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We propose a world sheet formula for tree-level correlation functions describing a scalar field with
arbitrary mass and quartic self-interaction in de Sitter space, which is a simple model for inflationary
cosmology. The correlation functions are located on the future boundary of the spacetime and are Fourier-
transformed to momentum space. Our formula is supported on mass-deformed scattering equations
involving conformal generators in momentum space and reduces to the CHY formula for ϕ4 amplitudes in
the flat space limit. Using the global residue theorem, we verify that it reproduces the Witten diagram
expansion at four and six points, and sketch the extension to n points.
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Introduction.—Cosmological observations suggest the
Universe underwent an early inflationary phase approx-
imately described by four-dimensional de Sitter (dS) space
[1–3]. In this scenario, correlation functions on the dS
future boundary are basic cosmological observables,
encoding temperature fluctuations in the cosmic microwave
background and the initial conditions for structure for-
mation [4]. These correlators can be computed using the in-
in formalism [5,6] or derived from the so-called wave
function of the Universe [7], whose coefficients can be
obtained by Wick rotating boundary correlators in anti–de
Sitter space (AdS) [5,8–10]. The wave function coefficients
are constrained by conformal Ward identities (CWIs)
associated with the spacetime isometries, and can therefore
be treated like correlation functions of a conformal field
theory (CFT) living at the boundary [11–13]. We will refer
to them as cosmological correlators.
Perturbatively, cosmological correlators can be com-

puted using Witten diagrams ending at the future boundary
[14–19]. In the flat space limit, they reduce to scattering
amplitudes [18] for which a wealth of computational
techniques has been developed, e.g., [20–22]. These
methods have led to remarkable new formulations such
as the Cachazo-He-Yuan (CHY) formulae [23–25], recast-
ing scattering amplitudes in a vast range of quantum field
theories in terms of a universal set of scattering equations.
This formulation has in turn manifested many remarkable

structures [26] such as the double copy relating gauge and
gravitational amplitudes [27,28].
By comparison, far less is known about cosmological

correlators and the research programme for adapting flat
space techniques to backgrounds with nonzero cosmologi-
cal constant is still in its infancy [29–49]. World sheet
formulas describing massless biadjoint scalars with cubic
interactions in AdS were recently proposed in [50,51].
Their scattering equations are written in terms of conformal
generators acting on contact Witten diagrams in posi-
tion space.
In this Letter, we propose a world sheet formula for

cosmological correlators describing scalar fields with
arbitrary mass and quartic interaction in dS, which is
one of the simplest models for inflation [52]. Our formula
is based on a mathematical structure we call the cosmo-
logical scattering equations, which take a remarkably
simple form in momentum space. They directly reduce
to the CHY formula for ϕ4 amplitudes in the flat space limit
[26]. Another nontrivial aspect of our construction is the
presence of differential operators in the integrand in the
form of a Pfaffian. Crucially, we find there are no ordering
ambiguities.
Cosmological correlators.—We work in the Poincaré

patch of (dþ 1)-dimensional dS with unit radius

ds2 ¼ −dη2 þ ðdxiÞ2
η2

; ð1Þ

where −∞ < η < 0 is the conformal time, and i ¼ 1;…; d
runs over Euclidean boundary directions. We will inter-
changeably use the notation x⃗ for boundary directions.
The n-point cosmological correlator, Ψn, can be treated

as a CFT correlator in the future boundary, expressed in
momentum space as
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Ψn ¼ δdðk⃗TÞhOðk⃗1Þ…Oðk⃗nÞi; ð2Þ

where k⃗T ¼ k⃗1 þ � � � þ k⃗n. We will work with scalar
operators O of scaling dimension Δ, dual to bulk scalar
fields with mass

m2 ¼ Δðd − ΔÞ: ð3Þ

The CWI for Ψn can be expressed as

Xn
a¼1

Pi
aΨn ¼

Xn
a¼1

DaΨn ¼
Xn
a¼1

Ki
aΨn ¼ 0; ð4Þ

where a; b;… are particle labels and the conformal gen-
erators in momentum space are

Pi ¼ ki;

D ¼ ki∂i þ ðd − ΔÞ;
Ki ¼ ki∂j∂j − 2kj∂j∂i − 2ðd − ΔÞ∂i; ð5Þ

with ∂i ¼ ð∂=∂kiÞ. Rotation generators act trivially on
scalar operators so we do not include them.
Witten diagrams.—Cosmological correlators admit a

perturbative expansion in terms of bulk Witten diagrams
ending on the future boundary. Here we take the bulk
theory to be a scalar with mass m and quartic self-
interaction. The operators in the dual CFT have scaling
dimension Δ satisfying (3).
The bulk-to-boundary propagator is

Kνðk; ηÞ ¼ N kνηd=2Hνð−kηÞ; ð6Þ

where ν ¼ Δ − d=2, k ¼ jk⃗j,Hν is a Hankel function of the
second kind, and N is a normalization that we will not
explicitly need. It satisfies ðD2

k þm2ÞKν ¼ 0, with

D2
k ≡ η2∂2

η þ ð1 − dÞη∂η þ η2k2; ð7Þ

and can be used to compute contact diagrams as follows:

CΔn ≡
Z

dη
ηdþ1

U1;nðηÞ; ð8Þ

U1;nðηÞ ¼
Yn
a¼1

Kνðka; ηÞ: ð9Þ

As we will see, all tree-level Witten diagrams can be
obtained from contact diagrams by acting with certain
differential operators.
A central object in our analysis is the action of the

operator

Da ·Db ¼
1

2
ðPi

aKbi þ KaiPi
bÞ þDaDb; ð10Þ

on the product Kνðka; ηÞKνðkb; ηÞ≡Ka
νKb

ν . When acting
on Kν, the boundary generators in (5) can be written in
terms of derivatives with respect to conformal time

PiKν ¼ kiKν;

DKν ¼ η
∂
∂ηKν;

KiKν ¼ η2kiKν; ð11Þ

leading to

ðDa ·DbÞKa
νKb

ν ¼ η2½∂ηKa
ν∂ηKb

ν þ ðk⃗a · k⃗bÞKa
νKb

ν �: ð12Þ

It is then straightforward to show that

D2
1…pU1;n ¼ ðD1 þ…þDpÞ2U1;n;

¼ −pm2U1;n þ 2
X

1≤a<b≤p
ðDa ·DbÞU1;n; ð13Þ

where in the left-hand side D2
1…p is defined in (7) with

k ¼ jk⃗1 þ � � � þ k⃗pj≡ k1…p and p < n, and the right-hand
side is built using the boundary conformal generators in
momentum space (5), satisfying Da ·Da ¼ −m2.
In practice we will encounter the inverse of boundary

differential operators constructed from those in (10). Using
(13), we replace them with the inverse of the bulk differ-
ential operator in (7) leading to bulk-to-bulk propagator
insertions:

½ðD1 þ � � � þDpÞ2 þm2�−1CΔn
¼

Z
dη
ηdþ1

dη̃
η̃dþ1

Upþ1;nðηÞGνðk1…p; η; η̃ÞU1;pðη̃Þ; ð14Þ

with ðD2
k þm2ÞGνðk; η; η̃Þ ¼ ηdþ1δðη − η̃Þ.

Scattering equations.—In flat space, the CHY formulae
express tree-level scattering amplitudes as integrals over the
Riemann sphere, mapping each external leg to a puncture.
The integrals then localize onto solutions of the scattering
equations (SEs):

X
a≠b

2ka · kb
σab

¼ 0; σab ≡ σa − σb; ð15Þ

where σa is the holomorphic coordinate of the ath puncture.
Inspired by the massive scattering equations of [53] and the
ambitwistor string formulae in AdS [50,51], we define the
scattering equations in dS momentum space in terms of
the following differential operators:
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Sa ¼
Xn
b¼1
b≠a

2ðDa ·DbÞ þ μab
σab

≡Xn
b¼1
b≠a

αab
σab

; ð16Þ

where μaa�1 ¼ −m2 modulo n and zero otherwise. This
mass deformation assumes canonical ordering of the
external legs 1n ¼ ð1; 2;…; nÞ. Different orderings are
obtained by permutations.
Using the CWI in (4), we can show that

X
a≠b

αab ¼ 0; ð17Þ

which implies that the SEs have an underlying SLð2;CÞ
symmetry [54]. It can then be used to fix the location of
three punctures using a standard procedure familiar from
string theory.
A generic world sheet integral will then take the form

Z
γ

Yn
a¼1

a≠b;c;d

dσaðSaÞ−1ðσbcσcdσdbÞ2In; ð18Þ

where the integration contour is defined by the intersection
γ ¼∩a≠b;c;d γSa , where γSa encircles the pole where Sa
vanishes when acting on the theory-dependent integrand
In. Following similar steps to [50,51], it is possible to show
that the differential operators in (16) commute, so the
measure in (18) is well defined.
World sheet formula.—Using the cosmological SE

defined in the previous section, we now propose a world
sheet formula for cosmological correlators describing
massive ϕ4 theory in dS momentum space:

Ψn ¼
δdðk⃗TÞ
ð3!Þp−1

X
ρ∈Sn−1

sgnρA(ρð1; 2;…; n − 1Þ; n)CΔn ; ð19Þ

where n ¼ 2p ∈ even, Sn−1 is the permutation group, and

Að1nÞ ¼
Z
γ

Yn
a≠b;c;d

dσaS−1a ðσbcσcdσdbÞ2Ið1nÞ; ð20Þ

with

Ið1nÞ ¼ PTð1nÞPf 0A ×
X

fa;bg∈cpð1nÞ

sgnðfa; bgÞ
σa1b1 � � � σapbp

: ð21Þ

Here PTð1nÞ ¼ ðσ12σ23…σn1Þ−1, cpð1nÞ denotes all per-
fect matchings that lead to connected graphs related to the
ordering ð1; 2;…; nÞ [26], and the reduced Pfaffian Pf 0A is
given by

Pf 0A ¼ ð−1Þcþd

σcd
PfAcd

cd; ð22Þ

where

PfAcd
cd ¼

ϵr1s1…rp−1sp−1ðAcd
cdÞr1s1 � � � ðAcd

cdÞrp−1sp−1
2p−1ðp − 1Þ! : ð23Þ

The matrix Acd
cd is obtained from the n × n matrix

Ars ¼
� αrs

σrs
; r ≠ s;

0; r ¼ s;
ð24Þ

by removing any pair of rows and columns fc; dg.
Since ½αrs; αpq� ¼ 0 for r ≠ s ≠ p ≠ q, andP
a½Pi

a; αrs� ¼
P

a½Da; αrs� ¼
P

a½Ki
a; αrs� ¼ 0, Pf 0A is

well defined and Ψn satisfies the CWI.
Flat space limit.—As a first test of our formula, let us

check the flat space limit E → 0, where E ¼ k1 þ � � � þ kn.
This limit can be accessed by taking η → −∞ in the
integrand of the correlator [18,36]. Using the asymptotic
form of the bulk-to-boundary propagators,

lim
η→−∞

Kνðk; ηÞ ∝ kν−1=2i ηðd−1Þ=2eikη; ð25Þ

equation (12) leads to

lim
η→−∞

Da ·DbðKa
νKb

νÞ ¼ η2ðka · kbÞKa
νKb

ν ; ð26Þ

with ðka · kbÞ ¼ −kakb þ k⃗a · k⃗b. In this limit we can
therefore replace Da ·Db with ka · kb and set m ¼ 0 (recall
that the mass is defined in units of the inverse dS radius so
in the flat space limit it will vanish).
The resulting conformal time integration then gives

lim
E→0

Ψn ∝ E−ð4−dþ1
2
ðd−3ÞnÞΠn

i¼1k
ν−1=2
i Anδ

dðk⃗TÞ; ð27Þ

where An is the CHY formula for massless ϕ4 amplitudes
in flat space. We have only kept contributions which arise
from acting with differential operators directly on bulk-to-
boundary propagators, since other contributions are
subleading.
Four points.—Let us first consider the ordered correlator

Að14ÞCΔ4 ¼
Z
γ
dσ3ðσ41σ12σ24Þ2S−13

PTð14Þð−1ÞPfA14
14

σ14ðσ13σ24Þ
CΔ4 :

ð28Þ

Notice that Að14Þ has a graph representation, given in
Fig. 1. The circle is the Parke-Taylor factor, PTð14Þ, the
black lines depict the perfect matching and the red line
indicates the rows and columns removed from the Amatrix.
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The underlined labels f4; 1; 2g are the coordinates fixed by
the SLð2;CÞ symmetry. Writing S̃a ¼ Sa ×

Q
4
b≠aðσabÞ we

obtain

Að14ÞCΔ4 ¼ −
Z
γ̃
dσ3S̃

−1
3

σ12σ24
σ32

α23CΔ4 ; ð29Þ

where γ̃ contour is defined by S̃3. Using the global residue
theorem (GRT) [55], γ̃ can be deformed to γ32, with
γab ¼ fjσa − σbj ¼ ϵg. Noting that S̃3jσ32¼0 ¼ σ12σ42α23
and integrating around γ32 then gives

Að14ÞCΔ4 ¼ ðα23Þ−1ðα23ÞCΔ4 ¼ CΔ4 ; ð30Þ

which is the desired result. Switching the order of the
Pfaffian and the SE in (28) leads to the same expression.
When σ3 → σ2, the world sheet factorizes into two

spheres. This can be visualized by cutting the planar graph
with a dotted line as shown in Fig. 1(a). On the other hand
the factorizations σ3 → σ1 and σ3 → σ4 do not contribute.
These observations motivate the following rules [54]: (1) If
all fixed points (underlined labels) are on the same side of a
cut then this contribution vanishes because after factoriza-
tion the two new spheres must each have three fixed
punctures as shown in Fig. 3. (2) If a factorization cuts
more than four lines in the corresponding planar graph then
this contribution vanishes. For example, in Fig. 1(b) the
only contribution is given by the factorization σ3 → σ4.
Because of the SLð2;CÞ symmetry, the correlator is

independent of the choice of fixed punctures. These rules
help to identify the most convenient choices for compu-
tations. In [54], we will explicitly show that different
choices are equivalent.
Six points.—From (20), we see that Að16Þ is encoded by

the four diagrams in Fig. 2. In the first and second
diagrams, we have fixed legs f5; 6; 1g and removed the
rows/columns f1; 5g from the A matrix in the reduced
Pfaffian. This is the simplest option. Other Pfaffian choices
lead to additional contributions from the contour integrals
which cancel out.

Rules 1 and 2 tell us the first diagram has only one
factorization contribution, σ3 → σ6. After using the GRTwe
find that this diagram vanishes. The last three diagrams are
identical up to cyclic permutations. We focus on the second
one, i.e.,Að16∶14; 26; 35Þ, where the second argument inA
denotes the perfect matching. Rules 1 and 2 imply two
factorizations: σ2 → σ6 and σ3 → σ4 → σ5. Moreover, we
find that the factorization σ2 → σ6 vanishes, so the only
contribution comes from the latter (Fig. 3). To compute it,
we consider the parametrization σa ¼ ϵxa þ σ5, with a ¼ 3,
4, 5, x4 ¼ constant, x5 ¼ 0, σ5 ≡ σL, and expand around
ϵ ¼ 0. The SEs reduce to

S2 ¼ ½Ŝ2 þOðϵÞ�; Ŝ2 ¼
α21
σ21

þ α26
σ26

þ α2L
σ2L

;

S3 ¼
1

ϵ
½Ŝ3 þOðϵÞ�; Ŝ3 ¼

α34
x34

þ α35
x35

þ α3R
x3R

;

S4 ¼
1

ϵ
½Ŝ4 þOðϵÞ�; Ŝ4 ¼

α43
x43

þ α45
x45

þ α4R
x4R

; ð31Þ

where xR ¼ ∞, α2L ¼ α23 þ α24 þ α25 and
αaR ¼ αa6 þ αa1 þ αa2, a ¼ 3, 4. Using the GRT, the
contour can then be deformed to γ̂ ¼ γϵ ∩ γŜ2 ∩ γŜ3 , with
γϵ ¼ fjϵj ¼ δg. After performing the integral over ϵ and
noting that Ŝ4jγŜ3 ¼ ðxR5=x54x4RÞ½ðD6 þD1 þD2Þ2þ
m2Þ�, the remaining contour integral factorizes according
to Fig. 3:

Að16∶14;26;35ÞCΔ6 ¼Að6;1;2;L∶1L;26Þ
× ½ðD3þD4þD5Þ2þm2�−1AðR;3;4;5∶R4;35ÞCΔ6 ; ð32Þ

where

Að6; 1; 2; L∶1L; 26Þ

¼
Z
γŜ2

dσ2ðσ1LσL6σ61Þ2Ŝ−12 PTð6; 1; 2; LÞ PfA1L
1L

ðσ1Lσ26Þσ1L
;

ð33Þ

AðR; 3; 4; 5∶R4; 35Þ

¼
Z
γŜ3

dx3ðx45x5RxR4Þ2Ŝ−13 PTðR; 3; 4; 5Þ ð−1ÞPfA
R5
R5

ðxR4x35ÞxR5
:

ð34Þ

(a) 4

3

2

1

(b) 4

3

2

1

FIG. 1. Factorization of Að14Þ with (a) PfA14
14, (b) PfA
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2

1

FIG. 2. Diagrammatic representation of Að16Þ.
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FIG. 3. Factorization contribution.
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Finally, using the result of the previous section we obtain

Að16∶14; 26; 35ÞCΔ6 ¼ ½ðD3 þD4 þD5Þ2 þm2�−1CΔ6 ;
ð35Þ

which is the Witten diagram for two four-point vertices
connected by a bulk-to-bulk propagator. Since all terms in
(32) commute, and the scattering equations commute with
Pfaffians in each four-point integrand, this implies that
shuffling terms in the Pfaffian with the scattering equations
in the original expression leaves the final result unchanged.
n points.—Let us briefly comment on the n-point

computation. First notice that the six-point results can be
straightforwardly extended to ladder diagrams with any
number of points. In particular, let us consider the ladder
diagram in Fig. 4(a), where we fix the positions of legs
fn − 1; n; 1g and remove rows/columns f1; n − 1g from
the A matrix in the reduced Pfaffian. Like in the six-point
case, only one factorization contributes, notably
σ3 → σ4 → � � � → σn−1. Using the parametrization,
σa ¼ ϵxa þ σn−1, with a ¼ 3; 4;…; n − 1, xn−2 ¼
constant, xn−1 ¼ 0, σn−1 ≡ σL, and expanding around
ϵ ¼ 0, one obtains a generalization of (32):

A(1n∶1ðpþ 1Þ; 2n;…; pðpþ 2Þ)CΔn
¼ Aðn; 1; 2; L∶1L; 2nÞ(ðDn þD1 þD2Þ2 þm2)−1

×A(R; 3;…; n − 1∶Rðpþ 1Þ;…; pðpþ 2Þ)CΔn ; ð36Þ

where Aðn; 1; 2; L∶1L; 2nÞ is similar to (33) and

A(R; 3;…; n − 1∶Rðpþ 1Þ;…; pðpþ 2Þ)

¼
Z
γ̂

Yn−3
a¼3

dxaŜ
−1
a

PfARðn−2Þ
Rðn−2Þ

xRðn−2Þ

×
½xðn−2Þðn−1Þxðn−1ÞRxRðn−2Þ�2PTðR;…; n − 1Þ

ðxRðpþ1Þx3ðn−1Þx4ðn−2Þ � � � xpðpþ2ÞÞ
; ð37Þ

with xR ¼ ∞. Here we have used the identity

ð−1ÞPfARðn−1Þ
Rðn−1Þ

xRðn−1Þ
¼

PfARðn−2Þ
Rðn−2Þ

xRðn−2Þ
: ð38Þ

The integrand in (37) reproduces the ladder diagram of
Fig. 4(a) with (n − 2) points, so Eq. (36) provides a
recursion relation. Since all terms in (36) commute, this
provides an inductive proof that we are free to shuffle terms
in the Pfaffian with scattering equations, and there are no
ambiguities in the definition of the integrand.
Above six points, there are graphs with other topologies

as depicted in Fig. 4(b). A similar procedure can be used to
build up such graphs by attaching four-point vertices to
diagrams with general topology, but there are additional
complications because the Pfaffian identity in (38) no
longer applies [54].
Discussion.—We have proposed a world sheet descrip-

tion for cosmological correlators describing massive ϕ4

theory in de Sitter space. The scattering equations are
written in terms of conformal generators which take a
simple form in momentum space and make the flat space
limit completely transparent. Another highly nontrivial
ingredient of our formula is a Pfaffian defined in terms
of the conformal generators.
There are a number of future directions to explore. In flat

space, the scattering equations revolutionized the study of
scattering amplitudes, revealing new perturbative dualities
[26] and providing new tools for computing loop ampli-
tudes [56–58] and soft limits [59–63]. We therefore expect
the approach developed here will lead to similar progress
for cosmological correlators. Moreover, although we have
focused on the simplest toy model, there are systematic
ways to make it more realistic such as using more general
mass deformations in order to allow fields of different
masses to propagate [64], considering different integrands
which encode more general interactions, and breaking
conformal symmetry since cosmological surveys measure
correlators of curvature perturbations which become non-
trivial when de Sitter boosts are broken [65–67]. It would
also be interesting to extend our formula to spinning
correlators. In this case, the external polarizations introduce
a bigger class of operators than the operatorial Pfaffian we
consider in this Letter. Moreover, it would be of great
interest to directly compute correlators by diagonalizing the
cosmological scattering equations. While this is analyti-
cally challenging, in practice it may be numerically
feasible. Our momentum space formulae may be well
suited to this purpose given their simplicity compared to
those in position space.
More ambitiously, we would like to investigate how to

lift of our formula to that of a UV complete theory. As a
first step, we can replace the scattering equations with
Koba-Nielsen factors, and Mandelstam variables with
differential operators in momentum space. This may lead
to ordering ambiguities similar to those encountered when
lifting the Virasoro-Shapiro amplitude to AdS5 × S5

[68,69]. Ultimately, we hope that our world sheet formula
will provide a useful toy model for understanding the
physics of the early Universe.

(a)

1
n

n 1

n 2

2

3

4

p 1

(b)

1

2

a

b

c

3

n

n 1

FIG. 4. Factorization of (a) a ladder diagram, (b) a nonladder
diagram.
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