
Software and Systems Modeling
https://doi.org/10.1007/s10270-021-00952-4

THEME SECT ION PAPER

Event-driven temporal models for explanations - ETeMoX: explaining
reinforcement learning

Juan Marcelo Parra-Ullauri1 · Antonio García-Domínguez1 · Nelly Bencomo2 · Changgang Zheng3 ·
Chen Zhen4 · Juan Boubeta-Puig5 · Guadalupe Ortiz5 · Shufan Yang6,7

Received: 2 April 2021 / Revised: 27 September 2021 / Accepted: 4 November 2021
© The Author(s) 2021

Abstract
Modern software systems are increasingly expected to show higher degrees of autonomy and self-management to cope with
uncertain and diverse situations. As a consequence, autonomous systems can exhibit unexpected and surprising behaviours.
This is exacerbated due to the ubiquity and complexity of Artificial Intelligence (AI)-based systems. This is the case of
Reinforcement Learning (RL), where autonomous agents learn through trial-and-error how to find good solutions to a problem.
Thus, the underlying decision-making criteria may become opaque to users that interact with the system and who may require
explanations about the system’s reasoning. Available work for eXplainable Reinforcement Learning (XRL) offers different
trade-offs: e.g. for runtime explanations, the approaches are model-specific or can only analyse results after-the-fact. Different
from these approaches, this paper aims to provide an online model-agnostic approach for XRL towards trustworthy and
understandable AI. We present ETeMoX, an architecture based on temporal models to keep track of the decision-making
processes of RL systems. In cases where the resources are limited (e.g. storage capacity or time to response), the architecture
also integrates complex event processing, an event-driven approach, for detecting matches to event patterns that need to be
stored, instead of keeping the entire history. The approach is applied to a mobile communications case study that uses RL for
its decision-making. In order to test the generalisability of our approach, three variants of the underlying RL algorithms are
used: Q-Learning, SARSA and DQN. The encouraging results show that using the proposed configurable architecture, RL
developers are able to obtain explanations about the evolution of a metric, relationships between metrics, and were able to
track situations of interest happening over time windows.

Keywords Temporal models · Complex event processing · Artificial intelligence · Explainable reinforcement learning ·
Event-driven monitoring

Communicated by L. Burgueño, J. Cabot, M. Wimmer & S. Zschaler.

B Juan Marcelo Parra-Ullauri
j.parra-ullauri@aston.ac.uk

Antonio García-Domínguez
a.garcia-dominguez@aston.ac.uk

Nelly Bencomo
nelly.bencomo@durham.ac.uk

Changgang Zheng
changgang.zheng@eng.ox.ac.uk

Chen Zhen
cz2016@mail.ustc.edu.cn

Juan Boubeta-Puig
juan.boubeta@uca.es

Guadalupe Ortiz
guadalupe.ortiz@uca.es

Shufan Yang
s.yang@napier.ac.uk

1 Engineering and Applied Science School, Aston University,
Birmingham, United Kingdom

2 Department of Computer Science, Durham University,
Durham, United Kingdom

3 Department of Engineering Science, University of Oxford,
Oxford, United Kingdom

4 Computer Science and Technology, University of Science and
Technology of China, Hefei, China

5 Department of Computer Science and Engineering,
University of Cadiz, Cádiz, Spain

6 School of Computing, Edinburgh Napier University,
Edinburgh, United Kingdom

7 Center of Medical and Industrial Ultrasonic, University of
Glasgow, Glasgow, United Kingdom

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00952-4&domain=pdf
http://orcid.org/0000-0003-1801-3494

J. M. Parra-Ullauri et al.

1 Introduction

Artificial Intelligence (AI) aims to mimic cognitive func-
tions for real-world problem solving, building systems that
learn and think like people do [52]. The adoption of AI has
become ubiquitous in software-based systems when needing
to provide better levels of autonomy and self-management
in modern software. A branch of AI is Machine Learning
(ML), which has been successfully applied in vast domains
such as transportation, recommendation systems or natu-
ral language processing among others [24,68,72]. Despite
its broad applicability, the nature of ML is still consid-
ered as a “black-box” where system decisions can become
opaque to stakeholders [12]. This is the case of Reinforce-
ment Learning (RL), a ML technique where a system learns
autonomously through a trial-and-error approach and whose
decision-making criteria may lack transparency [54]. The
insufficiency of validation techniques for the reasoning done
by the system when using ML is a deterrent to broader adop-
tion [61]: it is essential to improve the trustworthiness and
understandability of AI-based systems [32]. Explaining the
decision-making processes becomes increasingly important
to enhance collaboration, and to increment confidence [35].
This is ratified by the General Data Protection Regulation
(GDPR) law, which enshrines the right to explanation [10].

For the reasons pointed above, the development of more
transparent AI, ML and RL models—we will call them
AI-models1 to differentiate them from the term model in
Model-Driven Engineering (MDE)—has gained significant
attention during the recent years [16]. Consequently, sev-
eral terms have been coined, such as eXplainable AI (XAI)
[61], explainable or interpretable ML [55] and eXplainable
RL (XRL) [54]. The methods underpinning these terms aim
to provide human-readable and interpretable explanations
about the decisions taken by the algorithms involved [63].
The concerned tasks in the algorithms are usually performed
by rule-based approximations of complex AI-models [54],
aimed at better understanding what the AI-model has learned
and/or explaining individual decisions [61].

In this paper, we focus onXRL for RL developers and RL-
knowledgeable users (i.e. users who are experts in a given
domain in which they apply RL, without necessarily being
experts inRL). These users develop and operate software sys-
tems by applyingRLAI-models and are, therefore, interested
in understanding and diagnosing the results of the applica-
tion of such AI-models in their domain. We argue that these
RL users require tools to obtain explanations to explore the
reasoning of RL-AI-models. These tools could be used to

1 AI-models are mathematical algorithms that are “trained” using data
and human expert input to replicate a decision an expert would make
when provided that same information [67].

prove or disprove hypotheses posed on the system behaviour
upon demand.

When studying the current state of the art of approaches for
explanations [1,54],wenoted that these approaches generally
focused on the specific AI-model used [54]. In contrast to
those approaches, this paper aims to provide an AI-model-
agnostic approach for XRL.

As Bucchiarone et. al stated in [8], MDE techniques can
help in the improvement of AI and machine learning. We
argue that runtime models [5,6] can provide the abstrac-
tion, analysis and reasoning capabilities needed to support
explanations when using AI-based systems. In our previ-
ous work [25,49], we proposed runtime models stored in
Temporal GraphDatabases (TGDB)which results in Tempo-
ral Models (TMs), for tracking the decision-making history
of self-adaptive systems to support explanations about their
behaviour. The approach allowed for explanations in both
cases: interactive diagnosis (i.e. at runtime or during execu-
tion) and forensic analysis (i.e. after the system has finished
its execution), based on the trajectory or history of the execu-
tion. We demonstrated how the approach offers substantial
benefits, but at the cost of disk space and processing time.
Nevertheless, these costs can be prohibitive when dealing
with data-intensive systems, as it is the case of RL-based
systems, where the volume and complexity of the data can
grow considerably.

In this paper, we propose ETeMoX (Event-driven Tem-
poral Models for eXplanations), a configurable architecture
based on temporal models to keep track of the system’s rea-
soning over time and to extract history-aware explanations
on demand when using RL. In addition to TMs, the archi-
tecture integrates Complex Event Processing (CEP) [37], an
event-driven technology for rapid detection of situations of
interest. We use CEP to tackle the challenges associated with
data-intensive systems. It serves as a real-time filter that
selects relevant points in time that require to be stored in
the TGDB as runtime models. The criteria for storing the
system’s history can be configured through event patterns
on a CEP engine. For example, a certain data rate can be
imposed, or the history may only keep points in time where
certain conditions are met instead of the full history, saving
memory resources.

The approach has been applied to a mobile communica-
tions case study using autonomous airborne base stations
[70]. The system uses RL for positioning the simulated
drones while maximising the covered end users. In order
to test the AI-model agnosticism offered by ETeMoX, three
variants of the underlying RL algorithm have been used: Q-
Learning, State-Action-Reward-State-Action (SARSA) and
Deep Q-Network (DQN). We have tested different filter-
ing criteria and evaluated the results. Costs of storing and
retrieving the system’s history as well as the accuracy of the
explanations provided have been analysed. The experiments

123

Event-driven temporal models for explanations - ETeMoX: explaining reinforcement learning

were performed during the training of the AI-models, to help
developers gain insights about the learningprocesswhile they
work on validating and improving their systems. In summary,
the main contributions of this work are as follows:

• ETeMoX, a generalisable framework based on TMs and
CEP for the extraction of explanations fromgoal-oriented
systems, as it is the case of RL systems.

• Evaluation of the results obtained in the experiments per-
formed using different ETeMoX’s configurations, based
on the costs and accuracy.

• Demonstrating how event-driven temporal models can
be used to provide information needed for post hoc local
explanations within the XAI umbrella.

The ETeMoX framework, and the user manual are avail-
able at [47]. The rest of the paper is structured as follows.
Sect. 2 presents the foundations that underlie this research.
Section 3 describes ETeMoX and each component of our
proposed architecture. The case study and the application of
the architecture are presented in Sect. 4. Section 5 presents
the RQs and the experiments. Then, the results of the experi-
ments are discussed in Sect. 6. Afterwards, Sect. 7 compares
this approach with related work. Finally, Sect. 8 presents the
conclusions and future work.

2 Background

This section presents the core concepts and technologies used
in our proposed architecture.

2.1 Artificial intelligence, machine learning and
reinforcement learning

The ability to learn is one of the most fundamental attributes
of intelligent behaviour [41]. AI is a broad scientific disci-
pline with its roots in philosophy, mathematics and computer
science that aims to understand and develop systems that dis-
play properties of intelligence [46]. ML is a sub-discipline
of AI that focuses on building AI-models of human learning
and understanding how machines can be empowered with
the ability of learning [41]. In ML, agents 2 learn either from
training data or from policies to create AI-models with min-
imal or no human intervention [38,46].

The focus of this paper is on reinforcement learning (RL),
a particular type of ML method. Influenced by behavioural
psychology [46], RL is an approach where agents learn
actions based on their ability to maximise a defined reward
in a trial-and-error fashion [54]. In RL, an agent is trained

2 Agent: autonomous or semi-autonomous AI-driven system, in other
words, the learner [67].

Fig. 1 Reinforcement learning

to select actions to interact with the environment that max-
imise the cumulative reward resulting from those interactions
[38]. RL is usually introduced as a Markov Decision Pro-
cess (MDP), as it satisfies the Markov property of sensation,
action, and goal [67].

As shown in Fig. 1, RL agents learn in a continuous
process, where interactions with the environment occur at
discrete time steps (t). The agent initiates the learning pro-
cess by performing a random action (at) that leads to a
certain environmental state (st). The reward (rt) correspond-
ing to this state is assigned depending on how desirable this
outcome is. After several iterations, the agent will learn a cer-
tain policy (π) (a function that maps states to actions), and
will update the value function V (s) or action-value func-
tion Q(s, a) in order to maximise the cumulative reward,
with the aim to select the optimal action in each situation in
order to achieve long-term goals [38,67]. There are various
algorithms for RL: Sect. 4 will discuss popular approaches
(Q-Learning, SARSA, and DQN) and apply them to a case
study.

2.2 Motivations for explanations in artificial
intelligence

In the case of humans, explanations provide a key capability
to shape the understanding that they developwhenprocessing
the environment, especially when their perceptions diverge
from their expectations [16]. There are different arguments
in favour of explanations in AI. Adadi et. al. stated four argu-
ments in [1]:

• Explain to justify AI is involved in more and more areas
of our everyday lives. People affected by AI-influenced
decisions (e.g. when refused a loan) may demand a justi-
fication for the particular outcome. This transparency is
needed to ensure fair and ethical decisions [69] are being
made.

• Explain to control Explanations can often be used to keep
agent actions inside an envelope of good behaviour. The
explanations allow to discover the origin of a problem or

123

J. M. Parra-Ullauri et al.

to clarify misunderstandings between the system and the
user [2]. Indeed, explanations can contribute to prompt
identification of errors in non-critical situations [1].

• Explain to discoverModernAI systems can process large
amounts of data that otherwise would be difficult for
humans to process. Asking for explanations is a help-
ful tool to extract insights about the knowledge acquired
by this processing [1].

• Explain to improve In order to improve an AI system,
it is key to discover its flaws. An AI-model that can be
explained and understood can be easier to enhance and
use to the best advantage [61].

In this paper, the focus is on explanations to control and
explanations to discover for RL developers and RL knowl-
edgeable users. These two groups of users are familiar with
developing and/or using RL AI-models and are, hence, inter-
ested in understanding, diagnosing, as well as refining such
AI-models in a given application context [29].

2.3 Common approaches in XAI/XRL

There are different techniques and approaches that are pro-
posed to confer explainability. In RL, these can be classified
broadly across two dimensions [29,54,54] (Fig. 2):

(1) Depending on when the information is extracted, it can
be done beforehand (a.k.a. intrinsic) or in a post hoc
fashion. An explanation could be extracted and/or gen-
erated intrinsically or post hoc. Themost straightforward
way to get an interpretable AI-model is to make it intrin-
sically explainable, thus self-explainable at the time of
training [1,54]. One example is decision-trees: they have
a defined structure and can provide convincing capa-
bilities to gain the trust of domain experts [33]. These
types of explanations areAI-model-specific by definition
[1]. Post hoc explainability aims to mimic the original
AI-model to provide the needed explanations without

Fig. 2 XAI methods taxonomy [54]

altering or even knowing the inner works of the original
AI-model [36].Rule extraction is an example of this type.
By analysing the input and output of an artificial neu-
ral network, it provides a description of the knowledge
learned by the network during its training by extracting
rules that approximate the decision-making processes
[55]. This type of explanations is generally AI-model-
agnostic and is generated and/or received after training
[1,54].

(2) Depending on the scope of the explanations, it can be
global or local [54]. Local explanations focus on data and
provide individual explanations, helping provide trust on
AI-model outcomes. Local explanations focus on why
did the AI-model make a certain decision for one or
a group of instances [54], whereas global explanations
focus on the AI-model and provide an understanding of
the overall decision process. A global explanation aims
to provide a general understanding of how the AI-model
works [1].

In Sect. 3, we explain where our architecture sits along
these two dimensions.

2.4 Historical data management

Identifying historical patterns in the data produced by a sys-
tem has been a topic of interest for a long time. A 2012
survey on time-series mining by Esling et al. [21] outlines
more than two decades of research work on this topic. Typ-
ical tasks include finding timepoints of interest, clustering
similar regions, classifying timepoints, finding anomalies or
predicting future timepoints.

In regard to industrial applications, the need to organise the
large volumes of data generated by the Web and the Internet
ofThings hasmotivated the development of better time-series
analysis capabilities in database technologies. For instance,
the Elasticsearch search engine can index large document
collectionswith numericalmeasurements over time, and then
apply machine learning approaches to find anomalies [20].

Still, these time-series have the limitation that they simply
track the evolution of ametric: they cannot track, for instance,
the evolution of the relationships within a system. They
cannot directly represent the relationships between multiple
evolving metrics, either. Graph databases such as Neo4j [57]
are designed specifically to represent complex networks of
relationships: their data is structured into nodes connected by
edges. Nodes and edges have a label (e.g. “sensor”) and a set
of key/value pairs (e.g. “lastReading”). Graph databases have
been successfully used for representing transport networks,
social networks and other similarly interconnected systems.
However, they do not explicitly model the time dimension.

Different extensions to graph databases exist to introduce
the time axis: these TGDBs record how nodes and edges

123

Event-driven temporal models for explanations - ETeMoX: explaining reinforcement learning

appear, disappear and change their key/value pairs over time.
Someof these proposals includeGreycat [28] fromHartmann
et al. and Chronograph [27] from Haeusler et al. In particu-
lar, Greycat is an open-source solution which reuses several
existing database engines (e.g. the LevelDB key/value store)
to implement a TG data model. Nodes and edges in Greycat
have a lifespan: they are created at a certain timepoint, they
may change in state over the various timepoints, and theymay
be “ended” at another timepoint. Greycat considers edges to
be part of the state of their source and target nodes. It also
uses a copy-on-write mechanism to store only the parts of a
graph that changed at a certain timepoint, to therefore save
disk space. In the present work, we use TGDB to track the
evolution of the decision-making processes.

2.5 Event-drivenmonitoring

Event-driven monitoring allows us to detect the occurrences
of predefined events on one or multiple incoming data
streams, in order to be notified of their occurrence and/or
run some palliative processes. There are several proposals
for event-driven monitoring in the literature; for instance,
Konno et al. work [31] uses a rule inference method that
integrates dynamic case-based reasoning and root cause
analysis. It allows for autonomous recovery and failure pre-
vention to guarantee long-term QoS of cloud systems. Other
event-driven monitoring approaches integrate Wireless Sen-
sor Networks (WSNs) with sentinel nodes [22,53] to detect
heavy road vehicles as well as raising alarms in monitoring
nodes. CEP has been widely used for real-time event-driven
monitoring [3,48]. CEP can capture, analyse and correlate
large amounts of data in real time across many application
domains [37]. The main objective is to detect situations of
interest in a specific domain or scenario [7]. In order to detect
such situations, it is needed to previously define a set of event
patterns that specify the conditions that incoming events to
the system must fulfil in order to match the situation of
interest. An incoming event can be simple (something that
happens in the system at a point in time) or complex (pat-
terns of two or more events that happen over a period of
time). Any detected complex events can be fed back to the
CEP system for further matching which creates a hierarchy
of complex events types [48]. The defined patterns must be
deployed to a CEP engine, i.e. the software that allows the
incoming data streams to be analysed in real time according
to the defined patterns [7]. Each CEP engine provides its own
Event Processing Language (EPL) for defining the patterns
to be deployed.

In this paper, we integrate CEP into the proposed archi-
tecture to allow us to detect events that will conform our
TMs. Among the existing CEP engines, we opted for Esper3,

3 https://www.espertech.com/esper/.

a mature, scalable and high-performance CEP engine. The
Esper EPL is a language similar to SQL but extended
with temporal, causal and pattern operators, as well as data
windows. Upon matching a pattern, a complex event sum-
marising the detected situation will be created and then
notified to the interested event consumers, such as dash-
boards, databases, services and actuators. Indeed, CEP has
been widely used for real-time event monitoring in various
software architectures and application domains [7,15,58].

3 Proposal: ETeMoX framework

This section presents the architecture of ETeMoX, which
integrates CEP and TMs to support the generation of expla-
nations for RL-based systems. Based on the categorisation
from Sect. 2.3, we aim to build an architecture for AI-
model-agnostic post hoc explainability, using the benefits
of event-driven monitoring and model-driven engineering.
The architecture targets AI-models that are not interpretable
by design. It focuses on local explanations to promote an
understanding on why the AI-model made specific decisions
for a group of instances. Understanding what the system did
requires: (1) the system to track its own decision history, and
(2) to explain those decisions to the users coherently. Both
requirements are presented in this work.

As shown inFig. 3, there are four components in the frame-
work: Translator, Filter, Temporal Model and Explainer.
These will be described in detail below.

3.1 Translator component

Our implementation decouples the decision-making pro-
cesses in the system from the generation of the explanations.
The translator component receives data streams with exe-
cution traces. The traces (Logs) contain information related
to the observations made by the agent about its decisions,
actions, states, rewards, and environment. The monitored
system collects and exposes the data streams to the trans-
lator component through a message broker (“A” in Fig.
3). An example of a broker is the open source Eclipse
Mosquitto MQTT message broker [34]. This broker uses
a publish-subscribe connectivity protocol, where messages
are published according to a set of topics and users subscribe
to the topics of their interest and it is used for lightweight
messaging. The log can follow structured (JSON/XML) or
unstructured (plain text) formats: we have selected JSON for
this implementation. This JSON log containing unprocessed
data is converted into the data format required by the CEP
engine, and then inserted into the Filter component for pro-
cessing (“B” in Fig. 3).

123

https://www.espertech.com/esper/

J. M. Parra-Ullauri et al.

Fig. 3 Event-Driven temporal models for explanations (ETeMoX) architecture

3.2 Filter component

This component performs the transformation, processing,
analysis and routing of data from the Translator component
to the Temporal Model component. The main element in
this component is a CEP engine. As mentioned in Sect. 2.5,
we selected Esper as the CEP engine. Esper processes and
correlates the simple events coming from the Translator com-
ponent, aiming to detect in real-time situations of interest
that will match the filtering criteria. As previously explained,
these situations of interest are described through event pat-
terns. Developers define the focus of interest, i.e. the subset
of the data that will be recorded in the TGDB. Event pat-
terns are implemented in Esper EPL and deployed to the
Esper engine. When the filtering conditions are met (i.e.
patterns are detected), the engine automatically generates
complex events that collect the required information, and
sends them to the Temporal Model component. The commu-
nication from the Filter component to the Temporal Model
component (“C” to “D” in Fig. 3) is performed using a mes-
sage broker similar to the one employed by the Translator
component.

3.3 Temporal model component

The incoming complex events containing the log informa-
tion about the state of the system are reshaped into the trace
metamodel (Fig. 4 from [49]) based on the EclipseModeling
Framework4 (EMF) for linking the system goals and deci-
sions to its observations and reasoning. This metamodel is

4 https://www.eclipse.org/modeling/emf/.

divided into two parts: (1) a generic part, for goal-oriented
autonomous systems, and (2) a more specific part, for sys-
tems that take into account Non-Functional Requirements
(NFR) and their satisfaction (NFRSatisfaction) to support
the system’s decision-making. The top half of Fig. 4 rep-
resents the general part. In the trace metamodel (Fig. 4),
the Log records the Decisions to be made, the available
Actions and their beliefs (i.e. probabilities for satisfying a
functional requirement) and the Observations of the envi-
ronment. Each Decision is based on an Observation of the
environment, which produces a set of Measurements of the
Metrics. Different types of measurements are allowed (e.g.
DoubleMeasurement and StringMeasurement). The runtime
model will then be used to update the TGDB, creating a new
snapshot at the current point in time: all relevant versions
are kept. We use a model indexer to automatically compare
the runtime model as an object graph against the current ver-
sion of the temporal graph. It creates a new version which
only updates the temporal graph where needed, for efficient
storage. Specifically, ETeMoX uses Eclipse Hawk5, which
operates on Greycat temporal graphs. By using TGDBs,
it is possible to track the evolution of certain metrics at
each node, as well as the changes in the relationships of
the various entities in the system, or their appearance and
disappearance.

3.4 Explainer component

This component is where the explanations are constructed
and presented. The explainer component can run a query

5 https://www.eclipse.org/hawk/.

123

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/hawk/

Event-driven temporal models for explanations - ETeMoX: explaining reinforcement learning

Fig. 4 Execution trace metamodel for a decision-based self-adaptive system [49]

on the TGDB using our time-aware query language, an
extension of the Epsilon Object Language (EOL) to define
temporal patterns that traverse the history of a model. The
result of this query contains the information that will be used
to construct the explanations. These explanations could be
presented in textual or graphical ways, e.g. plots of various
kinds, yes/no answers, or specific examples of matches of a
certain temporal pattern.

In relation to the explanation phases defined in [2], this
work tackles the first two: i) the explanation generation is
the construction of the causally connected TGDB (performed
on the previous component) ii) the explanation communica-
tion is the extraction of the information using the temporal
query language (what information will be provided) and the
presentation of explanations either textually or graphically
(how will it be presented).

In order for an explanation to satisfy its recipient, it needs
to be expressed in a way that is easy to understand for that
recipient. Therefore, a rigid system for which developers
or domain expert have defined explanations with no aware-
ness of the needs and expectations of the recipients may be
not convenient for users with different backgrounds. The
Explainer component in ETeMoX allows users to specify
their own custom queries over the historic behaviour of the
system, helping the users to complete their mental model of
how the systemworks, or test hypotheses about its behaviour.
This is done by forwarding the queries to the query engine
in the Eclipse Hawk model indexer through the Hawk API
(the “E–F” communication in Fig. 3).

3.5 ETeMoX step-by-step guideline

As mentioned above, the user manual that explains how to
apply ETeMoX to an RL system can be found in the GitLab
project at [47]. In summary, to run the implementation, a user
requires: (1) an RL system that exposes its decision-making
traces, (2) a parser to translate these traces into themetamodel
in Fig. 4, (3) a set of event patterns that define the filtering
criteria (and their deployment to the Esper CEP engine), (4)
a Hawk instance indexing the translated traces into a tempo-
ral model, and (5) a set of temporal queries that extract the
history-aware explanations from the temporal model. The
detailed step-by-step guidelines are as follows:

1. The proposed post hoc approach is designed to be as least
intrusive as possible for the RL agent to be explained.
The first step is to collect observations from the sys-
tem’s decision-making. The available information about
the agent’s states, rewards, actions, and environment is
exposed to the system through logs, which may be struc-
tured or not.

2. Once this log is constructed, the next step is to feed it
to our architecture (“A” in Fig. 3). We use MQTT as the
core communication protocol, with MQTT clients in the
different components talking to a central MQTT broker.
The trace log is published to a MQTT topic to which the
translator component is subscribed.

3. In order to handle the incoming data (i.e. trace log), ETe-
MoX requires the translator component to parse the log.

123

J. M. Parra-Ullauri et al.

In the current implementation, this parser has been man-
ually defined at design time, and is specific for each
case study. However, different techniques for log and
stream pre-processing are being studied for automatically
creating these translators, such as the one proposed by
Corral-Plaza et al. in [15].

4. When the parser that processes the log is ready, the next
step is the creation of the event patterns needed by the
filter component. These EPL patterns will contain the cri-
teria to curate the data, based on events of interest. Some
predefined filtering criteria can be reused across projects
(e.g. sampling at a certain rate). Also, problem-specific
event patterns of interest can be added as needed. After,
the filtered data is sent to the Temporal Model component
over MQTT.

5. Next, the filtered information is stored in a causally con-
nected and efficientway in anEclipseHawk instance. This
instance needs to be specified in order to use the execu-
tion trace metamodel of Fig. 4 as structure and a Greycat
temporal graph database as backend.

6. Once the information is structured as a Temporal Model,
it is possible to extract information for explanations using
EOL queries from the Explainer component. Depending
on the requirements, some predefined temporal queries
can be reused, or new domain-specific queries can be for-
mulated. Information for explanations can be extracted
after-the-fact as in [25], or at runtime as in [49].

7. The final step is to construct an explanation from the
queries. The specific way this is done depends on the
requirements and the targeted audience. For instance, tex-
tual explanations (logs or natural language) or visual ones
(graphs, plots or heatmaps) could be used.

An implementation of the proposed approach is presented in
Sect. 4, based on a case study from the domain of RL-based
self-adaptive systems.

4 Case study: autonomous airborne base
stations

In order to demonstrate the feasibility of the proposed archi-
tecture, this section presents its implementation for a case
study from the domain of mobile communications. In this
case study, Airborne Base Stations (ABSes) use RL AI-
models to decide where to move autonomously in order to
provide connectivity to as many users as possible. The devel-
opers of the system are interested in studying the reasonswhy
the AI-model acted as it did, both regarding single decisions
and regarding its overall performance.

The rest of this section describes the system and the differ-
ent RL AI-models used in this case study. This is followed
by the explanation requirements for this case study, which
motivates the chosen experimental approach for its evalua-
tion.

4.1 Description of the case study

Mobile connectivity requires that an adequate network of
base stations has been set in place. When these networks
cannot meet unexpected spikes with respect to user demand
[18,40] (e.g. due to a large concentration of users in one place,
or due to failures in nearby communication towers), a swarm
of ABSes can act as a backup. The goal of the system under
study (the ABS Self-Adaptive System [76]) is to precisely
control the location of the ABSes in relation to the locations
of users and the other stations, trying to serve asmanyusers as
possible while ensuring high-signal strength and minimising
interference among ABSes [77].

Figure 5 outlines the components of the ABS SAS case
study. The environment is simulated according to a Mobile
Station Distribution Model, and a 5G Communication Sys-
tem Model [76]. The mobile station distribution model
simulates a random population of users that require connec-

Fig. 5 Overview of the ABS SAS case study

123

Event-driven temporal models for explanations - ETeMoX: explaining reinforcement learning

tivity on their end-user devices (e.g. mobile phones). This
simulation randomly places users following a bivariate dis-
tribution over their latitude and longitude [56], involving the
probability by which they appear, the number of mobile sta-
tions they carry with them, and their location.

The 5G Communications System Model performs the
necessary calculations to estimate theSignal-to-Interference-
plus-Noise Ratio (SINR) and the Reference Signal Received
Power (RSRP) [76]. The SINR andRSRP valuesmeasure the
signal quality of the communications between theABSes and
the mobile stations. SINR and RSRP thresholds are used to
determine whether a station can be considered to be “con-
nected” or not.

The appendix at the end of this paper describes in detail
the simulation environment using SARSA, one of the RL
AI-models [70]. The other two RL AI-models (Q-learning
and DQN) are used in the same simulation environment with
learning methods, as defined below.

4.1.1 Q-Learning

Q-Learning is an RL algorithm where an agent uses an
action-value function Q(s, a) to evaluate the expectation of
the maximum future cumulative reward. This reward rt is
obtained from different executions of an action at in a given
state st [66], which provides agents with the capability of
learning to act with the aim of maximising the global reward
[74].

New Q(s, a) = Q(s, a) + α
[
R(s, a) + γ · max Q′ (s′, a′) − Q(s, a)

]
(1)

Traditional Q-Learning uses a simple lookup table for cal-
culating the maximum expected future rewards for an action
at each state. It is often referred to as theQ-table, as it is a way
of representing the Q-values (or Action-Values) in the Value
function Vs [51]. Equation 1 is used to update the Q-table,
where the α is the learning rate to determine howmuch of the
sum of immediate rewards will be used. γ is the discount fac-
tor to determine the importance of future rewards and R(s, a)

is the reward of the action at state st . Q′(s′, a′) is the new Q
value in next time step; s′ is next state of environment; a′ is
the next action that ABSes is planning to take.

4.1.2 State-action-reward-state-action (SARSA)

SARSA is an RL algorithm very similar to Q-Learning [66,
75]. The main difference between SARSA and Q-Learning
algorithms is the policy (π) type. SARSA, as a typical on-
policy algorithm, have agents directly inferring a policy. On
the contrary, Q-learning uses Q-values to quantify the value
of every state-action pair [67].

Fig. 6 Q-learning flow chart

Fig. 7 SARSA flow chart

New Q(s, a) = Q(s, a)

+α
[
R(s, a) + γ · Q′ (s′, a′) − Q(s, a)

]
(2)

In Eq. 2, α is the learning rate, γ is the discount factor
and R(s, a) is the reward of the action at state s. Figures 6
and 7 show the flow chart related to the update process of the
action, the state and the value function at each iteration. The
circles refer to the updated pairs of states and actions. S1, S2
and S3 indicate the state of environment; while A1, A2 and
A3 indicate each stage of actions. Blue dash line indicates
the pair Q(s, a) updates in various stages.

The most important difference between Q-learning and
SARSA is how Q(s, a) is updated after each action.
Although the update of Q(s, a) in SARSA is quite similar
to Q-learning, both algorithms have different ways of choos-
ing actions. SARSA uses the behaviour policy (meaning, the
policy used by the agent to generate experience in the envi-
ronment randomly) to select an additional action at+1, and
then uses Q(st+1, at+1) (discounted by γ) as the expected
future return in the computation of the update action and
state value [67]. Q-learning does not use the behaviour pol-
icy to select an additional action at+1. Instead, it estimates
the expected future returns in the update rule as maximum

123

J. M. Parra-Ullauri et al.

Fig. 8 Deep Q-network

action and state value. It is noted that Q-learning uses dif-
ferent policies for choosing the next action A2 and updating
Q(s, a). In other words, it tries to evaluate the policy while
following the old policy; therefore it is seen as an off-policy
algorithm. In contrast, SARSA uses the same policy all the
time; hence it is seen as an on-policy algorithm.

4.1.3 Deep Q-network (DQN)

Q-learning and SARSA both use a lookup table (Q-table) to
learn the best action to take.With large state or action spaces,
the size of this lookup table can make learning intractable.
In contrast, Deep Q Networks, avoid using a lookup table
by instead predicting the Q-value of the current or poten-
tial states and actions using artificial neural networks [42].
As shown in Fig. 8, two convolutional neural networks (Q-
Networks) constantly update their parameters to learn the
optimal action to take: the target network, and the evaluate
network.

A target network takes the current state and estimates
the Q value of each action, and then the generated states,
actions and rewards of each simulation step are saved to
the memory pool (the “Log of Action” elements shown in
Fig. 8). This target network is a copy of the action-value
function (or Q-function) that is held constant to serve as
a stable target for learning for some fixed number of time
steps. The Q-network periodically updates the actions and
action-state value Q(s, a). The parameters of the target net-
work are updated regularly by copying the weights from the
Q-network, as shown in Fig. 8.

4.2 Explanation requirements for developers

Currently, generality is the biggest challenge for RL.
Although many RLmethods can be seen as performing well,
it is difficult to apply them for generalisation purposes due to

unforeseen situations [65]. Further, the traditional perception
of RL methods is often viewed as black boxes. Without the
proper tools, it is challenging to understand the behaviour
of complex RL methods to solve general issues, especially
when combining multiple neural networks for evaluating
value functions during learning stages.

One way to improve the generalisation capabilities of RL
is to dissect the reasons for failure during the learning stage.
Often, the failure comes from the fact that RL AI-models
have limited memory storage to store previous states, actions
and Q(s, a) values, which can be used later to estimate the
value function. Sometimes, an action picked from the policy
could lead to learning failure. Unfortunately, this can only be
observed in retrospective after some time. Since developers
can only investigate the overall reward of all agents after a
certain number of time steps, it is extremely difficult to find
out the situation when the RL AI-model has picked up a
feature that may have been incorrectly used in the estimation
of the value function.

The current trend of using deep neural networks presents
new challenges for finding interpretable features that can be
visualised, the first one being how to evaluate the unknown
value function. In the ABS SAS case study, the spatial
position of users and the signal interference from ABSes
keep changing. Presenting the evolution of this change can
help developers to understand if the ABS SAS is progress-
ing towards its ultimate goal. Another important aspect for
developers is to analyse the learning process and how the
initial conditions affect it. Furthermore, in a multi-agent sys-
tem, explaining collaborative aspects can help to understand
whether the ABSes learn to coordinate to achieve the global
goal or not. This can be difficult without the support of a third
party like ETeMoX, considering that each RL AI-model has
only access to its own local observation and is only respon-
sible for choosing actions from its own action-state values.

123

Event-driven temporal models for explanations - ETeMoX: explaining reinforcement learning

Fig. 9 Runtime model object diagram

4.3 Integration with ETeMoX

In order to evaluate whether the architecture proposed in
Sect. 3 meets the requirements described in Sect. 4.2, the
ABS SAS case study was integrated with our current imple-
mentation of ETeMoX. First, the three RL variants used in
theABSSAS case study (i.e. Q-learning, SARSA, andDQN)
were extended to send their decisions and observations to a
queue in a MQTT message broker in JSON format at each
simulation step. The rest of the components of the ETeMoX
architecture were implemented as follows:

• The Translator component receives and parses the mes-
sages, and sends them to the CEP engine in the Filter
component as a simple event.

• The Filter component offers a number of event patterns,
which act as the filtering criteria. Further details are pro-
vided in Sect. 5. An event match will trigger the creation
of a complex event. This complex event is sent to the
Temporal Model component through a different MQTT
queue, using JSON format.

• TheTemporalModel component receives complex events
and records their information as a new version of the run-
time model in the temporal graph database. Specifically,
the Eclipse Hawk model indexer was extended with the
capability to subscribe to an MQTT queue and reshape
the information into a model conforming to the meta-
model in Fig. 4. An object diagram with an instance of
the runtime model at a certain step in the simulation is

shown in Fig. 9. The Log contains Decisions and Obser-
vations for ABS 1 at Episode 9 andStep 199. The
possible Actions are linked to their ActionBelief s that
represent the estimated values (Q-values), which max-
imise the cumulativeMeasure: Global reward at the
given Measure: State.

• Having recorded the history of the system so far, at any
time the TGBD can answer queries from the explainer
component. For the current implementation, we used the
Graphical User Interface (GUI) of Hawk to extract the
information needed to build the required explanations on
demand, by using its dedicated time-aware query lan-
guage [25].

5 Experiments

In this section, we will describe experiments performed with
different filtering criteria, as well several types of explana-
tions for the ABS SAS case study. The requirements from
Sect. 4.2 are taken into account for explaining the ABSes
system using ETeMoX. Through this study and considering
the main objectives from Sect. 1, we aim to answer the fol-
lowing Research Questions (RQs):

• RQ1: How can TMs and CEP enable AI-model-agnostic
XRL?

• RQ2: What types of explanations can be obtained using
the proposed architecture integrating TM and CEP?

123

J. M. Parra-Ullauri et al.

• RQ3: What are the costs of storing and retrieving expla-
nations depending on the different configurations of the
proposed architecture?

• RQ4: How accurate are the results derived from each
configuration approach?

5.1 Experiment 1: evolution of ametric

The ABSes in the case study need to collaborate to max-
imise the number of connected users. As the RL AI-models
analyse and update their decision-making criteria based on
the rewards received at each time step, it is key for the
explanatory system to keep track of (i.e. store) these rewards.
Presenting the evolution of this metric to developers can help
to understand if the ABSes system is progressing towards its
main goal of maximising rewards.

ETeMoX is capable of tracking both the individual and
global reward on every single time step in the system’s
training history, and present an average reward by episode.
Without any filtering, the results would match exactly what
the system experienced, but at high storage and process-
ing costs. In order to answer RQ3 (costs involved) and
RQ4 (accuracy obtained), we have defined three Esper EPL
event patterns that apply various sampling rates, updating
the TGDB every 10 steps of the simulation, every 100 steps,
and every 500 steps. Listing 1 shows the event pattern for
indexing the runtime model into the TGDB every 10 steps.
The log about the state and observations of the system when
these criteria are met is recorded.

Listing 1 EPL pattern to sample the data every 10 steps

@public @buseventtype @Name("Sampler")
insert into Sampler
select drone as complexEventInfo
from pattern [every drone = DronesLog(drone.step%10=0)]

5.2 Experiment 2: exploration versus exploitation

Acommonproblem inRL is finding a balance between explo-
ration and exploitation. Explorationmeans trying to discover
new features of the environment by selecting a sub-optimal
action. On the other hand, exploitation is when the agent
chooses the best action according to what it already knows
[14].

In order to find when a decision was performed using
exploration or using exploitation, it is required to track the
actual action taken and the Q-values (i.e. the ActionBelief s)
for each possible action at given state. On one hand, when the
action performed has the maximum Q-value then it could be
said that the decision was taken by exploitation. On the other

hand, if the action taken does not have themaximumQ-value,
the action was taken by exploration. Considering the object
diagram of Fig. 9, where the Action selected (represented by
the reference from d1 to a5) was down, it can be seen that it
is the one with the maximum estimated value: thus, it can be
concluded that the decision was performed by exploitation.

In order to evaluate the effect that a domain-specific filter-
ing pattern could have on costs (RQ3) and accuracy (RQ4),
we decided to create an Esper EPL pattern to only capture
in the TGDB the moments when a decision was performed
using exploration. Listing 2 shows the Esper EPL pattern
for finding this situation. At every point in time the Q-value
of the action selected (drone.qtable.action) is com-
pared to the maxValue(), the action with the maximum
Q-value. If these values don’t match a decision was taken by
exploration and the log about the state and observations of the
system at that point in time is recorded. For this experiment,
two TGDBs were created in parallel. One using the sampled
data, and another that contains the full history of the system.
In this last one, we ran the temporal-query of Listing 3 for
validation. The temporal query written in EOL follows the
same logic of the Esper EPL pattern, but traverses the full
history. It looks for the Q-value of the action selected in each
decision (actionTakenValue) and compares it with the
maximum Q-value (maxAB). It returns a sequence of situa-
tions where the criteria are met. Finally, it reports a count of
these situations.

Listing 2 EPL pattern to select when the system performs an action
based on exploration

@public @buseventtype @Name("Exploration")
expression selectedActionValue{

droneLog => case drone.qtable.action
when "east" then drone.qtable.position.east
when "west" then drone.qtable.position.west
when "south" then drone.qtable.position.south
when "north" then drone.qtable.position.north
when "stay" then drone.qtable.position.stay

end
}
expression maxValue{

droneLog => max(drone.qtable.position.east,
drone.qtable.position.west,
drone.qtable.position.south,
drone.qtable.position.north,
drone.qtable.position.stay)

}

insert into Exploration
select drone as Log
from pattern [every drone = DronesLog] as droneLog
where maxValue(droneLog) != selectedActionValue(droneLog)

and maxValue(droneLog) != 0

123

Event-driven temporal models for explanations - ETeMoX: explaining reinforcement learning

Listing 3 EOL query to select when the system performed an action
based on exploration

var results : Sequence;

for (decision in Decision.latest.all) {
var totalCount = decision.versions.size;
var exploration = decision.versions

.select(v|v.isExploration());
var totalExploration = exploration.size;

results.add(Map {
’total’ = totalCount,
’exploration’ = totalExploration

});
}
return results;

operation Decision isExploration() : Boolean {
var maxAB = self.actionBeliefs.estimatedValue.max();
var actionTakenName=self.actionTaken.name;
var actions = self.actionBeliefs.action;
var actionTakenValue = actions

.selectOne(a|a.name = actionTakenName)

.revRefNav_action.estimatedValue.first;
return actionTakenValue <> maxAB and maxAB <> 0.0;

}

5.3 Experiment 3: collaborations within the
multi-agent system

A challenge in mobile wireless communication is the
hand-off or handover process. This is the process of pro-
viding continuous service by transferring a data session
from one cell to another [50]. In this collaborative sys-
tem, ABSes are assumed to have ideal communication
among themselves and cannot occupy the same position
(state) at the same time. Therefore, considering these con-
ditions, handovers should be kept at a minimum, demon-
strating effective communication and stability within the
system.

In the present implementation, a handover could be con-
sidered when a user is connected to one ABS and then
transferred to a different ABS in a short period of time. In
order to find those situations in the different RL-algorithms,
we ran a query on TGDBs containing the whole history of
each RL-approach. Algorithm 1 describes the logic followed
in the query, which was implemented in the temporal-query
language supported by Hawk. A user (U) is connected to
an ABS (D) when its received SINR (SINRu,d) is above a
defined threshold αSINR [70]. Therefore, to find handovers
over the history it is necessary to analyse the SINR between
each (user, ABS) pair at every simulation step. For example,
a handover of user u1 from ABS 1 to ABS 2 happens when
at step t , SINRu1,1 > αSINR (the SINR between user u1 and
ABS 1 is above the threshold), and then at step t+x (where x
is a certain time window, measured in a number of steps) we

have that SINRu1,2 > αSINR (the SINR between user u1 and
ABS2 is above the threshold) and also SINRu1,2 > SINRu1,1

(user u1 is better connected to ABS 2 than to ABS 1).

Algorithm 1 Query to detect handovers. L is the current
runtime log, T the set of timeslices in L , U the users, D the
ABSes, SINRu,d(t) the link measurement between u ∈ U
and d ∈ D at timeslice t , αSINR the threshold for the SINR,
and x a defined time window.
1: Result = {}
2: for each u ∈ U do
3: for each d ∈ D do
4: TB = {t ∈ T |SINRu,d (t) > αSINR}
5: for each tb ∈ TB do
6: if (SINRu,d (tb + x) < SINRu,d+1(tb + x) ∧

SINRu,d+1(tb + x) > αSINR) then
7: Add (tb, u,SINRu,d (tb),SINRu,d+1(tb + x))

to Result
8: end if
9: end for
10: end for
11: end for
12: Result: Sequences showing handover transitions.

6 Evaluation of results

In this section, we present the evaluation and discussion of
the results of using ETeMoX to explain the ABS SAS case
study. We trained Q-Learning, SARSA and DQN under the
same conditions. A training run consisted of 10 episodes and
2000 steps for 2 ABSes with 1050 users scattered on a X-Y
plane. As mentioned, our implementation decouples the run-
ning RL-system from the generation of explanations. In that
sense, the experiments were performed using two machines
dedicated to different purposes: one performing the train-
ing of the different RL algorithms, and the other running
ETeMoX. The RL algorithms ran on a virtual machine in
the Google Cloud Platform6: specifically, an a2-highgpu-
1g machine with 2vCPUs running Debian GNU/Linux
10 with 13GB RAM and an NVIDIA Tesla K80 GPU,
using the ABS SAS simulator, Anaconda 4.8.5, matplotlib
3.3.4, numpy 1.19.1, paho-mqtt 1.5.0, pandas 1.1.3, and
pytorch 1.7.1. The machine running ETeMoX was a Lenovo
Thinkpad T480 with an Intel i7-8550U CPU with 1.80GHz,
running Ubuntu 18.04.2 LTS and Oracle Java 1.8.0_201,
using Paho MQTT 1.2.2, Eclipse Hawk 2.0.0, and Esper
8.0.0.

Our interest is to answer the stated RQs from Sect. 5. We
analyse the costs of storing and retrieving explanations, as
well as the accuracy of them on each experiment.

6 https://cloud.google.com/.

123

https://cloud.google.com/

J. M. Parra-Ullauri et al.

6.1 Evaluation 1: evolution of a metric

Our architecture was able to sample the incoming data pro-
duced by theABS SAS for each RL algorithm. Table 1 shows
the costs of storing the TGDB using each approach. The full
history of the system consisted of 40 000 model versions (10
episodes × 2 000 iterations × 2 ABSes). Depending on the
sampling data rate selected, the size of the TGDB showed
a linear decrease, going from approximate 130 MBs for the
full history, to less than 1MBwhen sampling the history each
500 time steps.

The objective of this experiment was to keep track of the
evolution of a metric throughout the history of the ABS SAS.
For this case, it was the global reward: the number of con-
nected users. In order to test the accuracy of the results,we ran
a temporal query on the different TGDBs to find the averages
from each training episode and see how they evolve. Figures
10, 11, 12 show the results. A t-test [64] was used to compare
the means of each group. We compared the results using the
full history to those from doing sampling at different rates.
Table 2 shows the p-values for the null hypothesis H0: there
is no statistically significant difference between the sample
sets. Anything with p < 0.05 is classed significant. Thus, we
only reject the null hypothesis for the sample sets correspond-
ing to the history sampled with data rate of 500. Therefore,

Table 1 TGDB size in MBs

Approach Model
versions

Q-Learning SARSA DQN

Full history 40000 126.00 129.00 162.00

History sampled r = 10 4000 15.00 16.00 24.00

History sampled r = 100 400 1.70 1.80 1.90

History sampled r = 500 80 0.95 0.46 0.77

0 2 4 6 8 10
100

150

200

250

300

Episode

A
ve
ra
ge

us
er
s
co
nn

ec
te
d

Reward averages Q-Learning
Full history History sampled r=10

History sampled r=100 History sampled r=500

Fig. 10 Q Learning: Testing accuracy with data sampling approach

0 2 4 6 8 10
100

150

200

250

300

Episode

A
ve
ra
ge

us
er
s
co
nn

ec
te
d

Full history History sampled r=10
History sampled r=100 History sampled r=500

Fig. 11 SARSA: Testing accuracy with data sampling approach

0 2 4 6 8 10

50

100

150

Episode

A
ve
ra
ge

us
er
s
co
nn

ec
te
d

Full history History sampled r=10
History sampled r=100 History sampled r=500

Fig. 12 DQN: Testing accuracy with data sampling approach

Table 2 T-test results

Approach Q-Learning SARSA DQN

History sampled r = 10 0.95 0.94 0.88

History sampled r = 100 0.37 0.62 0.39

History sampled r = 500 1E-4 2E-3 5E-3

they are significantly different from the base sample set (full
history).

On the other hand, we also evaluated the costs for retriev-
ing the information that built these visual explanations.
Results are shown in Table 3. The query execution times
also presented a linear decrease. Running the query in the
TGDB corresponding to the full history took up to 43.23 s
while running the query on the TGBD with the smaller size
took between 0.08 and 0.09 s.

123

Event-driven temporal models for explanations - ETeMoX: explaining reinforcement learning

Table 3 Query execution times in Seconds

Approach Model
versions

Q-Learning SARSA DQN

Full history 40000 42.91 43.23 41.95

History sampled r = 10 4000 4.68 4.78 4.63

History sampled r = 100 400 0.34 0.34 0.38

History sampled r = 500 80 0.09 0.09 0.08

Table 4 Results and costs of filtering history with the exploration pat-
tern

RL approach Model
versions

TGDB
(MB)

Exploration (%) Exploitation (%)

Q-Learning 562 8.80 1.41 98.60

SARSA 3195 18.00 7.99 92.01

DQN 3126 21.00 7.82 92.19

6.2 Evaluation 2: exploration versus exploitation

This experiment focused on finding situations where the
action performed by the ABS SAS differs from the one
that it currently thinks is best. An EPL query deployed in
the CEP engine filters the history, letting through only the
time steps where the ABS SAS was using exploration rather
than exploitation. Table 4 shows a summary of the results
of applying this filtering using the exploration EPL pattern.
Both SARSA and DQN presented similar results, showing
the system using exploration 8% of the time. In the case of
Q-Learning, exploration was done during 1.41% of the time
steps. The results of the EPL query selected the same time
steps as a temporal query (EOL query) on the TGDB with
the full history containing exploration events.

In order to compare the impact on accuracy of custom
EPL-based filters in comparison with uniform sampling, we
ran the same temporal query from Sect. 6.1 to find the reward
averages for each episode on the different TGDBs for each
RL-algorithm. Figure 13 shows the results for each approach.
A similar behaviour to the one presented in the previous
experiment is exhibited. Less data (model versions) create
less precise results, as it is the case of Q-Learning. Although
for SARSAandDQN similar number ofmodel versionswere
found (3195 and 3126), the results show a significant vari-
ability for the case of DQN.

6.3 Evaluation 3: collaborations within the
multi-agent system

The goal of this experiment was to prove the hypothesis of
the developer that under ideal conditions and ideal com-
munication between the ABSes, the system should reduce
the number of handovers. We ran the temporal query on

Fig. 13 Reward averages by episode on exploration pattern

the different TGDBs containing the full history. We used
a SINR threshold of 40 (αSINR = 40 in Algorithm 1), and
a time window of 3 time steps (x = 3 in Algorithm 1) sug-
gested by the developer to consider a transition time. The
results were as follows: 1 784 handovers were found for Q-
Learning, 590 for SARSA and 82 176 for DQN. An excerpt
of the query results is presented in Listing 4. Line 2 indi-
cates that a handover from ABS 1 to ABS 2 happened on
SARSA on the episode 3 between time steps 912 and 915,
when the user 477was initially connected toABS 1, and after

123

J. M. Parra-Ullauri et al.

3 time stepswas connected toABS 2.A similar situation hap-
pened on line 4, but in this case there was a handover from
ABS 2 to ABS 1 at episode 2 between time steps 1231 and
1234.

Due to the nature of the query, the execution times
increased. They were as follows: 917s for Q-Learning, 1132s
for SARSA and 7914s for DQN. This is because for each
time slice (model version), it was needed to check how
the SINRs for each user u ∈ U changed over the defined
time window. Thus, it was necessary to check across all 10
episodes (each spanning 2000 time steps) the SINRs for each
of the 1050 users corresponding to each of the 2 ABSes.
This produced 10 × 2000 × 2 × 1050 = 42 000 000 situa-
tions to check. A way to tackle the processing time can be
using annotations as shown in [25]. Considering the previ-
ous, the situations found were very rare, representing only
4.2 × 10−5% for Q-Learning, 1.4 × 10−5% for SARSA. In
DQN, although the situations still represented a very small
percentage 1.9× 10−3%, further studies about collaborative
tasks are needed.

Listing 4 Excerpt of output from Algorithm 1 about handovers on the
system’s history (SARSA).

1 [... EolMap {SINR_1=80.76815264, ABS=1, user_id=477,
2 SINR_2=81.39525019, episode=3, step=912, step_handover

=915}, ...
3 EolMap {SINR_2=80.52090196, ABS=2, user_id=925, SINR_1

=81.20204141,
4 episode=2, step=1231, step_handover=1234}, ...]

6.4 Answering the research questions

In Sect. 5, we presented four research questions. The answers
to these questions are as follows:

• Answer to RQ1 on the feasibility of temporal models
and complex event processing for XRL: the architecture
of ETeMoX, powered by CEP and runtime models, pro-
vides an event-driven approach for TMs that can trace the
evolution of the decision-making in RL-AI-models and
the elements that affect it. The architecture can apply dif-
ferent filtering criteria to select relevant situations of the
execution of RL systems. It enables an XRL technique
that is independent of the RL-approach (i.e. AI-model-
agnostic). ETeMoX is able to construct explanations that
can focus on the evolution of specific metrics (Experi-
ment 5.1), relate different metrics (Experiment 5.2) and
also consider time to provide history-/time-aware expla-
nations (Experiment 5.3).

• Answer to RQ2 on types of explanations: ETeMoX
allows users to contrast the information of the different

RL-algorithms through visual data-driven explanations.
Plots, graphs and tables were used to illustrate the
explanatory information, which will allow developers to
control (i.e. debug) anddiscover insights from the system.
Based on these explanations we suggest that the RL-
algorithm with better performance for this case study is
Q-Learning, while DQN shows the poorest performance
and a variability on the collaborative task.

• Answer to RQ3 on costs: Regarding TGDBs sizes, when
using sampling the different approaches showed a lin-
ear decrease. As expected, the TGDB corresponding
to the full history required more disk space than the
TGDBswith less model versions. Regarding the process-
ing times, the behaviour was similar. Query processing
times decreased with less model versions to visit. On the
other hand, when using more complex filtering criteria
(e.g. Experiment 5.2), the costs depend on the nature of
the RL AI-model and the selection criteria.

• Answer to RQ4 on accuracy: Sampling the data at a rate
of 10 time steps presented an accurate representation of
the history, while requiring less resources (10% of the
model versions): a t-test did not reveal statistically sig-
nificant differences between using the full history and
sampling at this rate. Based on the results, this allows for
extracting similar conclusions from the sampled data. As
an example, we can still conclude that the episode with
greater reward is the 3rd on the case ofQ-Learning, the 7th

on SARSA and the 9th for DQN. Using a more complex
filtering criteria for storing the history creates a TGDB
of complex events with situations of interest for explana-
tions.

6.5 Discussion

From the RL developer’s point of view, retrieving historical
information about the locations of the ABSes, their SINRs,
and how many users were connected at specific time steps
provided a better understanding of how ABSes interacted
with the environment when using various RL-AI-models.
The interaction data that was collected during training and
execution retain more information than just the learned pol-
icy: studying how these metrics evolve reveals interesting
challenges encountered by the ABSes.

By analysing the collaborations within the multi-agent
system, the behaviour of each ABS gives us an understand-
ing about the reasons why the ABSes with the Q-Learning
RL-AI-model had more connected users overall (i.e. maxi-
mumglobal reward) than SARSAandDQN.TheQ-Learning
ABSes presented fewer handovers during the period of
simulation compared to those using SARSA and DQN.
Interestingly, the DQN ABses had a similar proportion of
exploration and exploitation to the SARSAABSes.However,
the DQN ABSes had far more handovers than the SARSA

123

Event-driven temporal models for explanations - ETeMoX: explaining reinforcement learning

ABSes. This allows developers to understand why the DQN
ABSes performed worse than the SARSAABSes in this case
study.

Furthermore, the analysis of collaborations shows that
SARSA-based ABSes have a level of knowledge of their
neighbours’ position and capacity. In this case study, an ABS
is rewarded if it increases its number of connected users, even
if it reduces the number of users of other ABSes. The total
reward is not an implicit learning constraint for the ABSes.
Experiment 5.3 showed, in both SARSA and Q-Learning
cases, that the number of handovers that happened during
the simulation was minimal. The latter seems to demonstrate
that the ABSes were able to perceive the intention of neigh-
bouring ABSes. In contrast, in the case of DQN, multiple
situations were found that show violations of the collabo-
ration principle. Therefore, more analysis on collaborative
ABSes with DQN AI-model is needed to have better under-
stand how Q-value function works in this case study.

Statistical and historical information can guide develop-
ers when working with AI-models to improve the learning
performance: for example, by imposing a balance between
exploration and exploitation if necessary. The exploration
and exploitation query can give developers further insights
about how to improve Q-Learning RL-AI-model perfor-
mance by increasing the exploration time. We believe that
this work can inspire promising RL researchers’ frontiers to
perceive the aptitude of agents driven by RL-AI-models with
automatically generated behaviour observation through our
framework.

6.6 Threats to validity

There are internal and external threats to validity. In terms
of internal threats, queries ran could be formulated in sev-
eral different ways, and a slightly different formulation could
have produced different results. For instance, since the meta-
model does not have an explicit attribute to mark exploration
vs exploitation, then if having multiple actions associated
with the best reward we could end up marking the action as
using exploitation when it had not been the case. Similarly,
defining a different time window for the handovers query
would have produced different results. The shown queries
and time windows were designed and configured in collabo-
ration with the case study developers, and they encode their
experience with RL: if needed, these can be modified with-
out major changes to ETeMoX. Finally, we used the t-test
assuming normality for comparing data sets, using differ-
ent statistical approaches could have produced contrasting
results. Such cases need to be studied further.

With respect to external threats, we developed the queries
focusing on the needs and requirements of the developers
of the ABS SAS. For other systems and other RL develop-
ers, other types of explanations may be needed. These new

explanations would require new queries, which may impose
new requirements on ETeMoX in terms of features or per-
formance requirements. Another external threat is that while
ETeMoXcan now sample andfilter the relevant history, still it
does not allow the limitation of the recorded history to a given
time window. Therefore, for longer training sessions, a capa-
bility for limitation as the one described may be needed for
better management of resource consumption. Furthermore,
if this temporal model were to live for long periods, it could
undergo changes in its structure (i.e. by metamodel evolu-
tion). In other words, the temporal model would need to be
made flexible enough to answer queries across the revisions
implied.

7 Related work

7.1 Explainable and interpretable reinforcement
Learning

RLAI-models has had great successes in solvingmulti-agent
collaborative tasks when three conditions are met: having an
environment, having a reward generation process, and hav-
ing agents interacting with the environment. [67]. General
RL algorithms require big quantities to obtain good perfor-
mance based on interactions with the environment, which
inhibits many practical applications, since obtaining envi-
ronment interactions is often costly and challenging [44].
Having interpretable RL algorithms will allow developers to
closely follow and fine turn the training process, improving
the sampling efficiency of the RL process while reducing
exploration time.

It is only recently that researchers have started investigat-
ing the way of explanations for RL algorithms. One approach
is illustrating how the actions affect the total value of the pol-
icy [19,30]. Van derWaa et al. proposed allowing users to ask
contrasting questions about why the RL algorithm followed
a certain policy (the fact) instead of an alternate (foil) policy
of their liking, having the RL algorithm trying to follow those
actions asmuch as possible,while presenting explanations on
how much the RL algorithm heeded those recommendations
and also why it did deviate from them [73]. This approach is
quite subjective, since users may have many different views.

Cashmore et al. also used contrasting questions to design
an approach for explainable planning. It allowed developers
to see the consequences of forcing a particular action to be
taken (rather than the one suggested by the algorithm) [11]:
their work mentioned the risks in improperly interpreting the
question, and the difficulties in formalising questions about
plan structures. Camacho et al. experimented with the use of
high-level notations (automata-based representations known
as reward machines or RMs) to reduce the burden of spec-
ifying reward functions, proposing translations from linear

123

J. M. Parra-Ullauri et al.

temporal logic formulas toRMs, and reporting improvements
in sample efficiency [9].

The approaches more closely related to the one presented
in this paper are reward decomposition [30] and interest-
ingness elements [62]. Reward decomposition focuses on
explaining why one action is preferred over another in terms
of reward types (positive or negative). This analysis can be
performed by our framework (with similar calculations), but
it is not limited to rewards neither to a reward on a spe-
cific point in time. We can also present explanations about
the system environment and states considering different time
points and/or time windows. The interestingness elements
approach collects data produced by the RL agent to present
visual explanations. The authors conclude that the diversity
of aspects captured by the different elements is crucial to help
humans correctly understand an agent’s strengths and limi-
tations. Unfortunately, this approach lacks a formal structure
to store the information, which is the advantage of using a
MDE approach. Having this defined structure for represent-
ing decision traceability would allow algorithm developers
to decouple the system to be explained from the rest of the
explanation infrastructure. Once a translator from the logs to
this metamodel is defined, the infrastructure and the queries
that have been written against this metamodel can be used.
The metamodel also enforces the use of a consistent level of
abstraction across multiple algorithms in the same domain,
helping perform comparisons among various RL algorithms.
Moreover, our approach considers resource constraints, such
as storage capacity and response times, tackling them through
the use of TGDB and CEP, which is not part of [62].

7.2 Runtimemonitoring

In this subsection, related work on runtime monitoring is
classified depending on the approach in which it is based on,
i.e. event-driven and CEP-based, graph-based monitoring,
and runtime modelling.

In regard to the event-driven and CEP-based approach-
es for runtime monitoring, Fowler [23] proposed an event
sourcing model that facilitates the traceability of the changes
over time of the application state as an event sequence. How-
ever, event sourcing can be costly in terms of performance
[45] since this model tracks every change leading up to a
state. The present work describes an event-driven approach
integrating CEP to both monitor event streams efficiently,
and also deal with scalability problems through the use of
temporal graphs for historical data.

Moser et al. [43] used CEP technology to create a flexi-
ble monitoring system with support for causal and temporal
dependencies betweenmessages forWS-BPEL service com-
position infrastructures. The proposal by Moser addresses
several requirements: unobtrusive platform agnosticism,

integration with other systems, multi-process monitoring,
and anomaly detection.

Asim et al. [3] proposed an event-driven approach for
monitoring both atomic and composite services at runtime.
By using CEP, this approach allows for the real-time detec-
tion of contract violations. Additionally, Romano et al.
[59] proposed the detection of contract violations through a
quality of service (QoS) monitoring approach for cloud com-
puting platforms. This approach integrated Content- Based
Routing (CBR) with CEP.

Cicotti et al. [13] presented a cloud-based platform-as-a-
service which is based on CEP and cloud computing. Service
Level Agreements (SLAs) can be analysed by collecting Key
Performance Indicators (KPIs) and defining CEP patterns.
WhenKPIs exceed certain thresholds, the violation condition
is prevented.

Barquero et al. presented an extension of CEP for graph-
structured data in [4], where event streams are transformed
into Spark datasets with a combination of persistent and tran-
sient data. The approach is able to take events from the Flickr
and Twitter APIs, reshape them into graph datasets, to finally
react on the fly to situations related to the interplay of these
two social networks (using GraphX patterns). The authors
reported good performance in these graph-structured scenar-
ios, but it had worse performance than standard CEP engines
in some situations, and writing SparkX queries proved to
be difficult. In comparison, ETeMoX uses a standard CEP
engine to filter what should be recorded into the TGDB: at
the moment, reacting to events using graph-oriented queries
would need periodic execution of a query in the provided
temporal query language. Speeding up this type of periodic
event detection query in ETeMoX would require the use of
timeline annotation, which we have discussed in prior work
[25].

With respect to work on runtime modelling, Gómez et al.
[26] proposed the TemporalEMF temporal metamodelling
framework, providing native temporal capabilities tomodels.
This framework extends the Eclipse Modelling Framework
(EMF) with the ability for model elements to store their his-
tories in NoSQL databases, supporting temporal operators
for retrieving the contents of the model at different points
in time. On the other hand, TemporalEMF did not provide
a full-featured temporal query language such as the Epsilon
Object Language dialect in the Eclipse Hawk tool used in the
present work.

Mazak et al. [39] proposed a runtime monitoring solu-
tion in which models can be partially mapped to time series
databases. The solution is able to collect runtime informa-
tion (i.e. time series data) and relate it to design models,
ensuring traceability between design and runtime activities.
More specifically, they presented a profile for annotating
EMF metamodels with the ability to record the values of

123

Event-driven temporal models for explanations - ETeMoX: explaining reinforcement learning

certain model element fields in time series databases, and
query their historical information later.

In our most recent work [48], we conducted a feasibility
study on the combination of temporal models and CEP for
software monitoring. In particular, the proposed architecture
was able to promptly respond to meaningful events (using
CEP) as well as flexibly access relevant linked historical data
(using TMs). In this previous work, CEP and TMs had not
been integrated yet to help manage storage and processing
trade-offs: they provided separate capabilities related to sys-
tem history. The present work represents substantial progress
in this area, as the CEP engine detects situation of interest
that should be reflected in the TM, acting as a filter.

8 Conclusion and future work

This paper presented ETeMoX, an architecture based on
Complex Event Processing (CEP) and temporal models
(TMs) to support explainable reinforcement learning (XRL),
targeting RL developers and RL-knowledgeable users.
Explanations are generated using CEP and TMs, and pre-
sented visually through graphs and plots. ETeMoX has been
applied to an RL-based self-adaptive system for mobile com-
munications. In order to test the model-agnosticism of the
approach, three different RL algorithms were used. The pre-
sented work has helped the case study developers to gain
deeper insights about the behaviour shown by the running
systemand the reasons for its decisions.As such, the develop-
ers were able to obtain explanations about both the evolution
of a metric and relationships between metrics. They were
also able to track relevant situations of interest that spanned
over time (i.e. over time windows).

To tackle the challenges in volume and throughput posed
by data-intensive systems as in the case of RL, we used
CEP as a real-time filter to select relevant points in time to
be recorded in the TGDBs. Different filtering criteria were
defined, and the trade-offs between storage and processing
costs and the accuracy of the presented results were anal-
ysed. Uniformly sampling the history of the system every
10 time steps produced a good representation: a statistical t-
test did not report significant differences in the query results
compared to using the full history. This allows for extracting
similar conclusions, while requiring less disk space (85%
to 88% less) and taking less time to compute (88% less).
Further, the system was able to correlate, process and fil-
ter data at runtime, providing the ability to flexibly define
filtering criteria for building a TGDB of complex events. It
allowed us to filter the history with domain-specific patterns
in real-time to construct explanations about exploration vs
exploitation. Finally, when using ETeMoX, the history can
be studied back and forth, while looking for situations that
took place over time. One example studied was handovers

of users between collaborating airborne base stations, over
certain time windows.

There are several avenues for future work. First, in rela-
tion to queries, processing times could be improved through
the integration of timeline annotations [25], which allow the
system to jump directly to situations of interest rather than
scanning the full history of the TGDB. In terms of filtering
criteria, CEP timewindow capabilities could be exploited for
focusing on the last n versions to only keep a time window
of the history in the TGDB, keeping resource consumption
bounded.

For future work, explanations can play a key role for
introducing the human-in-the-loop into RL-based systems.
Presenting explanations at runtime and providing effec-
tors/actuators for the user to interact with would allow
the RL-developer to steer the learning process and mod-
ify it when required. This corresponds to level 3 of the
proposed roadmap towards explainability in autonomous sys-
tems [49]. Additionally, distinct types of explanations can
be targeted, such as global explanations to provide a gen-
eral understanding of how the AI-model works. Further, the
recipient of the explanations could be the system itself (i.e.
self-explanations). With self-explanation support, the sys-
tem could use its own history as another input to underpin
its own decision-making (which corresponds to level 4 in
the same roadmap [49]). Our technical future work will also
include a benchmarking of ETeMoXwith the proposed XRL
approaches [30,62].

In addition, while the explanations were validated by the
RL developers of the ABS SAS case study, further studies
using other RL scenarios and developers about how explana-
tions are understood are required in order to fully answer
whether the explanations help RL developers in general
to improve their systems. The type of explanations pre-
sented, either textual or graphical,make the targeted audience
able to understand the data representations and can extract
knowledge from their system. We plan to test the approach
to evaluate the user perceptions using some well-known
techniques for software acceptance as theTechnologyAccep-
tance Model (TAM) [17] and its variants [71]. Additionally,
specific techniques to evaluate XAI as the one recently pro-
posed by Rosenfeld in [60] will be explored.

Finally, we have focused on explanations for RL develop-
ers; however, there exist other stakeholders that can also be
affected byAI-based systems.Asmentioned in [29], there are
different target audience profiles, each one with a different
technical background. They include as follows: developers,
experts (knowledgeable users), non-technical users, execu-
tives and regulatory agencies. Therefore, it is important to
define the intended target audience and the pursued goal
of the explanations generated (e.g. trustworthiness, informa-
tiveness, fairness, etc.). As such, more studies related to the

123

J. M. Parra-Ullauri et al.

explanation requirements from different actors in different
scenarios are envisaged.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10270-021-00952-
4.

Acknowledgements This work has been partially sponsored by The
Leverhulme Trust Fellowship “QuantUn: quantification of uncertainty
using Bayesian surprises” (Grant No. RF-2019-548/9), the EPSRC
Research Project Twenty20Insight (Grant No. EP/T017627/1), The
Royal Society of Edinburgh project “A Reinforcement Learning Based
ResourceManagement System for Long TermCare for Elderly People”
(Grant No. 961_Yang), the Spanish Ministry of Science and Innovation
and the European Regional Development Funds under project FAME
(Grant No. RTI2018-093608-B-C33], and the Research Plan from the
University of Cadiz and Grupo Ener-gético de Puerto Real S.A. under
project GANGES (Grant No. IRTP03_UCA).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey
on explainable artificial intelligence (xai). IEEE Access 6, 52138–
52160 (2018)

2. Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explain-
able agents and robots: results from a systematic literature review.
In: 18th International conference on autonomous agents and mul-
tiagent systems (AAMAS 2019), Montreal, Canada, May 13–17,
2019, pp. 1078–1088. International Foundation for Autonomous
Agents and Multiagent Systems (2019)

3. Asim, M., Llewellyn-Jones, D., Lempereur, B., Zhou, B., Shi, Q.,
Merabti, M.: Event Driven Monitoring of Composite Services. In:
2013 International conference on social computing, pp. 550–557
(2013). https://doi.org/10.1109/SocialCom.2013.83

4. Barquero, G., Burgueño, L., Troya, J., Vallecillo, A.: Extending
Complex Event Processing to Graph-structured Information. In:
Proceedings of MoDELS 2018, pp. 166–175. ACM, New York,
NY, USA (2018). https://doi.org/10.1145/3239372.3239402

5. Bencomo, N., Götz, S., Song, H.: Models@run.time: a guided
tour of the state-of-the-art and research challenges. Softw. Syst.
Model. 18(5), 3049–3082 (2019). https://doi.org/10.1007/s10270-
018-00712-x

6. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Com-
puter 42(10), 22–27 (2009). https://doi.org/10.1109/MC.2009.326

7. Boubeta-Puig, J., Ortiz, G., Medina-Bulo, I.: MEdit4CEP: a
model-driven solution for real-time decision making in SOA 2.0.
Knowledge-Based Syst. 89, 97–112 (2015). https://doi.org/10.
1016/j.knosys.2015.06.021

8. Bucchiarone, A., Cabot, J., Paige, R.F., Pierantonio, A.: Grand
challenges in model-driven engineering: an analysis of the state
of the research. Softw. Syst. Model. 19(1), 5–13 (2020)

9. Camacho, A., Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIl-
raith, S.A.: Ltl and beyond: Formal languages for reward function
specification in reinforcement learning. In: IJCAI 19, 6065–6073
(2019)

10. Carey, P.: Data Protection: A Practical Guide To UK and EU Law.
Oxford University Press Inc., Oxford (2018)

11. Cashmore, M., Collins, A., Krarup, B., Krivic, S., Magazzeni, D.,
Smith, D.: Towards explainable ai planning as a service. arXiv
preprint arXiv:1908.05059 (2019)

12. Castelvecchi, D.: Can we open the black box of ai? Nat. News
538(7623), 20 (2016)

13. Cicotti, G., Coppolino, L., Cristaldi, R., et al.: QoS Monitoring in
a cloud services environment: The SRT-15 Approach. In: Euro-Par
2011: Parallel processing workshops. LNCS, pp. 15–24. Springer,
Berlin, Heidelberg (2011)

14. Coggan, M.: Exploration and exploitation in reinforcement learn-
ing. CRA-W DMP Project at McGill University, Research super-
vised by Prof. Doina Precup (2004)

15. Corral-Plaza, D., Medina-Bulo, I., Ortiz, G., Boubeta-Puig, J.: A
stream processing architecture for heterogeneous data sources in
the Internet of Things. Comput. Standards Interfaces 70, 103426
(2020). https://doi.org/10.1016/j.csi.2020.103426

16. Cox, M.T.: Metareasoning, monitoring, and self-explanation.
Thinking about thinking, Metareasoning (2011)

17. Davis, F.D.: A technology acceptancemodel for empirically testing
new end-user information systems: theory and results. Ph.D. thesis,
Massachusetts Institute of Technology (1985)

18. De Freitas, E.P., Heimfarth, T., Netto, I.F., Lino, C.E., Pereira, C.E.,
Ferreira, A.M., Wagner, F.R., Larsson, T.: Uav relay network to
support wsn connectivity. In: international congress on ultra mod-
ern telecommunications and control systems, pp. 309–314. IEEE
(2010)

19. Dodson, T., Mattei, N., Guerin, J.T., Goldsmith, J.: An english-
language argumentation interface for explanation generation with
markov decision processes in the domain of academic advising.
ACM Trans. Interact. Intell. Syst. 3(3), 1–30 (2013)

20. Elastic: Introducting machine learning for the Elastic stack (2017).
Last checked: 2020-05-15

21. Esling, P., Agon, C.: Time-series data mining. ACMComput. Surv.
10(1145/2379776), 2379788 (2012)

22. Feltrin, G., Popovic, N., Wojtera, M (2019) A sentinel node for
event-driven structural monitoring of road bridges using wireless
sensor networks. https://doi.org/10.1155/2019/8652527

23. Fowler, M.: Event sourcing. Online, Dec p. 18 (2005)
24. Fridman, L., Brown, D.E., Glazer, M., Angell, W., Dodd, S.,

Jenik, B., Terwilliger, J., Kindelsberger, J., Ding, L., Seaman, S.,
et al.:MIT autonomous vehicle technology study: Large-scale deep
learning based analysis of driver behavior and interaction with
automation. arXiv preprint arXiv:1711.06976 1 (2017)

25. Garcia-Dominguez, A., Bencomo, N., Parra-Ullauri, J.M., García-
Paucar, L.H.: Querying and annotating model histories with time-
aware patterns. In: 2019ACM/IEEE 22nd International conference
on model driven engineering languages and systems (MODELS),
pp. 194–204. IEEE (2019)

26. Gómez, A., Cabot, J., Wimmer, M.: TemporalEMF: A Temporal
Metamodeling Framework. In: J.C. Trujillo, K.C. Davis, X. Du,
Z. Li, T.W. Ling, G. Li, M.L. Lee (eds.) Conceptual Modeling,
Lecture Notes in Computer Science, pp. 365–381. Springer Inter-
national Publishing, Cham (2018). https://doi.org/10.1007/978-3-
030-00847-5_26

27. Haeusler, M., Trojer, T., Kessler, J., et al.: ChronoSphere: a graph-
based EMFmodel repository for IT landscapemodels. Softw. Syst.
Model. (2019)

123

https://doi.org/10.1007/s10270-021-00952-4
https://doi.org/10.1007/s10270-021-00952-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SocialCom.2013.83
https://doi.org/10.1145/3239372.3239402
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1016/j.knosys.2015.06.021
https://doi.org/10.1016/j.knosys.2015.06.021
http://arxiv.org/abs/1908.05059
https://doi.org/10.1016/j.csi.2020.103426
https://doi.org/10.1155/2019/8652527
http://arxiv.org/abs/1711.06976
https://doi.org/10.1007/978-3-030-00847-5_26
https://doi.org/10.1007/978-3-030-00847-5_26

Event-driven temporal models for explanations - ETeMoX: explaining reinforcement learning

28. Hartmann, T., Fouquet, F., et al.: Analyzing complex data inmotion
at scale with temporal graphs. In: Proceedings of SEKE’17 (2017)

29. Heuillet, A., Couthouis, F., Díaz-Rodríguez, N.: Explainability in
deep reinforcement learning. Knowl. Based Syst. 214, 106685
(2021)

30. Juozapaitis, Z., Koul, A., Fern, A., Erwig, M., Doshi-Velez, F.:
Explainable reinforcement learning via reward decomposition. In:
IJCAI/ECAIWorkshopon explainable artificial intelligence (2019)

31. Konno, S., Défago, X.: Approximate QoS Rule Derivation Based
on Root Cause Analysis for Cloud Computing. In: 2019 IEEE
24th Pacific Rim international symposium on dependable com-
puting (PRDC), pp. 33–3309 (2019). https://doi.org/10.1109/
PRDC47002.2019.00020. ISSN: 2473-3105

32. Le Bras, P., Robb, D.A., Methven, T.S., Padilla, S., Chantler, M.J.:
Improving user confidence in concept maps: exploring data driven
explanations. In: Proceedings of CHI 2018. ACM (2018)

33. Letham, B., Rudin, C.,McCormick, T.H.,Madigan, D., et al.: Inter-
pretable classifiers using rules and bayesian analysis: building a
better stroke prediction model. Ann. Appl. Stat 9(3), 1350–1371
(2015)

34. Light, R.: Mosquitto: server and client implementation of the
MQTT protocol. J. Open Source Softw. 2, 265 (2017)

35. Lim,B.Y.,Dey,A.K.,Avrahami,D.:Why andwhynot explanations
improve the intelligibility of context-aware intelligent systems. In:
Proceedings of CHI 2009. ACM (2009)

36. Lipton, Z.C.: The mythos of model interpretability: in machine
learning, the concept of interpretability is both important and slip-
pery. Queue 16(3), 31–57 (2018)

37. Luckham, D.C., Frasca, B.: Complex event processing in dis-
tributed systems. Computer systems laboratory technical report
CSL-TR-98-754. Stanford University, Stanford 28, 16 (1998)

38. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applica-
tions of deep learning and reinforcement learning to biological data.
IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018).
https://doi.org/10.1109/TNNLS.2018.2790388

39. Mazak, A., Wolny, S., Gómez, A., Cabot, J., Wimmer, M., Kappel,
G.: Temporal models on time series databases. J. Object Technol.
19(3), 3:1 (2020). https://doi.org/10.5381/jot.2020.19.3.a14

40. Merwaday, A., Guvenc, I.: Uav assisted heterogeneous networks
for public safety communications. In: 2015 IEEEwireless commu-
nications and networking conference workshops (WCNCW), pp.
329–334. IEEE (2015)

41. Mitchell, R., Michalski, J., Carbonell, T.: An Artificial Intelligence
Approach. Springer, Berlin (2013)

42. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J.,
Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K.,
Ostrovski, G., et al.: Human-level control through deep reinforce-
ment learning. Nature 518(7540), 529 (2015)

43. Moser, O., Rosenberg, F., Dustdar, S.: Event Driven Monitoring
for Service Composition Infrastructures. In: L. Chen, P. Tri-
antafillou, T. Suel (eds.) Web Information Systems Engineering—
WISE 2010, Lecture Notes in Computer Science, pp. 38–51.
Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17616-6_6

44. Oh, J., Hessel, M., Czarnecki, W.M., Xu, Z., van Hasselt, H.,
Singh, S., Silver, D.: Discovering reinforcement learning algo-
rithms. arXiv preprint arXiv:2007.08794 (2020)

45. Overeem, M., Spoor, M., Jansen, S.: The dark side of event
sourcing: Managing data conversion. In: 2017 IEEE 24th interna-
tional conference on software analysis, evolution and reengineering
(SANER), pp. 193–204. IEEE (2017)

46. Panch, T., Szolovits, P., Atun, R.: Artificial intelligence, machine
learning and health systems. J. Glob. Health 8(2) (2018)

47. Parra-Ullauri, J.M.: ETeMoX event-driven temporal models for
explanations (2021). https://gitlab.com/sea-aston/etemox

48. Parra-Ullauri, J.M., García-Domínguez, A., Boubeta-Puig, J., Ben-
como, N., Ortiz, G.: Towards an architecture integrating complex
event processing and temporal graphs for service monitoring
(2021)

49. Parra-Ullauri, J.M., García-Domínguez, A., García-Paucar, L.H.,
Bencomo, N.: Temporal models for history-aware explainability.
In: Proceedings of the 12th system analysis and modelling confer-
ence, pp. 155–164 (2020)

50. Paul, L.C.: Handoff/handover mechanism for mobility improve-
ment in wireless communication. Glob. J. Res. Eng. (2014)

51. Petter, E.A., Gershman, S.J., Meck, W.H.: Integrating models of
interval timing and reinforcement learning. Trends Cogn. Sci.
22(10), 911–922 (2018)

52. Poole David Mackworth Alan, G.R.: Computational intelligence:
a logical approach.(1998). Google scholar google scholar digital
library digital library (1998)

53. Popovic, N., Feltrin, G., Jalsan, K.E., Wojtera, M.: Event-driven
strain cycle monitoring of railway bridges using a wireless sensor
network with sentinel nodes. Struct. Control. Health Monit. 24(7),
e1934 (2017). https://doi.org/10.1002/stc.1934

54. Puiutta, E., Veith, E.M.: Explainable reinforcement learning: a
survey. In: International cross-domain conference for machine
learning and knowledge extraction, pp. 77–95. Springer (2020)

55. Ras, G., van Gerven, M., Haselager, P.: Explanation methods in
deep learning: users, values, concerns and challenges. In: Explain-
able and interpretable models in computer vision and machine
learning, pp. 19–36. Springer (2018)

56. Ricciato, F., Widhalm, P., Craglia, M., Pantisano, F.: Estimating
population density distribution from network-based mobile phone
data. Publications Office of the European Union (2015)

57. Robinson, I., Webber, J., Eifrem, E.: Graph databases, second edn.
O’Reilly (2015). ISBN 978-1-4919-3089-2

58. Roldán, J., Boubeta-Puig, J., Martínez, J.L., Ortiz, G.: Integrat-
ing complex event processing and machine learning: an intelligent
architecture for detecting IoT security attacks. Expert Syst. Appl.
(2020). https://doi.org/10.1016/j.eswa.2020.113251

59. Romano, L., De Mari, D., Jerzak, Z., Fetzer, C.: A novel approach
to QoS Monitoring in the Cloud. In: 2011 First international con-
ference on data compression, communications and processing, pp.
45–51 (2011)

60. Rosenfeld, A.: Better metrics for evaluating explainable artificial
intelligence. In: Proceedings of the 20th international conference
on autonomous agents and multiagent systems, pp. 45–50 (2021)

61. Samek, W., Wiegand, T., Müller, K.R.: Explainable artificial intel-
ligence: Understanding, visualizing and interpreting deep learning
models. arXiv preprint arXiv:1708.08296 (2017)

62. Sequeira, P., Gervasio, M.: Interestingness elements for explain-
able reinforcement learning: understanding agents capabilities and
limitations. Artif. Intell. 288, 103367 (2020)

63. Spinner, T., Schlegel, U., Schäfer, H., El-Assady, M.: Explainer: a
visual analytics framework for interactive and explainablemachine
learning. IEEE Trans. Visual Comput. Graphics 26(1), 1064–1074
(2019)

64. Student: The probable error of a mean. Biometrika 6(1), 1–25
(1908). https://doi.org/10.2307/2331554

65. Such, F.P.,Madhavan,V., Liu, R.,Wang,R., Castro, P.S., Li,Y., Zhi,
J., Schubert, L., Bellemare, M.G., Clune, J., et al.: An Atari model
zoo for analyzing, visualizing, and comparing deep reinforcement
learning agents. arXiv preprint arXiv:1812.07069 (2018)

66. Sutton, R.S.: Generalization in reinforcement learning: Success-
ful examples using sparse coarse coding. In: Advances in neural
information processing systems, pp. 1038–1044 (1996)

67. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduc-
tion. MIT press, Cambridge (2018)

68. Theodoridis, T., Solachidis, V., Dimitropoulos, K., Gymnopoulos,
L., Daras, P.: A survey on ai nutrition recommender systems. In:

123

https://doi.org/10.1109/PRDC47002.2019.00020
https://doi.org/10.1109/PRDC47002.2019.00020
https://doi.org/10.1109/TNNLS.2018.2790388
https://doi.org/10.5381/jot.2020.19.3.a14
https://doi.org/10.1007/978-3-642-17616-6_6
https://doi.org/10.1007/978-3-642-17616-6_6
http://arxiv.org/abs/2007.08794
https://gitlab.com/sea-aston/etemox
https://doi.org/10.1002/stc.1934
https://doi.org/10.1016/j.eswa.2020.113251
http://arxiv.org/abs/1708.08296
https://doi.org/10.2307/2331554
http://arxiv.org/abs/1812.07069

J. M. Parra-Ullauri et al.

Proceedings of the 12th ACM International Conference on PErva-
sive technologies related to assistive environments, pp. 540–546
(2019)

69. Turilli, M., Floridi, L.: The ethics of information transparency.
Ethics Inf. Technol. 11(2), 105–112 (2009)

70. Valente Klaine, P.H.: Self-organization for 5g and beyond mobile
networks using reinforcement learning. Ph.D. thesis, University of
Glasgow (2019)

71. Venkatesh, V., Davis, F.D.: A theoretical extension of the technol-
ogy acceptancemodel: four longitudinal field studies.Manage. Sci.
46(2), 186–204 (2000)

72. Vijayakumar, K., Arun, C.: Automated risk identification using
NLP in cloud based development environments. J. Ambient Intell.
Hum. Comput. 1–13 (2017)

73. van der Waa, J., van Diggelen, J., Bosch, K.v.d., Neerincx, M.:
Contrastive explanations for reinforcement learning in terms of
expected consequences. arXiv preprint arXiv:1807.08706 (2018)

74. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–
292 (1992)

75. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis,
King’s College, Cambridge (1989)

76. Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with
unmanned aerial vehicles: opportunities and challenges. IEEE
Commun. Mag. 54(5), 36–42 (2016)

77. Zheng, C., Yang, S., Parra-Ullauri, J.M., Garcia-Dominguez, A.,
Bencomo, N.: Reward-reinforced generative adversarial networks
for multi-agent systems. IEEE Trans. Emerg. Top. Comput. Intell.
(2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Juan Marcelo Parra-Ullauri obtai-
ned the degree of Engineer on
Electronics and Telecommunica-
tions from the University of
Cuenca, Ecuador in 2017. Cur-
rently, he is a PhD candidate at
Aston University in the UK. His
research interests include model-
driven engineering, autonomous
self-adaptive systems and explain-
ability in AI-driven systems. Juan
is interested in applying these app-
roaches to cyber-physical systems,
Internet of things and ambient assisted
living contexts.

Antonio García-Domínguez is a
Lecturer in Computer Science at
Aston University (UK). His main
research interests are software test-
ing and model-driven engineer-
ing: in both of these
fields, the increase in system sizes
has required the adoption of AI-
based approaches and non-
relational database technologies to
scale up. In addition to over 10
papers in peer-reviewed journals
and over 40 papers in conferences
and workshops, Antonio is a core

contributor in several related open
source projects. Some of these projects include the Eclipse Epsilon
model management languages and tools, the MuBPEL mutation test-
ing framework for WS-BPEL, or the Eclipse Hawk model indexing
framework.

Nelly Bencomo is an Associate
Professor at Durham University
in the UK. Her research interests
in Software Engineering include
Decision-making under Uncertai-
nty, Model-Driven Engineering,
Autonomous Systems, Artificial
Intelligence, and Requirements
Engineering. She was awarded EU
MC and UK Leverhulme Individ-
ual Fellowships. She is the PI
of the EPSRC Project Twenty20
Insight. Contact her at nelly@acm.org
or visit her web.

Changgang Zheng is a DPhil can-
didate at the University of Oxford
and a member of Jesus College.
He was graduated from the Uni-
versity of Electronic Science and
Technology of China and the Uni-
versity of Glasgow joint school
in 2020. Currently, he is a mem-
ber of the Computing Infrastruc-
ture Group and working under
the In-network machine learning
project to explore the potential
use of commodity programmable
switches.

Chen Zhen is a master’s stu-
dent at the University of Science
and Technology of China and he
also graduated from the USTC.
His interests include reinforcement
learning and flight control of
quadrotor unmanned aerial vehi-
cle.

123

http://arxiv.org/abs/1807.08706

Event-driven temporal models for explanations - ETeMoX: explaining reinforcement learning

Juan Boubeta-Puig is an Asso-
ciate Professor with the Depart-
ment of Computer Science and
Engineering at the University of
Cádiz (UCA), Spain. He received
his Ph.D. in Computer Science
from UCA in 2014 and was hon-
oured with the Extraordinary Ph.D.
Award from UCA and the Best
Ph.D. Thesis Award from the
Spanish Society of Software
Engineering and Software
Development Technologies (SIST-
EDES). His research interests
include real-time big data analyt-

ics through Complex Event Processing (CEP), Event-Driven Service-
Oriented Architecture (SOA 2.0), Internet of Things (IoT), Blockchain
and Model-Driven Development (MDD) of advanced user interfaces,
and their application to e-health, smart city, industry 4.0 and cyberse-
curity.

Guadalupe Ortiz is Associate Pro-
fessor in Computer Science and
Engineering at the University of
Cádiz. She has published over 100
peer-reviewed papers in interna-
tional journals, workshops and
conferences. She has participated
in various programme and organ-
isation committees of scientific
workshops and conferences and
acts as a reviewer for several jour-
nals. Her research interests embr-
ace software architectures for
context-aware services and their
adaptation to edge devices, as well

as the integration of CEP in service-oriented architectures in the scope
of the IoT and sustainable smart cities.

Shufan Yang is the Associate
Professor at Software Engineer-
ing Technology Subject Group,
School of Computing at Edinburgh
Napier University. Dr. Yang obtai-
ned her PhD degree in Computer
Science from the University of
Manchester in 2010. She is a char-
tered engineer and a fellow for
British Computer Society and
IEEE Senior Member. Dr. Shu-
fan Yang’s current research inter-
ests include cognitively inspired
AI, reinforcement learning, deep
learning, computer vision and

AI+healthcare (ambient intelligent systems for healthcare). In the past
she has also worked on system-on-chip and computational Neuromor-
phic computing.

123

	Event-driven temporal models for explanations - ETeMoX: explaining reinforcement learning
	Abstract
	1 Introduction
	2 Background
	2.1 Artificial intelligence, machine learning and reinforcement learning
	2.2 Motivations for explanations in artificial intelligence
	2.3 Common approaches in XAI/XRL
	2.4 Historical data management
	2.5 Event-driven monitoring

	3 Proposal: ETeMoX framework
	3.1 Translator component
	3.2 Filter component
	3.3 Temporal model component
	3.4 Explainer component
	3.5 ETeMoX step-by-step guideline

	4 Case study: autonomous airborne base stations
	4.1 Description of the case study
	4.1.1 Q-Learning
	4.1.2 State-action-reward-state-action (SARSA)
	4.1.3 Deep Q-network (DQN)

	4.2 Explanation requirements for developers
	4.3 Integration with ETeMoX

	5 Experiments
	5.1 Experiment 1: evolution of a metric
	5.2 Experiment 2: exploration versus exploitation
	5.3 Experiment 3: collaborations within the multi-agent system

	6 Evaluation of results
	6.1 Evaluation 1: evolution of a metric
	6.2 Evaluation 2: exploration versus exploitation
	6.3 Evaluation 3: collaborations within the multi-agent system
	6.4 Answering the research questions
	6.5 Discussion
	6.6 Threats to validity

	7 Related work
	7.1 Explainable and interpretable reinforcement Learning
	7.2 Runtime monitoring

	8 Conclusion and future work
	Acknowledgements
	References

