dimensionless. For the asymptotic cubic
expansion models [18,19] Eq. (3) gives

k̄ =
[

30∑
i=0

ci

(
1 − φ

φm

)i/3
]−1

, (9)

and for the Kozeny-Carman model [11,12,15] Eq. (2) gives

k̄ = φ3

2C(1 − φ)
. (10)

fcc

rm
s

bcc
sc

FIG. 6. The scaled results given as k̄ = k/ks as a function of
φ. Simple-cubic (sc), body-centered cubic (bcc), and face-centered
cubic (fcc) refer to the three variants of the asymptotic expansions
of the Stokes scaling for permeability for cubic lattice arrangements
of particles [Eq. (9)]. The Kozeny-Carman model [Eq. (10)] is shown
for C = 5 and the percolation model [Eq. (12)] for e = 4.4. Each data
point represents the arithmetic mean of the permeability in the three
principal directions and the error bars give 1σ about that mean. Inset:
the rms statistic applied to compare the relative distance between
the data for each φ and either the fcc model (filled points) or the
Kozeny-Carman model (unfilled points); see text for details.

B. Comparison with data

We apply the same transformation k̄ = k/ks [using Eq. (8)]
to our data. This gives a universal scaled result shown in
Fig. 6. To account for domain size effects (see Sec. II B),
in this scaling we use the fitted κ∞ from Eq. (7), such that
k̄ = k/ks = 9κ∞(1−φ)/2 and the result is scale independent.
Across all values of S the data collapse to a single k̄(φ) trend.
This behavior persists to close to a maximum packing at low
φ. We conclude that ks adapted to account for polydisperse
sphere sizes [Eq. (8)] is an appropriate universal scaling for
hard sphere packs.

The results shown in Fig. 6 allow the general forms of each
dimensionless model presented in Sec. III A to be compared
with the collapsed universal dataset. We find that the expan-
sions of ks for cubic packs of monodisperse spheres [Eq. (9)]
provide a generally good description of k̄(φ) even though the
random and polydisperse nature of our simulation domains
invalidates the exact microstructure on which the expansions
were based (i.e., cubic lattice arrangements [18]). The good-
ness of fit of Eq. (9) is apparently independent of cubic lattice
type (e.g., simple, face-centered, or body-centered) at high φ.
At intermediate φ, minor differences between the solution for
each lattice type emerge. First, the simple and body-centered
packing types have φm values above the minimum φ studied
here (i.e., φrcp), and so cannot formally provide a good de-
scription across all φ. Additionally, even in the region 0.32 �
φ � 0.45 where both the body-centered and face-centered
cubic solutions are valid, the face-centered cubic packing
solution provides a marginally better description of our k̄(φ)
data. We conclude that the form of Eq. (9) with coefficients
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ci for face-centered cubic packs of spheres is a tenable model
for k(φ, S) when S is incorporated via ks adapted in Eq. (8).

The goodness of fit of Eq. (9) to our data (without in-
troducing any adjustable parameter) is surely appealing. For
random sphere packs with low S near their random close
maximum packing, our data deviate from the descriptions
given by Eq. (9), and k̄ is lower than predicted by up to a
factor of 1.09. In any real pack of particles for which k(φ)
could be measured, the system will necessarily be jammed
at or close to φrcp, and so it is particularly in this region
that model fidelity is required. The other model tested here
is given by Eq. (10) and represents the more widely used
model approach to predicting k(φ) for sphere packs. While
the Kozeny-Carman model [Eq. (10) with C = 5] does not
match the data well across all φ (failing particularly in the
dilute limit φ → 1) it provides a reasonable match to the
maximally packed data at low to intermediate φ. We find
that this model matches the maximally packed data for C = 5
to within 98.3% accuracy in the region 0.27 < φ < 0.38. If
we let C act as a fitting parameter and use a least-squares
regression minimization, we find that the best fit in this region
of φ is C = 4.83 ± 0.06, close to the proposed C = 5 [1]. We
note that there is no value of C for which the Kozeny-Carman
functional form can outperform Eq. (9) across all φ.

IV. DISCUSSION

Our results show that the expansions of ks from φ → 1 to
intermediate φ [Eq. (9)] provide a good description of the data
at φ > 0.38 when ks is adjusted to account for polydisperse
sphere packs [Eq. (8)]. This description is appealing because it
involves no empirical adjustment. The fact that a model based
on cubic arrangements of spheres appears to work even for
random distributions of spheres leads us to conclude that the
arrangement of the particles in the pack is less important than
their geometry (e.g., spheres in this case).

We can think of the comparison between data and models
(Sec. III B) as yielding two apparent microstructural regimes.
First, for packs of polydisperse spheres at φ > 0.38 or packs
of monodisperse spheres at any φ, the cubic lattice packing
law [Eq. (9)] outperforms other models. For packs of polydis-
perse spheres at φ < 0.38, the Kozeny-Carman law [Eq. (10)]
provides the best description of the data with C = 5. Indeed,
we note that there is crossover in the range 0.35 < φ < 0.55
in which both models appear to provide a reasonable descrip-
tion of the data. We reiterate this crossover by plotting the
root mean square statistic rms =

√∑
(k̄ − k̄′)2

/n for each φ,
where k̄ is the measured value, k̄′ the predicted value from
the model being considered [Eqs. (9) and (10)], and n the
number of data points. We show rms(φ) in the inset to Fig. 6,
which demonstrates that the cubic packing models (using
the face-centered cubic pack as a benchmark model with the
lowest φm) have a rms value lower than the Kozeny-Carman
model in the region φ > 0.4. Conversely, this demonstrates
that the Kozeny-Carman model has a lower rms value in the
region φrcp < φ < 0.4. The Kozeny-Carman model and vari-
ants thereof are typically applied at the close packed values of
φ where spheres or particles are jammed and therefore support
direct measurement [4,8,31,34–36]. The fact that this model
captures the data we provide here for low S and low φ leads

us to propose that the microstructure of randomly distributed
maximally packed polydisperse spheres deviates significantly
from cubic arrangements of hard spheres.

Percolation laws have the form k ∝ φe, where e is a
percolation exponent [4,34,37]. These laws often involve a
percolation transition porosity or “percolation threshold” φc,
below which k = 0. A general form of these laws is

k = kr (φ − φc)e, (11)

where kr is a reference permeability. kr is a function of s,
which, in many cases, is also taken to be a function of φ [4,34].
Rigorous theoretical constraints have been placed on e for
different microstructural geometries [37,38], and simulations
and experiments have constrained φc [8,39,40]. It follows that
there exist forms of these percolation models that appear to be
effective without the requirement of fitting to empirical con-
stants. Nevertheless, these laws break down at high φ [8,31],
and are only clearly valid for overlapping particles. These per-
colation laws are most applicable to systems of overlapping
spheres [8,34] or systems where a nonoverlapping hard sphere
description is not valid (e.g., data for natural rock samples)
[41].

Acknowledging that there is no percolation threshold for
hard spheres, we set φc = 0 for the percolation model and take
kr = ks (which with φc = 0 is the same as kr given in Martys
et al. [34]) such that Eq. (11) yields

k̄ = φe. (12)

We note that this percolation model given in Eq. (12)
does not provide a reasonable match to the maximally packed
data in Fig. 6 at any φ except for the lowest values, which
is for the most polydisperse systems tested. While Eq. (12)
has been used successfully to describe the permeability of
packs of overlapping spheres, we conclude that it provides a
poor description of packs of polydisperse hard spheres when
compared with the other models tested here.

Analysis of C in terms of hydraulic drag (or friction) and
tortuosity in controlled experiments of particles of a given
shape at varying φ is a reasonable way to approach more
complex porous media. The extension of the use of the per-
colation model [Eq. (12)] to these kinds of packs of porous
media would likely require similar empirical adjustments.

V. CONCLUDING REMARKS

We created numerical domains of polydisperse spheres
at a range of porosities. We used numerical simulations to
constrain the permeability of these packs. These data are then
used to assess the efficacy of existing models for permeability
as a function of porosity in the case of high polydispersivity
of particle sizes. We find that different model approaches
have fields of efficacy, with cubic pack models providing
a broadly good description of the permeability across most
porosity and polydispersivity. We specifically investigate the
high polydispersivity case at low porosity—a case typical
of natural particle packs—and find that the Kozeny-Carman
description is more effective in this regime. We propose that
there is a switchover between monodisperse or loose packs
for which the cubic packing laws provide a good description,
to the dense packs of polydisperse particles, for which the
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Kozeny-Carman model provides a superior fit. We propose
that this framework represents an extension of the existing
understanding of the permeability of packs of spheres to poly-
disperse distributions of spheres arranged randomly.
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