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Abstract Gravitational wave astronomy has recently
emerged as a new way to study our Universe. In this work,
we survey the potential of gravitational wave interferometers
to detect macroscopic astrophysical objects comprising the
dark matter. Starting from the well-known case of clumps
we expand to cosmic strings and domain walls. We also
consider the sensitivity to measure the dark matter power
spectrum on small scales. Our analysis is based on the fact
that these objects, when traversing the vicinity of the detec-
tor, will exert a gravitational pull on each node of the inter-
ferometer, in turn leading to a differential acceleration and
corresponding Doppler signal, that can be measured. As a
prototypical example of a gravitational wave interferometer,
we consider signals induced at LISA. We further extrapo-
late our results to gravitational wave experiments sensitive in
other frequency bands, including ground-based interferome-
ters, such as LIGO, and pulsar timing arrays, e.g. ones based
on the Square Kilometer Array. Assuming moderate sensitiv-
ity improvements beyond the current designs, clumps, strings
and domain walls may be within reach of these experiments.

1 Introduction

LIGO’s measurement of gravitational waves emitted from
black hole binary mergers [1,2] has opened novel ways to
study the properties of astrophysical objects via their grav-
itational interactions. After decades-lasting developments
and technical improvements on interferometrical methods,
an unprecedented sensitivity in the measurement of gravi-
tational interactions has been achieved. Future ground- and
space-based interferometers, such as the Cosmic Explorer
[3], the Einstein Telescope [4] and LISA [5,6], are expected
to further improve on this sensitivity and to complement it in
different frequency ranges. In addition, this may also be sup-
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plemented by instruments such as AEDGE [7], AION [8],
BBO [9] or DECIGO [10]. To achieve sensitivity to lower
gravitational wave frequencies and smaller strains, longer
interferometer arms and less background noise are needed.
In the former, pulsar timing arrays, such as NANOGrav [11],
PPTA [12] or EPTA [13], currently provide additional tests
of gravitational physics. In the future, pulsar timing arrays
might even use the Square Kilometer Array (SKA) [14] to
further improve on sensitivity.

In this work, we want to explore the potential of grav-
itational wave interferometers to probe concentrated struc-
tures of dark matter via their gravitational interaction with
the apparatus. This provides an additional science goal for
these instruments, but also requires different analysis strate-
gies. While previous studies [15–29] have focused mainly on
clumps and primordial black holes, we consider also topo-
logical defects, such as cosmic strings and domain walls.
The opportunity to search for the latter two has already been
noted in [24,30].1 Here, we aim for a more detailed analysis
of the experimental sensitivity and also consider the pos-
sibility that the topological defects feature a more general
equation of state, e.g. due to a non-trivial behavior of the
string/domain wall network. We also take a brief look beyond
localized structures and consider the possibility to measure
the local dark matter density fluctuation power spectrum (see
also [20]). The sensitivity to the latter is, however, somewhat
limited.

Our analysis is based on the simplest effect (originally
discussed in [16]), namely, that any massive object or, more
precisely, any localized energy density will locally perturb
the gravitational field in the vicinity of the interferometer,
thereby exerting a different gravitational pull on each node
of the detector. Due to the differential gravitational accel-
eration, this perturbation will, in turn, lead to a measurable

1 In [30] the main focus is on axion streams arising from the destruction
of axion miniclusters, which are, however, rather similar to strings.
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Doppler shift in the apparatus. For instance, a similar analy-
sis of such acceleration burst signals at space-based interfer-
ometers has been discussed for nearby asteroids and similar
objects [31–33]. In addition to this, a signal could also arise
due to the (changing) gravitational potential when a structure
exists within the line of site connecting the different nodes
of the gravitational wave detector [17,20,23,26,28]. It would
be interesting to study this Shapiro effect [34] also for cosmic
strings and domain walls. We leave this for future work.

In principle, this type of dark matter search is very general
as it solely relies on measuring purely gravitational interac-
tions.2 Of course, the downside is that it requires the dark mat-
ter to be strongly concentrated in highly localized structures
which, in turn, re-introduces a model dependence. While our
study is purely phenomenological and does not rely on the
origin of the structures in question, let us nevertheless men-
tion a few possibilities allowing for such scenarios.

Localized clumps in the dark matter structure can appear
in a variety of models and situations. Perhaps the most obvi-
ous scenario for clumps are primordial black holes [42–46]
(in the context of gravitational wave astronomy, see also more
recently, e.g., [47–52] and [53] for a recent review). That said,
already standard cold dark matter may feature clumpy struc-
tures (see, e.g., [20,22]), although these may likely be beyond
the reach of near future gravitational wave detectors [20]. In
addition, localized clumps can also be produced if dark matter
features strong self-interactions [54–57]. Another important
potential source are initial conditions featuring large inhomo-
geneities, a prominent example of which are axion miniclus-
ters [58–61] (see also [62–66] for some more recent work).
More recently, such large fluctuations have also been dis-
cussed in the context of inflationary production mechanisms
[67,68] or as a consequence of a fragmentation of homoge-
neous fields due to their (self-)interactions [69,70]. Further-
more, macroscopic clumps could arise as solitonic objects
such as, e.g., Q-balls [71–74].

In addition to localized clumps, dark matter structures
might also come in form of topological defects, such as cos-
mic strings or domain walls. These could have formed in
the early Universe [75–77]. In a cosmological context, topo-
logical defects, in particular dynamical networks of cosmic
strings or domain walls (see, e.g., [78–84]), contribute to the
total energy budget of the Universe. However, while their
equation of state is usually negative, there is still uncertainty
in the behaviour of a network of these objects (see, e.g.,
[85,86]). Therefore they may account for dark energy but
also for dark matter [82–84]. This has led to a variety of ideas
to investigate their experimental signatures as dark matter
candidates [29,35,38,41,87–93]. We will follow this more
phenomenological spirit and be agnostic about the equation

2 Signals of dark matter structures in gravitational wave interferometers
can also arise from non-gravitational interactions, see, e.g., [24,35–41].

of state of these networks by treating it as a free parameter.
This allows us to investigate their experimental imprint in
gravitational wave detectors independent of the dynamics of
the network.

Our discussion is structured as follows. Section 2 first
reviews the analysis of acceleration burst signals at the LISA
gravitational wave interferometer. As an initial test case, we
then apply these techniques to obtain the signal power spec-
trum associated to localized clumps of dark matter passing
by the detector. In Sect. 3, we extend our analysis to the case
of cosmic strings and domain walls. Next, Sect. 4 gives an
overview of how the same technique might also be used to
measure stochastic fluctuations of the local dark matter den-
sity with LISA. In Sect. 5, we extrapolate our results to other
gravitational wave experiments, i.e. ground-based interfer-
ometers and pulsar timing arrays, that are sensitive to dif-
ferent frequency bands. As particular examples, we examine
LIGO and a future PTA using the SKA. Finally, we summa-
rize our results and conclude in Sect. 6.

2 Localized clumps of dark matter

Localized dark matter clumps can cause a signal in a grav-
itational wave interferometer as shown by a number of pre-
vious studies [15–29]. In this section, we will review how
such a signal is generated. We focus on the effect where
the clump exerts a stronger gravitational acceleration on one
of the interferometer nodes and derive the associated signal
power spectrum for the LISA detector. This discussion will
then serve as a basis and test bed for our investigation of
strings and domain walls in the next section. For a general
introduction to the physics and measurement techniques of
gravitational wave interferometers see, e.g., [94,95].

Although the general strategy in principle applies to any
gravitational wave detector, in the present work, we will con-
sider LISA as a prototypical example to obtain the experi-
mental signature of gravitational perturbations caused by the
above macroscopic astrophysical objects in a gravitational
wave interferometer. We will later (rather naively) use the
same technique to estimate the sensitivity in other gravita-
tional wave experiments. Here, loosely speaking, we focus on
an experimental setup with three distinct nodes arranged in an
equilateral triangle (see Appendix A for some more details).
Along the three interferometer arms with a length of about 2.5
million kilometers, the satellites exchange laser beams. Con-
sequently, a differential acceleration due to a gravitational
perturbation caused by macroscopic objects in the vicinity
of the interferometer will then lead to a measurable Doppler
signal.

To begin with, let us first consider the case of a single dark
matter clump passing by one of the LISA satellites. This is
similar to the case of the detection of asteroids treated in [31],
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which we will follow closely. As a simple coordinate frame,
we choose the dark matter clump to be in a straight uniform
motion with velocity V parallel to the y-axis. The trajectory
of the clump is, in addition, confined to the xy-plane. The
closest distance between the clump and the satellite located
at the origin, i.e. the impact parameter, is denoted by D. For
a schematic illustration of this reference frame we refer the
reader to Appendix A.1. The differential acceleration of the
interferometer node is then given by [31],

g(t) = GM

D2

1(
1 + ( V t

D

)2
)3/2

⎛
⎝

1
V t
D
0

⎞
⎠ , (1)

where G denotes the gravitational constant and M is the mass
of the dark matter clump. A schematic form of this acceler-
ation burst was first considered in [16] with regard to the
detection of primordial black holes with space-based inter-
ferometers. As [31], in our analysis we will instead consider
the velocity shift, v(t), i.e. the integrated gravitational accel-
eration. However, we will use the more appropriate signal
response functions defined in [96,97] that take into account
a time retardation of the signals from different nodes (see
also discussion below).

In principle, the gravitational field of the dark matter
clump passing by the detector will exert a gravitational
pull on each interferometer node separately. Due to the
differential velocity shifts relative to each other, the laser
beams exchanged between the satellites will be influenced by
Doppler shifts. That is, we expect a time-dependent response
of the detector to these velocity perturbations. This signal
is parametrized by a so-called response function X (t). The
signal power spectrum, that we are interested in, is given by
the absolute square of the Fourier transform of the detector
response,3

P(ω) =
∣∣∣X̃(ω)

∣∣∣
2
. (2)

In the case of LISA, this response function typically is a
linear combination of the velocity perturbations of all three
interferometer nodes. Its exact form depends on which unde-
sirable noise sources are tried to be removed from the signal
spectrum. Therefore, the detector response function is not
unique. For concreteness, throughout this work, we will use
the so-called Michelson response function X (t) for the read-
out of a signal at a single detector node [31,96]. For simplic-
ity, we will not present its exact form here. Instead, we give
a detailed definition in (36) of Appendix A. Nevertheless,

3 Technically, the power spectrum of a given signal X (t) is defined
by the Fourier transform of the so-called auto-correlation function,
P(ω) = F [(X � X) (τ )] = F [∫

R
dt X∗(t)X (t + τ)

]
. The latter is,

in fact, equivalent to |X̃(ω)|2, i.e. to the definition given in the main
text. Throughout this work, we will denote the Fourier transform of a
function f (t) by f̃ (ω).

let us point out its main features. Naively, the components of
the response function are given by projections of the velocity
perturbations of the nodes onto the interferometer arms,

X (t) ∼
3∑

i, j=1

ni · v j (t − ai j L/c)

c
. (3)

Here, the ni denote the unit vectors pointing between two
nodes, labelled by the opposite side of the triangle, vi is the
velocity perturbation of the i-th node induced by the gravita-
tional pull and c is the speed of light. The integer coefficients
ai j take into account retardation effects along the different
signal paths. For more details on this notation see Appendix A
and also [96,97] for alternative response functions.

In fact, in some situations the detector response function
above can be simplified (see, e.g., [31]). For instance, if the
velocity perturbations of two nodes are negligible for all prac-
tical purposes, e.g., v2 ≈ v3 ≈ 0, it reduces to

X (t) = −n1 · v1(t) − v1(t − 4L/c)

c
, (4)

where v1(t) is the velocity perturbation of a single node and
we have used that n1 + n2 + n3 = 0. The latter condition is
true, if all interferometer arms are of equal length.

Carefully note that this form of X (t) is only an approxima-
tion of the detector response. Eq. (4) is the dominant contri-
bution to the exact response function, if the dark matter clump
approaches the detector node very closely, or, in other words,
if the impact parameter is smaller than the arm length of the
interferometer, D � L . This is the so-called close-approach
limit (see, e.g., [16,31]). In contrast, if the impact parameter
is much larger than the arm length (sometimes called the tidal
limit, see [16,31]), D � L , the differential gravitational pull
on the nodes can be qualitatively different from the pull on
a single node. To see this, imagine a simple situation where
two nodes are aligned on an axis perpendicular to the tra-
jectory of the dark matter clump, with their relative distance
to each other being much smaller than their distance to the
clump’s trajectory. In this scenario, the impact parameters
of both satellites will differ by the arm length, i.e. they read
D and D + L , respectively. According to (3), the detector
response will be proportional to the differential gravitational
acceleration between the two nodes, with impact parameters
and D and D + L ,

X (t) ∝ g(D) − g(D + L) ∼ 1

D2 − 1

(D + L)2 . (5)

Hence, comparing both regimes, we observe the behavior

X (t) ∼
{

1
D2

(
1 − D2

L2

)
, D � L

L
D3 , D � L

. (6)

That is, the detector response in the tidal regime, D � L ,
falls off much faster with distance than in the close-approach
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limit, D � L . In this regime, we therefore expect the close-
approach approximation of the detector response to break
down and one would need to take the exact response function
into account. Nevertheless, we will argueaposteriori that, for
the purpose of this section, we only have to consider the close-
approach case, D � L , for events with a detectable signal-to-
noise ratio. Therefore, (4) gives a reasonable approximation
to the detector response. We note however, that when the
sensitivity of the experiment becomes better, i.e. the noise is
reduced, events with larger impact parameters will become
detectable and the close-approach approximation might have
to be reconsidered.

In practice, by means of (4) we can compute the response
of the interferometer to an arbitrary velocity perturbation.
For concreteness, we have considered the velocity perturba-
tion associated to a gravitational pull by a dark matter clump
passing by a single LISA satellite in (1) in a specific coordi-
nate frame. However, in principle, the dark matter clump can
approach the satellite from any direction. In order to account
for this, we can equivalently choose an arbitrary orientation
of the LISA experiment. That is, we can parametrize the unit
vectorn1 in (4) byn1 = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). The
angles ϑ and ϕ essentially implement the arbitrary orienta-
tion of the detector plane relative to the dark matter clump.
For a detailed discussion of this, see Appendix A.1. As we are
interested in the signal power spectrum (2), it is then natural
to consider the Fourier transform4 of the response function,
X̃(ω). In our scenario, the latter is given by (cf. [31], adding
suitable time delays which give the L dependent factor)

X̃(ω) =
√

2

π

(
1 − e4iωL/c

) GM

cV 2 sin ϑ

×
[
K0

(
Dω

V

)
sin ϕ − i K1

(
Dω

V

)
cos ϕ

]
, (7)

where Ki is the i-th modified Bessel function of the second
kind. In principle, we could now obtain the signal power
spectrum P(ω) by squaring this expression. Obviously, the
spectrum would then depend on the orientation of the LISA
detector relative to the trajectory of the dark matter clump
through the angles ϑ and ϕ. As a simple approximation it is
reasonable to assume that the dark matter clumps generically
move in a random direction. That means, in principle, any
value of ϑ and ϕ is equally likely. To account for this, we
can assume a uniform distribution for both, of which we
then take the average (see Appendix A.1 for details). Before
proceeding we note, however, that a uniform average is only
a rough approximation. It assumes that the local dark matter
distribution is isotropic. While this may be true in an isotropic
reference frame where the detector is at rest, the Sun, together
with the experiment, is moving through the dark matter halo

4 In this work, we use the symmetric convention of the Fourier trans-
form, f̃ (ω) = (2π)−1/2

∫
R

dt f (t) exp(iωt).

at a constant velocity, thereby imposing a preferred direction
on the system. Therefore, strictly speaking, the distribution of
the angles parametrizing the relative orientation between the
dark matter and the detector plane should not be uniform.
This, however, is somewhat ameliorated by the motion of
LISA itself (see also [31]), which changes direction along its
orbit around the sun (cf., e.g., [98]). While certainly not all
directions are attained with equal probability, it nevertheless
amounts to at least a partial averaging. For a more detailed
discussion of this see A.4.

Finally, with this caveat in mind, we arrive at the angular-
averaged signal power spectrum associated to the gravita-
tional pull of a dark matter clump on an interferometer node
[31],

P(ω) =
〈∣∣∣X̃(ω)

∣∣∣
2
〉

= 8

3π

(
GM

cV 2

)2

sin2 (2ωL/c)

×
[
K 2

0

(
Dω

V

)
+ K 2

1

(
Dω

V

)]
. (8)

For a few examples of the typical shape of P(ω) we refer the
reader to Fig. 1. Note that there, for reasons that will become
clear momentarily, we show the signal power spectral density,
4ωP(ω).

Obviously, the signal power spectrum is only useful for an
experimental test, if the desired signal can be distinguished
from the background noise that the experiment is subject to.
In general, at a gravitational wave interferometer the back-
ground noise is characterized by a noise power spectrum,
commonly defined by

〈
ñ( f )ñ∗( f ′)

〉 = 1
2δ( f − f ′)Sn( f )

(for a comprehensive review see, e.g., [99]). For future exper-
iments such as LISA this is not yet completely settled. In prin-
ciple, different estimates can lead to quite different results for
the detection rate. For concreteness, we will use a recent esti-
mate [100] as our benchmark,

Sn(ω) = 1

2π

(
2 (ωL/c)2

1 + (ωL/c)2

)2
10

3L2

×
[
B1(ω) + 2 + 2 cos2 (ωL/c)

ω4 B2(ω)

]

×
[

1 + 6

10

(
ωL

c

)2
]

, (9)

with

B1(ω) =
(

1.5 × 10−11 m
)2

(
1 +

(
2π

2 mHz

ω

)4
)

Hz−1,

(10)

B2(ω) =
(

3 × 10−15 ms−2
)2

(
1 +

(
2π

0.4 mHz

ω

)2
)

123



Eur. Phys. J. C (2021) 81 :828 Page 5 of 27 828

×
(

1 +
(

1

2π

ω

8 mHz

)4
)

Hz−1. (11)

Note that, here, we have added an additional factor of
4(ωL/c)4/(1 + (ωL/c)2)2 compared to [100]. This essen-
tially acts as an estimate of a transfer function to convert the
original strain spectrum to the equivalent of our signal spec-
trum X̃ .5 Furthermore, we have divided by 2π in order to
match our (symmetric) convention of the Fourier transform
to the convention typically used in signal processing. We
further remark that other choices of a noise power spectrum
might also be reasonable, for example, the ones presented in
[98,101].

Finally, as a measure for distinguishing a signal from the
background noise, we can define the signal-to-noise ratio by
comparing the signal- to the noise power spectrum over the
range of all frequencies (see, e.g., [94]),

SNR =
(

4
∫ ∞

0
dω

P(ω)

Sn(ω)

) 1
2

=
(∫ ∞

−∞
d (log ω)

4ωP(ω)

Sn(ω)

) 1
2

. (12)

Here, one factor of 2 arises from the definition of the noise
power spectral density given above. A second factor of 2
reflects the fact that we are considering single-sided power
spectra only [31,94,99].

The form on the very right hand side of the equation is par-
ticularly useful for a quick estimation of the signal-to-noise
ratio from the usual logarithmic plots of the sensitivity, as it is
obtained from an integral of the logarithm over a dimension-
less ratio between the signal, 4ωP(ω), and the noise, Sn(ω),
power spectral density. Before continuing, let us remark that
the signal power spectrum P given in (8) remains constant
with decreasing frequency due to the constant velocity of
the satellite in the asymptotic future. Nevertheless, this does
not lead to an infinite signal-to-noise ratio when normaliz-
ing to our choice of the noise power spectrum, Sn . Instead,
it remains finite, even when integrated over all frequencies.
As was already noted in [31], alternative noise power spec-
tra, however, might not share this feature and hence require
the introduction of an experiment-specific lower frequency
cut-off. For LISA imposing a cutoff ωc ∼ 10−4 Hz due to
experimental limitations provides a relatively conservative
estimate of the lower end of the frequency band that the detec-
tor is sensitive to (see, e.g., [31]). However, in this paper we
use the close-approach approximation of dark matter clump

5 For example, following [96], this can be seen explicitly by evaluat-
ing a strain signal of a gravitational wave in the channel X (t), yielding
a transfer function proportional to 4 sin4(ωL/c). In this case our fac-
tor corresponds to the envelope of this conversion factor. Note that
this approximation is correct up to a possible constant factor of order
O(1−10).

10−6 10−4 0.01 1
10−49

10−44

10−39

10−34

10−29

Fig. 1 Angular-averaged signal power spectral density of dark matter
clumps compared to the experimental sensitivity of LISA. The signal
is shown in color, illustrating different masses of the clumps, MDM.
The sensitivity of LISA, i.e. the noise spectrum (9), is shown in black.
The dashed lines illustrate possible choices of cutoff frequencies ωc for
the estimation of the signal-to-noise ratio. Here, we consider events
with an impact parameter of D = 50,000 km. We furthermore fix
ρDM ≈ 0.39 GeV/cm3 and assume a velocity distribution of Maxwell–
Boltzmann type for the dark matter clumps with root mean square
vrms ≈ 270 km/s in combination with the LISA experiment moving
through the galaxy at v
 ≈ 220 km/s

encounters with the interferometer. This is valid for impact
parameters smaller than the size of the experiment, D � L .
Therefore, we will use an even more conservative cut-off,
that is essentially determined by the characteristic time of
flight of a dark matter clump through the detector volume,
ωc ∼ 2πV/L ∼ 10−3 Hz.

In Fig. 1 we show the angular-averaged signal power
spectral density, 4ωP(ω) with P(ω) given in (8), associ-
ated to dark matter clumps traversing the detector volume
and compare it to the experimental sensitivity of LISA. As
an example, we consider events with an impact parameter
of D = 50,000 km. The coloured lines correspond to the
signal, while the black solid line shows the noise power
spectrum Sn(ω) given in (9), which essentially determines
the overall experimental sensitivity of the detector. As indi-
cated earlier, the signal-to-noise ratio is the logarithmic inte-
gral over the ratio of the two plotted quantities and we can
roughly read this figure in such way, that we have a chance
to distinguish a signal from the detector noise, whenever the
coloured signal exceeds the black noise spectrum for a suf-
ficient range of frequencies. Also note that the signal power
spectral density shown here, is uniformly averaged over the
angles parametrizing the relative orientation between the
interferometer and the trajectory of the dark matter clump
(cf. Appendix A.1). As explained above, this approximates
the typical size of the signal. The signal shape and strength of
individual events will be different. For instance, in extreme
cases, we expect a different signal from a clump with normal
incidence to the detector plane as from one that traverses the
detector volume almost parallel to it. Furthermore, as we have
already pointed out before, the uniform average can only be
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seen as an approximation. This is because there is preferred
direction given by the Sun, together with the detector, mov-
ing through the dark matter halo at a constant velocity (see
Appendix A.4) as well as the rotation of the detector itself
not covering all angles equally.

In general, the signal power spectrum receives large con-
tributions from low frequencies, while it quickly drops in
the high frequency regime. As pointed out earlier, the con-
stant value at low frequencies is due the constant velocity
component of the LISA satellite in the asymptotic future.
Consequently, the sensitivity may benefit from background
noise that is reduced in the low frequency tail of the spec-
trum. This, however, will also require going beyond the close
approach approximation. Keeping this caveat in mind, below
we investigate the benefits of improving at low frequencies
by considering two different low-frequency cutoffs.

Having reviewed all necessary aspects of distinguishing a
possible signal induced by a localized clump of dark matter
traversing the detector volume of LISA from background
noise, let us now quantify the discovery potential for these
clumps inside the dark matter halo of our Galaxy. The mass of
the dark matter clumps, MDM, determines the characteristic
distance between them, d ∼ (MDM/ρDM)1/3. Therefore, it
controls the average rate of encounters of a clump with one
of the satellites at or below a given impact parameter D,

η̇ = πD2�DM, (13)

where �DM is the effective dark matter flux at velocity vDM,
given by �DM ∼ ρDMvDM/MDM. That is, naively, η̇ is the
rate at which, on average, a dark matter clump of mass MDM

and velocityvDM passes through a surface of radius D. There-
fore, applied to our scenario, we can use it to estimate the
rate at which we expect a dark matter clump to induce a sig-
nal in the interferometer. Note, however, that using the aver-
age signal strength in the calculation of the required impact
parameter and therefore η̇ is only an approximation. In gen-
eral, clumps passing by at a suitable angle may already give
rise to a signal at somewhat larger distances than indicated
by the average signal strength and, similarly, closer encoun-
ters are needed for other angles. However, we expect that this
simplistic treatment nevertheless captures the effect reason-
ably well. Furthermore, we assume the velocity distribution
of the dark matter clumps inside the halo to be a (simpli-
fied) superposition of the Sun moving through the Galaxy
at v
 ≈ 220 km/s [102] and the dark matter velocity hav-
ing a uniformly random direction6 while its magnitude is
Maxwell–Boltzmann distributed with a root mean square of
vrms = √

3/2v
 ≈ 270 km/s (see, e.g., [103]). For a discus-

6 Indeed, this is already implemented by the uniform average of the
solid angle in (8). While this is still an approximation, we expect to
obtain results to a reasonable accuracy. We give a discussion of this in
Appendix A.4.

10−5 0.001 0.100 10 1000 105
10−9
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10−5

0.001
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108 1010 1012 1014
10−5

10−4

0.001

0.010

1000

104
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106

Fig. 2 Average gravitational interaction rate of localized dark matter
clumps with the LISA nodes as a function of the signal-to-noise ratio
(top) and the mass of the dark matter clumps (bottom). In the top panel
the colors illustrate different masses of the clumps, while in the bottom
panel they denote a constant signal-to-noise ratio. The bars in the top
panel illustrate the dependence of the signal-to-noise ratio on the low-
frequency cutoff described in the main text. The black dashed line in the
bottom panel indicates the impact parameter at which SNR � 1. As long
as this is smaller than the size of LISA we expect the close-approach
approximation to be valid. We use the same baseline parameters for the
dark matter density and velocity as in Fig. 1

sion of possible caveats of this approximation and how it is
implemented in practice, see Appendix A.4. In addition, we
fix the dark matter energy density to ρDM ≈ 0.39 GeV/cm3

[104]. Note that these values can come with relative uncer-
tainties of up to 25 %, which could alter our results by a
similar amount. We remark, however, that the approxima-
tions we employ as well as the differences in the noise power
spectra probably cause larger uncertainties.

In Fig. 2 we show the average gravitational interaction
rate as a parametric function of the signal-to-noise ratio as
well as the mass of the dark matter clumps. As pointed out
before, here, we only take impact parameters into account
that are smaller than the arm length of LISA, D � L , i.e. we
consider the close-approach regime. This is indicated by the
black dashed line in the bottom panel (with the appropriate
scale being on the right hand side), which illustrates typical
impact parameters at which the signal-to-noise ratio exceeds
one, SNR � 1, for a given mass of the dark matter clump.
We can see that this is always smaller than the typical size
of LISA and therefore the close-approach approximation of
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the detector response function (4) is valid in the mass regime
we show here. This approximation has to be reconsidered,
if the sensitivity of the experiment is improved. In this case,
dark matter clumps at larger impact parameters can still be
detected. The impact parameter shown in Fig. 2 also gives an
upper bound on the size of the dark matter clumps for which
our treatment of the clumps as point-like is valid (most of
the signal rate originates from the largest detectable impact
parameters).

In general, we observe that with increasing mass of the
dark matter clumps, the signal-to-noise ratio is enhanced.
However, at the same time, the event rate of encounters
is reduced due to the reduced effective dark matter flux,
�DM ∼ M−1

DM. That is, at higher masses there is a bal-
ance between the increased signal-to-noise ratio and the
reduced interaction rate. In particular, we find an optimal
detection potential that passes a minimal detection threshold,
SNR � 1, for dark matter clumps of mass MDM ≈ 1010 kg
which could be observed at LISA approximately every 200
years on average. However, we note that this threshold of a
signal-to-noise ratio, SNR � 1, is rather optimistic. In prac-
tice, as the signal itself has to be distinguished from other
sources, the detection threshold may be significantly higher,
of the order of SNR � 10 (e.g. this is on the lower end of
the typical signals considered in the Mock LISA Data Chal-
lenges [105,106]). As shown in Fig. 2, this will reduce the
average detection rate by an order of magnitude while shift-
ing the optimal detection potential to dark matter clumps of
higher masses.

Unfortunately, the sensitivity is not yet on a desirable level
for a near future discovery potential. Let us note, however,
that the latter value has to be understood as a relatively con-
servative estimate, which could also be significantly higher.
As already mentioned, the signal-to-noise ratio depends on
the noise power spectrum which features a comparably large
uncertainty. For the relatively broad signal spectra associated
to the dark matter clumps, in particular the low frequency
tails of the spectrum may be relevant. Therefore, the signal-
to-noise ratio may vary significantly, if the overall noise spec-
trum was smaller, to some degree also at low frequencies. We
try to illustrate this through the bars in the top panel of Fig. 2.
For these, we push the close-approach approximation closer
to the boundary of its validity by introducing a low-frequency
cutoff of ωc ≈ 5 × 10−4 Hz as compared to the one imposed
by the close-approach approximation, ωc ≈ 10−3 Hz. Let us
stress, however, that this really has to be understood only as
a very first estimate of potential improvements. Finally, we
note that, in light of the very rough nature of our estimates,
the results presented Fig. 2 are reasonably in line with but
perhaps somewhat more pessimistic than earlier works, in
particular [24], with regards to the detection of dark matter
clumps LISA.

While the obtained rate is still rather low, it nevertheless
brings us much closer to a desired level, so that we can hope
that further improvements both in the detector as well as
in the analysis might allow for a detection in a reasonable
time frame. Indeed, one such improvement could be in the
analysis. For example, already the authors of [15] noted that
the dark matter clump interaction is inelastic and therefore
differs from the elastic interaction of a gravitational wave
exploited in current detection strategies. Further improve-
ments are expected from a more detailed analysis of the time
structure of potential signals as discussed in [28].

3 Topological defects

In this section, we now want to go beyond dark matter clumps
and investigate the detection of structures such as cosmic
strings and domain walls.7 As already mentioned in the intro-
duction, these topological defects might have been produced
in the early Universe [75–77], but their use as dark matter
requires a non-trivial behavior, e.g. interacting networks, of
such objects. We do not address how such a network is formed
or how it can be made to satisfy the constraints imposed by the
properties of dark matter (or dark energy) but simply assume
its presence with a given density. This is in the spirit of and
follows the completely phenomenological approach to study
their detection, also pursued in [29,35,38,41,87–93] in the
context of various different detection techniques. We briefly
note that our discussion also applies to localized structures
of “ordinary” dark matter with a string-like or domain wall-
like geometry, an example of which are the string-like axion
streams that were already investigated with regard to LISA
in [30].

The gravitational properties of topological objects can sig-
nificantly differ from those of non-relativistic matter. Cos-
mologically, this is due to a different equation of state, relat-
ing the pressure and the energy density of the cosmic fluid,
w = p/ρ. This then results in a typical scaling behavior
ρ ∼ a−3(1+w) of the average energy density on cosmologi-
cal scales.

For our signals we are interested also in the behavior in
the vicinity of individual objects. Very naively, this can be
obtained from Poisson’s equation for the Newtonian gravita-
tional potential. For a fluid this is sourced by the combination
of pressure and energy (ρ + 3p) (see, e.g., [109]), and the
gravitational potential satisfies

�φ = 4πG (1 + 3w) ρ, (14)

7 In principle, we could also consider monopoles. However, the gravi-
tational potential of a topological monopole is usually simply that of a
point-source or particle [107,108] and therefore already included in our
discussion of clumps (if such super-massive monopoles were to exist).
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i.e. it explicitly depends on the equation of state of the
source.

However, it is not obvious that the gravitational field of
topological objects such as strings and domain walls behaves
locally as suggested by their global equation of state. That
said, in good approximation this is nevertheless true for static
strings as well as domain walls, as shown by the results of
[110,111] and discussed below for each case in the respective
subsection. To model the local field of more complicated net-
works of topological structures we therefore simply assume
that it can be approximated by Eq. (14) with the equation of
state parameter given by its cosmological value.

The equation of state as well as their dimension for cos-
mic vacuum strings and domain walls leads to significantly
different gravitational fields sourced by these objects com-
pared to non-relativistic clumps of matter. In the following
subsections, we want to discuss their gravitational properties
and the related imprints they might leave at LISA.

3.1 Cosmic strings

In order to obtain the gravitational potential of a cosmic
string, we can solve (14) in a cylindrically symmetric space
for an energy density that is distributed along an infinite
string, e.g. ρ = μδ(x)δ(y). Here, μ is the tension of the
string, i.e. the energy stored per unit length. This yields
a gravitational potential that grows logarithmically with
distance, φ ∼ log (r0/r), and sources the gravitational
field

g(r) = −2(1 + 3w)
Gμ

r
er , (15)

where r denotes the radial distance to the string.
In general, we can directly use (15) to obtain the signal

strength at LISA. However, before we proceed, let us men-
tion a noteworthy special case. If we consider a single static
vacuum string, the equation of state is given by w = −1/3,
and its energy density dilutes as ρS ∼ a−2 [112]. At the
same time, this implies that its gravitational field vanishes,
indicating that a static cosmic string does not couple to mat-
ter [110,113]. Nevertheless, this picture can change, if the
vacuum string starts to be dynamical. For instance, a string
moving at a velocity β = v/c has a modified equation of
state, w = 2/3β2 − 1/3 [112]. Going beyond such scenario,
the situation can deviate from this even more, if multiple
strings are considered. In particular, if the strings interact
with each other to form a network, the corresponding equa-
tion of state can drastically change. Therefore it is possible
that they can contribute to the dark matter or dark energy
component of the Universe (see, e.g., [82]).

The naive reasoning from above suggests, that we would
not expect any gravitational pull on the interferometer by a
static vacuum string at all. However, it was shown that, due to

the globally non-trivial conical spacetime geometry sourced
by the string, it will still attract massive objects around it
[114]. In fact, the gravitational acceleration of a mass m in
the vicinity of the string is given by [114]

g(r) = −8πκG
(Gμ/c2)m

r2 er , (16)

where κ ≈ 1/32 for small Gμ/c2. In this case, the grav-
itational field falls of as g ∼ r−2 in contrast to the r−1

asymptotics of the general configuration (15). Naively, this
can be understood as follows. An infinite, straight and static
cosmic string sources a conical spacetime geometry that can
lead to double copies, i.e. mirror images, of nearby objects
[110,113]. In this sense, (16) can be understood as the grav-
itational field sourced by the effective mass, (Gμ/c2)m.
Hence, we can interpret the gravitational field of the string
as similar to the usual attractive force between two massive
objects. Cosmological considerations, such as the isotropy
of the cosmic microwave background, provide bounds on
the dimensionless string tension, which are typically of the
order Gμ/c2 � 10−6 (see, e.g., [115,116]). Therefore, we
expect a tiny acceleration of a test mass in the gravitational
field of a static cosmic string.

In the following, we will distinguish between signals due
to the gravitational pull on the interferometer generated by a
static vacuum string and by an interacting network of cosmic
strings that accounts for dark matter or dark energy. The
former will be characterized by the gravitational field (16),
while the latter is given by (15) with a general equation of
state.

Signal power spectrum

Given the gravitational field of a cosmic string, we can pro-
ceed analogously to the case of dark matter clumps and deter-
mine the gravitational acceleration that each node of the inter-
ferometer experiences in the vicinity of a string. For concrete-
ness, let us choose a coordinate frame, in which the (infinite)
string is parallel to the z-axis and the LISA satellite located
at the origin is, initially at t0 = 0, at a minimum distance D
to the string. We furthermore assume that the string is uni-
formly moving at velocity V . Due to the additional internal
orientation of the string as compared to spherical clumps, in
the frame where the string motion is confined to the yz-plane,
its velocity can have a component in the y- as well as the z-
direction, i.e. Vy = V sin θ and Vz = V cos θ , respectively.
In other words, the string has an additional inclination angle
when approaching the interferometer node. For a schematic
illustration see the bottom panel of Fig. 12 in Appendix A.
In this reference frame, in the gravitational field of a static
cosmic string (16), a test mass is subject to an acceleration
of
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g(t) = 8πκG
(
Gμ/c2

)
m

D2
(

1 + ( V t
D

)2
sin2 θ

)3/2

⎛
⎝

1
V t
D sin θ

0

⎞
⎠ , (17)

while in the field of an interacting string network (15) it reads

g(t) = 2Gμ(1 + 3w)

D
(

1 + ( V t
D

)2
sin2 θ

)
⎛
⎝

1
V t
D sin θ

0

⎞
⎠ . (18)

Note that in both expressions only the velocity component
Vy = V sin θ appears. This is because only the radial distance
to the string, in this reference frame determined by the x- and
y-coordinate, enters the gravitational field.

Along the lines of our discussion in Sect. 2, in order to
obtain the frequency spectrum of the detector response, we
now need to determine the Fourier transform of the velocity
perturbations associated to the accelerations of the detec-
tor nodes. As we will again argue a posteriori, we consider
the regime where the strings traverse the detector volume in
the close vicinity of a single node, i.e. the close-approach
limit, D � L . Therefore, the detector response can be
approximated by (4), which in the frequency domain reads
X̃(ω) ≈ − (1 − exp(−4iωL/c)) n1 · ṽ(ω)/c.

In addition to the orientation of the string and its motion
relative to the node of the interferometer, the arbitrary
orientation of the detector plane has yet to be imple-
mented. In the close-approach approximation, we can take
this into account by parametrizing n1 accordingly, n1 =
(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). For a detailed discussion of
this see Appendix A.2.

By squaring the Fourier transform of the response func-
tion, |X̃(ω)|2, we obtain the signal power spectrum induced
by a cosmic string in the vicinity of the interferometer. At
this point, the latter still depends on the relative orientation
between the string and the detector plane, parametrized by ϑ

and ϕ. As already noted for the case of clumps, we assume
that any orientation occurs equally likely (a discussion of
the validity of this simplistic approximation and additional
details are given in Appendix A.4). Therefore, we take the
uniform average over both (cf. Appendix A.2). Finally, the
angular-averaged signal induced by the gravitational pull of
a static cosmic string is given by

P(ω) = 512π

3
κ2

(
G

(
Gμ/c2

)
m

cV 2ω

)2

sin2 (2ωL/c)

×G1,3
3,0

(
1
2− 3

2 , 0, 1

∣∣∣∣
(
Dω

V

)2
)

, (19)

where G is the MeijerG-function. For an interacting network
of cosmic strings with an arbitrary equation of state, it reads
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Fig. 3 Angular-averaged signal power spectral density due to a static
cosmic string (top) and an interacting network of cosmic strings (bot-
tom) compared to the experimental sensitivity of LISA. The colors
denote different values of the dimensionless string tension, Gμ/c2.
Here, we have chosen an impact parameter of D = 100,000 km.
Therefore, as the strings are taken to account for dark matter, these
signal events are very rare and occur every 10,000,000 (blue) to 1000
(green) years on average. The black lines correspond to the sensitiv-
ity of LISA and the vertical dashed lines to two different values of the
used low-frequency cutoff. In both panels we have assumed a Maxwell–
Boltzmann distribution for the velocity of the strings with root mean
square vrms ≈ 270 km/s in combination with the LISA experiment
moving through the galaxy at v
 ≈ 220 km/s

P(ω) = 32

3
(1 + 3w)2

(
Gμ

cVω

)2

sin2 (2ωL/c) K1

(
2Dω

V

)
.

(20)

Here, K1 denotes the first modified Bessel function of the
second kind.

In the panels of Fig. 3, we illustrate an example of the
angular-averaged signal power spectral densities induced by
a static cosmic string (top) and an interacting string net-
work with w = 0 (bottom) and compare it to the exper-
imental sensitivity of LISA. In particular, we show differ-
ent values of the string tension and consider, as an example,
events with a fixed impact parameter of D = 100,000 km.
Moreover, we have assumed a (simplified) superposition of
a Maxwell–Boltzmann distribution for the velocity of the
strings with root mean square vrms ≈ 270 km/s in combina-
tion with the LISA experiment moving through the galaxy at
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v
 ≈ 220 km/s. We present the practical implementation of
this in Appendix A.4.

Similar to the dark matter clumps, we find that the sig-
nal receives large contributions from low frequencies, while
it quickly drops in the high frequency regime. The signal
induced by a static cosmic string is orders of magnitude
smaller compared to the signal caused by interacting cos-
mic strings with w = 0 as appropriate for the dark mat-
ter component of the Universe. This is due to the fact that
the gravitational perturbation of the former is sourced by the
tiny mirror mass, (Gμ/c2)m. In fact, the suppression already
indicates that only an interacting network of cosmic strings
is within experimental reach of LISA.

Given the angular-averaged signal power spectra, let us
now estimate the discovery potential for cosmic strings in
the vicinity of the gravitational wave interferometer. Assum-
ing that the energy stored in the cosmic string network is
determined by a single scale d, that is the characteristic dis-
tance between the strings, the energy density is given by
ρS ∼ μ/d2. In addition, this scale will also determine the
average interaction rate of a string with the detector. Since
we have averaged over the angles describing the orientation
of the string, for simplicity, we can assume that the strings are
all aligned and moving into the same direction perpendicular
to their orientation. Projecting into the plane orthogonal to
the strings then effectively reduces the problem of estimat-
ing the flux of cosmic strings to computing the flux of point-
particles through a given surface element. Here, however,
we have projected out one dimension and are thus dealing
with the flux through a line element. Accordingly, the rate
of cosmic strings approaching the detector at velocity V and
impact parameter D can be estimated to be

η̇ ∼ DV
ρS

μ
. (21)

Note that, in line with the angular-averaged signal power
spectral density shown in Fig. 4, η̇ is an estimate of the aver-
age rate at which a cosmic string of velocity V is passing by
the detector at a distance D. Therefore, it is only an approxi-
mation, as it does not take the shape of the signal into account,
which, for instance, can crucially depend on the relative ori-
entation between the string and the interferometer (this is
similar to the discussion of dark matter clumps in Sect. 2).
Nevertheless, we do not expect any significant changes of
our conclusions, if this complication was taken into account
more carefully.

The panels of Fig. 4 show the average gravitational inter-
action rate of a cosmic string network of static (top) and
interacting strings for w = 0 and w = −1 (bottom; for
the yellow curve we also choose the energy density to be
that of dark energy, ρDE ≈ 3.2 keV/cm3 [117], which will
use throughout this work) with the LISA interferometer as a
function of the signal-to-noise ratio. The bars illustrate the
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Fig. 4 Average gravitational interaction rate of cosmic strings with
the interferometer as a function of the signal-to-noise ratio. We distin-
guish between a network of static cosmic strings (top) and an inter-
acting network of dynamical strings (bottom), that constitutes the dark
matter or dark energy component of the universe. In the top panel,
the colors denote typical values of the dimensionless string tension,
Gμ/c2, while we have fixed the energy density to the dark matter one,
ρS ≈ 0.39 GeV/cm3. In the bottom panel, we have chosen a string
tension of Gμ/c2 ≈ 10−23 and fixed the energy density and equation
of state for dark matter as (ρDM ≈ 0.39 GeV/cm3, w = 0) and for
dark energy as (ρDE ≈ 3.2 keV/cm3, w = −1). In both panels we
have assumed a Maxwell-Boltzmann distribution for the velocity of the
strings with root mean square vrms ≈ 270 km/s in combination with
the LISA experiment moving through the galaxy at v
 ≈ 220 km/s

alternative low-frequency cutoff for the noise power spec-
trum of the detector (cf. Sect. 2 for details). For static cosmic
strings, we find that, due to their tiny gravitational field, the
rate of sufficiently strong interactions with the detector is
basically negligible, even for the most optimistic values of
the string tension. Naively, one could of course consider sit-
uations where one tries to probe the gravitational field with
more massive test objects, thereby increasing the source of
the field. This, however, is completely determined by the
experimental setup, such as LISA in our case, and not a free
parameter. Consequently, the tiny gravitational field renders
the signal of a static cosmic string by its gravitational pull on
the interferometer unobservable.

The more interesting case is an interacting network with
an equation of state w = 0, suitable for being the dominant
component of the dark matter. Due to the greatly enhanced
gravitational field, the situation is significantly improved, as
we demonstrate in the bottom panel of Fig. 4. For instance, we
find that a network with strings of tension Gμ/c2 ≈ 10−23
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could induce a signal in the interferometer with a signal-to-
noise ratio of about 10 every 10,000 years on average. Taking
a more optimistic low-frequency cutoff this could even be
improved, as indicated by the bars in the figure. Therefore, an
overall gain in experimental sensitivity could allow to gain
a sizeable factor in the signal event rate, giving hope that
already moderate improvements will allow for a detection.
As a consequence, similar to the case of dark matter clumps,
our analysis strategy would benefit from improvements in the
low frequency regime. Note that, in order to obtain a decent
interaction rate with a signal-to-noise ratio still greater than
one, we have, to some extent, chosen the string tension close
to an optimal value, Gμ/c2 ≈ 10−23. We will show the
overall experimental sensitivity of LISA for different string
tensions in Fig. 10 of Sect. 6.

We conclude that the overall discovery potential of a cos-
mic string network with the LISA interferometer depends on
its dynamics, i.e. its equation of state. Our estimates of the
signal-to-noise ratio indicate that a network of static vacuum
strings appears not to be observable, while an interacting net-
work with an equation of state appropriate for dark matter
may be closer to the experimental reach of LISA. Further-
more, our comparison of different low-frequency cutoffs sug-
gests that the overall discovery potential may be increased
by improvements in the low frequency regime.

3.2 Domain walls

In order to obtain the gravitational field sourced by a domain
wall, we can solve Poisson’s equation (14) for an energy
density confined to an infinite plane, e.g., ρ = σδ(x). Here,
σ denotes the surface tension of the domain wall and we
have neglected a possibly finite thickness. In this background,
the gravitational potential grows linearly with the distance,
φ ∼ r . Therefore, the gravitational field of a domain wall
with an arbitrary orientation is constant,

g(r) = ∓2πG(1 + 3w)σn. (22)

Here, n is the unit vector normal to the plane parametrizing
the domain wall and the sign ensures that the field always
points towards (or, as we will see momentarily, even away
from) the wall.8 That is, the gravitational field of a domain
wall is pointing in the direction normal to it and, in particular,
is independent of the distance to the wall.

Similar to cosmic strings, a network of domain walls can
have different equations of state, depending on its dynamics.
For instance, the equation of state of a static domain wall
is given by w = −2/3, such that its energy density dilutes
as ρDW ∼ a−1, while a domain wall moving at a velocity

8 From a geometric point of view, the correct sign for a test mass located
at r is given by the sign of n · (r − r0), where r0 is any point in the
plane parametrizing the domain wall.

β = v/c obeys an equation of state of w = β2 − 2/3 [112].
Intriguingly, according to (22), this implies that the gravita-
tional field of a static domain wall is repulsive rather than
attractive [110,111]. Nevertheless, complicated dynamics of
an interacting network of domain walls may lead to a very
different equation of state. Therefore, it can as well serve as
an exotic candidate for dark matter or dark energy [82–84]
with a corresponding equation of state.

In the following, we want to derive the signal due to the
gravitational pull (or push, in the case of a repulsive potential)
of a domain wall travelling through the LISA interferometer.

Signal power spectrum

The gravitational field of a domain wall is independent of
the distance to it. In contrast to the detection of dark matter
clumps or cosmic strings, this means that all three nodes of
the interferometer will experience the same acceleration due
to the presence of a domain wall. Therefore, in order to obtain
a differential acceleration and hence a signal in the interfer-
ometer, the domain wall has to traverse the space between
the different satellites. That is, it has to completely separate
one spacecraft from the other two, thereby accelerating them
into opposite directions.

The velocity perturbation that each node picks up due
to the constant acceleration in the gravitational field of the
domain wall reads

v(t) = ∓2πG(1 + 3w)σ t�(t)n, (23)

where n denotes the normal vector of the domain wall and the
different signs follow the conventions of (22). Here, for sim-
plicity, we assume that the wall starts traversing the interfer-
ometer at a time t0 = 0. Hence, the �-function implements
the fact that, due to the equal acceleration of the three nodes,
we do not expect a signal, if the domain wall does not sepa-
rate the individual nodes from each other. Similarly, we will
assume that the signal ceases to exist when the domain wall
has traversed the detector volume completely. In other words,
for simplicity, we consider a signal induced by a domain wall,
that starts travelling through the detector by passing the first
node, then passing the second, which thereafter gets acceler-
ated in the opposite direction, and finally traverses the third
node, after which it ceases to exist. That is, strictly speaking,
we view the signal as caused by the acceleration burst instead
of the individual velocity perturbations. When considering
the latter, obviously, the signal will not cease to exist after
the domain wall has passed the last satellite, as there is still
a differential velocity shift between all three nodes. In prin-
ciple, this will, in addition, lead to a persistent deformation
of the LISA triangle. In general, the situation is even more
complicated, when considering a complex network of inter-
acting domain walls which traverse the detector volume at
different times and directions. A correct and thorough treat-
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Fig. 5 Angular-averaged signal power spectral density of a domain
wall traversing the detector volume compared to the experimental sen-
sitivity of LISA. The signal is shown in color, illustrating different sur-
face tensions of the domain wall, σ . The sensitivity of LISA is shown
in black. Again the thin dashed line indicate two choices of the low-
frequency cutoff. In contrast to the case of clumps and strings, the lower
one is chosen at a smaller frequency as our calculation for the domain
walls has no close-approach limitation in the present case. Here, we
assume that the domain wall is moving at a velocity of v/c = 10−3. If
the domain wall network is to cover the dark matter component of the
Universe, the signal events shown here are quite infrequent. On average,
we expect them every 1.5 (blue), 150 (yellow) and, in the extreme case,
15,000 (green) years

ment would require an involved numerical simulation of this
scenario. Here, we will not consider this layer of complexity.

Due to the constant gravitational field, the signal that
a domain wall will induce in the interferometer when
traversing the detector volume involves each of its three
nodes. Therefore, the detector response has to be
parametrized by the exact response function given in (36),
where the vi are now given by (23). The terms of the detec-
tor response function can be evaluated explicitly, e.g., in a
reference frame where each node is located on a coordinate
axis, ri = L/

√
2ei , and we parametrize the domain wall

by the unit vector n = (sin θ cos φ, sin θ sin φ, cos θ). We
can then proceed by considering the Fourier transform of the
response function, i.e. of the velocity perturbations, and uni-
formly averaging over the angles (θ, φ) in order to obtain the
angular-averaged signal power spectrum. For a detailed dis-
cussion of the geometrical aspects of this, see Appendix A.3.
We also note that, similar to our discussion of localized dark
matter clumps, a uniform average is only an approximation.
We discuss its validity and more details in Appendix A.4.

In Fig. 5 we illustrate the angular-averaged signal power
spectral density due to the differential gravitational accel-
eration by a domain wall traversing the interferometer and
compare it to the experimental sensitivity of LISA. In partic-
ular, we consider domain walls of different surface tensions
and fix their typical velocity to v/c = 10−3. We find that,
compared to the case of dark matter clumps or cosmic strings
(cf. Figs. 1 and 4), the signal caused by a domain wall is sig-
nificantly enhanced in the high frequency regime of LISA’s

characteristic frequency range. One factor contributing to this
is that we assumed an infinitely thin domain wall and point
like nodes of the experiment. In practice, both have a finite
thickness that should lead to a faster drop off at large fre-
quencies. However, this does not play any significant role in
our determination of the sensitivity.

Furthermore, we can estimate the average rate of gravi-
tational interactions with the LISA detector that we expect
for a given network of domain walls. The energy density that
is stored in a network is essentially determined by the sur-
face tension of the walls σ and the characteristic distance d
between them, ρDW ∼ σ/d. In order to estimate the rate at
which we expect them to approach the detector, we can con-
sider the simplified situation where the domain walls of the
network are all parallel to each other.9 The overall rate is then
simply given by the inverse time interval between two con-
secutive walls travelling through the detector volume. That
is, if the domain walls move at a certain velocity v, the rate
at which we expect them to approach the detector can be
roughly estimated by

η̇ ∼ v
ρDW

σ
. (24)

Note that, in line with the angular-averaged signal power
spectral density shown in Fig. 5, η̇ is merely an estimate of
the average rate at which a domain wall is passing through the
detector and is therefore only an approximation. In particular,
it does not take the shape of the signal caused by a specific
domain wall into account, which, for instance, can crucially
depend on the relative orientation between the domain wall
and the detector (this is similar to the our discussion of dark
matter clumps in Sect. 2). As an extreme example, a domain
wall that is exactly parallel to the interferometer plane would
not leave any experimental imprint in the detector. While this
does not make any significant difference for the results we
show in this section, we present results of using a somewhat
improved approach in Fig. 10 of Sect. 6. There we account
for this additional angular dependence. In particular, a thor-
ough treatment requires to weight the signal events according
to their relative orientation with respect to the detector. For
instance, as a simple schematic example, this can be written
(see also Appendix A.3)

η̇tot = 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ η̇ � [SNR(θ, φ) − s] , (25)

where s is the required signal-to-noise ratio. That is, naively,
only signal events are taken into account for configurations
which lead to a detectable signal at the interferometer. Never-
theless, this does not qualitatively alter the results presented
in this section.

9 We recall that, in our simple approximation, we have already uni-
formly averaged over their direction of motion (cf. Appendix A.3).
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Fig. 6 Average gravitational interaction rate of a static domain wall
network (top) and an interacting domain wall network (bottom) as a
function of the signal-to-noise ratio. In the top panel, the colors denote
the velocity at which the wall is traversing the detector. Here, we choose
the domain wall energy density to be of the same order of magnitude
as dark matter. In the bottom panel, we assume a typical velocity of the
domain walls of v/c = 10−3 together with an energy density and equa-
tion of state corresponding to dark matter (blue, ρDW ≈ 0.39 GeV/cm3,
w = 0) and dark energy (yellow, ρDW ≈ 3.2 keV/cm3, w = −1),
respectively. Note that, for a given interaction rate, the domain wall
tension is fixed by the combination of the velocity and the dark matter
density

Fig. 6 shows the average gravitational interaction rate of
a domain wall network as a function of the signal-to-noise
ratio. In the top panel, we consider the case of a static domain
wall network, while in the bottom panel, we consider an inter-
acting network of domain walls that constitute the dark matter
or dark energy component of the Universe. Similar to Fig. 2,
the bars illustrate an alternative choice of the low-frequency
cutoff for the noise power spectrum of the detector given
in (9). However, as our estimate of the signal induced by a
domain wall does not rely on the close-approach approxima-
tion, the cutoff can be shifted towards even lower frequen-
cies. Here, we choose ωc = 10−4 Hz as indicated in Fig. 5.
For both setups, we observe that with increasing signal-to-
noise ratio the event rate reduces according to a linear power
law. This is because, here, we consider the angular-averaged
signal-to-noise ratio, SNR ∝ σ , as well as interaction rate,
η̇ ∝ σ−1, which are solely determined by the domain wall
surface tension σ . That is, each data point shown in the figure
corresponds to a specific value of the latter.

In general, as expected, the overall discovery potential for
static and interacting domain walls is comparable, as long as
the energy density is fixed to that of dark matter. Intriguingly,
it is also somewhat better than in the case of dark matter
clumps or cosmic strings. For instance, we expect a signal due
to a domain wall traversing the interferometer with a signal-
to-noise ratio of about ten every 10 to 100 years on average.
Taking into account potential improvements due to a more
optimistic noise spectrum, this rate might also be higher. In
this case the same signal may even be expected almost every
1 to 10 years on average. Therefore, in the future, such a
domain wall network could certainly be within experimental
reach of LISA.

Let us close this discussion with a few words of caution.
The estimates presented in this section are subject to some
simplifications we have made in our derivation. Our results
are based on the assumption that the domain wall can be
parametrized by an infinite plane of vanishing thickness. This
assumption, however, might not always be fully justified in
particle physics models that admit domain wall solutions.
Moreover, and perhaps more importantly, we have only con-
sidered the situation of a domain wall inducing a signal that
ceases to exist once the wall has traversed the entire detec-
tor volume. In principle, one would also have to include the
remnant velocities of the nodes relative to each other once
the domain wall has passed, which most likely would mod-
ify the signal power spectrum at low frequencies. In addition,
this would also change the triangular detector geometry per-
sistently. Nevertheless, our relatively conservative estimates
for gravitational interactions of domain wall networks with
the LISA interferometer provide hope for a future discovery
potential.

4 Stochastic fluctuations of the dark matter density

In addition to strongly localized energy densities, such as
dark matter clumps or topological defects travelling through
the Universe, the gravitational potential in the vicinity of the
interferometer can also be perturbed by stochastic fluctua-
tions of the dark matter density, as already discussed in [20]
for the example of pulsar timing arrays. To linear order, these
gravitational perturbations satisfy

�δφ = 4πGρ̄δ, (26)

where δφ denotes the perturbation of the gravitational poten-
tial, while δ = δρ/ρ̄ is the relative fluctuation of the mean
density ρ̄.

In principle, (time dependent) perturbations of the gravita-
tional potential are precisely what gravitational wave exper-
iments try to measure. In this section, we aim to estimate the
sensitivity of LISA to these perturbations caused by fluctua-
tions of the dark matter density. For simplicity, we consider
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a simple density fluctuation, oscillating in space, that travels
through the interferometer. That is, after decomposing δ in
Fourier space, the gravitational response to a Fourier mode
with wave vector k is given by

˜δφk = −4πGρ̄
δ̃k

k2 , (27)

where k = |k|.
We can now determine the detector response to a specific

Fourier mode of the density fluctuation by considering the
contribution to the gravitational perturbation of each mode
separately, δg(x) = ∫

d3k δgk(x), where the perturbation of
the gravitational field associated to a mode with wave vector
k reads

δgk(x) = 4π iGρ̄δ̃k
k
k2 exp (ik · x) . (28)

Naively, this corresponds to a situation, where we select a
plane wave of specific wave length and “freeze it”, as there is
no dynamical wave evolution. Instead, we obtain a detector
response to this density wave, if the interferometer moves
through the perturbation of the gravitational field. To some
extent, this setup is similar to a network of domain walls
travelling through the interferometer, discussed in Sect. 3.2.

Assuming a detector node is moving through the den-
sity perturbation of wave vector k at a constant velocity v,
i.e. x(t) = vt + x0, the frequency spectrum of the associated
gravitational acceleration is given by

δ̃gk(ω) = 4π iGρ̄δ̃k
k
k2

√
2π exp (ik · x0) δ (ω + k · v) .

(29)

Note that the right most term denotes the δ-distribution, not
to be confused with the density fluctuation. This represents
that, if the detector moves through a plane wave at a con-
stant velocity, there is only one frequency contributing, which
depends on the angle between the wave vector of the density
perturbation and the motion of the detector.

The above gravitational acceleration will, in turn, lead to a
velocity perturbation of each node. Similar to the discussion
of domain walls in Sect. 3.2, we can plug each velocity per-
turbation into the detector response function, X (t), to obtain
the response of the interferometer to a given Fourier mode
of a density perturbation, X̃k(ω). Furthermore, in order to
determine the detector response to a superposition of den-
sity fluctuations, we can then sum over all Fourier modes.
The absolute square of this finally yields the signal power
spectrum associated to the linear superposition of density
perturbations, which schematically reads

P(ω) =
∫

dω′d3k d3k′ 〈X̃∗
k′(ω′)X̃k(ω)

〉

10−5 10−4 0.001 0.010 0.100 1 10
10−60

10−50
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10−30

Fig. 7 Angular-averaged power spectral density of a local dark matter
density fluctuation compared to the experimental sensitivity of LISA.
The colors denote different spectral indices n. Amongst these, the solid
and dashed lines correspond to the peak positions, k�, of the dark matter
power spectrum, i.e. k−1

� ∼ 2.2 × 103 km (solid) and k−1
� ∼ 2.2 ×

105 km (dashed), respectively. The black line shows the sensitivity of
LISA. Here, we have fixed the normalization of the dark matter power
spectrum toP� = 1. We furthermore assume a velocity ofv ≈ 220 km/s
at which the detector is moving through the density wave, while for the
dark matter density we use the same value as in Fig. 1

∼ 32π3 G
2ρ̄2

c2

3∑
i, j=1

ci j (ω)

×
∫

dω′d3k d3k′ (ni · k)
(
n j · k′)

ωω′k2k′2

× eik·ri e−ik′·r j δ (ω + k · v) δ
(
ω′ + k′ · v)

〈
δ̃∗
k′ δ̃k

〉
,

(30)

where, similar to the previous sections, ni denote the unit
vectors pointing between two nodes, labelled by the oppo-
site side of the triangle, and ri is the initial position of each
node. The coefficients ci j (ω) encode the linear combination
of the velocity perturbations of each interferometer node
in the detector response (36). Therefore, they also include
phases of the form exp(iωL/c) due to retardation effects.

That is, naively, the signal response of the detector to a
superposition of density fluctuations with different wave-
lengths is weighted according to the dark matter density
power spectrum. For the latter we use the conventional defi-
nition (see, e.g., [118])

〈
δ̃∗
k′ δ̃k

〉
= (2π)3 δ(3)(k − k′)2π2

k3 P(k). (31)

As a simple example of the density power spectrum, we
consider a broken power law,10

P(k) = P�

(
�(k� − k)

(
k

k�

)n

+ �(k − k�)

(
k

k�

)−n
)

,

10 In particle physics models of very light dark matter, such a spectrum
and the wavelengths of interest to us may be achieved quite naturally,
see, e.g., [67,68,119].
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(32)

where P� is a normalization constant and n is the spectral
index. Obviously, P(k) exhibits a peak P� at a characteristic
scale k�, which we treat as a free parameter. Indeed, for the
purpose of this work, we assume that it obtains its maximum
within the characteristic frequency band of LISA, ω�. The
corresponding wavelength is then of the order

k−1
� ∼ 2.2 × 105 km

(
v

220 km/s

)(
1 mHz

ω�

)
. (33)

Again we average over angles (cf. Appendices A.3 and A.4 ).
We illustrate the angular-averaged signal power spectral den-
sity associated to a dark matter density fluctuation travers-
ing the interferometer in Fig. 7 and compare it to the overall
experimental sensitivity of LISA. The signal power spectrum
shown is normalized to unity, i.e. P� = 1. We also show dif-
ferent choices of the spectral index n as well as different peak
positions k� of the dark matter power spectrum. For simplic-
ity, we have fixed the velocity at which the detector is moving
through the density wave to v ≈ 220 km/s. For density fluc-
tuations of order 1 we find that, even for optimistic choices
of the peaks, the overall signal power spectrum is suppressed
by many orders of magnitude compared to the noise. As the
signal scales linearly with the power spectrum of the fluctu-
ations, P�, we can see that enormous fluctuations are needed
for a signal to be detectable. Indeed, this result is, to some
extent, expected from our discussion of localized dark mat-
ter clumps. Naively, clumps correspond to a fluctuation of
significant overdensity compared to the background. How-
ever, as we have shown in Sect. 2, these are scarcely within
experimental reach of the LISA detector. In summary, we
therefore do not expect any detectable experimental signa-
ture of stochastic fluctuations of the dark matter density at
LISA, unless the overdensities are very large (at which point
they may actually resemble more the localized structures we
have already discussed).

5 Extrapolation to other gravitational wave experiments

The general strategy we have presented in the previous sec-
tions is not limited to the LISA interferometer, but in principle
applies to any experimental apparatus that is sensitive to grav-
itational perturbations. In this section, we want to extrapolate
our results to other gravitational wave experiments. In par-
ticular, we aim to obtain the detectable rate corresponding
to the gravitational pulls of dark matter clumps and topo-
logical defects in ground-based interferometers, for example
LIGO [120,121], and pulsar timing arrays, for instance uti-
lizing SKA [14]. Due to their different characteristic sizes
compared to LISA, these detectors are sensitive to gravita-

tional interactions in other frequency regimes and therefore,
ultimately, to other energy densities of dark matter objects.

5.1 LIGO

With its pioneering measurements, LIGO has strongly
advanced the field of gravitational wave astronomy [1,2].
For the purpose of this work, we will treat it as a classi-
cal Michelson interferometer, which aims to measure phase
shifts between laser beams sent across two orthogonal arms.
Since the characteristic length of both arms is L ≈ 4 km,
it is sensitive to gravitational perturbations at frequencies of
approximately 1 Hz to 1000 Hz [120,121].

In general, while the basic idea of our survey for LISA
also applies to LIGO, there are a few differences due to
the detector geometry. Most importantly, LIGO is a ground-
based interferometer. Naively, its detector nodes are freely
hanging mirrors suspended from a static laboratory frame, in
stark contrast to the freely moving satellites of LISA. There-
fore, while the detector response at LISA was determined
by relative velocity shifts between the satellites, at LIGO we
can only expect a signal due to sufficiently short gravitational
acceleration bursts on the mirrors. Consequently, as a sim-
plified detector response to a gravitational perturbation, we
consider the differential acceleration between the four mir-
rors [94],

X (t) =
[
g1
x (t) − g0

x (t)
]

−
[
g1
y(t) − g0

y(t)
]
, (34)

where x and y denote the arms of the interferometer. In addi-
tion, being a ground-based interferometer, LIGO is subject
to different sources of background noise, such as seismic
motion, for example. To take the different background noise
into account, we model the noise power spectrum according
to the sensitivity curve of the design sensitivity of advanced
LIGO [121]. Since we parametrize the detector response
X (t) in terms of differential accelerations, we then con-
vert the strain- to an acceleration noise by multiplying with
(ω2L/2)2 (see, e.g., [95]). With these definitions, we can
repeat the analysis of the previous sections.

We summarize our results in Fig. 8, where we show the
average gravitational interaction rate of localized dark mat-
ter clumps as well as string and domain wall networks with
LIGO as a function of the signal-to-noise ratio. Note that here,
due to the small characteristic size of the detector as com-
pared to LISA, we cannot use the close-approach approx-
imation of the detector response, D � L , in every region
of the parameter space we are interested in. For simplicity,
and in order to also take the regime D � L into account, we
extrapolate our results by multiplying the gravitational accel-
eration by a factor L/D in this limit (see (6) for a qualitative
explanation).
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Fig. 8 Average gravitational interaction rate of localized dark matter
clumps (a), cosmic strings (b) and domain walls (c) with LIGO as a
function of the signal-to-noise ratio. (a) The colors illustrate different
masses of the clumps. (b) Here the color indicates the equation of state
of the cosmic string network. We furthermore assume strings of tension
Gμ/c2 ≈ 10−28. (c) As in (b) but for a domain wall network travelling
at a fixed velocity, v/c = 10−3 (as noted in Fig. 6, the combination of
interaction rate, density and velocity fixes the domain wall tension). All
remaining parameters for dark matter and dark energy, as well as for
the velocity distribution of clumps and strings, are chosen as in Fig. 4

In general, for localized dark matter clumps, we observe a
behaviour qualitatively similar to the LISA analysis shown in
Fig. 2. As one may expect, we find that LIGO with its much
smaller size is sensitive to clumps with comparatively low
masses. We find that dark matter clumps of masses 103 kg,

could be observed every 2000 years on average. More opti-
mistically, given that these estimates crucially depend on the
noise spectrum as well as the frequency cut-offs used to deter-
mine the signal-to-noise ratio (in addition to the other approx-
imations we employed), these values could also be a factor
of 10 or even higher. Bearing this in mind, our results are
in rough agreement with [24]. An overview of the expected
signal event rate for different masses of the clumps is shown
in Fig. 10.

We obtain similar results for networks of topological
defects. As an example, we show a cosmic string network
with tension Gμ/c2 ≈ 10−28, for which we find that LIGO
could observe a corresponding signal with a signal-to-noise
ratio above one approximately every 20,000 years on aver-
age. Note that these values depend on the string tension and
velocity distribution we assume. The signals induced by a
domain wall network traversing the interferometer are simi-
lar to the ones we obtained at LISA. Quantitatively, we expect
a possible signal with a signal-to-noise ratio above one every
1000 to 10,000 years on average.

In summary, LIGO can measure sufficiently short grav-
itational acceleration bursts caused by localized clumps of
dark matter or networks of cosmic strings and domain walls.
Due to LIGO’s smaller size and correspondingly different
frequency range compared to LISA, it is sensitive to objects
of typically smaller masses as well as string and domain
wall tensions. Indeed, with the same analysis strategy, further
experimental improvements are required to lift the discovery
potential of LIGO for these dark matter structures to a level
that allows for a detection in a reasonable time frame.

5.2 Pulsar timing arrays

Another type of experiment, aiming towards a measurement
of a gravitational waves, are pulsar timing arrays (PTAs).
These exploit the fact that the time of arrival of radiation
bursts from pulsars across the Universe can be precisely pre-
dicted. Gravitational waves that traverse the space between a
certain set of pulsars and the observer on Earth will perturb
the correlations between the different times of arrival, thereby
generating a signal in the corresponding detector. Due to the
long lines of sight between the pulsars and the telescopes,
PTAs are able to probe gravitational wave spectra in very
low frequency regimes, typically of the order 10−9 Hz to
10−6 Hz (see, e.g., [11–14,122,123]).

In this section we want to explore the discovery potential
of PTAs with respect to the astrophysical structures discussed
in the previous sections, i.e. dark matter clumps (note the pre-
vious works [17,18,20,21,23,26–28]) as well as networks of
cosmic strings and domain walls. For simplicity, we will do
so by viewing a PTA as a gravitational wave interferometer
of the same type as common ground- or space-based inter-
ferometers at very large scales, i.e. as an interferometer with
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arm lengths of several thousand light-years. As a prototyp-
ical example, we will consider a replica of LISA, that is an
interferometer made up by three nodes at equal distance to
each other, but with an arm length of L ≈ 1000 ly. However,
the sensitivity of PTAs is usually based on the observation of
multiple pulsars. To use this, the signal must exist in all Earth-
pulsar combinations. For our search strategy this requires that
the dark matter structure is affecting the velocity of the Earth.
Compared to LISA, where all nodes can be treated equally,
this reduces the detectable rate by a factor of 3. Although
this is a crude simplification of the experimental techniques
used for gravitational wave measurements with PTAs, we still
expect reasonable estimates of prospective signal strengths
for the purpose of this work. In particular, in terms of aver-
age signal event rates, we expect to benefit from the largely
increased detector volume.

As we are essentially considering a LISA experiment at
large scales, our analysis strategy is similar to the one pre-
sented in Sects. 2 and 3 . The only major difference is the
sensitivity of the experiments in different frequency regimes.
We implement this by modelling the noise power spectrum
according to the typical sensitivity curve of a PTA. As a pro-
totype, we use the noise power spectrum of a PTA utilizing
the future Square Kilometer Array (SKA) [14] as shown in
[99],

SSKA
n ( f ) ≈ 1

2π
8.6 × 10−18

(
f

1 Hz

)
Hz−1

×
(

2 (2π f L/c)2

1 + (2π f L/c)2

)2

, f ≥ fc, (35)

and extrapolate it to high frequencies. Here, similar to (9), we
again introduced a transfer function to adapt the raw strain
spectrum to our signal spectrum. Furthermore, we added an
additional factor of (2π)−1 in order to match the Fourier
conventions. Due to the limited observation time of SKA, we
introduce a cut-off for frequencies below fc ≈ 1.5×10−9 Hz
in the computation of the corresponding signal-to-noise ratio.

A summary of our results is given in Fig. 9, where we show
the average gravitational interaction rate of localized dark
matter clumps as well as string and domain wall networks
as a function of the signal-to-noise ratio at SKA. Note that
here, similar to the analysis of LISA, we consider the close-
approach regime of the localized dark matter clumps and
cosmic strings. That is, we only consider events with impact
parameters smaller than the size of the detector, D � L .
Because of the large size of the experiment, this condition
is basically fulfilled in any region of the parameter space we
are interested in.

For localized clumps of dark matter, we find that we ben-
efit from the increased detector volume, allowing for very
massive clumps while still retaining decent interaction rates.
As expected, the qualitative behaviour we observe is similar
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Fig. 9 As Fig. 8 but for a prototypical PTA utilizing SKA. All param-
eters are also the same except for the string tension in (b), which is
chosen to be Gμ/c2 ≈ 10−18

to the detection of dark matter clumps with LISA shown in
Fig. 2. Due to the increased detector volume, we expect a
discovery potential for signals induced dark matter clumps
with masses of MDM ≈ 10−9M
 at a signal-to-noise ratio
of SNR ∼ 1 every 300 years on average. Apparently, this is
a slightly more pessimistic estimate compared to what was
found in earlier works. For example, in [18] the original esti-
mate of a detection rate for primordial black hole dark matter
with PTAs is somewhat higher. Nevertheless, bearing in mind
the crude approximations we have applied in our derivation,
our results are in rough agreement.
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We find a similar discovery potential for networks of cos-
mic strings as well as domain walls, constituting the dark
matter or dark energy budget of the Universe, respectively.
In particular, a cosmic string network featuring a larger string
tension appears to benefit from the experimental setup at large
scales. Here, we show an example of strings with a tension
of Gμ/c2 ≈ 10−18. For this network we expect a signal with
a signal-to-noise ratio of about 1–10 every 1000 to 10,000
years on average. For a domain wall network with the same
equation of state, we find an expected signal with a signal-
to-noise ratio of 105 every few million years on average. We
clearly do not need such a high signal-to-noise ratio. How-
ever, to preserve the validity of our analysis we require to have
only a single domain wall traversing the detector volume at
the same time. This, in turn, implies a lower bound on the sur-
face tension of the domain wall network. As each data point
shown is uniquely determined by a specific surface tension,
this forbids us to go beyond the shown signal-to-noise ratios
and corresponding interaction rates. Nevertheless, keeping
these caveats in mind, we can extrapolate the given data.
This raises the hope that we can have events every 10 to 100
years with a signal-to-noise ratio above one, SNR � 1.

In summary, we find that, in a scenario where the dark
matter properties optimally fit the experimental sensitivity,
dark matter clumps, cosmic strings and domain walls, may
be observed at SKA with a slightly higher rate than LIGO
while being comparable to LISA. All categories benefit from
the increased detector volume, such that PTAs are sensi-
tive to more massive objects than smaller gravitational wave
interferometers. We will give an overview of this feature in
Sect. 6, which then also makes explicit the complementar-
ity that exists between these different types of experiments.
However, carefully note that the values we present in this
section are all based on the assumption that a measurement
of gravitational perturbations with a PTA is the same as with
the LISA detector, but at large scales. The discovery potential
of PTAs for strings and domain walls using a more accurate
treatment of its experimental techniques certainly merits fur-
ther investigation.

6 Conclusions

In this paper, we have studied the potential of gravitational
wave interferometers to measure gravitational perturbations
caused by the presence of macroscopic dark matter objects
in the vicinity of the detector. Any localized energy density
passing by sufficiently close to the interferometer will exert
a gravitational pull on each of its nodes, and hence cause a
differential acceleration. This acceleration leads to Doppler
shift signal in the interferometer that can be measured.

The objects we have considered in the present work
include localized clumps of dark matter (see also [15–29]),

topological defects, such as cosmic strings and domain walls,
as well as stochastic fluctuations (cf. [20]) of the dark mat-
ter density. As our baseline example, we have examined the
LISA experiment for which we have given the signal power
spectrum associated to the presence to each of these sources
in the vicinity of the detector. Based on this we then looked11

at LIGO and a pulsar timing array using SKA that are sensi-
tive to complementary frequency ranges.

Our results are summarized in Fig. 10. For each experi-
ment, we show contours of the average gravitational inter-
action rate of events with a signal-to-noise ratio greater than
one, SNR � 1, as a function of the energy density of each
dark matter structure. Due to their different characteristic
sizes, LIGO, LISA and SKA complement each other very
well in the sense that they are sensitive to different masses
and tensions of dark matter clumps and topological defects,
respectively.

In the most sensitive regimes of each experiment, we find
a prospective signal with a signal-to-noise ratio SNR � 1,
every 10,000 up to 100 years on average. Note that the most
striking signature is a domain wall traversing LISA which
might even be expected almost annually. However, we also
note that a signal-to-noise ratio SNR � 1 is in fact, at
best, a minimum requirement for a signal to be detected.
As the latter still needs to be distinguished from various
other sources, a significantly higher signal-to-noise thresh-
old is probably more realistic. As an example, we illustrate
a detection threshold of SNR � 10 by the dash-dotted lines
in Fig. 10. While this is not yet on a desirable level for a
near future discovery potential, let us remark that the sig-
nal estimates we show here are based on the close-approach
approximation, imposing a relatively high low-frequency
cutoff. Indeed, crucially, the signal-to-noise ratio can vary
significantly, if a different low-frequency cutoff is taken into
account (cf. Sect. 2 for a detailed discussion). This indi-
cates that improvements of the experimental sensitivity as
well as the theoretical analysis, notably in the low-frequency
region, may lead to a sizable enhancement of the detection
rate. Keeping this in mind, localized clumps of dark matter as
well as cosmic strings and domain walls may still be within
experimental reach of LIGO, LISA and PTAs. In contrast,
as clumps of dark matter clumps naively constitute a critical
overdensity of dark matter, stochastic fluctuations of the lat-
ter most likely cannot be measured above background noise.
Overall, this clearly requires more sensitive future gravita-
tional wave experiments.

In addition to the acceleration burst signals we have stud-
ied in this work, a signal could also arise due to the Shapiro
effect [34], i.e. from the changing gravitational potential

11 Note that our analysis strategy for LIGO and PTAs corresponds
essentially to an extrapolation of LISA to different scales. Therefore,
these estimates need to be taken with a bit of caution.
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Fig. 10 Sensitivity of gravitational wave experiments to gravitational
perturbations caused by localized dark matter clumps (a), cosmic strings
(b) and domain walls (c). The colors illustrate examples of gravitational
wave detectors, LIGO, LISA and a prototypical PTA using SKA. The
thin lines illustrate a signal-to-noise ratio threshold of SNR � 1 while
the thicker lines illustrate a case where SNR � 10. a As in previous
figures, we fix ρDM ≈ 0.39 GeV/cm3 and assume a velocity distri-
bution of Maxwell-Boltzmann type for the dark matter clumps with
root mean square vrms ≈ 270 km/s in combination with the experi-
ment moving through the galaxy at v
 ≈ 220 km/s. b The string net-
work is chosen to constitute the dark matter component of the Universe
(ρDM ≈ 0.39 GeV/cm3, w = 0). We furthermore assume the strings

have the same velocity distribution as the dark matter clumps. c Similar
to b but for a domain wall network at a velocity of v/c = 10−3. How-
ever, in contrast to a and b where we used a uniform average, here, the
determination of the total rate takes into account the relative orientation
between the domain walls and the experiment (see (25)). In all panels,
a dashed line illustrates a naive extrapolation of our analysis. In a and
b we extrapolate outside the close-approach regime by rescaling the
differential acceleration with an additional tidal factor L/D (see (6)).
In c we extrapolate the signal to a regime, where, on average, there is
more than one domain wall traversing the detector volume at the same
time

due to a dark matter structure within the line of sight con-
necting different nodes of a gravitational wave detector (see
[17,20,23,26,28]). It would be interesting to investigate the
corresponding signal associated to the presence of cosmic
strings or domain walls, which we leave for future work.

In summary, not only localized clumps of dark matter but
also cosmic strings or domain walls are close to the experi-
mental reach of gravitational wave interferometers. Current
and future gravitational wave experiments, such as LIGO,
LISA and PTAs, are sensitive to gravitational perturbations
due to the presence of these objects in the vicinity of the detec-
tor. These experiments are complementary to each other, as

the different characteristic sizes and time-scales of the detec-
tors make them sensitive to different parameter regions of the
gravitational sources. Already moderate improvements in the
detector noise and analysis may yield interesting discovery
potential to intriguingly exotic dark matter objects such as
cosmic strings and domain walls.
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A The detector geometry of LISA and its signal
response

The shape and strength of a signal at LISA (or any other
gravitational wave interferometer) induced by a gravitational
perturbation due to a massive object in the vicinity of the
detector, of course, depends on the distance, velocity and ori-
entation of the latter with respect to the experiment. In this
appendix, we aim to define the relevant geometrical quan-
tities that enter the derivation of the signal power spectrum
associated to these events.

In general, LISA is a space-based gravitational wave inter-
ferometer involving three distinct nodes, which are arranged
in an equilateral triangle of side length L ≈ 2.5 × 106 km.
Following the notation of [97], we schematically illustrate
the general experimental setup of LISA in Fig. 11. Each pair
of nodes exchanges laser beams, such that, in principle, there
are six functions,U1,2,3 andV1,2,3, that encode Doppler shifts
due to gravitational perturbations by massive objects in the
vicinity of the experiment. The desired detector response to
an acceleration burst is then given by a suitable linear combi-
nation of these functions. Here, we use the so-called Michel-
son response function for the readout of a signal at a single
detector node [96],

X (t) = U1(t) + V1(t) −U1(t − 2L/c) − V1(t − 2L/c)

−U2(t − L/c) − V3(t − L/c), (36)

where we have assumed that the arms of the interferometer
are of equal length L . The components of the response func-
tion are given by projections of the velocity perturbations

onto the interferometer arms,

U1(t) = n2 · v1(t) − v3(t − L/c)

c
, (37)

V1(t) = n3 · v1(t) − v2(t − L/c)

c
, (38)

and cyclic permutations thereof. Here, the ni denote the unit
vectors pointing between two nodes, labelled by the opposite
side of the triangle, vi is the velocity perturbation of the i-th
node induced by the gravitational pull and c is the speed of
light. We note that other response function are also possible,
see, e.g., [96,97].

From the response function (36) it is clear that any grav-
itational pull exerted by a massive object in the vicinity of
the interferometer nodes has to be projected into the detec-
tor plane. For example, in the extreme case, where only one
satellite is accelerated perpendicular to the detector plane,
e.g. n2 ·v1 = n3 ·v1 = 0, the object will not leave any signa-
ture in the interferometer.12 Therefore, the detector response
will depend on how an object traverses the detector volume,
i.e. on its orientation relative to the detector plane.

In the following, we want to define the relevant geomet-
rical quantities describing this relative orientation of dif-
ferent macroscopic astrophysical objects we aim to probe
with LISA. For simplicity, we will only consider the close-
approach limit, where the object passes by an interferometer
node with an impact parameter smaller than the characteris-
tic size of the detector, D � L . As explained in the main text,
in this case the gravitational perturbation of two of the three
interferometer nodes can be neglected, such that the detector
response function can be approximated by adding suitable
time delays to [31]

X (t) = −ni · vi (t) − vi (t − 4L/c)

c
, (39)

where vi (t) is the velocity perturbation of the i-th node, that
dominates compared to the two others. In other words, i is
the interferometer node with smallest impact parameter with
respect to the object traversing the detector volume. Hence,
we do not sum over the indices in (39).

A.1 Spherical clumps

Massive spherical objects, such as localized clumps of dark
matter, are in a sense the most symmetric configuration when
they pass by one of the LISA nodes. That is, in the close-
approach limit, their lack of an internal orientation allows to
parametrize their motion relative to the detector by a velocity

12 Strictly speaking, this is not true, because the two other nodes will
also experience a gravitational pull which is not perpendicular to the
detector plane. Nevertheless, at large distances between the source and
these nodes this effect is negligible.
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Fig. 11 Schematic overview of the LISA interferometer. Here, ni are
unit vectors connecting pairs of satellites. The Ui and Vi encode the
possible Doppler shifts of the laser beams that are exchanged between
the detector nodes

vector v and an impact parameter D, i.e. the closest distance
in an encounter between the massive clump and a detector
node. The former is completely determined by its magnitude
v and an arbitrary direction given in terms of two angles,
i.e. v = v (sin θ cos φ, sin θ sin φ, cos θ). Clearly, not all of
these four parameters will enter the detector response. In fact,
since the gravitational force between the spherical clump and
the LISA satellite is only determined by their relative dis-
tance, we can consider the projection into the plane spanned
by the satellite and the trajectory of the clump. This effec-
tively removes two degrees of freedom, such that we are left
with the relative velocity v and the impact parameter D. As a
particular example discussed in the main text, we can choose
the spherical clump to be in a straight uniform motion with
velocity v parallel to the y-axis at an initial distance D to the
satellite. The clump is furthermore confined to the xy-plane.
We illustrate this scenario in the top panel of Fig. 12.

The above considerations determine the gravitational pull
exerted by a massive clump on a single LISA satellite.
As pointed out earlier, in order to determine the corre-
sponding detector response, this gravitational acceleration
burst has to be projected into the detector plane. The lat-
ter can be parametrized by an arbitrary unit normal vec-
tor, nT = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). In our analy-
sis, the orientation of the detector plane is implemented in
the detector response function, which in the close-approach
regime, D � L , is given by (39). That is, we can take
this orientation into account by parametrizing the “domi-
nant” unit vector of the LISA triangle accordingly, ni =
(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). Note that, strictly speaking,
we are slightly abusing notation here. Obviously, the angles
parametrizing the normal vector of the detector plane and the
unit vector connecting two nodes of the triangle are not the
same. Nevertheless, since we will average over these angles
later, we denote them by the same symbol to avoid an over-
load of notation.

In summary, in the close-approach limit, there are four
geometrical degrees of freedom in total that enter the detec-
tor response to a localized massive clump travelling through

the interferometer. In particular, the clump’s velocity v, the
impact parameter D as well as the orientation of the detector
plane (ϑ, ϕ) completely determine the signal at LISA. That
is, the detector response is a function of these parameters,
X (t) = X (t, v, D, ϑ, ϕ).

Finally, since we assume a locally isotropic situation,
i.e. the clumps can approach the interferometer from any
direction equally likely, we uniformly average over the ori-
entation of the detector plane in order to obtain the signal
power spectrum from the detector response,

P(ω) =
〈∣∣∣X̃(ω, v, D)

∣∣∣
2
〉

= 1

4π

∫ π

0
dϑ sin ϑ

∫ 2π

0
dϕ

∣∣∣X̃(ω, v, D, ϑ, ϕ)

∣∣∣
2
.

(40)

Overall, the signal power spectrum then still depends on the
velocity of the clump as well as the impact parameter of the
encounter.

Let us close this discussion with a few words of caution.
Strictly speaking, the uniform average we have employed
above, is not fully justified. This is because the configuration
we consider is not strictly isotropic. Instead, there is a pre-
ferred direction in the system, given by the Sun, together with
the detector, moving through the Universe. In this sense, a
uniform average is only an approximation. We present a more
detailed discussion of this in Appendix A.4.

A.2 Infinite strings

Unlike spherical clumps, or point-like particles, cosmic
strings do have an internal degree of freedom. That is, from a
geometrical point of view, they are parametrized by line ele-
ments, thereby having an additional orientation themselves.
Obviously, when determining the detector response to a grav-
itational acceleration caused by a cosmic string, this orienta-
tion has to be taken into account.

In general, an infinite string can be parametrized by a
straight line, γ (s) = x0 + snγ , where nγ denotes an arbi-
trary unit vector. In addition, the string can move in a direction
with a certain velocity v relative to the nodes of the interfer-
ometer. Again, similar to the case of spherical clumps, not
all of these parameters will enter the detector response to a
gravitational perturbation in the close-approach regime. In
fact, the gravitational field of the string only depends on the
radial distance to the source, such that we can consider the
projection into the plane perpendicular to the string. As in the
main text, we can choose a coordinate frame, in which the
infinite string is parallel to the z-axis and the satellite located
at the origin is, initially at t0 = 0, at a minimum distance D
to the string. We can then assume that the string is uniformly
moving in a random direction in the yz-plane with velocity

123



828 Page 22 of 27 Eur. Phys. J. C (2021) 81 :828

D x

v
satellite

M, μ

clump,
string

y

(a)

n
LISA plane

domain
wall

θ

v

(b) Domain wall

Fig. 12 Schematic projections of a spherical clump and an infinite
string (a) and a domain wall (b) passing by the nodes of the interferom-
eter. (a) The spherical clump of mass M is chosen to move uniformly
in parallel to the y-axis, i.e. v = vey with an impact parameter D. The
infinite string of tension μ is parallel to the z-axis, such that it is per-
pendicular to the xy-plane. (b) The domain wall is travelling through
the detector plane at an inclination angle θ . Without loss of generality,
we assume that the domain wall moves in the direction normal to it,
v = vn

v, i.e. vy = v sin θ and vz = v cos θ , respectively. Indeed,
this reflects the fact that the string has an additional internal
orientation as compared to spherical objects such as clumps.
This situation is depicted in the top panel of Fig. 12. There-
fore, the gravitational acceleration burst induced by a cosmic
string on a single LISA node depends on three parameters,
namely the relative velocity v, the impact parameter D as
well as the direction of motion relative to the string orien-
tation, parametrized by θ . Note that, equivalently, we could
also choose a reference frame where the satellite is moving
uniformly and the satellite is at rest.

Finally, as pointed out in the previous section, the overall
gravitational acceleration has to be projected into the detector
plane, parametrized by the angles ϑ and ϕ. Therefore, in sum-
mary, LISA’s detector response to a gravitational pull by cos-
mic string (in the close-approach regime) is a function of five
geometrical parameters in total, X (t) = X (t, v, D, θ, ϑ, ϕ).
In an isotropic Universe, the signal power spectrum is finally
given by a uniform average over all arbitrary orientations

involved,

P(ω) = 1

8π2

∫ 2π

0
dθ

∫ π

0
dϑ sin ϑ

×
∫ 2π

0
dϕ

∣∣∣X̃ (ω, v, D, θ, ϑ, ϕ)

∣∣∣
2
.

(41)

In total, the signal power spectrum depends on the velocity of
the string as well as the impact parameter of the encounter.
However, we note that, similar to the case of dark matter
clumps, a uniform average over all possible directions might
not be fully justified, see Appendix A.4.

A.3 Domain walls

When determining the detector response of LISA to a gravi-
tational potential sourced by an energy density localized on
an infinite plane, i.e. a domain wall, additional degrees of
freedom compared to a spherical clump or an infinite string
have to be taken into account.

Geometrically, the plane parametrizing a domain wall can
be described by the algebraic equationn·(r − r0) = 0, where
r0 is an arbitrary point in the plane and n denotes the unit
vector normal to it. Nevertheless, as we will see momentarily,
the exact signal shape caused by a domain wall involves fewer
geometrical parameters than, e.g., spherical objects or cosmic
strings. This is due to the fact that its gravitational field only
induces a signal at LISA, if the domain wall is located in
between the detector nodes, thereby separating them from
each other.13 Therefore, we only have to consider a situation,
where the triangle spanned by the LISA satellites intersects
an infinite plane. If the domain wall, or equivalently LISA,
is moving at a certain velocity, this line of intersection will
move, too, until it has completely passed the detector plane.
We illustrate this in the bottom panel of Fig. 12.

The only geometrical quantities that enter the detector
response function X (t) in this scenario are, in fact, the ori-
entation of the domain wall with respect to the triangle
spanned by the LISA satellites as well as its relative veloc-
ity. Without loss of generality, the former can be completely
parametrized by, e.g., the unit vector normal to the plane,
n = (sin θ cos φ, sin θ sin φ, cos θ), while we can assume the
latter to point into the normal direction, v = vn, (cf. Fig. 12).
Accordingly, the detector response will be a function of these
parameters only, X (t) = X (t, v, θ, φ). Finally, similar to the
previous sections, in a locally isotropic dark matter distribu-
tion, the signal power spectrum associated to the gravitational

13 As discussed in the main text, this is because LISA only measures
differential accelerations between the satellites. However, the gravita-
tional field sourced by a domain wall does not depend on the distance,
but is constant everywhere. Therefore, signals are only generated for
configurations where the satellites are accelerated into opposite direc-
tions.
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perturbation by a domain wall traversing the detector volume
is given by the uniform average over all possible orientations
relative to the detector,

P(ω) = 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ

∣∣∣X̃(ω, v, θ, φ)

∣∣∣
2
. (42)

That means, the overall signal power spectrum will only
depend on the velocity of the domain wall relative to the
LISA detector. However, we also note that, similar to the
case of dark matter clumps, a uniform average over all possi-
ble directions might not be fully justified, as we will discuss
in the following subsection.

A.4 Velocity distribution of dark matter

In the previous subsections we have illustrated how our esti-
mate of the signal power spectrum accounts for the rela-
tive orientation between the detector plane of LISA and the
source of the gravitational perturbation. In particular, we have
assumed that the dark matter can approach the interferometer
from any direction equally likely and hence uniformly aver-
aged over the solid angle which parametrizes the latter (see,
e.g., (40)). Naively, this partly follows from the Maxwell-
Boltzmann distributed velocities of the dark matter struc-
tures. However, strictly speaking, this is not fully justified
for the following reason.

In a naive approximation, it is reasonable to assume that
the dark matter inside the halo surrounding our Galaxy
behaves like an ideal gas of non-interacting particles and
therefore roughly follows a Maxwell-Boltzmann distribution
(see, e.g., [124]),

p(v) =
(

1

2πv2
0

) 3
2

exp

(
−|v|2

2v2
0

)
, (43)

for some normalization v0, which, from a microscopic per-
spective, is determined by the dark matter mass and the tem-
perature of the gas.

The Maxwell-Boltzmann distribution (43) of the dark mat-
ter inside the halo of our Galaxy yields an isotropic uni-
form distribution for the direction in which the dark matter
structures are moving. That is, dark matter can approach the
experiment from any direction equally likely. In the previ-
ous sections, this feature is taken into account by a uniform
average of the angles parametrizing the relative orientation
between the detector plane of LISA and the trajectory of the
dark matter structure (see, e.g., (40)). Obviously, this is true
in an isotropic reference frame where an observer is at rest
inside the dark matter halo of the Galaxy. However, in prac-
tice, the Sun, together with the detector, is moving through
the halo at a constant velocity of v
 ≈ 220 km/s [102],
thereby imposing a preferred direction on the system. That
means that not every direction in an encounter occurs equally

likely, such that the average over these directions should not
be uniform. Instead, to correctly account for this one would
need to weight the velocity in each direction according to the
normal distribution (43) with the appropriate velocity shift
by v
, for example in z-direction, vz → vz − v
.

At first glance the situation looks even worse, because, in
addition, LISA is moving on a complicated orbit around the
Sun (see, e.g., Fig. 4 in [98]). However, this composite motion
of the detector might turn out to be a blessing in disguise [31],
as it does not impose a single preferred direction but (at least
naively) periodically changes the latter. Hence, in order to
account for the relative orientation between the experiment
and the dark matter trajectory, a uniform average average over
the orientation might indeed be closer to the experimental
scenario than singling out only one preferred direction [31].
In practice, as an approximation, we therefore take a uniform
average over the solid angle accounting for the direction (see,
e.g., (40)) and weight the detector response according to the
probability distribution

p(v) = 1√
2πv2

0

exp

[
−1

2

(
v − v


v0

)2
]

. (44)

Here, we try to approximate the motion of the detector
through the dark matter halo with v
 ≈ 220 km/s [102] and
finally normalize to the dark matter rms velocity of the latter,
v0 = vrms/

√
3 with vrms ≈ 270 km/s (see, e.g., [103]). Let

us remark that, for the purpose of this work, we do not expect
any large quantitative changes if a more accurate estimation
of the dark matter velocity distribution with respect to the
detector was performed.
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