Department: SE for Al

Editor: Tim Menzies, timm@ieee.org

The Secret to Better Al and
Better Software (is
Requirements Engineering

Nelly Bencomo, Jin L.C. Guo, Rachel Harrison, and Hans-Martin Heyn. Tim Menzies
Durham University, UK; McGill University, Canada; Oxford Brookes University, UK; University of

Gothenburg, Sweden; NC State, USA

Abstract—Much has been written about the algorithmic role that Al plays for automation in SE.
But what about the role of Al, augmented by human knowledge? Can we make a profound
advance by combining human and artificial intelligence? Researchers in requirements
engineering think so, arguing that requirement engineering is the secret weapon for better Al

and better software.

Much has been written about the algorithmic role that Al
plays for automation in SE. But what about the role of Al,
augmented by human knowledge? Can we make a profound
advance by combining human and artificial intelligence?
Researchers in requirements engineering think so, arguing
that requirement engineering is the secret weapon for better
Al and better software'.

To begin, we first need a definition. What is requirements
engineering or RE? RE used to be viewed as an early lifecycle
activity that proceeded analysis, design, coding and testing.
For safety critical applications there is certainly a pressing
need to create those requirements before the coding starts
(we will return to this point, later in the paper). However,
in this age of DevOps and Autonomous and Self-adaptive
systems, requirements can happen at many other times in a
software project[15], [14]. We say that:

Requirements engineering is any discussion
about what to build and how to trade-off compet-
ing cost/benefits. It can happen before, during, or
after runtime.

I'This paper is based on the Panel “Artificial Intelligence and
Requirement Engineering: Challenges and Opportunities”, which
took place at the Eighth International Workshop on Artificial
Intelligence and Requirements Engineering (AIRE).

IEEE Software (submitted)

Published by the IEEE Computer Society

As shown in Table 1 and Table 2, there are many ways Al
can help RE, across a broad range of SE activities. But, what
about the other way around? If we add more requirements into
Al and use RE methods to get truly desired requirements, can
we make better software by combining human and artificial
intelligence?

In our view, when integrating Al into software engineer-
ing is a co-design problem between humans, the Al model, the
data required to train and validate the desired behaviour, and
the hardware running the Al model, in addition to the classical
software components. This means that when integrating Al,
you need to know and understand the context of the system
in which you want to apply your Al model to derive the
necessary model requirements [17].

For example, in the arena of safety critical systems,
model construction must be guided by safety requirements.
one challenge for Al in RE are safety standards that base on
the EN-IEC 61508 standard®. These safety standards assume
that for software only systematic faults exists. Therefore,
they emphasise correct processes and the creation of lifecycle
artifacts to minimise systematic mistakes during both the

2Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems; for example ISO 26262 for
the automotive sector or IEC 61511 for the process industry.

© 2021 IEEE



Department Head

Formal methods Expressing domain knowledge and software as axioms, then reasoning about those acions.
Theorem provers A special kind of formal methods. Finds settings to variables that satisfy constraints.
Data miners Divide data into regions, summarize each region.

Defect predictors A kind of data mining. Finds likely locations of bugs

Optimizers Divide data into regions, then recommend how to move for worse to better regions.

Genetic algorithms A special kind of optimizer that mutates populations of candidates over many generations (the best candidates
are mutated and mixed together to create the next generation).

Text mining Find structures in large sets of natural language.
Sentiment analysis A special kind of text mining. Guess the mood of the an author, based on their writing.
Topic modeling A special kind of text mining. Finds conjunctions of terms (called “topics”) that often occur together in

different parts of some text.

Table 1. Some Al tools useful for RE.

Al for RE at design time: One Al technology that can help software design work is text mining and, more specifically, sentiment
analysis and topic modeling. Sentiment analysis can explore, at scale, many comments about certain apps and their concrete
features. These tools can help app developers to systematically analyze user opinions about individual features, filter irrelevant
reviews, and perform competitor analysis [1], [2]. As to topic modeling, this is a method for finding conjunctions of terms (called
“topics”) that often occur together in different parts of some text. Parker et al. use topic modeling to bridge the vocabulary gap
between users’ comments from the app review and product descriptions [3]. Stanik et al. adopt the latest language model to cluster
topics from Twitter content about the software to reveal trends of the user feedback and therefore prioritize future effort.

Apart from topic modeling, another AI technology that can help early life cycle discussions are multi-objective optimizers
and theorem provers. These tools serve as aids to users as they navigate the competing constraints seen in software product lines.
Theorem provers find settings to variables that satisfy constraints while multi-objective optimizers divide what we know about a
domain into regions, then recommend how to move from worse to better regions. This can be useful during design discussions
while struggling to navigate competing constraints in order to generate a design. Multi-objective optimizers know how to trade
between competing concerns and are very useful— for example, see the work of Bowers et al. using search-based heuristics to
address that issue [4]. See also Vescan et al. who use genetic algorithms to learn a tree of features that describe a current system [5]
and Abdelnabi et al. who use natural language process techniques to generate object-oriented class diagrams from a requirements
specification [6]. This technology is particularly exciting for requirements engineering since decades of research has resulted in
optimization and theorem proving algorithms that scale to very large models (see, for example, Sayyad et al.’s exploration of
100,000s of requirements constraints in the Linux kernel [7]).

Al for RE during testing: AI is also useful for testing requirements and checking if the stated requirements are actually
implemented. Automated traceability analysis builds on text mining and information retrieval methods to establish links between
heterogeneous text documents or between textual requirements and source code [8], [9].

Al for RE during deployment: When we deploy software into the cloud, there is a need for automated “requirements agents”
that can negotiate the appropriate access to shared resources. Backes et al. describe one such system deployed into Amazon Web
Services [10]. After extracting theorems from the AWS software configuration files, that system runs theorem provers billions of
times per day in order to ensure all the AWS access requirements are preserved.

Al for RE for configuration: Another requirements problem seen when a system is deployed is configuration. In their article
‘Hey, You’ve Given me too Many Knobs!” [11], Tu et al. warn about what happens when users are giving too many options. They
report that the overwhelming majority of configuration options are not used in modern software. This means, in turn, that that
software is not fulfilling its requirements, e.g. minimizing energy usage, maximizing transfer of data, responding to user queries in
a timely manner, etc. Here too, Al can proof to be very useful. Kaltenecker et al. report on the success of data mining technology
to sample the effects of past configurations in order to suggest better configurations for now and the future [12].

Al for RE at runtime: During runtime several Al techniques offer potential to use data that is available just at runtime and that
can support decision making, in order to deal with uncertainty in a principled way. For example, Bayesian inference and Bayesian
surprises can be used for quantitative analysis to measure degrees of uncertainty and deviations of self-adaptive systems from
normal behavior [13]. The key idea is that a surprising event can be defined as one that causes a large divergence between the
belief distributions prior to and posterior to the event. Therefore, in order to satisfy its requirements, the system may decide either
to adapt accordingly or to flag that an abnormal situation is happening during runtime, and based on data that was not available
during design time.

One research community that actively explores “Al for RE at runtime” is self-adaptation and autonomous systems. The
authors of [14] argued that self-adaptive systems should be aware of their own requirements (i.e requirements happen at runtime).
Requirements for self-adaptive systems are defined before runtime taking into account uncertainty [15], [16]. However, these
requirements should also be run-time entities that can be reasoned over to understand the extent to which they are being satisfied,
to support decision making for self-adaptation under uncertainty at runtime.
able 2. Some examples of AI for RE across the life-cycle. Just to say the obvious, the above is just a small sample

of where Al is being applied to RE. For the reader interested in the keeping up with the state of the art in this
exciting area, we refer them to the annual proceedings of the International on Requirements Engineering Conference

https://requirements-engineering.org.

IEEE Software (submitted)


https://requirements-engineering.org

Challenge

Opportunity

Formal methods | Where to get the axioms?

Infer from config files

Text mining. | Sub-optimal

Hyperparameter optimization

Configuration. | It works. Why not used more?

More AI Education

Multi-objective optimization | Taming runtimes.

Use stakeholder knowledge to reduce search space

Deep Learning | Deep confusion

towards Human-AI Collaboration. Common vocabulary

Other AI algorithms | Needs scaling; needs explanation

and common understanding between different communities

Table 3. Some challenges and opportunities for the technology discussed above. Note that for the last three challenges,

stakeholder knowledge is the key opportunity.

concept and the design phase of the system. Applying Al
for RE in the concept phase would require, a safety qualified
Al performing the RE tasks. Such “tool qualifications”, for
example for ISO 26262, would require that the Al tool is
developed according to a suitable standard, or that evidence
is proved “’that the assessed tool errors either do not occur
or will be detected”[18]. That is, for such systems, humans
are still needed to ensure we produce ethical Al [19].

This is boon and bane at the same time. On one hand
it might be difficult and not feasible to consider every
contextual attributes and their possible changes at design time
for the entire operational environment of your system, see for
example [15]. On the other hand, a clear understanding of
context and constraints offers opportunities to simplify the
learning problem, such that the data required to train the
desired behavior can be found, or created, more efficiently.
For example, assume that you want a simple classifier for
handwritten numbers from 0 to 9. Traditionally, you would
have to collect thousand of examples for each number to train
a (deep learning) classifier, which will use properties such as
curvature, shape, etc. to discriminate between the digits. Now
assume you have the context that each number is written in
a different, digit-specific color. In this context, the classifier
only needs to learn the correlation between color and digit,
which will require significant less data samples (specifically
10).

Safety critical systems must be understandable and au-
ditable by humans (this is especially true if those systems
ever fail and we must fix their problem). The more an Al tool
understands human requirements, and human reasoning, the
more they can produce simpler and more explicable models.

One concern with this “keep it simple” approach is that
some fear that such simpler models will perform worse than
more complex options. In some domains, this is certainly
true; e.g. when processing 10,000 wavelets from a signal pro-
cessing model which, in turn, is controlling an autonomous
car. But in many domains, there is much evidence that
simpler need not be more stupid; e.g. see the examples
listed by Rudin [20] or recent results in software defect
prediction [21]). In addition, high safety integrity demands
systems that are as simple as possible; trying to achieve a
high safety integrity level on a complex system will most
likely cost a fortune, or is simply impossible.

The Road Ahead

Table 3 lists some of the technologies discussed above
and their challenges. For example, until just recently, formal
methods needed humans to manually craft the axioms needed
for their operation. But now, we can apply formal methods
to requirements engineering by automatically extracting those
axioms from configuration files [10].

As to text mining (and, indeed, any Al inference tool),
these came with so many configuration options that indus-

September 2021

trial practitioners routinely shipped to industry suboptimal
products [22]. But using multi-objective optimizers, we can
auto-configure and improve these complex tools [22].

Note that we mentioned configuration in both the last
two paragraphs. There is so much recent success in automatic
configuration in order to satisfy numerous requirements. This
is partly due to the advent of the alignment of ML and
DevOps in MLOps, which helps to increase automation [23].
So why are not these tools used more widely? The answer,
we think is to improve Al education. Too many software
engineers seem to view Al as an incomprehensible black box.
We need to show software engineers that Al software is just
software. That is, up to a point, software is something that
can be can be refactored and improved by software engineers.

The last three rows of Table 3 deserve special attention.
All these tasks must explore complex spaces to return,
perhaps, very complex models. Here, we assert there is much
benefit in injecting requirements to reduce the complexity
and increase the explainability of these tools. The standard
workhorse of industrial Al is classification and regression
that forms models from independent variables to predict for
a single class variable. Viewed from the lens of requirements
engineering, that may seem a very strange process (at least,
to non-RE people). The lesson from decades of requirements
research is that users come from different stakeholder groups
and the requirements of each group are expressed as different
sets of multiple goals. That is, the landscape of the problem
is not one hill with a single top. Rather, our stakeholders live
in different high mountain valleys, surrounded by a intricate
multi-dimensional landscape. An Al tool that tries to build
one model with one goal across that landscape will end up
satisfying very few of the stakeholders (if indeed, any at
all). So what we propose is to reverse the formulation of the
problem and consider what happens if we add requirements
into Al:

e When an Al tool is aware of different requirements, they
dramatically reduce their search space.

e Specifically, if we sort candidate solutions into different
goals, and if we discard the worst half, then N-goals
wipes out 2N parts of the problem (caveat: and different
stakeholder goals wipe out different parts of the space).

e Such requirements-aware tools can terminate in logarith-
mic time (orders of magnitude faster than alternate tools
that do not exploit the landscape of the solution) [21].

An Interdisciplinary Approach

Interdisciplinary collaboration is critical. Unfortunately
our sub-communities are divided by the languages we use.
Unless we agree on common terminology, misunderstandings
will persist. We think RE education (and SE in general) needs
to improve. Al experts need to understand the importance of
SE. A common vocabulary and understanding are needed for




Department Head

these communities, to be able to exploit their strengths [24].
Therefore, additional effort on educating Al experts the SE
knowledge is also critical to bridge the communication gap
and to set reasonable expectations.

Final Thoughts

In our view, intelligence means navigating a landscape of
(often competing) constraints. And user requirements is how
we define that landscape. That is, mathematically speaking,
user requirements are the forces that change the shape of
the ideas explored by AI’. Hence we say Al and RE are
inexorably linked. We cannot get the most out of AI/RE
without working more on RE/AI:

e Al techniques can offer useful comments on many parts
of that landscape.

e Requirements engineering can be used to quickly rule out
the less-than-useful parts of that space.

To say that another way, ignoring either can be detrimental
to the other. And to get the most out of both each means
working harder on each.

B REFERENCES

1. E. Guzman and W. Maalej, “How do users like this
feature? a fine grained sentiment analysis of app re-
views,” in 2014 |IEEE 22nd International Requirements
Engineering Conference (RE), 2014, pp. 153—162.

2. F. Dalpiaz and M. Parente, “Re-swot: from user feed-
back to requirements via competitor analysis,” in Inter-
national working conference on requirements engineer-
ing: foundation for software quality. Springer, 2019, pp.
55-70.

3. D. H. Park, M. Liu, C. Zhai, and H. Wang, “Leveraging
user reviews to improve accuracy for mobile app re-
trieval,” in Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, 2015, pp. 533-542.

4. K. M. Bowers, E. M. Fredericks, R. H. Hariri, and B. H.
Cheng, “Providentia: Using search-based heuristics to
optimize satisficement and competing concerns be-
tween functional and non-functional objectives in self-
adaptive systems,” Journal of Systems and Software,
vol. 162, p. 110497, 2020.

5. A. Vescan, A. Pintea, L. Linsbauer, and A. Egyed, “Ge-
netic programming for feature model synthesis: a repli-
cation study,” Empirical Software Engineering, vol. 26,
no. 4, pp. 1-29, 2021.

6. E. A. Abdelnabi, A. M. Maatuk, T. M. Abdelaziz, and
S. M. Elakeili, “Generating uml class diagram using
nlp techniques and heuristic rules,” in 2020 20th In-
ternational Conference on Sciences and Techniques of

3For more on the mathematics of user requirements, see the
formal analysis of Jureta et al. [25] or the empirical analysis of
Mathew et al. [26].

10.

11.

12.

13.

14.

15.

Automatic Control and Computer Engineering (STA),
2020, pp. 277-282.

A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar,
“Scalable product line configuration: A straw to break
the camel’s back,” in 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
2013, pp. 465-474.

J. Cleland-Huang, O. Gotel, A. Zisman et al., Software
and systems traceability. Springer, 2012, vol. 2, no. 3.
M. Rath, J. Rendall, J. L. C. Guo, J. Cleland-
and P. Mé&der,
Automatically augmenting incomplete trace links,” in

Huang, “Traceability in the wild:
Proceedings of the 40th International Conference on
Software Engineering, ser. ICSE '18. New York, NY,
USA: Association for Computing Machinery, 2018, p.
834-845. [Online]. Available: https://doi.org/10.1145/
3180155.3180207

J. Backes, P. Bolignano, B. Cook, A. Gacek, K. Luckow,
N. Rungta, M. Schaef, C. Schlesinger, R. Tanash,
C. Varming, and M. Whalen, “One-click formal meth-
ods,” IEEE Software, vol. 36, no. 06, pp. 61-65, nov
2019.

T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and
R. Talwadker, “Hey, you have given me too many
knobs!: Understanding and dealing with over-designed
configuration in system software,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. New York, NY,
USA: Association for Computing Machinery, 2015, p.
307-319. [Online]. Available: https://doi.org/10.1145/
2786805.2786852

C. Kaltenecker, A. Grebhahn, N. Siegmund, and
S. Apel, “The interplay of sampling and machine learn-
ing for software performance prediction,” /EEE Soft-
ware, vol. 37, no. 4, pp. 58-66, 2020.

N. Bencomo and A. Belaggoun, “A world full of
surprises: Bayesian theory of surprise to quantify
degrees of uncertainty,” in Companion Proceedings
of the 36th International Conference on Software
Engineering, ser. ICSE Companion 2014. New York,
NY, USA: Association for Computing Machinery, 2014,
p. 460-463. [Online]. Available: https://doi.org/10.1145/
2591062.2591118

P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and
A. Finkelstein, “Requirements-aware systems: A re-
search agenda for re for self-adaptive systems,” in
2010 18th IEEE International Requirements Engineer-
ing Conference, 2010, pp. 95-103.

A. J. Ramirez, A. C. Jensen, and B. H. C. Cheng,
“A taxonomy of uncertainty for dynamically adaptive

|IEEE Software (submitted)


https://doi.org/10.1145/3180155.3180207
https://doi.org/10.1145/3180155.3180207
https://doi.org/10.1145/2786805.2786852
https://doi.org/10.1145/2786805.2786852
https://doi.org/10.1145/2591062.2591118
https://doi.org/10.1145/2591062.2591118

20.

21.

22.

23.
24.

25.

systems,” in 2012 7th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). IEEE, jun 2012, pp. 99-108.
[Online]. Available: http://ieeexplore.ieee.org/document/
6224396/

. J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and

J.-M. Bruel, “RELAX: a language to address uncertainty
in self-adaptive systems requirement,” Requirements
Engineering, vol. 15, no. 2, pp. 177-196, Jun. 2010.

. A. Knauss, D. Damian, X. Franch, A. Rook, H. A. Mdller,

and A. Thomo, “Acon: A learning-based approach to
deal with uncertainty in contextual requirements at run-
time,” Information and Software Technology, vol. 70, pp.
85-99, 2016.

. International Organization for Standardization, /SO

26262:2018: Road vehicles — Functional safety.
Geneva: International Organization for Standardization,
2018. [Online]. Available: www.iso.org

. |. Ozkaya, “Ethics is a software design concern,” IEEE

Software, vol. 36, no. 3, pp. 4-8, 2019.

C. Rudin, “Stop explaining black box machine learning
models for high stakes decisions and use interpretable
models instead,” Nature Machine Intelligence, vol. 1,
no. 5, pp. 206-215, 2019.

D. Chen, W. Fu,
“Applications of psychological science for actionable
analytics,” in Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering

R. Krishna, and T. Menzies,

Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2018.
York, NY, USA: Association for Computing Machinery,
2018, p. 456—467. [Online]. Available: https://doi.org/
10.1145/3236024.3236050

R. Krishna, Z. WYu,
and D. Wolf, “The "bigse” project: Lessons learned

New

A. Agrawal, M. Dominguez,
from validating industrial text mining,” in Proceedings
of the 2nd International Workshop on BIG Data
New York,
NY, USA: Association for Computing Machinery, 2016,
p. 65-71. [Online]. Available: https://doi.org/10.1145/
2896825.2896836

S. Alla and S. Adari, “What is mlops?” 2021.

D. Piorkowski, S. Park, A. Y. Wang, D. Wang,
M. Muller, and F. Portnoy, “How ai developers overcome

Software Engineering, ser. BIGDSE ’'16.

communication challenges in a multidisciplinary team:
A case study,” Proc. ACM Hum.-Comput. Interact.,
vol. 5, no. CSCW1, Apr. 2021. [Online]. Available:
https://doi.org/10.1145/3449205

I. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting
the core ontology and problem in requirements engi-

September 2021

26.

neering,” in 2008 16th IEEE International Requirements
Engineering Conference, 2008, pp. 71-80.
G. Mathew, T. Menzies, N. A. Ernst, and J. Klein,

short”er reasoning about larger requirements models,”
2017.


http://ieeexplore.ieee.org/document/6224396/
http://ieeexplore.ieee.org/document/6224396/
www.iso.org
https://doi.org/10.1145/3236024.3236050
https://doi.org/10.1145/3236024.3236050
https://doi.org/10.1145/2896825.2896836
https://doi.org/10.1145/2896825.2896836
https://doi.org/10.1145/3449205

	The Road Ahead
	An Interdisciplinary Approach

	Final Thoughts
	REFERENCES

